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Abstract

Robustness has been extensively studied in reinforcement learning (RL) to handle
various forms of uncertainty such as random perturbations, rare events, and ma-
licious attacks. In this work, we consider one critical type of robustness against
spurious correlation, where different portions of the state do not have correlations
induced by unobserved confounders. These spurious correlations are ubiquitous
in real-world tasks, for instance, a self-driving car usually observes heavy traffic
in the daytime and light traffic at night due to unobservable human activity. A
model that learns such useless or even harmful correlation could catastrophically
fail when the confounder in the test case deviates from the training one. Although
motivated, enabling robustness against spurious correlation poses significant chal-
lenges since the uncertainty set, shaped by the unobserved confounder and causal
structure, is difficult to characterize and identify. Existing robust algorithms that
assume simple and unstructured uncertainty sets are therefore inadequate to address
this challenge. To solve this issue, we propose Robust State-Confounded Markov
Decision Processes (RSC-MDPs) and theoretically demonstrate its superiority in
avoiding learning spurious correlations compared with other robust RL counter-
parts. We also design an empirical algorithm to learn the robust optimal policy
for RSC-MDPs, which outperforms all baselines in eight realistic self-driving and
manipulation tasks. Please refer to the website for more details.

1 Introduction

Reinforcement learning (RL), aiming to learn a policy to maximize cumulative reward through
interactions, has been successfully applied to a wide range of tasks such as language generation [1],
game playing [2], autonomous driving [3], etc. While standard RL has achieved remarkable success
in simulated environments, a growing trend in RL is to address another critical concern – robustness –
with the hope that the learned policy still performs well when the deployed (test) environment deviates
from the nominal one used for training [4]. Robustness is highly desirable since the performance
of the learned policy could significantly deteriorate due to the uncertainty and variations of the test
environment induced by random perturbation, rare events, or even malicious attacks [5, 6].

Despite various types of uncertainty that have been investigated in RL, this work focuses on the
uncertainty of the environment with semantic meanings resulting from some unobserved underlying
variables. Such environment uncertainty, denoted as structured uncertainty, is motivated by
innumerable real-world applications but still receives little attention in sequential decision-making
tasks [7]. To specify the phenomenon of structured uncertainty, let us consider a concrete example
(illustrated in Figure 1) in a driving scenario, where a shift between training and test environments
caused by an unobserved confounder can potentially lead to a severe safety issue. Specifically,
the observations brightness and traffic density do not have cause and effect on each other but are
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controlled by a confounder (i.e. sun and human activity) that is usually unobserved 2 to the agent.
During training, the agent could memorize the spurious state correlation between brightness and
traffic density, i.e., the traffic is heavy during the daytime but light at night. However, such correlation
could be problematic during testing when the value of the confounder deviates from the training one,
e.g., the traffic becomes heavy at night due to special events (human activity changes), as shown at
the bottom of Figure 1. Consequently, the policy dominated by the spurious correlation in training
fails on out-of-distribution samples (observations of heavy traffic at night) in the test scenarios.

Figure 1: A model trained only with
heavy traffic in the daytime learns the
spurious correlation between brightness
and traffic density and could fail to
drive in light traffic in the daytime.

The failure of the driving example in Figure 1 is attributed
to the widespread and harmful spurious correlation, namely,
the learned policy is not robust to the structured uncer-
tainty of the test environment caused by the unobserved
confounder. However, ensuring robustness to structured un-
certainty is challenging since the targeted uncertain region –
the structured uncertainty set of the environment – is carved
by the unknown causal effect of the unobserved confounder,
and thus hard to characterize. In contrast, prior works
concerning robustness in RL [8] usually consider a homo-
geneous and structure-agnostic uncertainty set around the
state [9, 6, 10], action [11, 12], or the training environment
[13–15] measured by some heuristic functions [9, 15, 8] to
account for unstructured random noise or small perturba-
tions. Consequently, these prior works could not cope with
the structured uncertainty since their uncertainty set is dif-
ferent from and cannot tightly cover the desired structured
uncertainty set, which could be heterogeneous and allow
for potentially large deviations between the training and test environments.

In this work, to address the structured uncertainty, we first propose a general RL formulation called
State-confounded Markov decision processes (SC-MDPs), which model the possible causal effect of
the unobserved confounder in an RL task from a causal perspective. SC-MDPs better explain the
reason for semantic shifts in the state space than traditional MDPs. Then, we formulate the problem
of seeking robustness to structured uncertainty as solving Robust SC-MDPs (RSC-MDPs), which
optimizes the worst performance when the distribution of the unobserved confounder lies in some
uncertainty set. The key contributions of this work are summarized as follows.

• We propose a new type of robustness with respect to structured uncertainty to address spurious
correlation in RL and provide a formal mathematical formulation called RSC-MDPs, which are
well-motivated by ubiquitous real-world applications.

• We theoretically justify the advantage of the proposed RSC-MDP framework against structured
uncertainty over the prior formulation in robust RL without semantic information.

• We implement an empirical algorithm to find the optimal policy of RSC-MDPs and show that it
outperforms the baselines on eight real-world tasks in manipulation and self-driving.

2 Preliminary and Limitations of Robust RL

In this section, we first introduce the preliminary formulation of standard RL and then discuss a
natural type of robustness that is widely considered in the RL literature and most related to this work
– robust RL.

Standard Markov decision processes (MDPs). An episodic finite-horizon standard MDP is
represented by M =

{
S,A, T, r, P

}
, where S ⊆ Rn and A ⊆ RdA are the state and action

spaces, respectively, with n/dA being the dimension of state/action. Here, T is the length of
the horizon; P = {Pt}1≤t≤T , where Pt : S × A → ∆(S) denotes the probability transition
kernel at time step t, for all 1 ≤ t ≤ T ; and r = {rt}1≤t≤T denotes the reward function,
where rt : S × A → [0, 1] represents the deterministic immediate reward function. A pol-
icy (action selection rule) is denoted by π = {πt}1≤t≤T , namely, the policy at time step t is
πt : S → ∆(A) based on the current state st as πt(· | st). To represent the long-term cumulative

2sometimes they are observed but ignored given so many variables to be considered in neural networks.
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reward, the value function V π,P
t : S → R and Q-value function Qπ,P

t : S × A → R associ-
ated with policy π at step t are defined as V π,P

t (s) = Eπ,P

[∑T
k=t rk(sk, ak) | sk = s

]
and

Qπ,P
t (s, a) = Eπ,P

[∑T
k=t rk(sk, ak) | st = s, at = a

]
, where the expectation is taken over the

sample trajectory {(st, at)}1≤t≤T generated following at ∼ πt(· | st) and st+1 ∼ Pt(· | st, at).
Robust Markov decision processes (RMDPs). As a robust variant of standard MDPs motivated
by distributionally robust optimization, RMDP is a natural formulation to promote robustness to the
uncertainty of the transition probability kernel [13, 15], represented asMrob =

{
S,A, T, r,Uσ(P 0)

}
.

Here, we reuse the definitions of S,A, T, r in standard MDPs, and denote Uσ(P 0) as an uncertainty
set of probability transition kernels centered around a nominal transition kernel P 0 = {P 0

t }1≤t≤T

measured by some ‘distance’ function ρ with radius σ. In particular, the uncertainty set obeying the
(s, a)-rectangularity [16] can be defined over all (s, a) state-action pairs at each time step t as

Uσ(P 0) := ⊗ Uσ(P 0
t,s,a), Uσ(P 0

t,s,a) :=
{
Pt,s,a ∈ ∆(S) : ρ

(
Pt,s,a, P

0
t,s,a

)
≤ σ

}
, (1)

where ⊗ denotes the Cartesian product. Here, Pt,s,a := Pt(· | s, a) ∈ ∆(S) and P 0
t,s,a :=

P 0
t (· | s, a) ∈ ∆(S) denote the transition kernel Pt or P 0

t at each state-action pair (s, a) respec-
tively. Consequently, the next state st+1 follows st+1 ∼ Pt(· | st, at) for any Pt ∈ Uσ(P 0

t,st,at
),

namely, st+1 can be generated from any transition kernel belonging to the uncertainty set Uσ(P 0
t,st,at

)
rather than a fixed one in standard MDPs. As a result, for any policy π, the corresponding robust
value function and robust Q function are defined as

V π,σ
t (s) := inf

P∈Uσ(P 0)
V π,P
t (s), Qπ,σ

t (s, a) := inf
P∈Uσ(P 0)

Qπ,P
t (s, a), (2)

which characterize the cumulative reward in the worst case when the transition kernel is within the
uncertainty set Uσ(P 0). Using samples generated from the nominal transition kernel P 0, the goal of
RMDPs is to find an optimal robust policy that maximizes V π,σ

1 when t = 1, i.e., perform optimally
in the worst case when the transition kernel of the test environment lies in a prescribed uncertainty
set Uσ(P 0).

Lack of semantic information in RMDPs. In spite of the rich literature on robustness in RL,
prior works usually hedge against the uncertainty induced by unstructured random noise or small
perturbations, specified as a small and homogeneous uncertainty set around the nominal one. For
instance, in RMDPs, people usually prescribe the uncertainty set of the transition kernel using a
heuristic and simple function ρ with a relatively small σ. However, the unknown uncertainty in
the real world could have a complicated and semantic structure that cannot be well-covered by
a homogeneous ball regardless of the choice of the uncertainty radius σ, leading to either over
conservative policy (when σ is large) or insufficient robustness (when σ is small). Altogether, we
obtain the natural motivation of this work: How to formulate such structured uncertainty and ensure
robustness against it?

3 Robust RL against Structured Uncertainty from a Causal Perspective

To describe structured uncertainty, we choose to study MDPs from a causal perspective with a
basic concept called the structural causal model (SCM). Armed with the concept, we formulate
State-confounded MDPs – a broader set of MDPs in the face of the unobserved confounder in the
state space. Next, we provide the main formulation considered in this work – robust state-confounded
MDPs, which promote robustness to structured uncertainty.

Structural causal model. We denote a structural causal model (SCM) [17] by a tuple {X,Y, F, P x},
where X is the set of exogenous (unobserved) variables, Y is the set of endogenous (observed)
variables, and P x is the distribution of all the exogenous variables. Here, F is the set of structural
functions capturing the causal relations between X and Y such that for each variable yi ∈ Y , fi ∈ F
is defined as yi ← fi

(
PA(yi), xi

)
, where xi ⊆ X and PA(yi) ⊆ Y \ yi denotes the parents of the

node yi. We say that a pair of variables yi and yj are confounded by a variable C (confounder) if
they are both caused by C, i.e., C ∈ PA(yi) and C ∈ PA(yj). When two variables yi and yj do not
have direct causality, they are still correlated if they are confounded, in which case this correlation is
called spurious correlation.
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Figure 2: The probabilistic graphs of our formulation (SC-MDP) and other related formulations
(specified in Appendix B.1 due to the limited space). s1t means the first dimension of st. st′ is a
shorthand for st+1. In SC-MDP, the orange line represents the backdoor path from state s1t′ to action
at′ opened by the confounder ct, which makes the learned policy π rely on the value of ct.

3.1 State-confounded MDPs (SC-MDPs)

We now present state-confounded MDPs (SC-MDPs), whose probabilistic graph is illustrated in
Figure 2(a) with a comparison to standard MDPs in Figure 2(b). Besides the components in standard
MDPsM =

{
S,A, T, r

}
, we introduce a set of unobserved confounder Cs = {ct}1≤t≤T , where

ct ∈ C denotes the confounder that is generated from some unknown but fixed distribution P c
t at time

step t, i.e., ct ∼ P c
t ∈ ∆(C).

To characterize the causal effect of the confounder Cs on the state dynamic, we resort to an SCM,
where Cs is the set of exogenous (unobserved) confounder and endogenous variables include all
dimensions of states {sit}1≤i≤n,1≤t≤T , and actions {at}1≤t≤T . Specifically, the structural function
F is considered as {Pi

t}1≤i≤n,1≤t≤T – the transition from the current state st, action at and the
confounder ct to each dimension of the next state sit+1 for all time steps, i.e., sit+1 ∼ Pi

t(· | st, at, ct).
Notably, the specified SCM does not confound the reward, i.e., rt(st, at) does not depend on the
confounder ct.

Armed with the above SCM, denoting P c := {P c
t }, we can introduce state-confounded MDPs

(SC-MDPs) represented byMsc =
{
S,A, T, r, C, {Pi

t}, P c
}

(Figure 2(a)). A policy is denoted as
π = {πt}, where each πt results in an intervention (possibly stochastic) that sets at ∼ πt(· | st) at
time step t regardless of the value of the confounder.

