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Abstract001

Self-attention in Transformer-based generative002
models such as GPT, implicitly assumes that003
context tokens are independent and identically004
distributed. However, this contradicts the very005
premise of attention: that the meaning of words006
is influenced by their complex interdependen-007
cies. We propose whitened self-attention, a008
filter that optimally accounts for inter-token009
correlations and show it enhances representa-010
tion learning for autoregressive language mod-011
eling. Experiments on a small GPT architecture012
demonstrate an 11% improvement in perplex-013
ity, an equivalent performance in 13x fewer014
iterations, and after optimizations, a lowered015
training time by up to 42%. This work ad-016
vances self-attention for generative NLP tasks,017
based on a theoretically grounded method for018
handling token dependencies, and our method019
shows promise for improving generalization in020
large-scale NLP models.021

1 Introduction022

The Transformer model (Vaswani et al., 2017) is a023

popular and successful deep learning architecture024

used in a wide array of applications areas such as025

NLP (Kalyan et al., 2021), computer vision (Khan026

et al., 2022; Han et al., 2022), speech recognition027

(Gulati et al., 2020), and computational biology028

(Zhang et al., 2023). That said, the core compo-029

nent, self-attention, is more of a heuristic than a030

precisely formulated, optimally derived filter. At-031

tention estimates a target vector, xn ∈ Rd based on032

a weighted sum of its context vectors, {xi} ∈ Rd033

(Bahdanau et al., 2014). The autoregressive formu-034

lation used in GPT architectures takes the form035

Att(xN ) =

N−1∑
i=0

softmax(
xTNQTKxi√

d
)V xi (1)036

=
N−1∑
i=0

 exp(
xT
NQTKxi√

d
)∑N−1

j=1 exp(
xT
NQTKxj√

d
)

V xi,037

(2)038

where the Q, K, and V are learned matrices. The 039

softmax terms in Equation 1 are positive scalars 040

summing to one, and they estimate the relative 041

information each xi has about xN . For this for- 042

mulation to provide a minimum variance estimate, 043

the Gauss-Markov theorem implies the xi should 044

be independent and identically distributed random 045

vectors (Shaffer, 1991). If they are not i.i.d. the esti- 046

mator is suboptimal. When training with very large 047

datasets, it is possible that the variance approaches 048

an optimal value, but intuitively, it is doubtful this 049

occurs uniformly for all token embeddings across 050

the entire input vocabulary. 051

Whitening is a filtering process that transforms 052

input sequences into stochastically independent out- 053

puts, and estimators based on it are optimal, having 054

minimum variance (Kleiner et al., 1979; Kailath, 055

1970). The rest of this paper develops a com- 056

putationally feasible whitening operator for self- 057

attention, and presents experimental results show- 058

ing that whitened attention significantly improves 059

performance when used to train a GPT model. 060

2 Sequence Whitening 061

Given an ordered sequence of column vectors 062

{x0, x1, . . . , xN−1}, xi ∈ RD, a common objec- 063

tive is to autoregressively predict the next vector, 064

xN , given observations of the preceding context 065

(Akaike, 1969). Typically, the xi are assumed in- 066

dependent and identically distributed, but if the 067

sequence is correlated it must be whitened to ob- 068

tain an optimal estimator. Defining the vector 069

X = [xT0 , x
T
1 , . . . , x

T
N−1]

T ∈ RND, where the 070

xi are zero-mean random vectors, the covariance 071

matrix ΛX = E{XXT } has a block structure 072

ΛX =


Λ0,0 Λ0,1 . . . Λ0,N−1

Λ1,0 Λ1,1 . . . Λ1,N−2
...

...
...

