
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CPL: Critical Plan Step Learning Boosts
LLM Generalization in Reasoning Tasks

Anonymous authors
Paper under double-blind review

Abstract

Post-training, particularly reinforcement learning (RL) using self-play-
generated data, has become a new learning paradigm for large language
models (LLMs). However, scaling RL to develop a general reasoner remains
a research challenge, as existing methods focus on task-specific reasoning
without adequately addressing generalization across a broader range of tasks.
Moreover, unlike traditional RL with limited action space, LLMs operate
in an infinite space, making it crucial to search for valuable and diverse
strategies to solve problems effectively. To address this, we propose searching
within the action space on high-level abstract plans to enhance model gener-
alization and introduce Critical Plan Step Learning (CPL), comprising: 1)
searching on plan, using Monte Carlo Tree Search (MCTS) to explore diverse
plan steps in multi-step reasoning tasks, and 2) learning critical plan steps
through Step-level Advantage Preference Optimization (Step-APO), which
integrates advantage estimates for step preference, obtained via MCTS, into
Direct Preference Optimization (DPO). This combination helps the model
effectively learn critical plan steps, enhancing both reasoning capabilities
and generalization. Experimental results demonstrate that our method,
trained exclusively on GSM8K and MATH, not only significantly improves
performance on GSM8K (+10.5%) and MATH (+6.5%), but also enhances
out-of-domain reasoning benchmarks, such as HumanEval (+12.2%), GPQA
(+8.6%), ARC-C (+4.0%), MMLU-STEM (+2.2%), and BBH (+1.8%). The
code is available at https://anonymous.4open.science/r/CPL.

1 Introduction

Large language models (LLMs) have achieved significant success through scaling, particularly
in pre-training on vast datasets (OpenAI et al., 2024; Dubey et al., 2024). Recently, there has
been an increasing focus on scaling post-training, especially through reinforcement learning
(RL) on self-play-generated data, which has emerged as a new learning paradigm for LLMs.
Notably, OpenAI’s o1 (OpenAI, 2024) has consistently improved its reasoning abilities
through large-scale RL, which teaches the model to think more productively. Additionally,
recent research works (Xie et al., 2024; Feng et al., 2023; Chen et al., 2024) leverage Monte
Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006) to iteratively collect preference data.
RL on this self-generated data facilitates iterative self-improvement, leading to significantly
enhanced reasoning capabilities.
However, scaling RL to develop a general reasoner remains a research challenge. Traditional
RL methods, such as AlphaGo (Silver et al., 2016), struggle with generalization due to
their specific action spaces. Existing approaches for LLMs primarily focus on enhancing
task-specific or domain-specific reasoning capabilities, such as in mathematics or coding.
While this has led to significant improvements in these specific tasks, it has not adequately
addressed the model’s generalization abilities across various reasoning tasks. Furthermore,
unlike traditional RL, which operates in a limited action space, LLMs function within a
vast search space. This expansive scope, combined with the high inference latency of LLMs,
limits both the diversity and quality of explored reasoning paths.

1

https://anonymous.4open.science/r/CPL

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of CPL results. (a) In-Domain Performance: Our CPL-trained model significantly
outperforms the DeepSeekMath-7B-Base on in-domain tasks. (b) Out-of-Domain Performance: Our
CPL method also shows strong generalization, outperforming the baseline model on out-of-domain
reasoning tasks.

To enhance generalization in reasoning tasks, we propose searching within the action space
on high-level abstract plans, rather than focusing on task-specific action spaces that often
limit generalization. Building on previous work (Wang et al., 2023; Yao et al., 2023; Hao
et al., 2023) that uses LLMs to generate both reasoning plans and task-specific solutions
to boost reasoning capabilities, we argue that task-specific solutions—like mathematical
formulas, code or symbolic solutions—are closely tied to task-specific skills. In contrast,
plans represent abstract thinking for problem-solving, such as determining which knowledge
to apply or how to break down a problem, helping models develop broader, task-agnostic
abilities that improve generalization (illustrated in Figure 2 Left).
Furthermore, under the challenge of a vast search space of reasoning paths, we propose that
maintaining diversity and identifying critical paths are essential for solving complex problems.
Plan-based search enables better exploration of high-level strategies and can achieve better
diversity; whereas, solutions-based search may limit diversity, as different solutions may
share the same underlying thought. Besides, existing preference-learning methods, such as
Direct Preference Optimization (DPO) (Rafailov et al., 2023) faces challenges in learning
critical steps due to their inability to capture fine-grained supervision. Recent works propose
Step-level DPO (Setlur et al., 2024; Lai et al., 2024) to learn step-level preferences, but
its reliance on heuristics, such as marking the first error step as dispreferred, limits full
exploration of the search space and model optimization. To address this, we propose a
method to identify and learn critical plan steps that provide higher advantages for improving
the model’s reasoning ability (illustrated in Figure 2 Right).
Thus, we introduce Critical Plan Step Learning (CPL), which consists of two key components:
1. Searching on plan, specifically, we devise a step-by-step plan to solve the problem, with
the final step providing the full solution based on the plan. Using MCTS to explores diverse
plan steps in multi-step reasoning tasks, it creates a plan tree, where high-quality plan step
preferences are derived from the final outcome. This process enables the exploration of
high-level strategies, helping the model acquire task-agnostic skills and improve generalization
across different tasks.
2. Learning critical plan steps through Step-level Advantage Preference Optimization (Step-
APO), which builds upon DPO. Step-APO integrates advantage estimates for step-level
preference pairs obtained via MCTS, enabling the model to learn fine-grained preferences
between steps, identify critical plan steps, and de-emphasize erroneous ones.
To conclude, our contributions are: 1) We explore the scaling problem in RL and propose
searching within the action space on high-level abstract plans to enhance model generalization,
rather than focusing on task-specific action spaces that often limit generalization. 2) We
introduce a novel approach CPL, which leverages MCTS to explore diverse plan steps,
distinguishing it from existing methods that focus on exploring solutions, and uses our Step-
APO to learn step-level plan preferences, thereby helping the model effectively identify and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Task 1

Problem: Given the reaction,

predict the final products:

𝐶2𝐻6 + 𝑂2 ⟶ ?

<plan>
1. Recognize the reaction as the

combustion of ethane, which

typically produces carbon

dioxide (𝐶𝑂2) and water (𝐻2𝑂).

2. Balance the equation

according to the law of

conservation of mass.