State-confounded value function and optimal policy. Given st, the causal effect of at on the
next state st+1 plays an important role in characterizing value function/Q-function. To ensure the
identifiability of the causal effect, the confounder ct are assumed to obey the backdoor criterion
[17, 18], leading to the following state-confounded value function (SC-value function) and state-
confounded Q-function (SC-Q function) [19]:

Ṽ π,P c

t (s) = Eπ,P c

[
T∑

k=t

rk(sk, ak) | st = s; ck ∼ P c
k , s

i
k+1 ∼ Pi

k(· | sk, ak, ck)
]
,

Q̃π,P c

t (s, a) = Eπ,P c

[
T∑

k=t

rk(sk, ak) | st = s, at = a; ck ∼ P c
k , s

i
k+1 ∼ Pi

k(· | sk, ak, ck)
]
. (3)

Remark 1. Note that the proposed SC-MDPs serve as a general formulation for a broad family
of RL problems that include standard MDPs as a special case. Specifically, any standard MDP
M =

{
S,A, P, T, r

}
can be equivalently represented by at least one SC-MDPMsc =

{
S,A, T, r,

C, {Pi
t}, P c

}
as long as Ect∼P c

t

[
Pi
t(· | st, at, ct)

]
=

[
P (· | st, at)

]
i

for all 1 ≤ i ≤ n, 1 ≤ t ≤ T .

3.2 Robust state-confounded MDPs (RSC-MDPs)

In this work, we consider robust state-confounded MDPs (RSC-MDPs) – a variant of SC-MDPs
promoting the robustness to the uncertainty of the unobserved confounder distribution P c, denoted
byMsc-rob =

{
S,A, T, r, C, {Pi

t},Uσ(P c)
}

. Here, the perturbed distribution of the unobserved
confounder is assumed in an uncertainty set Uσ(P c) centered around the nominal distribution P c
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with radius σ measured by some ‘distance’ function ρ : ∆(C)×∆(C)→ R+, i.e.,

Uσ(P c) := ⊗ Uσ(P c
t ), Uσ(P c

t ) := {P ∈ ∆(C) : ρ (P, P c
t ) ≤ σ} . (4)

Consequently, the corresponding robust SC-value function and robust SC-Q function are defined as

Ṽ π,σ
t (s) := inf

P∈Uσ(P c)
Ṽ π,P
t (s), Q̃π,σ

t (s, a) := inf
P∈Uσ(P c)

Q̃π,P
t (s, a), (5)

representing the worst-case cumulative rewards when the confounder distribution lies in the uncer-
tainty set Uσ(P c).

Then a natural question is: does there exist an optimal policy that maximizes the robust SC-value
function Ṽ π,σ

t for any RSC-MDP so that we can target to learn? To answer this, we introduce the
following theorem that ensures the existence of the optimal policy for all RSC-MDPs. The proof can
be found in Appendix C.1.
Theorem 1 (Existence of an optimal policy). Let Π be the set of all non-stationary and stochastic
policies. Consider any RSC-MDP, there exists at least one optimal policy πsc,⋆ = {πsc,⋆

t }1≤t≤T such
that for all (s, a) ∈ S ×A and 1 ≤ t ≤ T , one has

Ṽ πsc,⋆,σ
t (s) = Ṽ ⋆,σ

t (s) := sup
π∈Π

Ṽ π,σ
t (s) and Q̃πsc,⋆,σ

t (s, a) = Q̃⋆,σ
t (s, a) := sup

π∈Π
Q̃π,σ

t (s, a).

In addition, RSC-MDPs also possess benign properties similar to RMDPs such that for any policy π
and the robust optimal policy πsc,⋆, the corresponding robust SC Bellman consistency equation and
robust SC Bellman optimality equation are also satisfied (specified in Appendix C.3.3).

Goal. Based on all the definitions and analysis above, this work aims to find an optimal policy for
RSC-MDPs that maximizes the robust SC-value function in (5), yielding optimal performance in the
worst case when the unobserved confounder distribution falls into an uncertainty set Uσ(P c).

3.3 Advantages of RSC-MDPs over traditional RMDPs

The most relevant robust RL formulation to ours is RMDPs, which has been introduced in Section 2.
Here, we provide a thorough comparison between RMDPs and our RSC-MDPs with theoretical
justifications, and leave the comparisons and connections to other related formulations in Figure 2
and Appendix B.1 due to space limits.

Figure 3: (a) RMDPs add homogeneous noise
to states, while (b) RSC-MDPs perturb the con-
founder to influence states, resulting in a subset of
the valid space.

To begin, at each time step t, RMDPs explicitly
introduce uncertainty to the transition probabil-
ity kernels, while our RSC-MDPs add uncer-
tainty to the transition kernels in a latent (and
hence more structured) manner via perturbing
the unobserved confounder that partly deter-
mines the transition kernels. As an example,
imagining the true uncertainty set encountered
in the real world is illustrated as the blue region
in Figure 3, which could have a complicated
structure. Since the uncertainty set in RMDPs is
homogeneous (illustrated by the green circles),
one often faces the dilemma of being either too
conservative (when σ is large) or too reckless
(when σ is small). In contrast, the proposed
RSC-MDPs – shown in Figure 3(b) – take advantage of the structured uncertainty set (illustrated
by the orange region) enabled by the underlying SCM, which can potentially lead to much better
estimation of the true uncertainty set. Specifically, the varying unobserved confounder induces
diverse perturbation to different portions of the state through the structural causal function, enabling
heterogeneous and structural uncertainty sets over the state space.

Theoretical guarantees of RSC-MDPs: advantages of structured uncertainty. To theoretically
understand the advantages of the proposed robust formulation of RSC-MDPs with comparison to
prior works, especially RMDPs, the following theorem verifies that RSC-MDPs enable additional
robustness against semantic attack besides small model perturbation or noise considered in RMDPs.
The proof is postponed to Appendix C.2.
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Theorem 2. Consider any T ≥ 2. Consider some standard MDPsM =
{
S,A, P 0, T, r

}
, equiv-

alently represented as an SC-MDPMsc =
{
S,A, T, r, C, {Pi

t}, P c} with C := {0, 1}, and total
variation as the ‘distance’ function ρ to measure the uncertainty set (the admissible uncertainty
level obeys σ ∈ [0, 1]). For the corresponding RMDP Mrob with the uncertainty set Uσ1(P 0),
and the proposed RSC-MDPMsc-rob =

{
S,A, T, r, C, {Pi

t},Uσ2(P c)
}

, the optimal robust policy
π⋆,σ1

RMDP associated withMrob and π⋆,σ2

RSC associated withMsc-rob obey: given σ2 ∈
(
1
2 , 1

]
, there exist

RSC-MDPs with some initial state distribution ϕ such that

Ṽ
π
⋆,σ2
RSC ,σ2

1 (ϕ)− Ṽ
π
⋆,σ1
RMDP,σ2

1 (ϕ) ≥ T

8
, ∀σ1 ∈ [0, 1]. (6)

In words, Theorem 2 reveals a fact about the proposed RSC-MDPs: RSC-MDPs could succeed in
intense semantic attacks while RMDPs fail. As shown by (6), when fierce semantic shifts appear
between the training and test scenarios – perturbing the unobserved confounder in a large uncertainty
set Uσ2(P c), solving RSC-MDPs with π⋆,σ2

RSC succeeds in testing while π⋆,σ1

RMDP trained by solving
RMDPs can fail catastrophically. The proof is achieved by constructing hard instances of RSC-MDPs
that RMDPs could not cope with due to inherent limitations. Moreover, this advantage of RSC-MDPs
is consistent with and verified by the empirical performance evaluation in Section 5.3 R1.

4 An Empirical Algorithm to Solve RSC-MDPs: RSC-SAC

Algorithm 1: RSC-SAC Training
Input: policy π, data buffer D, transition

model Pθ, ratio of modified data β
for t ∈ [1, T ] do

Sample action at ∼ π(·|st)
(st+1, rt)← Env(st, at)
Add buffer D = D ∪ {st, at, st+1, rt}
for sample batch B ∈ D do

Randomly select β% data in B
Modify st in selected data with (7)
(ŝt+1, r̂t) ∼ Pθ(st, at,Gϕ)
Replace data with (st, at, ŝt+1, r̂t)
L = ∥st+1 − ŝt+1∥22 + ∥rt − r̂t∥22
Update θ and ϕ with L+ λ∥G∥p
Update π with SAC algorithm

When addressing distributionally robust problems
in RMDPs, the worst case is typically defined
within a prescribed uncertainty set in a clear and
implementation-friendly manner, allowing for it-
erative or analytical solutions. However, solving
RSC-MDPs could be challenging as the structured
uncertainty set is induced by the causal effect of
perturbing the confounder. The precise characteri-
zation of this structured uncertainty set is difficult
since neither the unobserved confounder nor the
true causal graph of the observable variables is
accessible, both of which are necessary for inter-
vention or counterfactual reasoning. Therefore,
we choose to approximate the causal effect of per-
turbing the confounder by learning from the data
collected during training.

In this section, we propose an intuitive yet effective empirical approach named RSC-SAC for
solving RSC-MDPs, which is outlined in Algorithm 1. We first estimate the effect of perturbing the
distribution P c of the confounder to generate new states (Section 4.1). Then, we learn the structural
causal model Pi

t to predict rewards and the next states given the perturbed states (Section 4.2).
By combining these two components, we construct a data generator capable of simulating novel
transitions (st, at, rt, st+1) from the structured uncertainty set. To learn the optimal policy, we
construct the data buffer with a mixture of the original data and the generated data and then use the
Soft Actor-Critic (SAC) algorithm [20] to optimize the policy.

4.1 Distribution of confounder

As we have no prior knowledge about the confounders, we choose to approximate the effect of per-
turbing them without explicitly estimating the distribution P c. We first randomly select a dimension i
from the state st to apply perturbation and then assign the dimension i of st with a heuristic rule. We
select the value from another sample sk that has the most different value from st in dimension i and
the most similar value to st in the remaining dimensions. Formally, this process solves the following
optimization problem to select sample k from a batch of K samples:

sit ← sik, k = argmax
∥sit − sik∥22∑

¬i ∥s¬i
t − s¬i

k ∥22
, k ∈ {1, ...,K} (7)

where sit and s¬i
t means dimension i of st and other dimensions of st except for i, respectively.

Intuitively, permuting the dimension of two samples breaks the spurious correlation and remains the
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Figure 4: Two tasks used in experiments. Door is a composition task implemented in Robosuite with
a spurious correlation between the positions of the handle and the door. Brightness is a distraction
task implemented in Carla with a spurious correlation between the number vehicles and day/night.

most semantic meaning of the state space. However, this permutation sometimes also breaks the
true cause and effect between dimensions, leading to a performance drop. The trade-off between
robustness and performance [21] is a long-standing dilemma in the robust optimization framework,
which we will leave to future work.

4.2 Learning of structural causal model
With the perturbed state st, we then learn an SCM to predict the next state and reward considering
the effect of the action on the previous state. This model contains a causal graph to achieve better
generalization to unseen state-action pairs. Specifically, we simultaneously learn the model parameter
and discover the underlying causal graph in a fully differentiable way with (ŝt+1, r̂t) ∼ Pθ(st, at,Gϕ),
where θ is the parameter of the neural network of the dynamic model and ϕ ∈ R(n+dA)×(n+1) is the
parameter to represent causal graph G between {st, at} and {st+1, rt}. This graph is represented
by a binary adjacency matrix G, where 1/0 means the existence/absence of an edge. Pθ has an
encoder-decoder structure with matrix G as an intermediate linear transformation. The encoder
takes state and action in and outputs features fe ∈ R(n+dA)×df for each dimension, where df is
the dimension of the feature. Then, the causal graph is multiplied to generate the feature for the
decoder fd = fT

e G ∈ Rdf×(n+1). The decoder takes in fd and outputs the next state and reward.
The detailed architecture of this causal transition model can be found in Appendix D.1.

The objective for training this model consists of two parts, one is the supervision signal from collected
data ∥st+1− ŝt+1∥22 + ∥rt− r̂t∥22, and the other is a penalty term λ∥G∥p with weight λ to encourage
the sparsity of the matrix G. The penalty is important to break the spurious correlation between
dimensions of state since it forces the model to eliminate unnecessary inputs for prediction.

