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Abstract

Self-attention in Transformer-based generative
models such as GPT, implicitly assumes that
context tokens are independent and identically
distributed. However, this contradicts the very
premise of attention: that the meaning of words
is influenced by their complex interdependen-
cies. We propose whitened self-attention, a
filter that optimally accounts for inter-token
correlations and show it enhances representa-
tion learning for autoregressive language mod-
eling. Experiments on a small GPT architecture
demonstrate an 11% improvement in perplex-
ity, an equivalent performance in 13x fewer
iterations, and after optimizations, a lowered
training time by up to 42%. This work ad-
vances self-attention for generative NLP tasks,
based on a theoretically grounded method for
handling token dependencies, and our method
shows promise for improving generalization in
large-scale NLP models.

1 Introduction

The Transformer model (Vaswani et al., 2017) is a
popular and successful deep learning architecture
used in a wide array of applications areas such as
NLP (Kalyan et al., 2021), computer vision (Khan
et al., 2022; Han et al., 2022), speech recognition
(Gulati et al., 2020), and computational biology
(Zhang et al., 2023). That said, the core compo-
nent, self-attention, is more of a heuristic than a
precisely formulated, optimally derived filter. At-
tention estimates a target vector, z,, € R¢ based on
a weighted sum of its context vectors, {z;} € R?
(Bahdanau et al., 2014). The autoregressive formu-
lation used in GPT architectures takes the form
N-1 T

Q' Kz;
Att(zy) = Zsoftmax( N Wz (1)
1=0 \/Zi
2T QT Kz,
N-1 exp( N?/g ) y
= x.
. 2L QT Kz ; [
par Zj‘vﬂl exp(W)
2

where the (), K, and V' are learned matrices. The
softmax terms in Equation 1 are positive scalars
summing to one, and they estimate the relative
information each x; has about x. For this for-
mulation to provide a minimum variance estimate,
the Gauss-Markov theorem implies the x; should
be independent and identically distributed random
vectors (Shaffer, 1991). If they are not i.i.d. the esti-
mator is suboptimal. When training with very large
datasets, it is possible that the variance approaches
an optimal value, but intuitively, it is doubtful this
occurs uniformly for all token embeddings across
the entire input vocabulary.

Whitening is a filtering process that transforms
input sequences into stochastically independent out-
puts, and estimators based on it are optimal, having
minimum variance (Kleiner et al., 1979; Kailath,
1970). The rest of this paper develops a com-
putationally feasible whitening operator for self-
attention, and presents experimental results show-
ing that whitened attention significantly improves
performance when used to train a GPT model.

2 Sequence Whitening

Given an ordered sequence of column vectors
{x0,21,...,2n_1},2; € RP, a common objec-
tive is to autoregressively predict the next vector,
TN, given observations of the preceding context
(Akaike, 1969). Typically, the x; are assumed in-
dependent and identically distributed, but if the
sequence is correlated it must be whitened to ob-
tain an optimal estimator. Defining the vector
X = [of,2T,. .24 T € RND, where the
x; are zero-mean random vectors, the covariance
matrix Ax = E{X X7} has a block structure
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where A; j = E{xeJT} The whitened sequence,
W = [wl,wf,.. . ,wk |7 € RNP, is obtained

from X by letting W = A}"/*X. That the w; are
independent (that is, whitened) can be verified as
follows:
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The whitened sequence, {w; }, spans the same sub-
space as the {x;} but are independent of each other.
When substituted into the self-attention expression
from Equation 2, the result is an optimized estima-
tor of xy we call whitened attention (WA),
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A superficial difference between the expression for
standard attention in Equation 2 and the whitened
one in Equation 6 is that the latter has no V' matrix.
It has been absorbed into the wy, as is explained in
more detail in the next section.