</plan>

<solution>
1. The unbalanced equation:

𝐶2𝐻6 + 𝑂2 ⟶ 𝐶𝑂2 + 𝐻2𝑂

2. Balance the carbon atoms:

2𝐶2𝐻6 + 𝑂2 ⟶ 4𝐶𝑂2 + 𝐻2𝑂.
Balance the hydrogen atoms:

2𝐶2𝐻6 + 𝑂2 ⟶ 4𝐶𝑂2 + 6𝐻2𝑂.
Balance the oxygen atoms:

2𝐶2𝐻6 + 7𝑂2 ⟶ 4𝐶𝑂2 + 6𝐻2𝑂.
</solution>

Task-specific

 solutions

High-level

abstract plans

Generalization

Task 2

Problem: Solve the equation

𝑥2 + 𝑥 + 1 = 0 in the real number

domain.

<plan>
1. Rewrite the equation in standard

form and determine the coefficients

𝑎, 𝑏, 𝑐.

2. Calculate the discriminant 𝐷 =
 𝑏2 − 4𝑎𝑐. If D ≥ 0, use the

quadratic formula x =
−b± b2−4ac

2a
 to

find real solutions. If D < 0,
conclude that there are no real

solutions.

</plan>

<solution>
1. The equation can be written as

𝑥2 + 𝑥 + 1 = 0, where 𝑎 = 1, 𝑏 =
1, 𝑐 = 1.

2. Calculate 𝐷 = 12 − 4 × 1 ×
1 = −3. Since 𝐷 < 0, there are no
real solutions.

</solution>

Problem : Solve the equation 𝑥2 + 𝑥 + 1 = 0 in the real number

domain.

Plan1: Determine

the coefficients

𝑎, 𝑏, 𝑐.

Plan1: […]

Plan2: Apply the

quadratic formula

𝑥 =
−𝑏± 𝑏2−4𝑎𝑐

2𝑎

to calculate

solutions.

Plan2: Calculate

the discriminant

to determine the

nature of the

roots.

Plan2: […]

If 𝐷 ≥ 0,

𝑥 =
−𝑏± 𝑏2−4𝑎𝑐

2𝑎
.

If 𝐷 < 0, there are

no real solutions.
V= 0.8

> by 1.6

 > by 1.1

3

2

1. […]

2. […]

𝑥 =
−1 ± −3

2

1. The equation

[…]

2. […] there are no

real solutions.

1. […]

2. […] there are

no real solutions.

Plan-based Search

Plan1: […]

Generalization

Critical
Plan Step

1 2 3

1

1

V= -0.8 V= 0.3

V= 1V= -1 V= 1

V= 0.1V= -0.5 V= 0.4

Figure 2: Illustration of CPL. Left: Plans represent abstract thinking for problem-solving, which
allows for better generalization, whereas task-specific solutions often limit it. Right: CPL searches
within the action space on high-level abstract plans using MCTS and obtains advantage estimates for
step-level preferences. CPL can then identify and learn critical steps that provide a clear advantage
over others.

learn critical steps. 3) Extensive experiments show that CPL enhances reasoning capabilities
and generalization across tasks, achieving significant improvements in both in-domain and
out-of-domain tasks, as shown in Figure 1.

2 Methods

In this section, we introduce our Critical Plan Step Learning (CPL), it boosts model
performance via iterative process over plan-based search and step-level preference learning.
We first introduce our plan-based MCTS, which enables the LLM to explore diverse plan
strategies in the vast search space. Next, we present our Step-APO in detail to further
explore the potential of step-level preference learning in multi-step reasoning task. Finally,
we describe how we iteratively optimize the policy model and value model.

2.1 Plan-based MCTS

MCTS builds a reasoning tree iteratively and autonomously explores step-level reasoning
traces, which can be used to optimize LLMs. Existing methods (Chen et al., 2024; Xie et al.,
2024) that leverage MCTS to collect data for training usually focus on exploring solution
steps within the entire search space or on simultaneously exploring both plans and solutions.
To improve transfer performance across a broader range of reasoning tasks, we propose
learning high-level abstract plans, which enables the model to acquire more task-agnostic
capabilities and thereby achieve better generalization. We first create a step-by-step plan to
solve the problem, with the final step presenting the full solution and final answer based on
the plan. The prompt is provided in the Appendix A. Ultimately, we obtain a plan tree and
high-quality plan step supervision through iterative search with MCTS.
Specifically, given the plan tree T , each node represents a state st, and each edge represents
an action at, which corresponds to a reasoning step that leads to the next state st+1. Under
the same parent node, different sibling nodes form a set of step-level preference pairs, with
each node having its own value V (st) representing the expected future reward under state st.
These values can be obtained through the MCTS process, which involves four key operations:
selection, expansion, evaluation, and backup. To enhance efficiency, we use a value model to
assess the expected returns from the partial reasoning paths, with the final integration of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

both policy and value models guiding the search process. Next, we describe the four steps of
MCTS.
Selection: We use the PUCT algorithm (Rosin, 2011) to guide the selection process with
the following formula, where N represents the visit count:

arg max
at

[
Q(st, at) + cpuctπθ(at|st)

√
N(st)

1 + N(st, at)

]
. (1)

Expansion and Evaluation: During expansion, we sample multiple possible candidate
actions for the next step. During evaluation, the terminal node is assessed by comparing
the final answer with the ground truth, while the values of other nodes are predicted by the
value model.
Backup: Once a terminal node is reached, we perform a bottom-up update from the terminal
node back to the root. We update the visit count N , the state value V , and the transition
value Q as follows:

Q(st, at)← r(st, at) + V (st+1), (2)
V (st)←

∑
a

N(st+1)Q(st, at)/
∑

a

N(st+1), (3)

N(st)← N(st) + 1. (4)

2.2 Step-APO to Learn Critical Plan Steps

Unlike mainstream approaches (Hwang et al., 2024; Lai et al., 2024) that learn step-level
preferences by identifying the first error step and sampling a corresponding preferred step,
while potentially yielding more accurate preferences, this method lacks sufficient exploration
of the vast reasoning trace space. Given the large variations in advantage differences
across different data pairs, we propose Step-APO, which introduces advantage estimates
for preference pairs into DPO. This enables the model to more effectively learn critical
intermediate plan steps, thereby further improving its reasoning capabilities. Next, We will
provide its derivation and analysis from the perspective of its gradient.