5 Experiments and Evaluation
In this section, we first provide a benchmark consisting of eight environments with spurious correla-
tions, which may be of independent interest to robust RL. Then we evaluate the proposed algorithm
RSC-SAC with comparisons to prior robust algorithms in RL.

5.1 Tasks with spurious correlation

To the best of our knowledge, no existing benchmark addresses the issues of spurious correlation in
the state space of RL. To bridge the gap, we design a benchmark consisting of eight novel tasks in
self-driving and manipulation domains using the Carla [22] and Robosuite [23] platforms (shown
in Figure 4). Tasks are designed to include spurious correlations in terms of human common sense,
which is ubiquitous in decision-making applications and could cause safety issues. We categorize
the tasks into distraction correlation and composition correlation according to the type of spurious
correlation. We specify these two types of correlation below and leave the full descriptions of the
tasks in Appendix D.2.

• Distraction correlation is between task-relevant and task-irrelevant portions of the state. The
task-irrelevant part could distract the policy model from learning important features and lead to
a performance drop. A typical method to avoid distraction is background augmentation [24, 25].
We design four tasks with this category of correlation, i.e., Lift, Wipe, Brightness, and CarType.

• Composition correlation is between two task-relevant portions of the state. This correlation
usually exists in compositional generalization, where states are re-composed to form novel tasks
during testing. Typical examples are multi-task RL [26, 27] and hierarchical RL [28, 29]. We
design four tasks with this category of correlation, i.e., Stack, Door, Behavior, and Crossing.
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Figure 5: The first row shows the testing reward on the nominal environments, while the second row
shows the testing reward on the shifted environments.

Table 1: Testing reward on shifted environments. Bold font means the best reward.

Method Brightness Behavior Crossing CarType Lift Stack Wipe Door

SAC 0.56±0.13 0.13±0.03 0.81±0.13 0.63±0.14 0.58±0.13 0.26±0.12 0.16±0.20 0.08±0.07
RMDP-G 0.55±0.15 0.16±0.04 0.47±0.13 0.53±0.16 0.31±0.08 0.33±0.15 0.06±0.17 0.07±0.03
RMDP-U 0.54±0.19 0.13±0.05 0.60±0.15 0.39±0.13 0.51±0.17 0.23±0.11 0.06±0.17 0.10±0.13
MoCoDA 0.50±0.14 0.16±0.05 0.22±0.14 0.23±0.12 0.46±0.14 0.29±0.11 0.01±0.24 0.09±0.14
ATLA 0.48±0.11 0.14±0.03 0.61±0.14 0.52±0.14 0.61±0.18 0.21±0.12 0.29±0.18 0.28±0.19
DBC 0.52±0.18 0.16±0.03 0.68±0.12 0.45±0.10 0.12±0.02 0.03±0.02 0.19±0.35 0.01±0.01
Active 0.47±0.14 0.14±0.03 0.83±0.09 0.77±0.14 0.35±0.09 0.24±0.12 0.17±0.17 0.05±0.02

RSC-SAC 0.99±0.11 1.02±0.09 1.04±0.02 1.03±0.02 0.98±0.04 0.77±0.20 0.85±0.12 0.61±0.17

5.2 Baselines
Robustness in RL has been explored in terms of diverse uncertainty set over state, action, or transition
kernels. Regarding this, we use a non-robust RL and four representative algorithms of robust RL as
baselines, all of which are implemented on top of the SAC [20] algorithm. Non-robust RL (SAC):
This serves as a basic baseline without considering any robustness during training; Solving robust
MDP: We generate the samples to cover the uncertainty set over the state space by adding perturbation
around the nominal states that follows two distribution, i.e., uniform distribution (RMDP-U) and
Gaussian distribution (RMDP-G). Solving SA-MDP: We compare ATLA [6], a strong algorithm that
generates adversarial states using an optimal adversary within the uncertainty set. Invariant feature
learning: We choose DBC [30] that learns invariant features using the bi-simulation metric [31] and
[32] (Active) that actively sample uncertain transitions to reduce causal confusion. Counterfactual
data augmentation: We select MoCoDA [33], which identifies local causality to switch components
and generate counterfactual samples to cover the targeted uncertainty set. We adapt this algorithm
using an approximate causal graph rather than the true causal graph.

5.3 Results and Analysis
To comprehensively evaluate the performance of the proposed method RSC-SAC, we conduct
experiments to answer the following questions: Q1. Can RSC-SAC eliminate the harmful effect of
spurious correlation in learned policy? Q2. Does the robustness of RSC-SAC only come from the
sparsity of model? Q3. How does RSC-SAC perform in the nominal environments compared to
non-robust algorithms? Q4. Which module is critical in our empirical algorithm? Q5. Is RSC-SAC
robust to other types of uncertainty and model perturbation? Q6. How does RSC-SAC balance the
tradeoff between performance and robustness? We analyze the results and answer these questions in
the following.
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Table 2: Testing reward on nominal environments. Underline means the reward is over 0.9.

Method Brightness Behavior Crossing CarType Lift Stack Wipe Door

SAC 1.00±0.09 1.00±0.08 1.00±0.02 1.00±0.03 1.00±0.03 1.00±0.09 1.00±0.12 1.00±0.03
RMDP-G 1.04±0.09 1.00±0.11 0.78±0.05 0.79±0.05 0.92±0.07 0.86±0.14 0.99±0.13 0.99±0.06
RMDP-U 1.02±0.09 1.04±0.07 0.90±0.03 0.88±0.03 0.97±0.05 0.92±0.12 0.97±0.14 0.88±0.31
MoCoDA 0.65±0.17 0.78±0.15 0.57±0.07 0.55±0.13 0.79±0.11 0.72±0.08 0.69±0.13 0.41±0.22
ATLA 0.99±0.11 0.98±0.11 0.89±0.05 0.88±0.04 0.94±0.08 0.88±0.10 0.96±0.12 0.97±0.05
DBC 0.75±0.12 0.78±0.10 0.85±0.08 0.86±0.06 0.27±0.04 0.12±0.08 0.31±0.21 0.01±0.01
Active 1.02±0.10 1.08±0.06 1.00±0.02 1.00±0.02 0.99±0.03 0.90±0.12 0.93±0.20 0.99±0.05

RSC-SAC 0.92±0.31 1.06±0.07 0.96±0.03 0.96±0.03 0.96±0.05 1.04±0.08 0.92±0.14 0.98±0.05

R1. RSC-SAC is robust against spurious correlation. The testing results of our proposed method
with comparisons to the baselines are presented in Table 1, where the rewards are normalized by the
episode reward of SAC in the nominal environment. The results reveal that RSC-SAC significantly
outperforms other baselines in shifted test environments, exhibiting comparable performance to that
of vanilla SAC on the nominal environment in 5 out of 8 tasks. An interesting and even surprising
finding, as shown in Table 1, is that although RMDP-G, RMDP-U, and ATLA are trained desired to
be robust against small perturbations, their performance tends to drop more than non-robust SAC in
some tasks. This indicates that using the samples generated from the traditional robust algorithms
could harm the policy performance when the test environment is outside of the prescribed uncertainty
set considered in the robust algorithms.
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(shifted)

Composition
(nominal)

Composition
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Figure 6: Comparison between SAC-Sparse and
our method. α is the weight of regularization.

R2. Sparsity of the model is only one rea-
son for the robustness of RSC-SAC. As exist-
ing literature shows [34], sparsity regularization
benefits the elimination of spurious correlation
and causal confusion. Therefore, we compare
our method with a sparse version of SAC (SAC-
Sparse): we add an additional penalty α|W |1
during the optimization, where W is the param-
eter of the first linear layer of the policy and
value networks and α is the weight. The results
of both Distraction and Composition are shown
in Figure 6. We have two important findings
based on the results: (1) The sparsity improves
the robustness of SAC in the setting of distrac-
tion spurious correlation, which is consistent
with the findings in [34]. (2) The sparsity does
not help with the composition type of spurious correlation, which indicates that purely using sparsity
regularization cannot explain the improvement of our RSC-SAC. In fact, the semantic perturbation in
our method plays an important role in augmenting the composition generalization.

R3. RSC-SAC maintains great performance in the nominal environments. Previous literature [21]
finds out that there usually exists a trade-off between the performance in the nominal environment
and the robustness against uncertainty. To evaluate the performance of RSC-SAC in the nominal
environment, we conduct experiments and summarize results in Table 2, which shows that RSC-SAC
still performs well in the training environment. Additionally, the training curves are displayed in
Figure 5, showing that RSC-SAC achieves similar rewards compared to non-robust SAC although
converges slower than it.

Table 3: Influence of modules
Method Lift Behavior Crossing

w/o Gϕ 0.79±0.15 0.51±0.24 0.87±0.10
w/o Pθ 0.75±0.13 0.41±0.28 0.89±0.08
w/o P c 0.90±0.09 0.66±0.21 0.96±0.04

Full model 0.98±0.04 1.02±0.09 1.04±0.02

R4. Both the distribution of confounder and
the structural causal model are critical. To as-
sess the impact of each module in our algorithm,
we conduct three additional ablation studies (in Ta-
ble 3), where we remove the causal graph Gϕ, the
transition model Pθ, and the distribution of the con-
founder P c respectively. The results demonstrate
that the learnable causal graph Gϕ is critical for the performance that enhances the prediction of
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the next state and reward, thereby facilitating the generation of high-quality next states with current
perturbed states. The transition model without Gϕ may still retain numerous spurious correlations,
resulting in a performance drop similar to the one without Pθ, which does not alter the next state and
reward. In the third row of Table 3, the performance drop indicates that the confounder P c also plays
a crucial role in preserving semantic meaning and avoiding policy training distractions.

Table 4: Random purterbuation
Method Lift-0 Lift-0.01 Lift-0.1

SAC 1.00±0.03 0.77±0.13 0.46±0.23
RMDP-0.01 0.97±0.05 0.96±0.06 0.51±0.21
RMDP-0.1 0.85±0.12 0.82±0.09 0.39±0.15

RSC-SAC 0.96±0.05 0.94±0.06 0.44±0.18

R5. RSC-SAC is also robust to random pertur-
bation. The final investigation aims to assess the
generalizability of our method to cope with random
perturbation that is widely considered in robust RL
(RMDPs). Towards this, we evaluate the proposed
algorithm in the test environments added with ran-
dom noise under the Gaussian distribution with two
varying scales in the Lift environment. In Table 4,
Lift-0 indicates the nominal training environment, while Lift-0.01 and Lift-0.1 represent the environ-
ments perturbed by the Gaussian noise with standard derivation 0.01 and 0.1, respectively. The results
indicate that our RSC-SAC achieves comparable robustness compared to RMDP-0.01 in both large
and small perturbation settings and outperforms RMDP methods in the nominal training environment.

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0.5

0.6
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Crossing (nominal)
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Figure 7: Performance-robustness tradeoff with differ-
ent augmentation ratio β.

R6. RSC-SAC keeps good performance
and robustness for a wide range of β. As
shown in Figure 7, the proposed RSC-SAC
performs well in both nominal and shifted
settings – keeping good performance in the
nominal setting and achieving robustness,
for a large range of (20%-70%). When
the ratio of perturbed data is very small
(1%), RSC-SAC almost achieves the same
results as vanilla SAC in nominal settings
and there is no robustness in shifted set-
tings. As it increases (considering more robustness), the performance of RSC-SAC in the nominal
setting gradually gets worse, while reversely gets better in the shifted settings (more robust). However,
when the ratio is too large (>80%), the performances of RSC-SAC in both settings degrade a lot,
since the policy is too conservative so that fails in all environments.

6 Conclusion and Limitation
This work focuses on robust reinforcement learning against spurious correlation in state space, which
broadly exists in (sequential) decision-making tasks. We propose robust SC-MDPs as a general
framework to break spurious correlations by perturbing the value of unobserved confounders. We
not only theoretically show the advantages of the framework compared to existing robust works in
RL, but also design an empirical algorithm to solve robust SC-MDPs by approximating the causal
effect of the confounder perturbation. The experimental results demonstrate that our algorithm is
robust to spurious correlation – outperforms the baselines when the value of the confounder in the test
environment derivates from the training one. It is important to note that the empirical algorithm we
propose is evaluated only for low-dimensional states.However, the entire framework can be extended
in the future to accommodate high-dimensional states by leveraging powerful generative models with
disentanglement capabilities [35] and state abstraction techniques [36].

