
Counterfactual Evolution of Multimodal Datasets via
Visual Programming

Minghe Gao1,2∗, Zhongqi Yue3∗, Wenjie Yan1, Yihao Hu4, Wei Ji5
Siliang Tang1, Jun Xiao1, Tat-Seng Chua2, Yueting Zhuang1, Juncheng Li1†

1Zhejiang University 2National University of Singapore
3Nanyang Technological University 4Hainan University 5Nanjing University

{minghegao,22551068,siliang,junx,yzhuang,junchengli}@zju.edu.cn
nickyuezhongqi@gmail.com, 20223003513@hainanu.edu.cn

weiji0523@gmail.com, chuats@comp.nus.edu.sg

Abstract

The rapid development of Multimodal Large Language Models (MLLMs) poses
increasing demands on the diversity and complexity of multimodal datasets. Yet
manual annotation pipelines can no longer keep pace. Existing augmentation
methods often follow fixed rules and lack verifiable control over sample diversity
and reasoning complexity. To address this, we introduce Scalable COunterfactual
Program Evolution (SCOPE), a framework that uses symbolic Visual Programming
to guide program evolution via counterfactual reasoning. SCOPE performs the
three steps of counterfactual inference: (1) Abduction, by generating verifiable
programs to model reasoning associations; (2) Action, by intervening on program
structure along three axes—reasoning path, visual context, and cross-instance
composition; and (3) Prediction, by categorizing evolved instances by difficulty,
structure, and input multiplicity. Based on this process, we build SCOPE-Train
and SCOPE-Test, evolving benchmarks with expert validation. To support training,
we propose MAP, a curriculum learning strategy that aligns model capacity with
sample difficulty. Experiments show that SCOPE improves reasoning performance,
exposes model blind spots, and enhances visual dialog capabilities.

1 Introduction

Multimodal datasets [37, 11, 21, 5, 28] have been foundational to the development of powerful
MLLMs. Recent works [10, 22, 35, 36] have devoted substantial effort to collecting and curating
data for both the pretraining and evaluation, aiming to enhance the quality of raw datasets. An ideal
dataset should be sufficiently diverse and scalable, with controllable attributes such as difficulty,
input modality, and the ability to explicitly reflect reasoning processes. However, existing datasets
are mostly static, lack diversity, or rely heavily on manual annotation that can no longer keep pace
with model development. The growing mismatch between the speed of dataset evolution and model
advancement has become a critical bottleneck in developing more generalizable and robust MLLMs.
A systematic dataset evolution framework is urgently needed to address the limitations posed by
low-quality data resources.

Several recent efforts have attempted to modify existing datasets, which can be broadly categorized
into three approaches. A: Prompt-based transformations using large models, such as MAmmoTH-
VL [16], CoSyn [41], and OmniSearch [20]. These methods feed original VQA or image-question

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Lack of verifiability & Model dependency

Generate more challenging
sample based on the
QA pair or caption.

Extract new QA pairs
based on subgraph or
decompose into sub-query.

Limited diversity & Globe context loss

Only edit the image or
only modify the query.

SCOPEA: Prompt-based Transformation

B: Template-based Augmentation

Verifiable Abduction

Program
Representation

Image QA Caption

Prompt

No difficulty increase & Neglect logic

or

Image Query

Edit

Image Query

C: Decomposition-based Extraction

Image

Query

Extract

Decompose

Scene Graph

Sub-query

VQA Pairs Code-Pretrained
Model

Controllable Action

Evoluted
VQA Pairs

Evolving Prediction

...
2 more variations

Evolution
Direction

Difficulty
Structure
Num of input

Figure 1: Comparison between current data evolution methods and SCOPE.

pairs into a large model and prompt it to generate more challenging examples. However, this approach
lacks verifiability, heavily depends on the model’s capabilities, and contradicts the original intention
of improving models through data rather than relying on the model to generate data. B: Template-
based augmentation, as seen in VLB [42] and SK-VQA [38], where predefined operations are applied
to edit questions, modify images, or incorporate external knowledge to produce more diverse samples.
Nonetheless, these methods do not increase sample difficulty and often overlook the underlying
reasoning logic of the original problems, potentially rendering the augmented data ineffective.
C: Decomposition-based local extraction, exemplified by AGQA-Decomp [13] and Provision [45].
These methods split complex questions into sub-questions or represent images as scene graphs to
generate fine-grained samples from a local perspective. Yet, this leads to the loss of global context,
accumulation of local biases through multiple iterations, and limited diversity. We summarize
these limitations in Figure 1. Overall, they remain far from the ideal of dataset evolution—namely,
verifiable transformations, controllable difficulty enhancement, and diverse sample generation.