2.2.1 Preliminaries

The Classical RL Objective RLHF approaches (Ziegler et al., 2020; Bai et al., 2022;
Ouyang et al., 2022) usually first learn a reward function from human feedback, then
optimize it with a policy gradient-based method like PPO (Schulman et al., 2017) with an
entropy-bonus using the following multi-step RL objective:

max
πθ

Eat∼πθ(·|st)

 T∑
t=0

(r(st, at) + β log πref(at|st)︸ ︷︷ ︸
KL penalty

) + βH(πθ)|s0 ∼ ρ(s0)

 , (5)

where r(st, at) denotes the step-level reward function, followed by a KL penalty that aims
to ensure the learned policy πθ does not deviate significantly from the reference policy πref.
πref is typically produced via supervised fine-tuning.
Direct Preference Optimization DPO (Rafailov et al., 2023) uses the well-known closed-
form optimal solution, which establishes a mapping between the reward model and the
optimal policy under the KL divergence, obtaining the reward as:

r(x, y) = β log π∗(y|x)− β log πref(y|x)− Z(x), (6)
where x denotes the prompt and y denotes the response, π∗ is the optimal policy and Z(x)
is the partition function that normalizes it. Substituting eq. (6) into the Bradley Terry
preference model, and leverage the maximum likelihood objective, DPO derives the loss:

LDPO(πθ; πref) = −E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw | x)

πref(yw | x) − β log πθ(yl | x)
πref(yl | x)

)]
, (7)

where σ denotes the logistic function, yw and yl denote the preferred and dis-preferred
responses to the prompt x.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.2.2 Deriving the Step-APO Objective

In the general maximum entropy RL setting (Ziebart, 2010), the optimal policy π∗(a|s) of
multi-step RL objective in eq. (5) is:

π∗(at|st) = e(Q∗(st,at)−V ∗(st))/β , (8)
where Q∗(s, a) is the optimal Q-function which models the expected future reward from
(st, at) under π∗. The optimal value function V ∗ estimates the expected future reward under
state st, and it’s a function of Q∗ (Rafailov et al., 2024).
Under the reward r with a KL divergence penalty, the relationship between Q-function and
step-level reward function can be established with the Bellman equation as follows:

Q∗(st, at) = r(st, at) + β log πref(at|st) + V ∗(st+1). (9)
By log-linearizing the optimal policy in eq. (8) and substituting in the Bellman equation
from eq. (9) (Nachum et al., 2017; Rafailov et al., 2024), we have below equation which is
precisely the optimal advantage function A∗(s, a) = Q∗(s, a)− V ∗(s):

β log π∗(at|st)
πref(at|st)

= r(st, at) + V ∗(st+1)− V ∗(st). (10)

Unlike DPO utilize response-level Bradley Terry model, we introduce step-level Bradley
Terry preference model to learn fine-grained step-level preference:

p∗(aw ⪰ al|s) = exp (r(s, aw))
exp (r(s, aw)) + exp (r(s, al)) . (11)

By substituting eq. (10) into eq. (11) and leveraging the negative log-likelihood loss, we
derive the objective for Step-APO:

LStep-APO(πθ; πref) = −E(st,aw
t ,al

t)∼D

[
log σ

(
β log πθ(aw

t | st)
πref(aw

t | st)
+ V (st)− V (sw

t+1)

−
(

β log πθ(al
t | st)

πref(al
t | st)

+ V (st)− V (sl
t+1)

))]
= −E(st,aw

t ,al
t)∼D

[
log σ

(
β log πθ(aw

t | st)
πref(aw

t | st)
− V (sw

t+1)

−β log πθ(al
t | st)

πref(al
t | st)

+ V (sl
t+1)

)]
. (12)

where V (sw
t+1)− V (sl

t+1) denotes the advantage of sw
t+1 to sl

t+1 from the same start state.
To understand the difference between our Step-APO and other step-level DPO, we will
analyze the gradient of the LStep-APO:

∇θLStep-APO(πθ; πref) = −βE(st,aw
t ,al

t)∼D

[
σ

(
r̂θ(st, al

t)− r̂θ(st, aw
t)

+ V (sw
t+1)− V (sl

t+1)
)][
∇θ log π(aw

t | st)−∇θ log π(al
t | st)

]
.

(13)

where r̂θ(st, at) = β log πθ(at|st)
πref(at|st) . Intuitively, the gradient of the loss function LStep-APO

increases the likelihood of the preferred completions aw
t and decreases the likelihood of

dispreferred completions al
t. Importantly, besides the examples are weighed by how much

higher the r̂θ incorrectly orders the completions, the examples are also weighted by how
much higher the advantage of aw

t is compared to al
t. This allows for assigning different

optimization weights and emphasizes critical steps. Our experiments prove the importance
of this weighting.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.3 Iterative Training of Policy and Value Model

Our approach employs iterative training for policy and value models. Our policy model
πθ and value model vϕ are two separate models, both adapted from the same base model.
We add a value head for the value model, which is randomly initialized in the first round.
However, as the MCTS simulations proceed in the first round, rewards from terminal nodes
are back-propagated to the intermediate nodes, reducing the negative impact of the random
value initialization.
For policy model training, we first supervised fine-tune (SFT) it using collected correct
paths from MCTS, then apply our Step-APO (eq. (12)) using step-level preference data
also collected from MCTS. Notably, V (sw

t+1) and V (sl
t+1) in eq. (12), obtained from MCTS,

represent the values of the corresponding states. The difference between these values reflects
the advantage difference of the two actions under the same previous state st:

A(st, aw
t)−A(st, al

t) = Q(st, aw
t)− V (st)− (Q(st, al

t)− V (st)) = V (sw
t+1)− V (sl

t+1). (14)

For value model optimization, we use a mean squared error (MSE) loss between the value
model’s predict and values from MCTS. With the updated policy and value models, we can
advance to the next-round MCTS, iterating this training process to enhance the models.

3 Experiments

3.1 Implementation Details

We iteratively generate data through MCTS and train our policy and value models in two
rounds. In each round, the policy model generates plan steps and final solution steps by
employing MCTS to address the given problem. The value model is utilized to assist in
evaluating the intermediate steps during MCTS. At the end of each round, the generated
data is used to train both the policy model and the value model.
Model Architecture We employ the DeepSeekMathBase-7B (Shao et al., 2024) as our
initial policy model and add a randomly initialized value head to this model, serving as the
initial value model. We then optimize these two distinct models independently and utilize
the updated models for the next round of data generation.
Datasets We construct our training data using the training sets of GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021b) datasets. GSM8K comprises 7,473 training and
1,319 test problems, while MATH includes 7,500 training and 5,000 test problems. From
these datasets, we exclusively extracted question-answer pairs from the training sets of
GSM8K and MATH, omitting the human-annotated solution. This resulted in a total of 15k
question-answer pairs for our training data.
Training Data Generation via MCTS For each problem, we employ MCTS to generate
multiple step-level plans and final solutions. During the MCTS expansion phase, we expanded
5 child nodes for the root node and 3 child nodes for other nodes. The search is conducted
with a maximum depth of 6. We apply a temperature of 0.7 to encourage diverse generation.
In the first round, we generate data from a subset of 5k question-answer pairs, consisting of
4k from the MATH and 1k from GSM8K, for efficiency. We carefully design prompts and
2-shot demonstrations to guide the model’s output, see Appendix A for details. We perform
a large number of MCTS simulations, specifically 200, in this phase to mitigate the impact
of the random initialization of the value model. Starting from the second round, with the
fine-tuned models from the first round, we utilize the full set of 15k question-answer pairs
for data generation. A 2-shot prompt formatted in XML is used, and we perform 100 MCTS
simulations.
Training Data Construction We utilize the state value V of each node in MCTS to
construct preference data. For plan step preference data, we categorize sibling nodes as
“preferred” if their value is greater than 0 and “dispreferred” if their value is less than 0,
forming preference pairs from any combination. For the final solution step data, we randomly
select one preference pair for each parent node to construct the dataset. This is based on our