Acknowledgments and Disclosure of Funding

The work of W. Ding is supported by the Qualcomm Innovation Fellowship. The work of L. Shi and Y.
Chi is supported in part by the grants ONR N00014-19-1-2404, NSF CCF-2106778, DMS-2134080,
and CNS-2148212. L. Shi is also gratefully supported by the Leo Finzi Memorial Fellowship,
Wei Shen and Xuehong Zhang Presidential Fellowship, and Liang Ji-Dian Graduate Fellowship at
Carnegie Mellon University.

10



References
[1] OpenAI. Gpt-4 technical report, 2023.

[2] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to
end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[4] Wenhao Ding, Haohong Lin, Bo Li, and Ding Zhao. Generalizing goal-conditioned reinforce-
ment learning with variational causal reasoning. arXiv preprint arXiv:2207.09081, 2022.

[5] A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots. In Conference on
robot learning, pages 561–591. PMLR, 2018.

[6] Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

[7] Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning.
Advances in Neural Information Processing Systems, 32, 2019.

[8] Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters.
Robust reinforcement learning: A review of foundations and recent advances. Machine
Learning and Knowledge Extraction, 4(1):276–315, 2022.

[9] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state
observations. Advances in Neural Information Processing Systems, 33:21024–21037, 2020.

[10] Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, and Fei Miao. What
is the solution for state adversarial multi-agent reinforcement learning? arXiv preprint
arXiv:2212.02705, 2022.

[11] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and
applications in continuous control. In International Conference on Machine Learning, pages
6215–6224. PMLR, 2019.

[12] Kai Liang Tan, Yasaman Esfandiari, Xian Yeow Lee, and Soumik Sarkar. Robustifying
reinforcement learning agents via action space adversarial training. In 2020 American control
conference (ACC), pages 3959–3964. IEEE, 2020.

[13] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research,
30(2):257–280, 2005.

[14] Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward theoretical understandings of robust
markov decision processes: Sample complexity and asymptotics. The Annals of Statistics,
50(6):3223–3248, 2022.

[15] Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning
with near-optimal sample complexity. arXiv preprint arXiv:2208.05767, 2022.

[16] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes.
Mathematics of Operations Research, 38(1):153–183, 2013.

[17] Judea Pearl. Causality. Cambridge university press, 2009.

[18] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
foundations and learning algorithms. The MIT Press, 2017.

11



[19] Lingxiao Wang, Zhuoran Yang, and Zhaoran Wang. Provably efficient causal reinforcement
learning with confounded observational data. Advances in Neural Information Processing
Systems, 34:21164–21175, 2021.

[20] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[21] Mengdi Xu, Peide Huang, Yaru Niu, Visak Kumar, Jielin Qiu, Chao Fang, Kuan-Hui Lee,
Xuewei Qi, Henry Lam, Bo Li, et al. Group distributionally robust reinforcement learning
with hierarchical latent variables. In International Conference on Artificial Intelligence and
Statistics, pages 2677–2703. PMLR, 2023.

[22] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
Carla: An open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR,
2017.

[23] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush
Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for
robot learning. arXiv preprint arXiv:2009.12293, 2020.

[24] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised rep-
resentations for reinforcement learning. In International Conference on Machine Learning,
pages 5639–5650. PMLR, 2020.

[25] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021.

[26] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen,
Li Fei-Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation
with multimodal prompts. arXiv preprint arXiv:2210.03094, 2022.

[27] Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron Courville, Joshua B Tenenbaum, and Chuang
Gan. Learning task decomposition with ordered memory policy network. arXiv preprint
arXiv:2103.10972, 2021.

[28] Minjong Yoo, Sangwoo Cho, and Honguk Woo. Skills regularized task decomposition for
multi-task offline reinforcement learning. Advances in Neural Information Processing Systems,
35:37432–37444, 2022.

[29] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, and Hal Daumé III.
Hierarchical imitation and reinforcement learning. In International conference on machine
learning, pages 2917–2926. PMLR, 2018.

[30] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

[31] Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing (preliminary report).
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 344–352, 1989.

[32] Gunshi Gupta, Tim GJ Rudner, Rowan Thomas McAllister, Adrien Gaidon, and Yarin Gal. Can
active sampling reduce causal confusion in offline reinforcement learning? In 2nd Conference
on Causal Learning and Reasoning, 2023.

[33] Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg. Mocoda: Model-based
counterfactual data augmentation. arXiv preprint arXiv:2210.11287, 2022.

[34] Jongjin Park, Younggyo Seo, Chang Liu, Li Zhao, Tao Qin, Jinwoo Shin, and Tie-Yan Liu.
Object-aware regularization for addressing causal confusion in imitation learning. Advances
in Neural Information Processing Systems, 34:3029–3042, 2021.

12



[35] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pages 2649–2658. PMLR, 2018.

[36] David Abel. A theory of state abstraction for reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 9876–9877, 2019.

[37] Shirley Wu, Mert Yuksekgonul, Linjun Zhang, and James Zou. Discover and cure: Concept-
aware mitigation of spurious correlation. arXiv preprint arXiv:2305.00650, 2023.

[38] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes.
arXiv preprint arXiv:1502.02259, 2015.

[39] Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Advances in
Neural Information Processing Systems, 23, 2010.

[40] Eric M Wolff, Ufuk Topcu, and Richard M Murray. Robust control of uncertain markov
decision processes with temporal logic specifications. In 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), pages 3372–3379. IEEE, 2012.

[41] David L Kaufman and Andrew J Schaefer. Robust modified policy iteration. INFORMS
Journal on Computing, 25(3):396–410, 2013.

[42] Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast bellman updates for robust mdps.
In International Conference on Machine Learning, pages 1979–1988. PMLR, 2018.

[43] Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally robust reinforcement
learning. arXiv preprint arXiv:1902.08708, 2019.

[44] Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Partial policy iteration for l1-robust
markov decision processes. Journal of Machine Learning Research, 22(275):1–46, 2021.

[45] Vineet Goyal and Julien Grand-Clement. Robust markov decision processes: Beyond rectan-
gularity. Mathematics of Operations Research, 2022.

[46] Esther Derman and Shie Mannor. Distributional robustness and regularization in reinforcement
learning. arXiv preprint arXiv:2003.02894, 2020.

[47] Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust mdps using function approximation.
In International conference on machine learning, pages 181–189. PMLR, 2014.

[48] Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least
squares policy iteration with provable performance guarantees. In International Conference
on Machine Learning, pages 511–520. PMLR, 2021.

[49] Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for
distributionally robust reinforcement learning. arXiv preprint arXiv:2303.02783, 2023.

[50] Jing Dong, Jingwei Li, Baoxiang Wang, and Jingzhao Zhang. Online policy optimization for
robust mdp. arXiv preprint arXiv:2209.13841, 2022.

[51] Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning
with a generative model. In International Conference on Artificial Intelligence and Statistics,
pages 9582–9602. PMLR, 2022.

[52] Zhengqing Zhou, Qinxun Bai, Zhengyuan Zhou, Linhai Qiu, Jose Blanchet, and Peter Glynn.
Finite-sample regret bound for distributionally robust offline tabular reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pages 3331–3339. PMLR,
2021.

[53] Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A finite sample complex-
ity bound for distributionally robust Q-learning. In International Conference on Artificial
Intelligence and Statistics, pages 3370–3398. PMLR, 2023.

13



[54] Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. Double pessimism is provably efficient
for distributionally robust offline reinforcement learning: Generic algorithm and robust partial
coverage. arXiv preprint arXiv:2305.09659, 2023.

[55] Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust q-learning. In International Conference on Machine Learning,
pages 13623–13643. PMLR, 2022.

[56] Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. Sample complexity of variance-
reduced distributionally robust Q-learning. arXiv preprint arXiv:2305.18420, 2023.

[57] Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, and Zhengyuan Zhou. Single-
trajectory distributionally robust reinforcement learning. arXiv preprint arXiv:2301.11721,
2023.

[58] Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty.
Advances in Neural Information Processing Systems, 34, 2021.

[59] Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price
of distributional robustness in reinforcement learning with a generative model. arXiv preprint
arXiv:2305.16589, 2023.

[60] Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, and Ilija Bogunovic.
Distributionally robust model-based reinforcement learning with large state spaces. arXiv
preprint arXiv:2309.02236, 2023.

[61] Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust
reinforcement learning using offline data. Advances in neural information processing systems,
35:32211–32224, 2022.

[62] Xiaoteng Ma, Zhipeng Liang, Jose Blanchet, Mingwen Liu, Li Xia, Jiheng Zhang, Qianchuan
Zhao, and Zhengyuan Zhou. Distributionally robust offline reinforcement learning with linear
function approximation. arXiv preprint arXiv:2209.06620, 2022.

[63] Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. On the foundation of distribu-
tionally robust reinforcement learning. arXiv preprint arXiv:2311.09018, 2023.

[64] Yuxin Pan, Yize Chen, and Fangzhen Lin. Adjustable robust reinforcement learning for online
3d bin packing. arXiv preprint arXiv:2310.04323, 2023.

[65] You Qiaoben, Xinning Zhou, Chengyang Ying, and Jun Zhu. Strategically-timed state-
observation attacks on deep reinforcement learning agents. In ICML 2021 Workshop on
Adversarial Machine Learning, 2021.

[66] Ke Sun, Yi Liu, Yingnan Zhao, Hengshuai Yao, Shangling Jui, and Linglong Kong. Exploring
the training robustness of distributional reinforcement learning against noisy state observations.
arXiv preprint arXiv:2109.08776, 2021.

[67] Zikang Xiong, Joe Eappen, He Zhu, and Suresh Jagannathan. Defending observation attacks
in deep reinforcement learning via detection and denoising. arXiv preprint arXiv:2206.07188,
2022.

[68] Zhihong Deng, Zuyue Fu, Lingxiao Wang, Zhuoran Yang, Chenjia Bai, Zhaoran Wang, and
Jing Jiang. Score: Spurious correlation reduction for offline reinforcement learning. arXiv
preprint arXiv:2110.12468, 2021.

[69] Chenjia Bai, Lingxiao Wang, Lei Han, Animesh Garg, Jianye Hao, Peng Liu, and Zhaoran
Wang. Dynamic bottleneck for robust self-supervised exploration. Advances in Neural
Information Processing Systems, 34:17007–17020, 2021.

[70] Guy Tennenholtz, Assaf Hallak, Gal Dalal, Shie Mannor, Gal Chechik, and Uri Shalit. On
covariate shift of latent confounders in imitation and reinforcement learning. arXiv preprint
arXiv:2110.06539, 2021.

14



[71] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[72] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[73] Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard
Schölkopf, and Kun Zhang. Causaladv: Adversarial robustness through the lens of causality.
arXiv preprint arXiv:2106.06196, 2021.

[74] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Ré.
Correct-n-contrast: A contrastive approach for improving robustness to spurious correlations.
arXiv preprint arXiv:2203.01517, 2022.

[75] Annie Xie, Shagun Sodhani, Chelsea Finn, Joelle Pineau, and Amy Zhang. Robust policy
learning over multiple uncertainty sets. In International Conference on Machine Learning,
pages 24414–24429. PMLR, 2022.

[76] Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in rein-
forcement learning with mixture regularization. Advances in Neural Information Processing
Systems, 33:7968–7978, 2020.

[77] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regulariz-
ing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[78] Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep Q-learning with convnets
and vision transformers under data augmentation. Advances in neural information processing
systems, 34:3680–3693, 2021.

[79] Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Auto-
matic data augmentation for generalization in reinforcement learning. Advances in Neural
Information Processing Systems, 34:5402–5415, 2021.

[80] Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data
augmentation. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 13611–13617. IEEE, 2021.

[81] Chaochao Lu, Biwei Huang, Ke Wang, José Miguel Hernández-Lobato, Kun Zhang, and
Bernhard Schölkopf. Sample-efficient reinforcement learning via counterfactual-based data
augmentation. arXiv preprint arXiv:2012.09092, 2020.

[82] Shubhankar Agarwal and Sandeep P Chinchali. Synthesizing adversarial visual scenarios for
model-based robotic control. In Conference on Robot Learning, pages 800–811. PMLR, 2023.

[83] Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems, 33:3976–3990, 2020.

[84] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
23–30. IEEE, 2017.

[85] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker. Learning to simulate. arXiv
preprint arXiv:1810.02513, 2018.

[86] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active
domain randomization. In Conference on Robot Learning, pages 1162–1176. PMLR, 2020.

[87] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian
Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-
sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12627–12637, 2019.

15



[88] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan
Ratliff, and Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with
real world experience. In 2019 International Conference on Robotics and Automation (ICRA),
pages 8973–8979. IEEE, 2019.