To address these limitations, we introduce a counterfactual approach and adopt Visual Program-
ming [39, 17] as the core tool. Visual Programming leverages code-pretrained models to synthesize
executable programs for vision tasks, where vision-language reasoning is represented through sym-
bolic code. This allows us to explicitly construct and trace a reasoning chain in a fully interpretable
and verifiable manner throughout the entire process, laying the foundation for structured counterfac-
tual inference through abduction, action, and prediction.

Specifically, we propose SCOPE, a three-stage dataset evolution framework: In the verifiable
abduction stage, we generate Python programs for each vision-language task and link the verifiable
code statements explicitly to the underlying reasoning paths. In the controllable action stage,
we enable targeted extensions along three dimensions: reasoning path expansion, visual context
editing, and cross-instance composition, thereby allowing for systematic and proactive intervention
in the reasoning process. In the evolving prediction stage, instances are categorized based on
reasoning difficulty, structural variation, and input multiplicity relative to the original samples,
enabling continuous and diverse evolution from the source data. Finally, we propose MAP, a
curriculum strategy that enables fine-grained scheduling, targeted module activation, and adaptive
difficulty weighting, forming a training paradigm coupled with SCOPE’s program-centric design.

Building on SCOPE, we construct the benchmark sets SCOPE-Train and SCOPE-Test. Unlike static
benchmarks, they support continuous evolution toward increased diversity and complexity. The test
set was curated and verified by domain experts, achieving high approval rates during manual review.
Static and comparative results against prior benchmarks are shown in Figure 2a and 2b.

Extensive experiments validate the effectiveness of SCOPE across multiple dimensions: (1) SCOPE-
Test reveals systematic blind spots in current models that remain undetected under conventional
benchmarks, with expert review confirming the high quality of generated samples. (2) Models of
varying scales benefit from SCOPE, exhibiting a clear scaling trend in reasoning performance. (3)
Models trained with SCOPE demonstrate strong easy-to-hard generalization and achieve notable
gains on visual dialog tasks. (4) The MAP curriculum learning framework further enhances training
efficiency by aligning sample difficulty with model capacity across iterative expansion rounds. In
summary, our contributions are threefold:

2

16967

6954
7312

571913511

12003

25759

3081

2393
SOCPE
Train

7286

2913
3190

24495745

5195

10955

1391

1043
SCOPE
Test

Easy
Depth Expand
Single-input

Medium
Balanced
Dual-input

Hard
Width Expand
Multi-input

(a)

Benchmark E
xp

lic
it

In
te

rp
re

ta
bl

e

Sc
al

ab
le

C
on

tr
ol

la
bl

e
E

xp
an

si
on

MME
[12] % % % %

MMBench
[31] % % % %

MME-CoT
[23] ! ! % %

Provision
[45] % % ! %

SCOPE-Test ! ! ! !

(b)

Figure 2: (a) Data distribution of SCOPE-Train and SCOPE-Test. (b) Benchmark comparison.

• We propose SCOPE, which constructs verifiable associations, enables controllable interventions,
and supports counterfactual evolution through a symbolic program.

• We construct SCOPE-Train and SCOPE-Test, a continuously evolving benchmark supporting
scalable training and fine-grained diagnostic evaluation.

• We introduce the Memory and Attention Path (MAP) Learning, which aligns training with SCOPE’s
structured difficulty progression, improves generalization on easy-to-hard samples.