3 Modeling the Covariance Structure

As the matrix Ax is ND x ND, its inverse is
computationally challenging and memory intensive.
For example, in current production-quality LLMs,
ND =~ 107, meaning this single matrix could re-
quire more than a petabyte of memory. Some of
the computational and memory requirements can
be mitigated by recognizing that A x, a covariance
matrix, is symmetric, and additional efficiencies
can be had by assuming the modeled sequences
are wide-sense stationary. The cross-covariance
blocks, A;;, of a wide-sense stationary process de-
pend only on their separation, |i — j| (Van Trees,
2004; Papoulis and Pillai, 2002). This makes the
structure of A x block Toeplitz:
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We can further simplify the covariance model if
we assume the process has compact support. For
example, if Ay = 0 for £ > 0 then Equation 7 is
block diagonal. For this trivial case, the whitening
filter, A)_(l/ % is also block diagonal,
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This makes the whitened vectors w; = A, 1 zxi,
and we identify the V' matrix in Equation 2 as
Ay Y %, which clarifies why the expression in Equa-
tion 6 does not need to explicitly represent it.

A less trivial case is when A, = 0 for & > 1,
making A x block tridiagonal,
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As A x is symmetric positive semi-definite, it can
be factored with a block Cholesky decomposition,
Ax = LL" (Golub and Van Loan, 2013). Note we
have introduced A into the covariance model, so
A x deviates from being strictly block Toeplitz, but
this trick simplifies L to block bidiagonal,
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Similar to Equation 4, we can verify that W =
L~1X is white. Thanks to its structure, the in-
verse of L can be efficiently computed using block
Gaussian elimination (Golub and Van Loan, 2013).
The solution, as illustrated graphically in Figure 1,
results in the following recursion:

wy = Lalxo
w; = Lgl(m — Liwy)
wy-1 = Ly'(zn-1— Liwn_s). (1)

The elements of the matrices L !and L, are
learned directly as part of training the attention
model, and the matrix Lj need never be inverted.
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Figure 1: The whitening filter for the block tridiagonal
covariance matrix is a recursion taking the correlated x;
as inputs and producing independent w; at the output.
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Figure 2: Decoder Transformer architecture with two
blocks, each with a two-head (h) attention and a feed-
forward layer (FFN). Each layer includes a layer norm
(LN), and a projection (A). Tokens are converted to
embeddings at the input, and to logits at the output.

4 [Experiments

To test the efficacy of our model, we implement
whitened attention using Equations 6 and 11 and
compare the results to experiments using standard
attention, as specified in Equation 2. The exper-
iments are based on the small Transformer archi-
tecture shown in Figure 2, consisting of two Trans-
former blocks, each with two attention heads. Po-
sitional information is incorporated using rotary
positional embeddings (RoPE) (Su et al., 2024).
The data used in the experiments is the col-
lected works of Charles Dickens, obtained from the
Project Gutenberg website (Dickens, 2018), and we
used a character-based tokenization strategy (Banar
et al., 2020). The corpus contains 13m characters,
with a total vocabulary of 93 unique tokens. This
approach significantly simplifies the language pre-

processing required when training language models
with Transformers. It has the advantage of provid-
ing a small, well-represented vocabulary without
having to map rare tokens to a catchall such as
<UNK>. The model implements the standard Trans-
former blocks: layer norms, linear projections, mul-
tilayer perceptrons, and the embedding and unem-
bedding layers.! Our experiments are implemented
with a context window of length 256 and a token
embedding dimension of 256. We use the mean
cross-entropy (MCE) loss applied to the validation
data as our performance metric.

To evaluate whitened attention, we ran four ex-
periments, each for 100k iterations. The first was
the standard GPT implementation of self-attention
with RoPE. The batch parameter was 256 and the
model size worked out to 1.6m parameters. Its
MCE loss on the validation data is represented by
the blue curve in Figure 3. The final value of loss
for this experiment was 1.39, corresponding to a
perplexity of 4.0 versus 93 for the untrained model.

The green curve in the figure is the result for our
whitened attention formulation. The batch parame-
ter for this experiment was 256, and the model size
2.15m parameters. As indicated in the figure, it
rapidly outstrips standard attention, dropping to the
same MCE loss in just 5,784 iterations (17x less).
The loss value continues to improve, achieving
a value of 1.24 after 100k iterations. This corre-
sponds to a perplexity of 3.47, a better than 13%
improvement over the result for standard attention.