ΛN−1,0 ΛN−1,1 . . . ΛN−1,N−1

 ,

(3) 073
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where Λi,j = E{xixTj }. The whitened sequence,074

W = [wT
0 , w

T
1 , . . . , w

T
N−1]

T ∈ RND, is obtained075

from X by letting W = Λ
−1/2
X X . That the wi are076

independent (that is, whitened) can be verified as077

follows:078

ΛW = E{WW T }079

= E{Λ−1/2
X XXTΛ

−1/2
X }080

= Λ
−1/2
X E{XXT }Λ−1/2

X081

= Λ
−1/2
X ΛXΛ

−1/2
X082

= I. (4)083

The whitened sequence, {wi}, spans the same sub-084

space as the {xi} but are independent of each other.085

When substituted into the self-attention expression086

from Equation 2, the result is an optimized estima-087

tor of xN we call whitened attention (WA),088

WA(xN ) =
N−1∑
i=0

softmax(
xTNQTKwi√

d
)wi (5)089

=
N−1∑
i=0

 exp(
xT
NQTKwi√

d
)∑N−1

j=1 exp(
xT
NQTKwj√

d
)

wi.090

(6)091

A superficial difference between the expression for092

standard attention in Equation 2 and the whitened093

one in Equation 6 is that the latter has no V matrix.094

It has been absorbed into the wi, as is explained in095

more detail in the next section.096

3 Modeling the Covariance Structure097

As the matrix ΛX is ND × ND, its inverse is098

computationally challenging and memory intensive.099

For example, in current production-quality LLMs,100

ND ≈ 107, meaning this single matrix could re-101

quire more than a petabyte of memory. Some of102

the computational and memory requirements can103

be mitigated by recognizing that ΛX , a covariance104

matrix, is symmetric, and additional efficiencies105

can be had by assuming the modeled sequences106

are wide-sense stationary. The cross-covariance107

blocks, Λij , of a wide-sense stationary process de-108

pend only on their separation, |i − j| (Van Trees,109

2004; Papoulis and Pillai, 2002). This makes the110

structure of ΛX block Toeplitz:111

ΛX =


Λ0 Λ1 . . . ΛN−1

Λ1 Λ0 . . . ΛN−2
...

...
...

ΛN−1 ΛN−2 . . . Λ0

 . (7)112

We can further simplify the covariance model if 113

we assume the process has compact support. For 114

example, if Λk = 0 for k > 0 then Equation 7 is 115

block diagonal. For this trivial case, the whitening 116

filter, Λ−1/2
X is also block diagonal, 117

Λ
−1/2
X =


Λ
−1/2
0

Λ
−1/2
0

. . .

Λ
−1/2
0

 . (8) 118

This makes the whitened vectors wi = Λ
−1/2
0 xi, 119

and we identify the V matrix in Equation 2 as 120

Λ
−1/2
0 , which clarifies why the expression in Equa- 121

tion 6 does not need to explicitly represent it. 122

A less trivial case is when Λk = 0 for k > 1, 123

making ΛX block tridiagonal, 124

ΛX =



Λϕ Λ1

Λ1 Λ0 Λ1

Λ1 Λ0 Λ1

. . . . . . . . .
Λ1 Λ0 Λ1

Λ1 Λ0


. (9) 125

As ΛX is symmetric positive semi-definite, it can 126

be factored with a block Cholesky decomposition, 127

ΛX = LLT (Golub and Van Loan, 2013). Note we 128

have introduced Λϕ into the covariance model, so 129

ΛX deviates from being strictly block Toeplitz, but 130

this trick simplifies L to block bidiagonal, 131

L =



L0

L1 L0

L1 L0

. . . . . .
L1 L0

L1 L0


. (10) 132

Similar to Equation 4, we can verify that W = 133

L−1X is white. Thanks to its structure, the in- 134

verse of L can be efficiently computed using block 135

Gaussian elimination (Golub and Van Loan, 2013). 136

The solution, as illustrated graphically in Figure 1, 137

results in the following recursion: 138

w0 = L−1
0 x0 139

w1 = L−1
0 (x1 − L1w0) 140

... 141

wN−1 = L−1
0 (xN−1 − L1wN−2). (11) 142

The elements of the matrices L−1
0 and L1 are 143

learned directly as part of training the attention 144

model, and the matrix L0 need never be inverted. 145
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Figure 1: The whitening filter for the block tridiagonal
covariance matrix is a recursion taking the correlated xi

as inputs and producing independent wi at the output.