[89] Sergey Zakharov, Wadim Kehl, and Slobodan Ilic. Deceptionnet: Network-driven domain
randomization. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 532–541, 2019.

[90] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out:
Ensemble-based methods for avoiding known dataset biases. arXiv preprint arXiv:1909.03683,
2019.

[91] Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton. Learning the difference that makes a
difference with counterfactually-augmented data. arXiv preprint arXiv:1909.12434, 2019.

[92] Meike Nauta, Ricky Walsh, Adam Dubowski, and Christin Seifert. Uncovering and correcting
shortcut learning in machine learning models for skin cancer diagnosis. Diagnostics, 12(1):40,
2021.

[93] Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass
left behind: Fine-grained robustness in coarse-grained classification problems. Advances in
Neural Information Processing Systems, 33:19339–19352, 2020.

[94] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Unsupervised learning of debiased
representations with pseudo-attributes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16742–16751, 2022.

[95] Gregory Plumb, Marco Tulio Ribeiro, and Ameet Talwalkar. Finding and fixing spurious
patterns with explanations. arXiv preprint arXiv:2106.02112, 2021.

[96] Misgina Tsighe Hagos, Kathleen M Curran, and Brian Mac Namee. Identifying spuri-
ous correlations and correcting them with an explanation-based learning. arXiv preprint
arXiv:2211.08285, 2022.

[97] Abubakar Abid, Mert Yuksekgonul, and James Zou. Meaningfully debugging model mis-
takes using conceptual counterfactual explanations. In International Conference on Machine
Learning, pages 66–88. PMLR, 2022.

[98] Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, and Andrea Passerini. Concept-level
debugging of part-prototype networks. arXiv preprint arXiv:2205.15769, 2022.

[99] Mohammad Taha Bahadori and David E Heckerman. Debiasing concept-based explanations
with causal analysis. arXiv preprint arXiv:2007.11500, 2020.

[100] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory
and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

[101] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su,
Hang Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library.
Journal of Machine Learning Research, 23(267):1–6, 2022.

16



Appendix

Table of Contents
A Broader Impact 17

B Other Related Works 17
B.1 Related RL formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B.2 Related literature of robustness in RL . . . . . . . . . . . . . . . . . . . . . . . 18
B.3 Related literature of spurious correlation in RL . . . . . . . . . . . . . . . . . . 18

C Theoretical Analyses 19
C.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
C.3 Proof of auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D Experiment Details 27
D.1 Architecture of the structural causal model . . . . . . . . . . . . . . . . . . . . 27
D.2 Details of Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
D.3 Example of Generated Data by Perturbations . . . . . . . . . . . . . . . . . . . 29
D.4 Computation Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D.6 Discovered Causal Graph in SCM . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Broader Impact

Incorporating causality into reinforcement learning methods increases the interpretability of artificial
intelligence, which helps humans understand the underlying mechanism of algorithms and check
the source of failures. However, the learned causal transition model may contain human-readable
private information about the environment, which could raise privacy issues. To mitigate this potential
negative societal impact, the causal transition model needs to be encrypted and only accessible to
algorithms and trustworthy users.

B Other Related Works

In this section, besides the most related formulation, robust RL introduced in Sec 3.3, we also
introduce some other related RL problem formulations partially shown in Figure 3. Then, we limit
our discussion to mainly two lines of work that are related to ours: (1) promoting robustness in RL;
(2) concerning the spurious correlation issues in RL.

B.1 Related RL formulations

Robustness to noisy state: POMDPs and SA-MDPs. State-noisy MDPs refer to the RL problem
that the agent can only access and choose the action based on a noisy observation rather than the true
state at each step, including two existing types of problems: Partially observable MDPs (POMDPs)
and state-adversarial MDPs (SA-MDPs), shown in Figure 3(b). In particular, at each step t, in
POMDPs, the observation ot is generated by a fixed probability transition O(· | st) (we refer to the
case that ot only depends on the state st but not action); for state-adversarial MDPs, the observation
is an adversary ν(st) against and thus determined by the conducted policy, leading to the worst
performance by perturbing the state in a small set around itself. To defend the state perturbation, both
POMDPs, and SA-MDPs are indeed robust to the noisy observation, or called agent-observed state,
but not the real state that transitions to the environment and next steps. In contrast, our RSC-MDPs
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propose the robustness to the real state shift that will directly transition to the next state in the
environment, involving additional challenges induced by the appearance of out-of-distribution states.

Robustness to unobserved confounder: MDPUC and confounded MDPs. To address the mislead-
ing spurious correlations hidden in components of RL, people formulate RL problems as MDPs with
some additional components – unobserved confounders. In particular, the Markov decision process
with unobserved confounders (MDPUC) [37] serves as a general framework to concern all types of
possible spurious correlations in RL problems – at each step, the state, action, and reward are all
possibly influenced by some unobserved confounder, shown in Figure 2(d); confounded MDPs [19]
mainly concerns the misleading correlation between the current action and the next state, illustrated
in Figure 3(e). The proposed state-confounded MDPs (SC-MDPs) can be seen as a specified type
of MDPUC that focuses on breaking the spurious correlation between different parts of the state
space itself (different from confounded MDPs which consider the correlation between action and
next state), motivated by various real-world applications in self-driving and control tasks. In addition,
the proposed formulation is more flexible and can work in both online and offline RL settings.

Contexual MDPs (CDMPs). A contextual MDP (CMDP) [38] is basically a set of standard MDPs
sharing the same state and action space but specified by different contexts within a context space.
In particular, the transition kernel, reward, and action of a CMDP are all determined by a (possibly
unknown) fixed context. The proposed robust state-confounded MDPs (RSC-MDPs) are similar
to CMDPs if we cast the unobserved confounder as the context in CMDPs, while different in two
aspects: (1) In a CMDP, the context is fixed throughout an episode, while the unobserved confounder
in RSC-MDPs can vary as {ct}1≤t≤T ; (2) In the online setting, the goal of CMDP is to beat the
optimal policy depending on the context, while RSC-MDPs seek to learn the optimal policy that does
not depend on the confounder {ct}1≤t≤T .

B.2 Related literature of robustness in RL

Robust RL (robust MDPs). Concerning the robust issues in RL, a large portion of works focus
on robust RL with explicit uncertainty of the transition kernel, which is well-posed and a natural
way to consider the uncertainty of the environment [13, 39–48]. However, to define the uncertainty
set for the environment, most existing works use task structure-agnostic and heuristic ’distance’
such as R-contamination, KL divergence, χ2, and total variation [49, 50, 14, 51, 52, 15, 49, 53–
58, 49, 59, 48, 60–64] to measure the shift between the training and test transition kernel, leading
to a homogeneous (almost structure-free) uncertainty set around the state space. In contrast, we
consider a more general uncertainty set that enables the robustness to a task-dependent heterogeneous
uncertainty set shaped by unobserved confounder and causal structure, in order to break the spurious
correlation hidden in different parts of the state space.

Robustness in RL. Despite the remarkable success that standard RL has achieved, current RL
algorithms are still limited since the agent is vulnerable if the deployed environment is subject to
uncertainty and even structural changes. To address these challenges, a recent line of RL works
begins to concern robustness to the uncertainty or changes over different components of MDPs –
state, action, reward, and transition kernel, where a review [8] can be referred to. Besides robust
RL framework concerning the shift of the transition kernel and reward, to promote robustness in
RL, there exist various works [11, 12] that consider the robustness to action uncertainty, i.e., the
deployed action in the environment is distorted by an adversarial agent smoothly or circumstantially;
some works [9, 6, 10, 65–67] investigate the robustness to the state uncertainty including but not
limited to the introduced POMDPs and SA-MDPs in Appendix B.1, where the agent chooses the
action based on observation – the perturbed state determined by some restricted noise or adversarial
attack. The proposed RSC-MDPs can be regarded as addressing the state uncertainty since the
shift of the unobserved confounder leads to state perturbation. In contrast, RSC-MDPs consider
the out-of-distribution of the real state that will directly influence the subsequent transition in the
environment, but not the observation in POMDPs and SA-MDPs that will not directly influence the
environment.

B.3 Related literature of spurious correlation in RL

Confounder in RL. These works mainly focus on the confounder between action (treatment) and
state (effect), which is a long-standing problem that exists in the causal inference area. However,
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we find that the confounder may cause problems from another perspective, where the confounder is
built upon different dimensions of the state variable. Some people focus on the confounder between
action and state, which is common in offline settings since the dataset is fixed and intervention is not
allowed. But in the online setting, actions are controlled by an agent and intervention is available
to eliminate spurious correlation. [68] reduces the spurious correlation between action and state in
the offline setting. [69] deal with environment-irrelevant white noise; possible shift + causal [70].
The confounder problem is usually easy to solve since agents can interact with the environment to do
interventions. However, different from most existing settings, we find that even with the capability
of intervention, the confounding between dimensions in states cannot be fully eliminated. Then the
learned policy is heavily influenced if these confounders change during testing.

Invariant Feature learning. The problem of spurious correlation has attracted attention in the
supervised learning area for a long time and many solutions are proposed to learn invariant features to
eliminate spurious correlations. A general framework to remedy the ignorance of spurious correlation
in empirical risk minimization (ERM) is invariant risk minimization (IRM) [71]. Other works tackle
this problem with group distributional robustness [72], adversarial robustness [73], and contrastive
learning [74]. These methods are also adapted to sequential settings. The idea of increasing the
robustness of RL agents by training agents on multiple environments has been shown in previous
works [75, 30, 30]. However, a shared assumption among these methods is that multiple environments
with different values of confounder are accessible, which is not always true in the real world.

Counterfactual Data Augmentation in RL. One way to simulate multiple environments is data
augmentation. However, most data augmentation works [24, 76, 25, 77–80] apply image transfor-
mation to raw inputs, which requires strong domain knowledge for image manipulation and cannot
be applied to other types of inputs. In RL, the dynamic model and reward model follow certain
causal structures, which allow counterfactual generation of new transitions based on the collected
samples. This line of work, named counterfactual data augmentation, is very close to this work.
Deep generative models [81] and adversarial examples [82] are considered for the generation to
improve sample efficiency in model-based RL. CoDA [83] and MocoDA [33] leverage the concept of
locally factored dynamics to randomly stitch components from different trajectories. However, the
assumption of local causality may be limited.

Domain Randomization. If we are allowed to control the data generation process, e.g., the underlying
mechanism of the simulator, we can apply the golden rule in causality – Randomized Controlled Trial
(RCT). The well-known technique, domain randomization [84], exactly follows the idea of RCT,
which randomly perturbs the internal state of the experiment in simulators. Later literature follows
this direction and develops variants including randomization guided by downstream tasks in the target
domain [85, 86], randomization to match real-world distributions [87, 88], and randomization to
minimize data divergence [89]. However, it is usually impossible to randomly manipulate internal
states in most situations in the real world. In addition, determining which variables to randomize is
even harder given so many factors in complex systems.

Discovering Spurious Correlations Detecting spurious correlations helps models remove features
that are harmful to generalization. Usually, domain knowledge is required to find such correlations [90–
92]. However, when prior knowledge is accessible, techniques such as clustering can also be used to
reveal spurious attributes [37, 93, 94]. When human inspection is available, recent works [95–97]
also use explainability techniques to find spurious correlations. Another area for discovery is concept-
level and interactive debugging [98, 99], which leverage concepts or human feedback to perform
debugging.

C Theoretical Analyses

C.1 Proof of Theorem 1

In this section, we verify the existence of an optimal policy of the proposed RSC-MDPs, involving
additional components — confounder Cs and the infimum optimization problems with comparisons
to standard MDPs [100].
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To begin with, we recall that the goal is to find a policy π̃ = {π̃t}1≤t≤T ∈ Π such that for all
(s, a) ∈ S ×A:

Ṽ π̃,σ
t (s) = Ṽ ⋆,σ

t (s) := sup
π∈Π

Ṽ π,σ
t (s) and Q̃π̃,σ

t (s, a) = Q̃⋆,σ
t (s, a) := sup

π∈Π
Q̃π,σ

t (s, a), (8)

which we called an optimal policy. Towards this, we start from the first claim in (8).