2 Related Work

2.1 Visual Programming Edition.

Visual Programming [39, 17] has recently emerged as a promising paradigm for generating in-
terpretable and modular reasoning pipelines in multimodal tasks by utilizing neural symbols or
Python modules for task synthesis and execution. Unlike black-box end-to-end models or purely
textual Chain-of-Thought (CoT) generation, it enables fine-grained control over the reasoning process
through code editing. Prior work has explored its potential from various angles: De-fine [15] inte-
grates feedback loops to improve code generation quality, while VPD [19] and Fact [14] transform
execution traces into explicit reasoning paths for distillation learning. Although Provision [45] also
uses Python code for data generation, it remains restricted by predefined scene graphs and lacks
broader data-space adaptability. In contrast, our SCOPE framework advances Visual Programming
from a generation tool to a controllable benchmark construction mechanism. By supporting both
program-level augmentation and iterative evolution, SCOPE enables structured dataset expansion.

2.2 Counterfactual Data Generation

Counterfactual data generation [33, 4] has emerged as a promising strategy for improving model
robustness and mitigating language biases in multimodal learning. Approaches such as COCO-
Counterfactuals [25] and Counterfactual Prompt Learning (CPL) [18] generate hypothetical variants
of image-text pairs or prompts to challenge spurious correlations. Notably, Counterfactual Samples
Synthesizing (CSS) [6] introduces a model-agnostic training scheme that creates counterfactual
examples by masking critical objects in images or keywords in questions, enhancing both visual-
explainable and question-sensitive capabilities of VQA models. However, most existing methods
rely on heuristic rules and lack fine-grained control over reasoning complexity. In contrast, our
SCOPE framework integrates counterfactual generation into a structured causal learning paradigm
via symbolic Visual Programming, enabling interpretable and scalable dataset evolution.

3 Method

To enable controllable dataset evolution, we introduce SCOPE, as illustrated in Figure 3. Starting from
an image–question–answer triplet, we employ Visual Programming to generate a Python program,
retaining only those that execute correctly (Section 3.1). This executable representation serves
as the foundation for structured expansion: reasoning path expansion, visual context editing, and

3

evolved dataset

LLMQA PairsImages Captions

or

New QA Pairs

def execute_command():

return

= function()

= function()

def execute_command():

return

= function()

= function()

= function()

Uncontrollable

Lack of diversity

Biased expansion

Original Samples Program-based
Proactive Intervention

SCOPE
Train & Test

Controllable
Expansion

Unbiased
Evolution

or

Template

Counterfactual
Categorization

Iterative

Code
Pre-train Model

MAP
Training

Figure 3: The pipeline of SCOPE: we generate executable visual programs for the given instances,
enabling iterative controllable expansion and categorization of their evolutionary progression.

cross-instance composition (Section 3.2). The expanded instances are then categorized by reasoning
difficulty, structural variation, and input multiplicity (Section 3.3). Finally, we introduce MAP that
aligns model curriculum training with the structured evolution of the dataset (Section 3.4).

3.1 Verifiable Abduction through Visual Programming Generation

Programs, with their explicit logic and variable dependencies, offer greater verifiability and inter-
pretability than natural language. Leveraging Visual Programming, we translate image–question
pairs into executable Python code, enabling fine-grained manipulation of inputs and functions. This
symbolic form serves as a verifiable abduction of the reasoning path, ensuring structural coherence
and semantic grounding. Moreover, code-based reasoning aligns with the strengths of pretrained
models in program synthesis, supporting efficient knowledge integration and streamlined expansion.

More formally, given an image x and its corresponding query q, we use a program generator π (e.g.,
GPT-4o) to produce executable code z = π(x, q). This program is then evaluated by an execution
engine ϕ(z, x) that applies z to the input. If the program output matches the ground-truth a, the
instance is retained. Each valid instance is represented as a four-tuple (q, x, z, a)—comprising the
question, image, program, and answer—which serves as the foundation for all subsequent expansions.
Additional implementation details, including API calls and prompts, are provided in the Appendix.

3.2 Controllable Action by Proactive Intervention

To address the limitations of heuristic or template-based augmentation. SCOPE introduces a structured
expansion paradigm grounded in symbolic reasoning. Through program-level control, it supports a
systematic intervention from simple to complex instances via logic composition, visual variation, and
cross-source integration. Specifically, we propose three expansion strategies:

Reasoning Path Expansion. We use a modular API library of atomic functions (e.g., find, exist)
that encapsulate distinct reasoning steps. These functions can be composed or nested within program
structures to increase reasoning depth or width. For example, extending “How many apples are
there?” to “How many red apples are there?” involves inserting a verify_property call. This
compositional scheme ensures extensibility and preserves logical traceability for analysis.