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

experimental findings that an excess of solution data can negatively impact the performance
on out-of-domain reasoning tasks, whereas increasing the emphasis on plan data improves
performance in both mathematical and other reasoning tasks (see subsection 3.5). We list
the statistics for the generated data in two rounds in Appendix B.
Training Details For the policy model, we first randomly select up to four correct responses
per problem for supervised fine-tuning (SFT). Next, we employ step-level preference data
from MCTS to train the model with our Step-APO algorithm. For the value model, we
use state value V from MCTS for partial responses as labels to update the model. This
allows the value model to score both partial plans and complete responses. The training
hyperparameters are provided in Appendix D. Notably, because the value difference for final
solution step preference pairs is 2, while the average value difference for other plan steps
ranges between 0.6 and 0.8, we apply a scaling factor of 0.3 to the values of solution steps in
Step-APO. In the second round of training, we utilize the data from the second round to
train the base model, rather than the Round 1 model.

3.2 Main Results

Table 1: Main results on in-domain and out-of-domain reasoning tasks. Baseline results on MATH
and GSM8K are reproduced. * denotes results from Self-Explore-GSM8K. - indicates that the model
uses Python code interpreter and is not comparable with our method. Best results are bolded.

Model In domain Out-of-Domain
MATH GSM8K HumanEval ARC-C GQPA BBH MMLU-stem

DeepseekMath-Base 35.18 63.23 40.90 52.05 25.75 58.79 52.74
STaR 37.68 70.13 43.29 52.73 27.78 60.45 54.20
Self-Explore-MATH 37.86 78.39* 41.46 54.01 33.83 60.04 54.04
AlphaMath - - 49.39 53.41 33.33 56.63 55.31
CPL(Round1 SFT) 36.30 63.79 42.68 54.44 28.78 59.68 54.58
CPL(Round1 Step-APO) 40.56 71.06 46.34 55.55 31.31 60.18 55.15
CPL(Round2 SFT) 39.16 69.75 48.78 54.95 29.79 59.93 55.44
CPL(Round2 Step-APO) 41.64 73.77 53.05 56.06 34.34 60.54 54.93

We evaluate our method on both mathematical tasks and out-of-domain reasoning tasks, as
shown in Table 1. Evaluation details are provided in the Appendix C.
Baseline Our baseline includes DeepseekMath-Base-7B (Shao et al., 2024), along with
three additional baselines, STaR (Zelikman et al., 2022), Self-Explore (Hwang et al., 2024),
AlphaMath (Chen et al., 2024). We reran STaR by repeated sampling task-specific solutions
using the same model and data as ours. The latter two baselines are developed based on
DeepSeekMath-Base and utilize solution-centric search methods, employing the GSM8K and
MATH datasets, distinguishing them from our proposed plan-based search methodology.
Mathematical tasks We evaluate CPL in-domain capabilities on MATH (Hendrycks et al.,
2021b) and GSM8K (Cobbe et al., 2021).

• MATH: Comprising 5,000 intricate competition-level problems, aimed at evaluating
the models’ capability to perform complex mathematical reasoning.

• GSM8K: Containing 1,320 diverse grade school math problems, designed to assess
basic arithmetic and reasoning skills in an educational context.

On in-domain tasks, CPL demonstrated significant performance improvements over
DeepseekMath-Base on both the MATH and GSM8K datasets. Compared to Self-Explore,
which leverages human-annotated rational data and extensive self-generated data for fine-
tuning, CPL does not use any human-annotated rational data and relies solely on the model’s
self-exploration with much less SFT data. While Self-Explore performs better on simpler
tasks like GSM8K, possibly due to the use of golden rationales and more SFT data, our
method significantly outperforms it on more challenging tasks like MATH, which require
more complex self-exploration of reasoning paths. These results underscore the efficacy of
plan-based learning in enhancing the model’s in-domain reasoning capabilities.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In both rounds, Step-APO consistently improves results over the SFT. Additionally, Round
2 outperforms Round 1 in both SFT and Step-APO, demonstrating that the updated policy
and value models generate better data through MCTS, further improving performance.
Out-of-domain reasoning tasks We select five benchmarks for evaluating out-of-domain
reasoning: HumanEval (Chen et al., 2021), ARC-C (Clark et al., 2018), GPQA (Rein et al.,
2023), BBH (Suzgun et al., 2022), and MMLU-STEM (Hendrycks et al., 2021a). We employ
few-shot prompting to evaluate these benchmarks.

• HumanEval: HumanEval is a widely used benchmark for code generation tasks.
It provides descriptive prompts for each problem, prompting LLMs to generate
corresponding code. It contains 164 problems.

• ARC-C: ARC includes questions derived from various grade-level science exams,
designed to test models’ ability to handle both straightforward and complex scientific
queries. The challenge subset contains 1,172 test questions.

• GPQA: Providing “Google-proof” questions in the fields of biology, physics, and
chemistry, GPQA is designed to test deep domain expertise and reasoning under
challenging conditions. We use the diamond subset, which contains 198 difficult
problems.

• BIG-Bench Hard (BBH): Comprising 23 tasks previously identified as challenging
for language models in the BIG-Bench benchmark, BBH contains a total of 6,511
challenging problems, aimed at evaluating the capabilities of large language models
(LLMs) in solving these tasks.

• MMLU-STEM: Spanning 57 subjects across multiple disciplines, MMLU evaluates
the breadth and depth of a model’s knowledge in a manner similar to academic and
professional testing environments. We select the STEM subset, which contains 3,130
problems.

As shown in Table 1, CPL also achieves significant improvements on OOD tasks, with average
improvements of 5.7%, 3.1%, and 2.2% compared to the base model, Self-Explore-MATH and
AlphaMath, respectively. This demonstrates that CPL enhances the model’s generalization
ability across diverse reasoning tasks. Compared to AlphaMath, which was trained on the
same 15k dataset for 3 rounds, our performance on these OOD reasoning tasks is much
better. Notably, AlphaMath even shows a decrease in performance on certain tasks, such as
a 2.2% drop in BBH.
Unlike baseline methods that focus on task-specific solutions within the vast reasoning action
space of LLMs, CPL concentrates on exploring the action space on high-level abstract plans.
These plans embody abstract problem-solving strategies, enabling models to develop broader,
task-agnostic abilities that enhance generalization.