Step 1: Introducing additional notations. Before proceeding, we let {St, At, Rt, Ct} denote
the random variables — state, action, reward, and confounder, at time step t for all 1 ≤ t ≤ T .
Then invoking the Markov properties, we know that conditioned on current state st, the future state,
action, and reward are all independent from the previous s1, a1, r1, c1, · · · , st−1, at−1, rt−1, ct−1. In
addition, we represent Pt ∈ ∆(C) as some distribution of confounder at time step t, for all 1 ≤ t ≤ T .
For convenience, we introduce the following notation that is defined over time step t ≤ k ≤ T :

∀1 ≤ t ≤ T : P+t := ⊗t≤k≤TPk and Uσ(P c
+t) := ⊗t≤k≤TUσ(P c

k ), (9)

which represent some collections of variables from time step t to the end of the episode. In addition,
recall that the transition kernel from time step t to t + 1 is denoted as sit+1 ∼ Pi

t(· | st, at, ct) for
i ∈ 1, 2 · · · , n. With slight abuse of notation, we denote st+1 ∼ Pt(· | st, at, ct) and abbreviate
Est+1∼Pt(· | st,at,ct)[·] as Est+1

[·] whenever it is clear.

Step 2: Establishing recursive relationship. Recall that the nominal distribution of the confounder
is ct ∈ P c

t at time step t. We choose π̃ = {π̃t} which obeys: for all 1 ≤ t ≤ T ,

π̃t(s) := argmax
πt∈∆(A)

{
Eπt [rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

[
Est+1

[
Ṽ ⋆,σ
t+1(st+1)

]] ]}
. (10)

Armed with these definitions and notations, for any (t, s) ∈ {1, 2, · · · , T} × S , one has

Ṽ ⋆,σ
t (s)

(i)
= sup

π∈Π
inf

P∈Uσ(P c)
Ṽ π,P
t (s)

(ii)
= sup

π∈Π
inf

P+t∈Uσ(P c
+t)

Eπ,P+t

[
T∑

k=t

rk(sk, ak)

]
(iii)
= sup

π∈Π
inf

P+t∈Uσ(P c
+t)

Eπt

[
rt(s, at)

+ Ect∼Pt

[
Est+1

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]

= sup
π∈Π

Eπt [rt(s, at)] + inf
P+t∈Uσ(P c

+t)
Eπt

[
Ect∼Pt

[

Est+1

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]

where (i) holds by the definitions in (5), (ii) is due to (3) and that Ṽ π,P
t (s) only depends on P+t by

the Markov property, (iii) follows from expressing the term of interest by moving one step ahead and
Eπt

is taken with respect to at ∼ πt(· |St = s).

To continue, we observe that the Ṽ ⋆,σ
t (s) can be further controlled as follows:

Ṽ ⋆,σ
t (s)

= sup
π∈Π

Eπt [rt(s, at)] + inf
P+t∈Uσ(P c

+t)
Eπt

[
Ect∼Pt

[

Est+1

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]
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(i)
= sup

π∈Π
Eπt [rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

[
Est+1

[

inf
P+(t+1)∈Uσ

(
P c

+(t+1)

)
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]

≤ sup
π∈Π

Eπt
[rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

Est+1

[
sup
π′∈Π

inf
P+(t+1)∈Uσ(P c

+(t+1)
)

T∑
k=t+1

rk(sk, ak) |π′, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]
(ii)
= sup

π∈Π
Eπt

[rt(s, at)]

+ inf
Pt∈Uσ(P c

t )
Eπt

[
Ect∼Pt

[
Est+1

[
sup
π′∈Π

inf
P+(t+1)∈Uσ(P c

+(t+1)
)
Eπ′,P+(t+1)

[
T∑

k=t+1

rk(sk, ak)

]]]]

= sup
π∈Π

{
Eπt

[rt(s, at)] + inf
Pt∈Uσ(P c

t )
Eπt

[
Ect∼Pt

[
Est+1

[
Ṽ ⋆,σ
t+1(st+1)

]] ]}

= sup
πt∈∆(A)

{
Eπt [rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

[
Est+1

[
Ṽ ⋆,σ
t+1(st+1)

]] ]}
= inf

Pt∈Uσ(P c
t )
E
[
rt(s, at) + Ect∼Pt

Est+1

[[
Ṽ ⋆,σ
t+1(st+1)

]
| at = π̃t(s)

]]
, (11)

where (i) holds by the operator inf
P+(t+1)∈Uσ

(
P c

+(t+1)

) is independent from πt conditioned on a fixed

distribution of st+1, (ii) arises from the Markov property such that the rewards {rk(sk, ak)}t+1≤k≤T

conditioned on (St, At, Rt, Ct, St+1) or St+1 are the same, and the last equality follows from the
definition of π̃ in (10).

Step 3: Completing the proof by applying recursion.

Applying (11) recursively for t+ 1, · · ·T , we arrive at

Ṽ ⋆,σ
t (s) ≤ inf

Pt∈Uσ(P c
t )
E
[
rt(s, at) + Ect∼Pt

Est+1

[[
Ṽ ⋆,σ
t+1(st+1)

]
| at = π̃t(s)

]]
≤ inf

Pt∈Uσ(P c
t )

inf
Pt+1∈Uσ(P c

t+1)
E

[
rt(s, at) + Ect∼Pt

[
Est+1

[
rt+1(st+1, at+1) + Ect+1∼Pt+1

[
Est+2

[
Ṽ ⋆,σ
t+2(st+2)

]] ]]∣∣∣(at, at+1) = (π̃t(s), π̃t+1(st+1))

]

≤ · · · ≤ inf
P+t∈Uσ(P c

+t)
Eπ,P+t

[
T∑

k=t

rk(sk, ak)

]
= Ṽ π̃,σ

t (s). (12)

Observing from (12) that

∀s ∈ S : Ṽ ⋆,σ
t (s) ≤ Ṽ π̃,σ

t (s) ≤ sup
π∈Π

Ṽ π,σ
t (s) = Ṽ ⋆,σ

t (s), (13)

which directly verifies the first assertion in (8) Ṽ π̃,σ
t (s) = Ṽ ⋆,σ

t (s) for all s ∈ S . The second assertion
in (8) can be achieved analogously. Until now, we verify that there exists at least a policy π̃ that
obeys (8), which we refer to as an optimal policy since its value is equal to or larger than any other
non-stationary and stochastic policies over all states s ∈ S.

C.2 Proof of Theorem 2

We establish the proof by separating it into several key steps.

21



1

[0,0] [0,1]

1

1
r = 1

r = 1

(a) Standard MDP kernel

[1,0] [1,1]

11

P 0
1<latexit sha1_base64="3L9/5L+fA2z2dF7aIGL7L8zrWXU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SDGacYxHQgecQZNVbyG49uz+uVK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBxMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lzVrVu6jW7i8r9Zs8jiKcwCmcgwdXUIc7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8f8zKOHg==</latexit>

1

[0,0] [0,1]
1 −𝑐!

r = 1 r = 0
𝑎 = 1

[1,0] [1,1]

11

1 − 𝑐!

𝑐! 𝑐!

(b) SC-MDP kernel P1
<latexit sha1_base64="GbHmErkxLogvV5JVSrC/Ion0nHM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZRoxhsskpFuB9RwKRRvoEDJ27HmNAwkbwXju8xvTbg2IlKPOI25H9KhEgPBKFrJ74YUR4zKtD7reb1S2a24c5BV4uWkDDnqvdJXtx+xJOQKmaTGdDw3Rj+lGgWTfFbsJobHlI3pkHcsVTTkxk/noWfk3Cp9Moi0fQrJXP29kdLQmGkY2MkspFn2MvE/r5Pg4MZPhYoT5IotDg0SSTAiWQOkLzRnKKeWUKaFzUrYiGrK0PZUtCV4y19eJc1qxbusVB+uyrXbvI4CnMIZXIAH11CDe6hDAxg8wTO8wpszcV6cd+djMbrm5Dsn8AfO5w+2A5IO</latexit>

r = 1

r = 0

r = 0r = 0

𝑎 = 0

𝑎 = 1

𝑎 = 1

𝑎 = 0

Figure 8: The illustration of the transition kernels of the standard MDPM and the proposed SC-MDP
Msc at the first time step t = 1, i.e., P 0

t and P1 respectively.

Step 1: Constructing a hard instance M of standard MDP. In this section, we consider the
following standard MDP instanceM =

{
S,A, P 0, T, r

}
where S = {[0, 0], [0, 1], [1, 0], [1, 1]} is

the state space consisting of four elements in dimension n = 2, and A = {0, 1} is the action space
with only two options. The transition kernel P 0 = {P 0

t }1≤t≤T at different time steps 1 ≤ t ≤ T is
defined as

P 0
1 (s

′ | s, a) =
{

1(s′ = [0, 0])1(a = 0) + 1(s′ = [0, 1])1(a = 1) if s = [0, 0]
1(s′ = s) otherwise , (14)

which is illustrated in Fig. 8(a), and

P 0
t (s

′ | s, a) = 1(s′ = s), ∀(t, s, a) ∈ {2, 3, · · · , T} × S ×A. (15)

Note that this transition kernel P 0 ensures that the next state transitioned from the state [0, 0] is either
[0, 0] or [0, 1]. The reward function is specified as follows: for all time steps 1 ≤ t ≤ T ,

rt(s, a) =

{
1 if s = [0, 0] or s = [1, 1]
0 otherwise . (16)

Step 2: The equivalence betweenM and one SC-MDP. Then, we shall show that the constructed
standard MDPM can be equivalently represented by one SC-MDPMsc =

{
S,A, T, r, C, {Pi

t}, P c}
with C := {0, 1}. The equivalence is defined as the sequential observations {st, at, rt}1≤t≤T induced
by any policy and any initial state distribution in two Markov processes are identical. To specify,
S,A, T, r are kept the same asM. Here, {Pi

t} shall be specified in a while, which determines the
transition to each dimension of the next state conditioned on the current state, action, and confounder
distribution for all time steps, i.e., sit+1 ∼ Ect∼P c

t

[
Pi
t(· | st, at, ct)

]
for any i-th dimension of the

state (i ∈ {1, 2}) and all time step 1 ≤ t ≤ T . For convenience, we denote Pt := [P1
t ,P2

t ] ∈ ∆(S)
as the transition kernel towards the next state, namely, st+1 ∼ Ect∼P c

t
[Pt(· | st, at, ct)].

Then we simply set the nominal distribution of the confounder as follows:

P c
t (ct) = 1(ct = 0), ∀1 ≤ t ≤ T, ct ∈ C. (17)

In addition, before introducing the transition kernel {Pi
t} of the SC-MDPMsc, we introduce an

auxiliary transition kernel P sc = {P sc
t } as follows:

P sc
1 (s′ | s, a) =

{
1(s′ = [1, 0])1(a = 0) + 1(s′ = [1, 1])1(a = 1) if (s, a) = ([0, 0], 0)
1(s′ = s) otherwise ,

(18)

and

P sc
t (s′ | s, a) = 1(s′ = s), ∀(t, s, a) ∈ {2, 3, · · · , T} × S ×A. (19)

It can be observed that P sc is similar to P 0 except for the transition in the state [0, 0].
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Armed with this transition kernel P sc, the {Pi
t} of the SC-MDPMsc is set to obey

P1(s
′ | s, a, c1) =

{
(1− c1)P

0
1 (s

′ | s, a) + c1P
sc
1 (s′ | s, a) if s = [0, 0]

1(s′ = s) otherwise , (20)

which is illustrated in Fig. 8(b), and

Pt(s
′ | s, a, ct) = 1(s′ = s), ∀(t, s, a, ct) ∈ {2, 3, · · · , T} × S ×A× C. (21)

With them in mind, we are ready to verify that the marginalized transition from the current state
and action to the next state in the SC-MDP Msc is identical to the one in MDP M: for all
(t, st, at, st+1) ∈ {1, 2, · · · , T} × S ×A× S:

P(st+1 | st, at) = Ect∼P c
t
[Pt(st+1 | st, at, ct)] = Pt(st+1 | st, at, 0) = P 0(st+1 | st, at) (22)

where the second equality holds by the definition of P c in (17), and the last equality holds by the
definitions of P (see (20) and (21)).

In summary, we verified that the standard MDPM =
{
S,A, P 0, T, r

}
is equal to the above specified

SC-MDPMsc.

Step 3: Defining corresponding RMDP and RSC-MDP. Equipped with the equivalent standard
MDPM and SC-MDPMsc, we consider the robust variants of them respectively — a RMDPMrob ={
S,A,Uσ1(P 0), T, r

}
with some uncertainty level σ1, and the proposed RSC-MDP Msc-rob ={

S,A, T, r, C, {Pi
t},Uσ2(P c)

}
with some uncertainty level σ2.