Visual Context Editing. To diversify visual contexts, we perform localized edits on segmented
image entities using tools like SAM [24]. By replacing, altering, or removing objects, we generate
fine-grained visual variations while holding the program structure constant. This method supports
incremental complexity increases in visual reasoning and mitigates biases arising from overexposure
to image, promoting controllable generalization.

Cross-Instance Composition. To enhance cross-domain diversity, SCOPE expands single-instance
tasks into multi-image or multi-source settings by combining examples from different datasets
with semantically aligned questions. This approach maximizes code reuse through shared program

4

Counterfactual
Categorization

image_patch = ImagePatch(image)
apple_patches = image_patch.find(“apple”)
answer = len(apple_patches)
return answer

image_patch1 = ImagePatch(image1)
image_patch2 = ImagePatch(image2)
apple_patches = image_patch1.find(“apple”)
apple_patches = apple_patches.append

 (image_patch2.find(“apple”))
red_apple_patches = []
for apple_patch in apple_patches:

 if apple_patch.verify_property("apple", "red"):
red_apple_patches.append(apple_patch)

answer = len(red_apple_patches)
return answer

image

image_patch

apple_patches

answer

image2

image_patch2

apple_patch

red_apple_patches

answer

image1

image_patch1

apple_patches

Width = 1

Depth = 4

Width = 2

Depth = 6

...

...

Structural Variation Reasoning Difficulty

Input Multiplicity

� =
��

� ×
��

��
� = � × ���� (�)

� = � × �

� = 323

� = 2146

Single-input

Dual-input

def execute_command(image1,image2):

def execute_command(image):

...

Ea
sy

-t
o-

H
ar

d
G

en
er

al
iza

tio
n

H
al

st
ea

d

Figure 4: SCOPE categorizes the data based on changes in task difficulty, program structure, and
input modalities before and after code expansion, involved images can be found in Appendix.

structures and reduces visual redundancy. It enables composition across heterogeneous domains,
facilitating richer task representations while avoiding contamination typical in monolithic datasets.

3.3 Evolving Prediction through Counterfactual Categorization

Following the intervention, each instance is accompanied by a structured program representation.
Unlike natural language, code offers explicit syntactic and semantic regularities, enabling systematic
comparison with the original program and categorization: reasoning difficulty, dependency structure,
and input multiplicity. The figure 4 illustrates the analysis of these three dimensions.

Reasoning Difficulty. The complexity of a program reflects the cognitive effort required to solve the
corresponding task. We adopt the Halstead effort from software engineering to assess difficulty:

E = D × V where V = N log n, n = n1 + n2, D =
(n1

2

)
×

(
N2

n2

)
Here, n1, n2 are the counts of unique operators and operands, and N1, N2 are their total occurrences,
with n = n1 + n2, N = N1 +N2. A higher E reflects increased reasoning complexity. We use this
metric in different threshold to classify the instance into three levels: easy, medium, and hard.

Structural Variation. We represent each program as a directed acyclic graph (DAG), where nodes
denote variables and edges capture dependency relations. Depth (longest path) and width (maximum
fan-in) characterize the structure. We define depth and width expansion factors as relative increases
in these values post-expansion. An expansion is classified as depth, width, or balanced, depending
on which factor dominates or whether both expand comparably. This taxonomy ensures a balanced
representation of program complexities, avoiding overrepresentation of singular structural patterns.

Input Multiplicity. Expansions may also vary the input modality, transitioning from single-image to
multi-image VQA tasks. We track the number of distinct input sources per instance as a proxy for
input complexity. This metric enables separation of reasoning complexity from input diversity and
supports nuanced analysis of how cross-modal integration contributes to generalization.

3.4 Memory and Attention Path Curriculum Learning

SCOPE offers a natural foundation for curriculum learning by supporting the generation of samples
with progressively increasing difficulty. To fully leverage this property, we design a progressive
curriculum learning framework that aligns with SCOPE’s controllable evolution paradigm.