3.3 Advantage of Plan-based Learning

In our early experiments, we aimed to validate whether plan-based learning offers superior
generalization in reasoning tasks compared to solution-based learning. To this end, we utilized
the GSM8K and MATH training sets to train our models and evaluated their performance
on the BBH dataset.

Table 2: Advantage of Plan-based Learning

Model BBH
DeepSeekMath-Base 58.79
Solution-based SFT 58.92
Plan-based SFT 59.50

Specifically, we compared two fine-tuning ap-
proaches: one using solution-based chain-of-
thought (CoT) (Wei et al., 2023) formatted data
and the other using plan-based formatted data.
Both methods fine-tuned the model using the re-
sponses generated by the model itself, with each
question generating only one response, and the
data filtered based on the correctness of the an-
swers. The results, as shown in Table 2, indicate
that plan-based learning enhances performance on the BBH dataset, while the solution-based
approach does not demonstrate significant improvements. This finding is further supported

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

by the results in Table 1, where plan-based learning CPL consistently outperforms the
solution-based learning baseline on out-of-domain tasks. Together, these results clearly
demonstrate the advantage of plan-based learning.

3.4 Advantage of Step-APO

Table 3: Advantage of Step-APO

Model In domain Out-of-Domain
MATH GSM8K HumanEval ARC-C GQPA BBH MMLU-stem

SFT 36.30 63.79 42.68 54.44 28.78 59.68 54.58
Instance-DPO 37.72 69.29 43.90 54.61 24.24 60.13 54.42
TDPO 39.12 69.90 48.78 54.61 28.29 59.94 54.08
Step-DPO 37.89 69.83 42.68 54.44 25.25 59.44 54.68
Step-APO 40.56 71.06 48.78 55.55 31.31 60.18 55.15

To investigate the advantage of Step-APO, we compared the performance of Instance-DPO,
TDPO (Zeng et al., 2024), Step-DPO, and Step-APO using data obtained from the first
round of MCTS. Instance-DPO involves preference learning on the model’s complete response
based on the correctness of the final answer. Step-DPO and Step-APO, on the other hand,
performs finer-grained learning on each step within the model’s response. The difference
is that Step-APO incorporates advantage estimates for preference pairs obtained through
MCTS, while Step-DPO does not. TDPO improves DPO by extending it to the token level
and incorporates forward KL divergence constraints for each token, improving alignment.
All four preference learning strategies were applied to the model after supervised fine-tuning
(SFT). The experimental results are summarized in Table 3.
The results show that all four preference learning methods achieve performance improvements
over SFT in in-domain tasks. Step-DPO, due to its finer-grained supervision signal, slightly
outperforms Instance-DPO. TDPO shows notable performance improvements, highlighting
its effectiveness. However, its performance is inferior to our Step-APO across all tasks. On
OOD tasks, Instance-DPO, TDPO and Step-DPO exhibit suboptimal performance. We
believe this may be due to their failure to capture critical plan steps, thereby failing to
enhance generalization. In contrast, our Step-APO algorithm consistently demonstrates
performance improvements on OOD tasks.

3.5 Data Construction

To investigate how to construct step-level preference data, we use MATH as a representative
in-domain task and BBH and GPQA as representative out-of-domain tasks to compare three
methods.

Figure 3: Impact of data construction. We outline different strategies for constructing Step-APO
preference data based on the value V of each node in MCTS: 1 plan pair (selecting the plan step with
the maximum positive V and the plan with the minimum negative V), 1 solution pair (randomly
selecting one correct and one incorrect solution step), all plan pairs (selecting all combinations of
plan steps with positive and negative V), and all solution pairs (selecting all combinations of correct
and incorrect solution steps).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Initially, we construct preference data by creating at most one pair for all sibling nodes: for
plan steps, we select the plan with the highest positive value and the plan with the lowest
negative value; for solution steps, we randomly select one correct and one incorrect solution.
Using Step-APO on this data, we observe performance improvements over the SFT model in
both in-domain and out-of-domain reasoning tasks. Next, we enhance the plan step data
by selecting all combinations of plans with positive and negative values while keeping the
solution step data unchanged, which leads to further performance gains across both task
types. However, continuously expanding the solution step data results in decreased model
performance. Ultimately, we adopt the strategies of using all plan pairs and one solution
pair for our experiments.

4 Related Work

Search-Guided Reasoning in LLMs Recent advancements (Feng et al., 2023; Chen et al.,
2024; Xie et al., 2024) in enhancing LLM reasoning capabilities have focused on integrating
Monte Carlo Tree Search (MCTS) to collect trajectories and train models, resulting in
notable improvements in reasoning tasks. MCTS strikes a balance between exploration and
exploitation, utilizing its look-ahead ability to obtain high-quality step-level supervision.
For example, AlphaMath (Chen et al., 2024) employs MCTS to automatically generate
process supervision, leading to significant improvements in mathematical reasoning. However,
these MCTS-based training methods face challenges such as vast search spaces, limited
solution diversity for LLMs. Furthermore, there is limited research on how these methods
generalize to other reasoning tasks and enhance overall reasoning capabilities. To address
these issues, we propose a method for searching over plan steps and learning critical plan
steps for problem-solving, which aims to enhance generalization in reasoning tasks.
Direct Preference Optimization (DPO) Algorithms DPO (Rafailov et al., 2023) uses
instance-level preference data for model optimization but has notable limitations. It struggles
with multi-step reasoning tasks because it cannot effectively correct specific errors within
the reasoning process (Hwang et al., 2024). Moreover, training on model-generated positive
data can amplify spurious correlations from incorrect intermediate steps, leading to poor
generalization (Setlur et al., 2024). Recent work proposes step-level DPO (Setlur et al., 2024;
Lai et al., 2024) to address these issues by providing the fine-grained error identification
needed for improving reasoning capabilities. For example, Self-Explore (Hwang et al., 2024)
identifies the first incorrect step in a solution and constructs step-level preference data to
guide model improvement. Unlike these heuristic methods, we propose Step-APO to fully
explore the step-level search space and achieve the maximum optimization potential.