As the whitened attention experiment benefited
from more parameters, a third experiment was run
for standard attention, but with an equivalent model
capacity of 2.15m parameters, achieved by increas-
ing the embedding dimension from 256 to 296.
Again the batch size was 256. The results are repre-
sented by the orange curve in the figure. The final
MCE loss for this trial was 1.36, a slight improve-
ment over the smaller standard attention experi-
ment. By comparison, the whitened attention run
achieves the same level of loss in 7,593 iterations
(13x less), while delivering an 11% improvement
in perplexity at 100k iterations.

These results are summarized in the first three
rows of Table 1, which also provide the compute
time for the full 100k iterations.” The whitened
attention model required 10.4x more time than was
needed for standard attention with equivalent ca-

'See https://transformer-circuits.pub/2021/framework/
2All computations were performed on an Nvidia RTX 4090
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Figure 3: Comparing whitened and standard attention
of GPT training on the validation data (10% split).

pacity, but as discussed, it achieves the same level
of MCE loss in 13x fewer iterations, corresponding
to 21% less time (see Table 2). This motivated a
fourth experiment, rerunning the whitened model
with half the batch size, 128. The results are repre-
sented by the red curve in the figure, which shows a
final MCE loss almost identical to the one with the
larger batch size. However, as shown in Table 1, in
comparison to full batch whitened attention, it com-
pleted in 51% of the compute time. It achieves the
same level of MCE loss as the equivalent capacity
attention at iteration 10,879 and in 42% less time
(see Table 2). Equivalent attention performance
times are recapped in Table 2. These experiments
demonstrate that whitening is a powerful technique
that significantly improves the model’s ability to
explain the data while reducing the compute time
for an equivalent MCE loss.

Model | MCE | Compute
Experiment | Size Loss Time Perplexity

Standard i

Attention | 16m | 1.39 | 56 min 4.00
Equlval.ent > 15m 136 — 190
Capacity

Whitened -

Attention | 2-1om | 1.24 | 761 min 3.47
Whitened -
Half Batch | 2-15m | 125 | 387 min 3.49

Table 1: Performance summary, comparing standard and
whitened attention models for 100k iterations. Equiva-
lent capacity refers to the larger standard attention trial.

5 Conclusions and Future Research

In this paper, we show that whitening improves the
performance of self attention for a small GPT archi-
tecture. It delivered 11% improvement in perplex-
ity and achieved standard attention’s best result in

Batch Compute
Size Iters Time % Time
ECSA 256 100k 73 min 100%
WA 256 7,592 58 min 79%
WAHB 128 10,879 42 min 58%

Table 2: Number of iterations and time to attain an MCE
loss of 1.36: ECSA is for Equivalent Capacity Standard
Attention and is the baseline, WA is for Whitened Atten-
tion, and WAHB is for Whitened Attention Half Batch.
Each model was trained with 2.15m weights.

42% less time. If this carries over to training larger
LLM models it would mean savings in compute
time, improvements in performance, or a combina-
tion of both. Furthermore, as whitening removes
inter-symbol correlations, it will likely affect the
weights of attention heads and MLPs, which in turn,
will have a knock-on effect on results reported by
papers on mechanistic interpretability (Bereska and
Gavves, 2024; Frankle and Carbin, 2018; Naim and
Asher, 2024; Scherlis et al., 2022), making this an
important topic for future investigation.

Our next steps will focus on scaling to larger cor-
pora, using more sophisticated tokenization strate-
gies, and implementing larger GPT models. We
saw that a simple change in batch dimension sig-
nificantly reduced compute time, so additional hy-
perparameter optimization is one direction of sub-
sequent investigation. Our developments also high-
light the potential of covariance modeling, and we
plan to explore additional ideas at both the global
and block levels. For covariance blocks, matrix se-
ries truncations such as Neumann series expansions
and Krylov subspaces (Strang, 2000) could help
reduce computational burden, as could diagonal
plus low rank matrices (Saunderson et al., 2012).
At the global level, we plan to extend the block
tridiagonal model in Equation 9 to higher orders,
such as the pentadiagonal case (A = 0 for k > 2).
Finally, for longer sequences, we plan on imple-
menting the convolutional recursion in Equation 11
with an FFT.