We first define a curriculum scheduler that ranks training samples by increasing difficulty, prioritizing
(1) input multiplicity, (2) structural variation, and (3) reasoning complexity. For example, single-
image, depth-oriented, low-complexity samples are treated as easiest, while multi-image, width-
oriented, high-effort samples are considered hardest. In structural variation, we heuristically regard
width expansions as more challenging than depth ones, a rationale that will be further analyzed in the

5

Query:
How many donuts are there?
Image:

def execute_command(image):
image_patch = lmagePatch(image)
donut_patches = image_patch.find("donut")
donut_count=len(donut patches)
return donut_count

Program:

Answer: 12

Query:
What types of donuts are there in the image?
Image:

image_patch=lmagePatch(image)
donut_patches=image_patch.find("donut")
donut_types= set()
for donut in donut patches:
 donut_type=donut.simple query

 ("What type of donut is this?")
 donut_types.add(donut_type)
return donut_types

Program:

Answer: {"chocolate donut", "glazed donut"}

Query:
What types of desserts are there in the image?

def execute_command(image):
image_patch=lmagePatch(image)
dessert_patches=image_patch.find("dessert")
dessert_types= set()
for dessert in dessert_patches:
 dessert_type=dessert.simple query

 ("What type of dessert is this?")
 dessert_types.add(dessert_type)
return dessert_types

Program:Image:

Query:
What types of desserts are there in both images?

Program:Image:

Answer:Answer: {"cake", "cupcake"} {"cake", "cupcake", "macaroon", "ice cream",}

def execute_command(image):

def execute command(image_list):
dessert_types=set()
for image in image_list:
 image patch=lmagePatch(image)
 dessert_patches =image patch.find("dessert")
 for dessert in dessert_patches:
 dessert_type= dessert.simple_query

 ("What type of dessert is this?")
dessert_types.add(dessert_type)

return dessert_types

Figure 5: An example of SCOPE evolution and the annotation format is provided in the Appendix.

experimental section. Next, we introduce two adaptive modules: a memory-augmented branch M
for depth-oriented tasks, and a parallel attention branch A for width-oriented tasks. A gating function
F selects the appropriate path based on the sample type.

F(xi) =


M(xi), if ri = depth,

A(xi), if ri = width,
1
2M(xi) +

1
2A(xi), if ri = balanced.

Third, we incorporate a difficulty-aware loss function. In addition to the base training objective, we
apply a normalized Halstead effort score (from Section 3.3) as a dynamic weight to modulate each
sample’s contribution to the loss.

Li = Ẽi · Lbase(xi), Ẽi =
Ei∑n
j=1 Ej

Ltotal =
1

n

n∑
i=1

Ẽi · Lbase(xi)

This encourages the model to adaptively allocate learning focus according to reasoning complexity.
Together, these components enable effective curriculum-style training over SCOPE’s structured
expansions, yielding models with improved reasoning capabilities.

4 SCOPE Benchmark

Dataset collection and construction. The benchmark is built by applying the SCOPE framework to
perform program-guided expansions over samples from six widely used vision-language datasets:
SEED-Bench2 [26], MME [23], MM-Bench [31], GQA [21], OK-VQA [34], and Tally-QA [2]. To
avoid information leakage and ensure fair evaluation, only the official dev or test splits are used for
expansion. Detailed statistics on dataset composition are provided in the Appendix, and a static
distribution of different attributes is shown in Figure 2a. Based on Halstead effort scores, we define
reasoning difficulty using two empirical thresholds: 4000 and 6000, which separate instances into
easy, medium, and hard levels. The final dataset is divided into SCOPE-Train and SCOPE-Test
with a 70:30 ratio. Compared with traditional static benchmarks, SCOPE enables program-centric,
multi-round augmentation and difficulty-aware diagnostics. A comparative summary with prior
datasets is presented in Figure 2b. We also provide a statistical overview of the question distribution
across the three evolution stages of SCOPE, which can be found in Table 1.