5 Conclusion

Scaling RL to develop a general reasoner remains an open and important research question.
In this work, we explore the scaling problem in RL and propose searching within the action
space on high-level abstract plans to enhance model generalization, rather than focusing on
task-specific action spaces that often limit generalization. Additionally, we introduce CPL,
which uses plan-based search and finer-grained learning of plan step preferences to enable the
model to identify critical plan steps within the reasoning trace, thereby enhancing its overall
reasoning ability. Ultimately, CPL successfully improves transfer performance in various
out-of-domain tasks and offers valuable contributions to future research in RL scaling.
In future work, we will expand our current plan strategy beyond the option to continue to the
next reasoning step. We will consider more diverse planning strategies, such as self-correction
and the exploration of new ideas to solve problems. Additionally, test-time search has been
shown to significantly enhance the model’s reasoning capabilities on complex problems. We
could combine test-time compute with our training-time compute. Utilizing our value model
for test-time search has the potential to further improve the model’s reasoning performance,
and we will explore this in future work. Furthermore, test-time search in a vast action space
poses high latency issues. We will continue to investigate how to effectively learn critical
steps for problem-solving to enable efficient search.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy

Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitu-
tional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process
supervision without process. CoRR, abs/2405.03553, 2024. doi: 10.48550/ARXIV.2405.
03553. URL https://doi.org/10.48550/arXiv.2405.03553.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, et al. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge, 2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168,
2021. URL https://arxiv.org/abs/2110.14168.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
CoRR, abs/2307.08691, 2023. doi: 10.48550/ARXIV.2307.08691. URL https://doi.org/
10.48550/arXiv.2307.08691.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, et al. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell,
Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang,
and Andy Zou. A framework for few-shot language model evaluation, 07 2024. URL
https://zenodo.org/records/12608602.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 8154–8173, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.507. URL
https://aclanthology.org/2023.emnlp-main.507.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021a. URL
https://arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), NeurIPS,
2021b. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. Self-
explore to avoid the pit: Improving the reasoning capabilities of language models with
fine-grained rewards, 2024. URL https://arxiv.org/abs/2404.10346.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pp. 282–293. Springer, 2006.

11

https://doi.org/10.48550/arXiv.2405.03553
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2307.08691
https://arxiv.org/abs/2407.21783
https://zenodo.org/records/12608602
https://aclanthology.org/2023.emnlp-main.507
https://arxiv.org/abs/2009.03300
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://arxiv.org/abs/2404.10346

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.
06180.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo:
Step-wise preference optimization for long-chain reasoning of llms. arXiv:2406.18629, 2024.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta
AI, 2024.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap
between value and policy based reinforcement learning, 2017.

OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
introducing-openai-o1-preview/.

OpenAI et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F.
Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions
with human feedback. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/
paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon,
and Chelsea Finn. Direct preference optimization: Your language model is secretly a
reward model. In NeurIPS, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q∗: Your language
model is secretly a q-function. 2024. URL https://arxiv.org/abs/2404.12358.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: breaking the GPU memory wall for extreme scale deep learning. In Bronis R.
de Supinski, Mary W. Hall, and Todd Gamblin (eds.), International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2021. doi: 10.1145/
3458817.3476205. URL https://doi.org/10.1145/3458817.3476205.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang,
Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof
q&a benchmark. arXiv preprint arXiv:2311.12022, 2023.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics
and Artificial Intelligence, 61(3):203–230, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/
abs/1707.06347.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral
Kumar. Rl on incorrect synthetic data scales the efficiency of llm math reasoning by
eight-fold, 2024. URL https://arxiv.org/abs/2406.14532.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Y Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

12

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/2404.12358
https://doi.org/10.1145/3458817.3476205
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2406.14532

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them, 2022. URL
https://arxiv.org/abs/2210.09261.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu.
Toward self-improvement of llms via imagination, searching, and criticizing, 2024. URL
https://arxiv.org/abs/2404.12253.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large
language models, 2023. URL https://arxiv.org/abs/2305.04091.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/2201.11903.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji
Kawaguchi, and Michael Shieh. Monte carlo tree search boosts reasoning via iterative
preference learning. arXiv preprint arXiv:2405.00451, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. ReAct: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations (ICLR), 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions
from the web. arXiv preprint arXiv:2405.03548, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning
with reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-
level direct preference optimization, 2024. URL https://arxiv.org/abs/2404.11999.

Boning Zhang, Chengxi Li, and Kai Fan. Mario eval: Evaluate your math llm with your
math llm–a mathematical dataset evaluation toolkit, 2024. URL https://arxiv.org/
abs/2404.13925.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, and Yongqiang
Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. CoRR,
abs/2403.13372, 2024. doi: 10.48550/ARXIV.2403.13372. URL https://doi.org/10.
48550/arXiv.2403.13372.

Han Zhong, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian, and Liwei
Wang. Dpo meets ppo: Reinforced token optimization for rlhf, 2024. URL https:
//arxiv.org/abs/2404.18922.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Carnegie Mellon University, 2010.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences,
2020.

A Prompt used in MCTS

Prompts for Round 1 and Round 2 are listed below.

13

https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2305.04091
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2404.11999
https://arxiv.org/abs/2404.13925
https://arxiv.org/abs/2404.13925
https://doi.org/10.48550/arXiv.2403.13372
https://doi.org/10.48550/arXiv.2403.13372
https://arxiv.org/abs/2404.18922
https://arxiv.org/abs/2404.18922

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Round 1 2-shot prompt

You are a powerful agent with advanced reasoning and planning
capabilities. Answer the questions as best you can.

!!!Remember:
1. Your answer should have two sections: "Plans" and "Detailed
Implementation".
2. In the "Plans" section, you should outline step-by-step plans for
solving the problem. These plans might include extracting key
information, forming sub-questions, analyzing aspects, etc. Each step
should introduce new insights, avoid overly abstract or generic
actions. End each step with "<endstep>".
3. In the "Detailed Implementation" section, provide detailed steps
that correspond to each plan, and conclude with "The final answer is
\boxed{answer}.<endsolution>"

The following is a template for your answer:

Question: The input question

Plans:
Plan 1: Describe the first plan step.<endstep>
Plan 2: Describe the second plan step<endstep>
...
Plan N: Describe the final plan step<endstep>

Detailed Implementation:
1. Execute the first plan step
2. Execute the second plan step
...
N. Execute the final plan step
The final answer is \boxed{answer}.<endsolution>

The following are 2 demonstration examples.

Question: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia sell
altogether in April and May?

Plans:
Plan 1: Analyze the total number of clips sold in April.<endstep>
Plan 2: Calculate the number of clips sold in May by applying the
"half as many" condition to the number sold in April.<endstep>
Plan 3: Sum the results from April and May to determine the overall
total of clips sold over the two months.<endstep>

Detailed Implementation:
1. Natalia sold 48 clips in April.
2. The number of clips sold in May is $\frac{48}{2}=24$.
3. The total number of clips sold in April and May combined is
$48+24=72$.
The final answer is \boxed{72}.<endsolution>

Question: If $xˆ2+yˆ2=1$, what is the largest possible value of
$|x|+|y|$?