Figure 2: Decoder Transformer architecture with two
blocks, each with a two-head (h) attention and a feed-
forward layer (FFN). Each layer includes a layer norm
(LN), and a projection (A). Tokens are converted to
embeddings at the input, and to logits at the output.

4 Experiments146

To test the efficacy of our model, we implement147

whitened attention using Equations 6 and 11 and148

compare the results to experiments using standard149

attention, as specified in Equation 2. The exper-150

iments are based on the small Transformer archi-151

tecture shown in Figure 2, consisting of two Trans-152

former blocks, each with two attention heads. Po-153

sitional information is incorporated using rotary154

positional embeddings (RoPE) (Su et al., 2024).155

The data used in the experiments is the col-156

lected works of Charles Dickens, obtained from the157

Project Gutenberg website (Dickens, 2018), and we158

used a character-based tokenization strategy (Banar159

et al., 2020). The corpus contains 13m characters,160

with a total vocabulary of 93 unique tokens. This161

approach significantly simplifies the language pre-162

processing required when training language models 163

with Transformers. It has the advantage of provid- 164

ing a small, well-represented vocabulary without 165

having to map rare tokens to a catchall such as 166

<UNK>. The model implements the standard Trans- 167

former blocks: layer norms, linear projections, mul- 168

tilayer perceptrons, and the embedding and unem- 169

bedding layers.1 Our experiments are implemented 170

with a context window of length 256 and a token 171

embedding dimension of 256. We use the mean 172

cross-entropy (MCE) loss applied to the validation 173

data as our performance metric. 174

To evaluate whitened attention, we ran four ex- 175

periments, each for 100k iterations. The first was 176

the standard GPT implementation of self-attention 177

with RoPE. The batch parameter was 256 and the 178

model size worked out to 1.6m parameters. Its 179

MCE loss on the validation data is represented by 180

the blue curve in Figure 3. The final value of loss 181

for this experiment was 1.39, corresponding to a 182

perplexity of 4.0 versus 93 for the untrained model. 183

The green curve in the figure is the result for our 184

whitened attention formulation. The batch parame- 185

ter for this experiment was 256, and the model size 186

2.15m parameters. As indicated in the figure, it 187

rapidly outstrips standard attention, dropping to the 188

same MCE loss in just 5,784 iterations (17x less). 189

The loss value continues to improve, achieving 190

a value of 1.24 after 100k iterations. This corre- 191

sponds to a perplexity of 3.47, a better than 13% 192

improvement over the result for standard attention. 193

As the whitened attention experiment benefited 194

from more parameters, a third experiment was run 195

for standard attention, but with an equivalent model 196

capacity of 2.15m parameters, achieved by increas- 197

ing the embedding dimension from 256 to 296. 198

Again the batch size was 256. The results are repre- 199

sented by the orange curve in the figure. The final 200

MCE loss for this trial was 1.36, a slight improve- 201

ment over the smaller standard attention experi- 202

ment. By comparison, the whitened attention run 203

achieves the same level of loss in 7,593 iterations 204

(13x less), while delivering an 11% improvement 205

in perplexity at 100k iterations. 206

These results are summarized in the first three 207

rows of Table 1, which also provide the compute 208

time for the full 100k iterations.2 The whitened 209

attention model required 10.4x more time than was 210

needed for standard attention with equivalent ca- 211

1See https://transformer-circuits.pub/2021/framework/
2All computations were performed on an Nvidia RTX 4090
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Figure 3: Comparing whitened and standard attention
of GPT training on the validation data (10% split).