In this section, without loss of generality, we consider total variation as the ‘distance’ function ρ for
the uncertainty sets of both RMDPMrob and RSC-MDPMsc-rob, i.e., for any probability vectors
P ′, P ∈ ∆(C) (or P ′, P ∈ ∆(S)), ρ (P ′, P ) := 1

2 ∥P ′ − P∥1. Consequently, for any uncertainty
level σ ∈ [0, 1], the uncertainty set Uσ1(P 0) of the RMDP (see (1)) and Uσ2(P c) of the RSC-MDP
Msc-rob (see (4)) are defined as follow, respectively:

Uσ(P 0) := ⊗ Uσ(P 0
t,s,a), Uσ(P 0

t,s,a) :=

{
Pt,s,a ∈ ∆(S) : 1

2

∥∥Pt,s,a − P 0
t,s,a

∥∥
1
≤ σ

}
,

Uσ(P c) := ⊗ Uσ(P c
t ), Uσ(P c

t ) :=

{
P ∈ ∆(C) : 1

2
∥P − P c

t ∥1 ≤ σ

}
. (23)

Step 4: Comparing between the performance of the optimal policy of RMDPMrob (π⋆,σ1

RMDP )
and that of RSC-MDPMsc-rob (π⋆,σ2

RSC ). To continue, we specify the robust optimal policy π⋆,σ1

RMDP

associated withMrob and π⋆,σ2

RSC associated withMsc-rob and then compare their performance on
RSC-MDP with some initial state distribution.

To begin, we introduce the following lemma about the robust optimal policy π⋆,σ1

RMDP associated with
the RMDPMrob.
Lemma 1. For any σ1 ∈ (0, 1], the robust optimal policy ofMrob obeys

∀s ∈ S :
[
π⋆,σ1

RMDP

]
1
(0 | s) = 1. (24a)

In addition, we characterize the robust SC-value functions of the RSC-MDPMsc-rob associated with
any policy, combined with the optimal policy and its optimal robust SC-value functions, shown in the
following lemma.
Lemma 2. Consider any σ2 ∈ ( 12 , 1] and the RSC-MDPMsc-rob =

{
S,A, T, r, C, {Pi

t},Uσ2(P c)
}

.
For any policy π, the corresponding robust SC-value functions satisfy

Ṽ π,σ2

1 ([0, 0]) = 1 + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
π1(0 | [0, 0])(1− c1) + π1(1 | [0, 0])c1

]
. (25a)

In addition, the optimal robust SC-value function and the robust optimal policy π⋆,σ2

RSC of the RMDP
Msc-rob obeys:

Ṽ
π
⋆,σ2
RSC ,σ2

1 ([0, 0]) = Ṽ ⋆,σ2

1 ([0, 0]) = 1 +
T − 1

2
. (26)
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Armed with above lemmas, applying Lemma 2 with policy π = π⋆,σ1

RMDP obeying
[
π⋆,σ1

RMDP

]
1
(0 | s) = 1

in Lemma 1, one has

Ṽ
π
⋆,σ1
RMDP,σ2

1 ([0, 0]) = 1 + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
1− c1

]

≤ 1 + (T − 1)

[
1

4
· 1 + 3

4
· 0
]
= 1 +

T − 1

4
, (27)

where the inequality holds by the fact that the probability distribution P obeying P1(0) =
1
4 and

P1(1) =
3
4 is inside the uncertainty set Uσ2(P c

1 ) (recall that σ2 ∈ ( 12 , 1] and P c
1 (0) = 1).

Finally, combining (27) and (26) together, we complete the proof by showing that with the initial
state distribution ϕ defined as ϕ([0, 0]) = 1, we arrive at

Ṽ
π
⋆,σ2
RSC ,σ2

1 (ϕ)− Ṽ
π
⋆,σ1
RMDP,σ2

1 ([0, 0]) = Ṽ ⋆,σ2

1 (ϕ)− Ṽ
π
⋆,σ1
RMDP,σ2

1 ([0, 0]) ≥ T − 1

4
≥ T

8
, (28)

where the last inequality holds by T ≥ 2.

C.3 Proof of auxiliary results

C.3.1 Proof of Lemma 1

Step 1: specifying the minimum of the robust value functions over states. For any uncertainty set
σ1 ∈ (0, 1], we first characterize the robust value function of any policy π over different states. To
start, we denote the minimum of the robust value function over states at each time step t as below:

V π,σ1

min,t := min
s∈S

V π,σ1

t (s) ≥ 0, (29)

where the last inequality holds that the reward function defined in (16) is always non-negative.
Obviously, there exists at least one state sπmin,t that satisfies V π,σ1

t (sπmin,t) = V π,σ1

min,t.

With this in mind, we shall verify that for any policy π,

∀1 ≤ t ≤ T : V π,σ1

t ([0, 1]) = V π,σ1

t ([1, 0]) = 0. (30)

To achieve this, we use a recursive argument. First, the base case can be verified since when
t+ 1 = T + 1, the value functions are all zeros at T + 1 step, i.e., V π,σ1

T+1 (s) = 0 for all s ∈ S . Then,
the goal is to verify the following fact

V π,σ1

t ([0, 1]) = V π,σ1

t ([1, 0]) = 0 (31)

with the assumption that V π,σ1

t+1 (s) = 0 for any state s = {[0, 1], [1, 0]}. It is easily observed that for
any policy π, the robust value function when state s = {[0, 1], [1, 0]} at any time step t obeys

0 ≤ V π,σ1

t (s) = Ea∼πt(· | s)

[
rt(s, a) + inf

P∈Uσ1 (P 0
t,s,a)

PV π,σ1

t+1

]
(i)
= 0 + (1− σ1)V

π,σ1

t+1 (s) + σ1V
π,σ1

min,t+1

(ii)
= 0 + σ1V

π,σ1

min,t+1

≤ 0 + σ1V
π,σ1

t+1 (s) = 0 (32)

where (i) holds by rt(s, a) = 0 for all s = {[0, 1], [1, 0]}, the fact P 0
t (s | s, a) = 1 for s ∈ S (see

(14) and (15)), and the definition of the uncertainty set Uσ1(P 0) in (23). Here (ii) follows from the
recursive assumption V π,σ1

t+1 (s) = 0 for any state s = {[0, 1], [1, 0]}, and the last equality holds by
V π,σ1

min,t+1 ≤ V π,σ1

t+1 ([0, 1]) (see (29)). Until now, we complete the proof for (31) and then verify (30).

Note that (30) direcly leads to

∀1 ≤ t ≤ T : V π,σ1

min,t = 0. (33)

Step 2: Considering the robust value function at state [0, 0]. Armed with the above facts, we are
now ready to derive the robust value function for the state [0, 0].
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When 2 ≤ t ≤ T , one has

V π,σ1

t ([0, 0]) = Ea∼πt(· | [0,0])

[
rt([0, 0], a) + inf

P∈Uσ1 (Pt,[0,0],a)
PV π,σ1

t+1

]
(i)
= 1 +

[
(1− σ1)V

π,σ1

t+1 ([0, 0]) + σ1V
π,σ1

min,t+1

]
= 1 + (1− σ1)V

π,σ1

t+1 ([0, 0]) (34)

where (i) holds by rt([0, 0], a) = 1 for all a ∈ {0, 1} and the definition of P 0 (see (15)), and the last
equality arises from (33) .

Applying (34) recursively for t, t+ 1, · · · , T yields that

V π,σ1

t ([0, 0]) =

T∑
k=t

(1− σ1)
k−t ≥ 1. (35)

When t = 1, the robust value function obeys:

V π,σ1

1 ([0, 0]) = Ea∼π1(· | [0,0])

[
r1([0, 0], a) + inf

P∈Uσ1 (P1,[0,0],a)
PV π,σ1

2

]
(i)
= 1 + π1(0 | [0, 0]) inf

P∈Uσ1 (P1,[0,0],0)
PV π,σ1

2 + π1(1 | [0, 0]) inf
P∈Uσ1 (P1,[0,0],1)

PV π,σ1

2

(ii)
= 1 + π1(0 | [0, 0])

[
(1− σ1)V

π,σ1

2 ([0, 0]) + σ1V
π,σ1

min,2

]
+ π1(1 | [0, 0])

[
(1− σ1)V

π,σ1

2 ([0, 1]) + σ1V
π,σ1

min,2

]
= 1 + π1(0 | [0, 0])(1− σ1)V

π,σ1

2 ([0, 0]) (36)

where (i) holds by r1([0, 0], a) = 1 for all a ∈ {0, 1}, (ii) follows from the definition of P 0 (see
(14)), and the last equality arises from (30) and (33).

Step 3: the optimal policy π⋆,σ1

RMDP. Observing that V π,σ1

1 ([0, 0]) is increasing monotically as
π1(0 | [0, 0]) is larger, we directly have that π⋆,σ1

RMDP(0 | [0, 0]) = 1.

Considering that the action does not influence the state transition for t = 2, 3, · · · , T and all other
states s ̸= [0, 0], without loss of generality, we choose the robust optimal policy as

∀s ∈ S :
[
π⋆,σ1

RMDP

]
1
(0 | s) = 1. (37)

C.3.2 Proof of Lemma 2

To begin with, for any uncertainty level σ2 ∈ ( 12 , 1] and any policy π = {πt}, we consider the robust
SC-value function Ṽ π,σ2

t of the RSC-MDPMsc-rob.

Step 1: deriving Ṽ π,σ2

t for 2 ≤ t ≤ T . Towards this, for any 2 ≤ t ≤ T and s ∈ S, one has

Ṽ π,σ2

t (s) = Ea∼πt(s)

[
Q̃π,σ2

t (s, a)
]

(i)
= Ea∼πt(s)

[
rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ct Ṽ

π,σ2

t+1

]]
(ii)
= rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ct Ṽ

π,σ2

t+1

]
= rt(s, a) + Ṽ π,σ

t+1 (s), (38)

where (i) follows from the state-confounded Bellman consistency equation in (47), (ii) holds by that
the reward function rt and Pt are all independent from the action (see (16) and (21)), and the last
inequality holds by Pt(s

′ | s, a, ct) = 1(s′ = s) is independent from ct (see (21)).

Applying the above fact recursively for t, t+ 1, · · · , T leads to that for any s ∈ S,

Ṽ π,σ2

t (s) = rt(s, at) + Ṽ π,σ
t+1 (s) = rt(s, a) + rt+1(s, at+1) + Ṽ π,σ

t+2 (s)
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= · · · = rt(s, at) +

T∑
k=t+1

rk(sk, ak), (39)

which directly yields (see reward r in (16))

Ṽ π,σ2

2 ([0, 0]) = Ṽ π,σ2

2 ([1, 1]) = T − 1 and Ṽ π,σ2

2 ([0, 1]) = Ṽ π,σ2

2 ([1, 0]) = 0. (40)

Step 2: characterizing Ṽ π,σ2

1 ([0, 0]) for any policy π. In this section, we consider the value of
Ṽ π,σ2

1 on the state [0, 0]. To proceed, one has

Ṽ π,σ2

1 ([0, 0]) = Ea∼π1([0,0])

[
Q̃π,σ2

1 ([0, 0], a)
]

(i)
= Ea∼π1([0,0])

[
r1([0, 0], a) + inf

P∈Uσ(P c
1 )
Ec1∼P

[
P1,[0,0],a,c1 Ṽ

π,σ2

2

]]
(ii)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[(
π1(0 | [0, 0])P1,[0,0],0,c1 + πt(1 | [0, 0])P1,[0,0],1,c1

)
Ṽ π,σ
2

]
(iii)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[
π1(0 | [0, 0])

(
(1− c1)P

0
1,[0,0],0 + c1P

sc
1,[0,0],0

)
Ṽ π,σ
2

+ π1(1 | [0, 0])
(
(1− c1)P

0
1,[0,0],1 + c1P

sc
1,[0,0],1

)
Ṽ π,σ
2

]
(iv)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[
π1(0 | [0, 0])

(
(1− c1)Ṽ

π,σ
2 ([0, 0]) + c1Ṽ

π,σ
2 ([1, 0])

)
+ π1(1 | [0, 0])

(
(1− c1)Ṽ

π,σ
2 ([0, 1]) + c1Ṽ

π,σ
2 ([1, 1])

)]

= 1 + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
π1(0 | [0, 0])(1− c1) + π1(1 | [0, 0])c1

]

= 1 + (T − 1)π1(0 | [0, 0]) + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
c1
(
1− 2π1(0 | [0, 0])

)]
, (41)

where (i) holds by robust state-confounded Bellman consistency equation in (47), (ii) follows from
r1([0, 0], a) = 1 for all a ∈ {0, 1} which is independent from ct. (iii) arises from the definition of P
in (20), (iv) can be verified by plugging in the definitions from (14) and (18), and the penultimate
equality holds by (40).