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Plans:
Plan 1: Understand that the equation $xˆ2+yˆ2=1$ defines a circle
centered at the origin with a radius of 1. To maximize $|x|+|y|$, we
need to consider points on this circle that maximize the sum of the
absolute values of x and y.<endstep>
Plan 2: Recognize that $|x|+|y|$ is maximized when both $|x|$ and
$|y|$ are large. The maximum sum occurs along lines where x and y
contribute equally, specifically along the lines $y=x$ and
$y=-x$.<endstep>
Plan 3: Identify the points of intersection between the lines $y=x$
and $y=-x$ with the circle $xˆ2+yˆ2=1$. These points are expected to
yield the maximum value of $|x|+|y|$.<endstep>
Plan 4: Evaluate $|x|+|y|$ for the intersection points to determine
the maximum possible value.<endstep>

Detailed Implementation:
1. The circle $xˆ2+yˆ2=1$ is centered at the origin with a radius of
1. We need to find the points on this circle that maximize the sum
$|x|+|y|$.
2. To maximize $|x|+|y|$, the sum is largest when both $|x|$ and
$|y|$ are large. This occurs along the lines $y=x$ and $y=-x$, where
x and y contribute equally to the sum.
3. The intersection points are
$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$,
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$,
$\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$, and
$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.
4. For these points, calculate $|x|+|y|$. For
$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$,
$|x|+|y|=\sqrt{2}$. The same value applies to the other points.
Therefore, the maximum value is $\sqrt{2}$.
The final answer is $\boxed{\sqrt{2}}$.<endsolution>

Now! It's your turn.

Round 2 XML 2-shot prompt

<question>
Question: Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did Natalia sell
altogether in April and May?
</question>
<plan>
<step>
Plan 1: Analyze the total number of clips sold in April.
</step>
<step>
Plan 2: Calculate the number of clips sold in May by applying the
"half as many" condition to the number sold in April.
</step>
<step>
Plan 3: Sum the results from April and May to determine the overall
total of clips sold over the two months.
</step>
</plan>
<solution>

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. Natalia sold 48 clips in April.
2. The number of clips sold in May is $\frac{48}{2}=24$.
3. The total number of clips sold in April and May combined is
$48+24=72$.
The final answer is \boxed{72}.
</solution>

<question>
If $xˆ2+yˆ2=1$, what is the largest possible value of $|x|+|y|$?
</question>
<plan>
<step>
Plan 1: Understand that the equation $xˆ2+yˆ2=1$ defines a circle
centered at the origin with a radius of 1. To maximize $|x|+|y|$, we
need to consider points on this circle that maximize the sum of the
absolute values of x and $y.
</step>
<step>
Plan 2: Recognize that $|x|+|y|$ is maximized when both $|x|$ and
$|y|$ are large. The maximum sum occurs along lines where x and y
contribute equally, specifically along the lines $y=x$ and $y=-x.
</step>
<step>
Plan 3: Identify the points of intersection between the lines $y=x$
and $y=-x$ with the circle $xˆ2+yˆ2=1$. These points are expected to
yield the maximum value of $|x|+|y|.
</step>
<step>
Plan 4: Evaluate $|x|+|y|$ for the intersection points to determine
the maximum possible value.
</step>
</plan>
<solution>
1. The circle $xˆ2+yˆ2=1$ is centered at the origin with a radius of
1. We need to find the points on this circle that maximize the sum
$|x|+|y|$.
2. To maximize $|x|+|y|$, the sum is largest when both $|x|$ and
$|y|$ are large. This occurs along the lines $y=x$ and $y=-x$, where
x and y contribute equally to the sum.
3. The intersection points are
$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$,
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$,
$\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$, and
$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.
4. For these points, calculate $|x|+|y|$. For
$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$,
$|x|+|y|=\sqrt{2}$. The same value applies to the other points.
Therefore, the maximum value is $\sqrt{2}$.
The final answer is $\boxed{\sqrt{2}}.
</solution>

B Statistic for the generated data

We list the statistic for the generated data in two rounds in Table 4. Round 2 generates
more correct responses, indicating a stronger policy and value model.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Statistic for the generated data in two rounds

Round Num Avg Depths Pos:Neg Plan Pairs Count Solution Pairs Count
Round 1 4.18 1:3.16 18742 16506
Round 2 3.80 1:1.23 24707 24633

C Evaluation Details

Mathematical Tasks For our CPL, we evaluated in-domain reasoning capabilities using
a zero-shot setting on the MATH and GSM8K datasets. We utilized vLLM (Kwon et al.,
2023) for inference during evaluation and employed the math evaluation toolkit (Zhang et al.,
2024) to assess model-generated answers. For other baseline models, results were reproduced
on our machine using the configurations and codes from the original papers.
Out-of-domain Reasoning Tasks For all models, we employed few-shot prompting through
the lm-evaluation-harness (Gao et al., 2024) to evaluate performance on ARC-C (25-shot),
BBH (3-shot), and MMLU-stem (5-shot). Following Yue et al. (2024), we utilized 5-shot
prompting to evaluate the GPQA diamond subset. Following Chen et al. (2021), we utilized
zero-shot setting to evaluate performance on HumanEval.

D Implementation Details

Table 5: Key Hyperparameters of CPL

Hyperparameter Value
cpuct 1.5
Simulations N 200 (for round 1) or 100
Expand child nodes 5 (for root) or 3
Temperature 0.7
Max depth 6
SFT batch size 512
SFT learning rate 1e-5
SFT epochs 5 (for round 1) or 3
Step-APO batch size 64
Step-APO β 0.3
Step-APO learning rate 1e-6
Step-APO epochs 2
Solution step scaling factor 0.3
Lr scheduler type cosine
Warmup ratio 0.1

All models in our experiments were trained on 8 * NVIDIA H100 GPUs. We implement
our Step-APO in Llama Factory (Zheng et al., 2024) and use Llama Factory as the training
framwork. We use vLLM (Kwon et al., 2023) as the inference framework. We train all
models with DeepSpeed ZeRO Stage2 (Rajbhandari et al., 2021), Flash Attention 2 (Dao,
2023). The key hyperparameter of CPL is listed in Table 5.

E More Results on Llama 3

To further demonstrate the effectiveness of CPL across different models, we conducted
additional experiments on the Llama-3-8B model (Meta, 2024). The experimental setup is
consistent with Round 1 in Table 1. Specifically, we used MCTS to generate data from a
subset of 5,000 question-answer pairs, comprising 4,000 from the MATH dataset and 1,000

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

from GSM8K. We then optimized the Llama-3-8B model using SFT and Step-APO. The
results are presented in Table 6.

Table 6: Additional Results on Llama-3-8B

Model In domain Out-of-Domain
MATH GSM8K HumanEval ARC-C GQPA BBH MMLU-stem

Llama-3-8B 18.16 49.17 37.80 57.94 27.27 62.92 55.82
Llama-3-8B + CPL(Round1) 20.24 53.90 40.24 60.24 34.34 64.08 56.83

The experimental results show that after just one round of optimization, the CPL method
significantly improved the model’s performance on both in-domain and out-of-domain tasks.
This demonstrates the robustness and effectiveness of the CPL across different models.