pacity, but as discussed, it achieves the same level212

of MCE loss in 13x fewer iterations, corresponding213

to 21% less time (see Table 2). This motivated a214

fourth experiment, rerunning the whitened model215

with half the batch size, 128. The results are repre-216

sented by the red curve in the figure, which shows a217

final MCE loss almost identical to the one with the218

larger batch size. However, as shown in Table 1, in219

comparison to full batch whitened attention, it com-220

pleted in 51% of the compute time. It achieves the221

same level of MCE loss as the equivalent capacity222

attention at iteration 10,879 and in 42% less time223

(see Table 2). Equivalent attention performance224

times are recapped in Table 2. These experiments225

demonstrate that whitening is a powerful technique226

that significantly improves the model’s ability to227

explain the data while reducing the compute time228

for an equivalent MCE loss.229

Model MCE Compute
Experiment Size Loss Time Perplexity

Standard
Attention 1.6m 1.39 56 min 4.00

Equivalent
Capacity 2.15m 1.36 73 min 3.90

Whitened
Attention 2.15m 1.24 761 min 3.47

Whitened
Half Batch 2.15m 1.25 387 min 3.49

Table 1: Performance summary, comparing standard and
whitened attention models for 100k iterations. Equiva-
lent capacity refers to the larger standard attention trial.

5 Conclusions and Future Research230

In this paper, we show that whitening improves the231

performance of self attention for a small GPT archi-232

tecture. It delivered 11% improvement in perplex-233

ity and achieved standard attention’s best result in234

Batch Compute
Size Iters Time %Time

ECSA 256 100k 73 min 100%
WA 256 7,592 58 min 79%

WAHB 128 10,879 42 min 58%

Table 2: Number of iterations and time to attain an MCE
loss of 1.36: ECSA is for Equivalent Capacity Standard
Attention and is the baseline, WA is for Whitened Atten-
tion, and WAHB is for Whitened Attention Half Batch.
Each model was trained with 2.15m weights.

42% less time. If this carries over to training larger 235

LLM models it would mean savings in compute 236

time, improvements in performance, or a combina- 237

tion of both. Furthermore, as whitening removes 238

inter-symbol correlations, it will likely affect the 239

weights of attention heads and MLPs, which in turn, 240

will have a knock-on effect on results reported by 241

papers on mechanistic interpretability (Bereska and 242

Gavves, 2024; Frankle and Carbin, 2018; Naim and 243

Asher, 2024; Scherlis et al., 2022), making this an 244

important topic for future investigation. 245

Our next steps will focus on scaling to larger cor- 246

pora, using more sophisticated tokenization strate- 247

gies, and implementing larger GPT models. We 248

saw that a simple change in batch dimension sig- 249

nificantly reduced compute time, so additional hy- 250

perparameter optimization is one direction of sub- 251

sequent investigation. Our developments also high- 252

light the potential of covariance modeling, and we 253

plan to explore additional ideas at both the global 254

and block levels. For covariance blocks, matrix se- 255

ries truncations such as Neumann series expansions 256

and Krylov subspaces (Strang, 2000) could help 257

reduce computational burden, as could diagonal 258

plus low rank matrices (Saunderson et al., 2012). 259

At the global level, we plan to extend the block 260

tridiagonal model in Equation 9 to higher orders, 261

such as the pentadiagonal case (Λk = 0 for k > 2). 262

Finally, for longer sequences, we plan on imple- 263

menting the convolutional recursion in Equation 11 264

with an FFT. 265

6 Limitations 266

The main limitation of our approach is the com- 267

putational burden introduced by recursion needed 268

for the implementation of whitening. This inter- 269

feres with a fully parallelized implementation on 270

a GPU, however, it may be possible to mitigate 271

this by leveraging CUDA optimizations such as 272

tiling, memory coalescing, kernel fusion, and so on 273

(Hijma et al., 2023; Yang et al., 2011). 274
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