6

Table 1: Question distribution statistics of SCOPE across training and test sets.
Question Type SCOPE-Train (Number / Proportion (%)) SCOPE-Test (Number / Proportion (%))
Counting 4,309 / 13.8% 1,579 / 11.8%
Object Attribute (color, texture, shape) 6,471 / 20.7% 2,534 / 18.9%
Spatial Relationships 5,377 / 17.2% 2,589 / 19.3%
OCR-based Reasoning 6,127 / 19.6% 2,411 / 18.0%
Multi-hop 5,903 / 18.9% 2,958 / 22.1%
Others 3,046 / 9.8% 1,318 / 9.9%

Total 31,233 / 100.0% 13,389 / 100.0%

Table 2: Comparison of various models on SCOPE-Test.

Model Reasoning Difficulty Structural Variation Input Multiplicity

Easy Medium Hard Depth Balanced Width Single-input Multi-input(>=2) Overall

GPT-4o 93.1 87.5 79.1 89.5 88.4 88.2 89.1 86.0 88.54
LLaVA-1.5-13B 71.8 67.2 46.7 69.9 63.7 63.6 67.3 53.8 64.81
DeepSeek-VL-7B 74.6 71.4 55.2 73.4 71.6 64.7 71.2 60.5 69.27
Phi-3.5-Vision-4B 74.0 66.1 47.0 68.8 66.1 64.2 67.7 57.6 65.85

Qwen2.5-VL-7B 86.4 77.1 67.9 83.5 81.2 76.9 81.2 74.4 79.97
- Provision 87.6 79.2 70.8 84.7 83.4 78.6 83.4 74.5 81.78
- VLB 88.9 80.6 73.4 85.6 84.9 80.7 85.4 74.5 83.41
- SCOPE 92.8 84.7 76.7 89.7 87.0 86.2 89.3 77.7 87.20

InternVL-2.5-2B 83.1 76.7 60.1 79.3 77.0 73.9 77.8 69.1 76.22
- Provision 83.5 77.3 63.6 79.9 79.1 74.4 79.0 70.2 77.41
- VLB 84.8 78.9 68.5 82.1 83.3 74.4 81.7 70.4 79.63
- SCOPE 87.6 80.7 70.5 85.2 83.9 78.5 83.7 74.3 82.03

Human acceptance analysis. To assess the correctness and coherence of the SCOPE-Test instances,
we conducted human evaluations across three successive rounds of expansion. For each round,
1,000 randomly sampled instances were reviewed to verify the alignment between program outputs
and target answers. The resulting human acceptance rates were 96%, 92%, and 91%, respectively,
confirming that SCOPE generates logically valid and progressively challenging instances.

Evaluation metric and open-source evolution. We use accuracy as the evaluation metric, computed
along the three evolution dimensions—difficulty, dependency structure, and input modality—to assess
model performance under diverse expansion types. To promote transparency and reproducibility, we
release the full SCOPE benchmark along with tools for program-based, controllable dataset expansion.
More importantly, SCOPE is designed as a generalizable framework rather than a fixed dataset: we
encourage researchers to apply it across domains to evolve their own multimodal benchmarks. By
enabling community-driven, multi-round dataset construction, SCOPE provides a foundation for an
open, collaborative ecosystem of benchmark development and evaluation.

5 Experiment

To evaluate the SCOPE methodology and its benchmark, we conduct a series of comprehensive
experiments. Section 5.1 outlines the experimental setup. We then present three main evaluations: (1)
SCOPE-Test enables fine-grained diagnosis of existing models across multiple reasoning dimensions
(Section 5.2); (2) SCOPE-Train improves reasoning performance across models with different
parameter scales (Section 5.3); and (3) MAP’s staged learning process yields notable gains in visual
dialog tasks requiring sequential, context-aware reasoning (Section 5.4). Finally, we conduct ablation
studies to assess the contributions of each component in our framework (Section 5.5).

5.1 Experimental Setup

Model Setup. We train multimodal models using SCOPE-Train on two architectures of different
scales: Qwen2.5-VL-7B [3] and InternVL-2.5-2B [7]. For program generation, we use GPT-4o [22],
a multimodal language model, to produce executable Python code. Unlike ViperGPT [39], which
targets end-to-end VQA, SCOPE focuses on dataset expansion and evolution. To support this, both
the input image and ground-truth answer are provided as prompts to guide more accurate, task-aligned
program synthesis.