F Details of Plan-based MCTS

V=0.53V=-0.51

[…] Solution:

1..

2..

The answer is 216
V=1

[…] Solution:

1..

2..

The answer is 36

Question: The least common multiple of two integers

is 36 and 6 is their greatest common divisor. What is

the product of the two numbers?

[…] Plan 1: Understand the concept of

least common multiple (LCM) and

greatest common divisor (GCD)…

[…] Plan 1: Understand that the

least common multiple (LCM) of

two numbers represents…

[…] Plan 2: Recognize that the

product of two numbers can be

expressed as the product of their

LCM and GCD, divided by the

GCD. This relationship holds true

for any two numbers.

[…] Plan 2: Apply

the relationship

between LCM and

GCD to find the

product of the two

numbers.

[…] Plan 2: Apply an LCM-

GCD formula to calculate the

product of the two numbers.

The formula is: LCM(a, b) *

GCD(a, b) = a * b.

V=0.12

V=0.63

V=-1

……… >
>

Planning Based MCTS Policy & Value Model Training
Select
Backup

… …

1
Policy Model Value Model

1

2 3

2

13

[…] Solution:

1..

2..

The answer is 216
V=1

𝜋𝜃 𝑎𝑡|𝑠𝑡 𝑉∅ 𝑠𝑡+1

𝑳𝑺𝒕𝒆𝒑−𝑨𝑷𝑶 𝝅𝜽; 𝝅𝒓𝒆𝒇 𝑬 𝑽∅(𝒔𝒕+𝟏) − ෡𝑽(𝒔𝒕+𝟏)
𝟐

V=0.14

Figure 4: CPL boosts model performance via iterative process over planning based MCTS and
step-level preference learning. Left: Example of an MCTS-generated plan tree, exploring diverse
planning strategies in the vast search space. CPL generates step-by-step plans, which lead to the
final solution and answer. State value V is updated via a bottom-up reward propagation from
the terminal node to the root, and used to assign preferences. Right: Step-level preferences from
MCTS are used to update the policy and value models. Our Step-APO integrates value estimates
for preference pairs into DPO, assigning different optimization weights to emphasize critical steps.
The value model is optimized using MSE loss.

Search on High-Level Abstract Plan. We propose leveraging search on high-level
abstract plans, expressed in natural language, as a universal interface across tasks. These
plans represent abstract thinking for problem-solving, such as determining which knowledge
to apply or how to decompose a problem, enabling models to develop broader, task-agnostic
capabilities that enhance generalization (See Figure 2 Left).
Integrating Plan into MCTS. We design a carefully crafted two-shot prompt (See Ap-
pendix A) to guide the model in answering questions in two parts: (1) step-by-step plans,
and (2) detailed implementation. In the MCTS search tree, each non-terminal node stores a
single plan step, while terminal nodes store the detailed implementation for all preceding
plan steps (See Figure 4 Left).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

MCTS consists of the following phases:

• Selection: We use the PUCT algorithm to iteratively select nodes in the search
tree, which leverages the LLMs’ generation probability to guide the selection process,
reducing the selection of unreasonable nodes.

• Expansion: In this phase, we expand selected node by using the current states as
the prompt, which contain the question and all previously generated responses, to
guide the model in generating the next plan step or the final detailed implementation.

• Evaluation: In this phase, we evaluate the value of newly expanded nodes. The
evaluation process differs for non-terminal and terminal nodes:

– For non-terminal nodes (plan steps), unlike traditional MCTS which typically
uses simulations, we employ a value model to evaluate the node’s value for
efficiency.

– For terminal nodes (detailed implementation), we parse the answer in the
detailed implementation, compare it to the ground truth, and assign a value
based on correctness.

• Backup: We backpropagate the value of newly expanded nodes to update the search
tree.

Optimizing the Policy and Value Models. After each round of MCTS, as shown in
Figure 4 Right, we optimize the policy model using SFT and the Step-APO algorithm.
Additionally, we optimize the value model using Mean Squared Error (MSE) loss to ensure
its outputs are closer to the state value V of each node in the MCTS search tree.

G Supplementary Discussion on Related Work

Post-Training on Self-Generated Data for Reasoning Improvement Table 7 sum-
marizes the key distinctions between our approach and existing self-improvement methods
in reasoning. These methods all improve reasoning ability through post-training on self-
generated data, but differ in terms of search methods, supervision granularity, search space,
and generalization capabilities across tasks.

Table 7: Key differences between existing self-improvement methods and our approach.

Method Search Method Supervision Search Space Generalization

STaR (Zelikman et al., 2022) Repeated sampling Response-level Task-specific solutions %

Self-Explore (Hwang et al., 2024) Repeated sampling Step-level Task-specific solutions %

TS-LLM (Feng et al., 2023) MCTS Response-level Task-specific solutions %

AlphaMath (Chen et al., 2024) MCTS Response-level Task-specific solutions %

ALPHALLM (Tian et al., 2024) MCTS Response-level Task-specific solutions %

MCTS-DPO (Xie et al., 2024) MCTS Step-level Task-specific solutions %

CPL MCTS Step-level Abstract plans !

Direct Preference Optimization (DPO) Algorithms Recent work (Rafailov et al.,
2024; Zeng et al., 2024; Zhong et al., 2024) provide a token-wise Markov decision process
(MDP) formulation for Reinforcement Learning from Human Feedback (RLHF). Rafailov
et al. (2024) derives DPO in a token-level MDP and demonstrates that DPO can be viewed
as an inverse Q-learning algorithm. Zeng et al. (2024) improves DPO by extending it to the
token level and incorporating forward KL divergence constraints for each token. Zhong et al.
(2024) models RLHF problems as a token-wise MDP, introducing the RTO algorithm, which
learns a token-level reward function from preference data and performs policy optimization
based on this learned reward signal. Our Step-APO is based on step-level MDPs, which are
better suited for capturing complex reasoning steps in reasoning tasks, whereas token-level
MDPs focus more on each word choice during the generation process.

19

	Introduction
	Methods
	Plan-based MCTS
	Step-APO to Learn Critical Plan Steps
	Preliminaries
	Deriving the Step-APO Objective

	Iterative Training of Policy and Value Model

	Experiments
	Implementation Details
	Main Results
	Advantage of Plan-based Learning
	Advantage of Step-APO
	Data Construction

	Related Work
	Conclusion
	Prompt used in MCTS
	Statistic for the generated data
	Evaluation Details
	Implementation Details
	More Results on Llama 3
	Details of Plan-based MCTS
	Supplementary Discussion on Related Work