Step 3: characterizing the optimal robust SC-value functions. Before proceeding, we recall the
fact that Uσ(P c

1 ) =
{
P ∈ ∆(C) : 1

2 ∥P − P c
1∥1 ≤ σ2

}
.

Observing from (41) that for any fixed π1(0 | [0, 0]), c1
(
1−2π1(0 | [0, 0])

)
is monotonously increasing

with c1 when 1− 2π1(0 | [0, 0]) ≥ 0 and decreasing with c1 otherwise, it is easily verified that the
maximum of the following function

f
(
π1(0 | [0, 0])

)
:= (T − 1) inf

P∈Uσ(P c
1 )
Ec1∼P

[
c1
(
1− 2π1(0 | [0, 0])

)]
(42)

obeys

max f
(
π1(0 | [0, 0])

)
=

{
0 if π1(0 | [0, 0]) ≥ 1

2

(T − 1)σ2

(
1− 2π1(0 | [0, 0])

)
otherwise

. (43)

Then, note that the value of Ṽ π,σ2

1 ([0, 0]) only depends on π1(· | [0, 0]) which can be represent by
π1(0 | [0, 0]). Plugging in (43) into (41) arrives at when π1(0 | [0, 0]) ≥ 1

2 ,

max
π1(0 | [0,0])≥ 1

2

Ṽ π,σ2

1 ([0, 0])
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= max
π1(0 | [0,0])≥ 1

2

1 + (T − 1)π1(0 | [0, 0]) + (T − 1)σ2

(
1− 2π1(0 | [0, 0])

)
= 1 + (T − 1)σ2 + (T − 1) max

π1(0 | [0,0])≥ 1
2

(1− 2σ2)π1(0 | [0, 0])

= 1 + (T − 1)σ2 +
(T − 1)(1− 2σ2)

2
= 1 +

T − 1

2
, (44)

where the penultimate equality holds by σ2 > 1
2 and letting π1(0 | [0, 0]) = 1

2 . Similarly, when
π1(0 | [0, 0]) < 1

2 ,

max
π1(0 | [0,0])< 1

2

Ṽ π,σ2

1 ([0, 0]) = max
π1(0 | [0,0])< 1

2

1 + (T − 1)π1(0 | [0, 0]) < 1 +
T − 1

2
. (45)

Consequently, combining (44) and (45), we conclude that

Ṽ
π
⋆,σ2
RSC ,σ2

1 ([0, 0]) = Ṽ ⋆,σ2

1 ([0, 0]) = max
π

Ṽ π,σ2

1 ([0, 0]) = 1 +
T − 1

2
. (46)

C.3.3 Auxiliary results of RSC-MDPs

It is easily verified that for any RSC-MDPMsc-rob =
{
S,A, T, r, C, {Pi

t},Uσ2(P c)
}

, any policy
π and optimal policy π⋆ satisfy the corresponding robust state-confounded Bellman consistency
equation and Bellman optimality equation shown below, respectively:

Q̃π,σ
t (s, a) = rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ct Ṽ

π,σ
t+1

]
,

Q̃⋆,σ
t (s, a) = rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ct Ṽ

⋆,σ
t+1

]
, (47)

where Pt,s,a,ct ∈ R1×S such that Pt,s,a,ct(s
′) := Pt(s

′ | s, a, ct) for s′ ∈ S, and Ṽ ⋆,σ
t (s) =

supπt∈∆(A)

{
Eπt

[rt(s, at)] + infPt∈Uσ(P c
t )

Eπt

[
Ect∼Pt

[
Pt,s,a,ct Ṽ

⋆,σ
t+1(st+1)

] ]}
.

D Experiment Details

D.1 Architecture of the structural causal model

Figure 9: Model architecture of the structural causal model. Encoder, Decoder, position embedding,
and Causal Graph are learnable during the training stage.

We plot the architecture of the structural causal model we used in our method in Figure 9. In normal
neural networks, the input is treated as a whole to pass through linear layers or convolution layers.
However, this structure blends all information in the input, making the causal graph useless to separate
cause and effect. Thus, in our model, we design an encoder that is shared across all dimensions of the
input. Since different dimensions could have exactly the same values, we add a learnable position
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embedding to the input of the encoder. In summary, the input dimension of the encoder is 1 + dpos,
where dpos is the dimension of the position embedding.

After the encoder, we obtain a set of independent features for each dimension of the input. We
now multiply the features with a learnable binary causal graph G. The element (i, j) of the graph
is sampled from a Gumbel-Softmax distribution with parameter ϕi,j to ensure the loss function is
differentiable w.r.t ϕ.

The multiplication of the causal graph and the input feature creates a linear combination of the input
feature with respect to the causal graph. The obtained features are then passed through a decoder
to predict the next state and reward. Again, the decoder is shared across all dimensions to avoid
information leaking between dimensions. Position embedding is included in the input to the decoder
and the output dimension of the decoder is 1.

D.2 Details of Tasks

We design four self-driving tasks in the Carla simulator [22] and four manipulation tasks in the
Robosuite platform [23]. All of these realistic tasks contain strong spurious correlations that are
explicit to humans. We provide detailed descriptions of all these environments in the following.

Figure 10: Illustration of tasks in the Carla simulator.

Brightness. The nominal environments are shown in the 1th column of Figure 10, where the brightness
and the traffic density are correlated. When the ego vehicle drives in the daytime, there are many
surrounding vehicles (first row). When the ego vehicle drives in the evening, there is no surrounding
vehicle (second row). The shifted environment swaps the brightness and traffic density in the nominal
environment, i.e., many surrounding vehicles in the evening and no surrounding vehicles in the
daytime.

Behavior. The nominal environments are shown in the 2nd column of Figure 10, where the other
vehicle has aggressive driving behavior. When the ego vehicle is in front of the other vehicle, the
other vehicle always accelerates and overtakes the ego vehicle in the left lane. When the ego vehicle
is behind the other vehicle, the other vehicle will always accelerate. In the shifted environment, the
behavior of the other vehicle is conservative, i.e., the other vehicle always decelerates to block the
ego vehicle.

Crossing. The nominal environments are shown in the 3rd column of Figure 10, where the pedestrian
follows the traffic rule and only crosses the road when the traffic light is green. In the shifted
environment, the pedestrian disobeys the traffic rules and crosses the road when the traffic light is red.

CarType. The nominal environments are shown in the 4th column of Figure 10, where the type of
vehicle and the speed of the vehicle are correlated. When the vehicle is a truck, the speed is low and
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when the vehicle is a motorcycle, the speed is high. In the shifted environment, the truck drives very
fast and the motorcycle drives very slow.

Figure 11: Illustration of tasks in the Robosuite simulator.

Lift. The nominal environments are shown in the 1th column of Figure 11, where the position of the
cube and the color of the cube are correlated. When the cube is in the left part of the table, the color
of the cube is green, when the cube is in the right part of the table, the color of the cube is red. The
shifted environment swaps the color and position of the cube in the nominal environment, i.e., the
cube is green when it is in the right part and the cube is red when it is in the left part.

Stack. The nominal environments are shown in the 2nd column of Figure 11, where the position of
the red cube and green plate are correlated. When the cube is in the left part of the table, the plate is
also in the left part; when the cube is in the right part of the table, the plate is also in the right part. In
the shifted environment, the relative position of the cube and the plate changes, i.e., When the cube is
in the left part of the table, the plate is in the right part; when the cube is in the right part of the table,
the plate is in the left part.

Wipe. The nominal environments are shown in the 3rd column of Figure 11, where the shape of the
dirty region is correlated to the position of the cube. When the dirty region is diagonal, the cube is
on the right-hand side of the robot arm. When the dirty region is anti-diagonal, the cube is on the
left-hand side of the robot arm. In the shifted environment, the correlation changes, i.e., when the
dirty region is diagonal, the cube is on the left-hand side of the robot arm; when the dirty region is
anti-diagonal, the cube is on the right-hand side of the robot arm.

Door. The nominal environments are shown in the 4th column of Figure 11, where the height of the
handle and the position of the door are correlated. When the door is closed to the robot arm, the
handle is in a low position. When the door is far from the robot arm, the handle is in a high position.
In the shifted environment, the correlation changes, i.e., when the door is closed to the robot arm, the
handle is in a high position; when the door is far from the robot arm, the handle is in a low position.

D.3 Example of Generated Data by Perturbations

We show an example of generated trajectories in the Lift task to demonstrate the reason why our
method obtains robustness against spurious correlation. In Figure 12 (a), we show the collected
trajectories from the data buffer. Since the green block is always generated on the left side of the
table, the trajectories of the green block mainly appear on the left side of the table. In Figure 12 (b),
we generate new trajectories from a trained transition model and we observe that the distribution of
trajectories follows the collected data. In Figure 12 (c), we directly perturbed the dimensions of the
state and used the same transition model to generate new trajectories. We find that the generated
trajectories blend the color but fail to maintain the spatial distribution of the original data. In Figure 12
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(d), we use the causal-based transition model to generate new trajectories and we find that the results
not only follow the spatial distribution but also blend the color.

The results shown in Figure 12 illustrate that the data generated by our method eliminates the spurious
correlation between the color and position of the block, therefore, enabling the policy model to
generalize to the shifted environment.

Figure 12: The generated transition data from different perturbation methods. (a) Trajectories
collected from the policy interact with the nominal environment. (b) Generated trajectories without
any perturbation. (c) Generated trajectories with perturbation but without the causal graph. (d)
Generated trajectories with perturbation and with the causal graph.

D.4 Computation Resources

Our algorithm is implemented on top of the Tianshou [101] package. All of our experiments are
conducted on a machine with an Intel i9-9900K CPU@3.60GHz (16 core) CPU, an NVIDIA GeForce
GTX 1080Ti GPU, and 64GB memory.

D.5 Hyperparameters

We summarize all hyper-parameters used in the Carla experiments (Table 5) and Robosuite experi-
ments (Table 6).

D.6 Discovered Causal Graph in SCM

To show the performance of our learned SCM, we plot the estimated causal graphs of all experiments
in Figure 13, Figure 14, Figure 15, Figure 16, and Figure 17.
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Table 5: Hyper-parameters in Carla experiments

Parameters Notation
Environment

Brightness Behavior Crossing CarType

Horizon steps T 100 100 100 100
State dimension n 24 12 12 12

Action dimension dA 2 2 2 2

Max training steps 1×105 1×105 5×105 5×105

Weight of ∥G∥p λ 0.1 - - -
norm of ∥G∥p p 0.1 - - -

Actor learning rate 3× 10−4 - - -
Critic learning rate 1× 10−3 - - -

Batch size 256 - - -
Discount factor γ in SAC 0.99 - - -

Soft update weight τ in SAC 0.005 - - -
Weight of entropy α in SAC 0.1 - - -

Hidden layers [256, 256, 256] - - -
Returns estimation step 4 - - -

Buffer size 1× 105 - - -
Steps per update 10 - - -

Table 6: Hyper-parameters in Robosuite experiments

Parameters Notation
Environment

Lift Stack Door Wipe

Horizon steps T 300 300 300 500
Control frequency (Hz) 20 20 20 20

State dimension n 50 110 22 30
Action dimension dA 4 4 8 7

Controller type OSC position OSC position Joint velocity Joint velocity

Max training steps 1×106 5×106 1×106 1×106

Weight of ∥G∥p λ 0.01 - - -
norm of ∥G∥p p 0.1 - - -

Actor learning rate 3× 10−4 - - -
Critic learning rate 1× 10−3 - - -

Batch size 128 - - -
Discount factor γ in SAC 0.99 - - -

Soft update weight τ in SAC 0.005 - - -
alpha learning rate lrα in SAC 3× 10−4 - - -

Hidden layers [256, 256, 256] - - -
Returns estimation step 4 - - -

Buffer size 1× 106 - - -
Steps per update 10 - - -
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Figure 13: Estimated Causal Graphs of four tasks in Carla.
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Figure 14: Estimated Causal Graphs of the Lift task in Robosuite.
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Figure 15: Estimated Causal Graphs of the Stack task in Robosuite.
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Figure 16: Estimated Causal Graphs of the Door task in Robosuite.
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Figure 17: Estimated Causal Graphs of the Wipe task in Robosuite.
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