6 Limitations

The main limitation of our approach is the com-
putational burden introduced by recursion needed
for the implementation of whitening. This inter-
feres with a fully parallelized implementation on
a GPU, however, it may be possible to mitigate
this by leveraging CUDA optimizations such as
tiling, memory coalescing, kernel fusion, and so on
(Hijma et al., 2023; Yang et al., 2011).



Acknowledgments

Removed for anonymity

References

Hirotugu Akaike. 1969. Fitting autoregreesive models
for prediction. In Selected Papers of Hirotugu Akaike,
pages 131-135. Springer.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Nikolay Banar, Walter Daelemans, and Mike Keste-
mont. 2020. Character-level transformer-based neu-
ral machine translation. In Proceedings of the 4th
International Conference on Natural Language Pro-
cessing and Information Retrieval, pages 149-156,
New York, NY, USA. Association for Computing
Machinery.

Leonard Bereska and Stratis Gavves. 2024. Mechanistic
interpretability for Al safety - a review. Transactions
on Machine Learning Research.

Charles Dickens. 2018. Index of the project guten-
berg works of Charles Dickens. https://www.
gutenberg.org/ebooks/58157. Public domain.
Accessed: 2025-05-15.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations.

Gene H Golub and Charles F Van Loan. 2013. Matrix
Computations. JHU press.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and 1 others. 2020.
Conformer: Convolution-augmented transformer for
speech recognition. In Proc. Interspeech 2020, pages
5036-5040.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao,
Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman
Zhang, and Dacheng Tao. 2022. A survey on vision
transformer. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):87-110.

Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben
Van Werkhoven, and Henri E Bal. 2023. Optimiza-
tion techniques for GPU programming. ACM Com-
puting Surveys, 55(11):1-81.

Thomas Kailath. 1970. The innovations approach to
detection and estimation theory. Proceedings of the
IEEE, 58(5):680-695.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan,
and Sivanesan Sangeetha. 2021. AMMUS: A survey
of transformer-based pretrained models in natural
language processing. Language, 4.

Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. 2022. Transformers in vision: A
survey. ACM Computing Surveys (CSUR), 54(10s):1-
41.

Beat Kleiner, R Douglas Martin, and David J Thomson.
1979. Robust estimation of power spectra. Journal
of the Royal Statistical Society Series B: Statistical
Methodology, 41(3):313-338.

Omar Naim and Nicholas Asher. 2024. On explaining
with attention matrices. In ECAI 2024, pages 1035—
1042. IOS Press.

Athanasios Papoulis and S Unnikrishna Pillai. 2002.
Probability. McGraw-Hill.

James Saunderson, Venkat Chandrasekaran, Pablo A
Parrilo, and Alan S Willsky. 2012. Diagonal and
low-rank matrix decompositions, correlation matri-
ces, and ellipsoid fitting. SIAM Journal on Matrix
Analysis and Applications, 33(4):1395-1416.

Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe
Benton, and Buck Shlegeris. 2022. Polysemanticity
and capacity in neural networks. CoRR.

Juliet Popper Shaffer. 1991. The Gauss-Markov theo-
rem and random regressors. The American Statisti-
cian, 45(4):269-273.

Gilbert Strang. 2000. Linear Algebra and its Applica-
tions. Academic Press.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Harry L Van Trees. 2004. Detection, Estimation, and
Modulation Theory, Part I: Detection, Estimation,
and Linear Modulation Theory. John Wiley & Sons.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30.

Xintian Yang, Srinivasan Parthasarathy, and P Sadayap-
pan. 2011. Fast sparse matrix-vector multiplication
on gpus. Proceedings of the VLDB Endowment,
4(4):231-242.

Shuang Zhang, Rui Fan, Yuti Liu, Shuang Chen,
Qiao Liu, and Wanwen Zeng. 2023. Applica-
tions of transformer-based language models in bioin-
formatics: A survey. Bioinformatics Advances,
3(1):vbad001.


https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=ePUVetPKu6
https://www.gutenberg.org/ebooks/58157
https://www.gutenberg.org/ebooks/58157
https://www.gutenberg.org/ebooks/58157

	Introduction
	Sequence Whitening
	Modeling the Covariance Structure
	Experiments
	Conclusions and Future Research
	Limitations