7

Table 3: Comparison of various models and methods on different benchmarks.

Model MMVetturbo RealWorldQA MMBenchtest SeedBench2-Plus MuirBench MMTval POPEavg

GPT-4o 69.1 75.4 83.4 72.0 68.0 65.4 86.9
LLaVA-1.5-13B 38.3 55.3 64.3 - 24.4 52.1 85.9
DeepSeek-VL-7B 41.5 54.2 73.2 - - 54.0 88.1
Phi-3.5-Vision-4B 43.2 53.6 76.0 62.2 - 53.6 -

Qwen2.5-VL-7B 67.1 68.5 83.5 70.4 59.6 60.9 86.4
- Provision 66.4 69.1 82.7 70.1 59.8 59.3 85.6
- VLB 66.8 69.0 84.1 70.7 61.3 61.4 84.8
- SCOPE 69.1 69.5 86.8 72.3 65.2 62.6 87.2

InternVL-2.5-2B 60.8 60.1 74.7 60.9 40.6 54.5 90.6
- Provision 60.5 61.0 73.3 61.4 39.7 52.6 89.3
- VLB 60.8 60.7 75.4 61.4 40.9 55.7 90.5
- SCOPE 63.4 63.0 77.0 62.1 44.3 55.2 90.7

Settings. To ensure fair and comprehensive comparison, we evaluate SCOPE against three represen-
tative evolution strategies:

Provision [45]: This method parses images into scene graphs and extracts subgraphs by selecting
specific nodes and edges, thereby generating new instances while preserving relational structure.

VLB [42]: This strategy rewrites questions and edits images through predefined templates, recombin-
ing them to synthesize new instances without altering the original answers.

SCOPE (Ours): Our method constructs executable programs from original samples and systematically
expands them along functional composition, input modality, and reasoning complexity, enabling
scalable, unbiased, and controllable dataset evolution for multimodal benchmarks.

Baseline and Benchmark. To further assess the performance and generalizability of SCOPE, we
include several strong multimodal baselines spanning different model scales: GPT-4o [22], LLaVA-
1.5-13B [29], DeepSeek-VL-7B [32], and Phi-3.5-Vision-4B [1]. For evaluation, we adopt a diverse
suite of benchmarks covering both general-purpose and domain-specific tasks: MMVet [44], Real-
WorldQA [8], MMBench [31] for broad visual reasoning and real-world contextual understanding,
Seedbench2-Plus [26] for text-rich visual comprehension, MMT [43], MuirBench [40] for multi-
image inference, and POPE [27] for robustness against hallucination. Notably, the MMBench test set
is not public, and SeedBench2-plus does not overlap with SeedBench2. Our expanded data is distinct
from all test benchmarks, ensuring no risk of data leakage. We additionally use ConvBench [30],
ContextVD [46], and VisDial [9] to assess Visual Dialog capabilities.

5.2 MLLM Evaluation on SCOPE-Test

We evaluate existing multimodal models on SCOPE-Test, focusing on performance across the three
structured evolution dimensions. Results are summarized in Table 2, and key observations are
as follows. Reasoning Difficulty. Model performance degrades substantially on hard instances,
which typically require multi-hop reasoning or the integration of multiple intermediate results. This
indicates persistent limitations in logical composition and complex inference across current MLLMs.
Structural Variation. Models perform better on depth-oriented tasks, where each step builds
sequentially on previous outputs, than on width-oriented tasks requiring simultaneous attention to
multiple variables. This may reflect the influence of prevalent CoT tuning, which favors linear
reasoning but offers limited support for managing concurrent dependencies or irrelevant distractions.
Source Modality. Multi-image reasoning, especially across domains, remains a key challenge. GPT-
4o shows the strongest cross-domain performance, underscoring the gap between proprietary models
and current open-source MLLMs in broad multimodal generalization. These findings collectively
underscore the need for benchmarks like SCOPE that systematically expose fine-grained reasoning
challenges beyond conventional evaluations.

5.3 SCOPE-Train Enhances Model Reasoning Capabilities

To assess the effectiveness of the SCOPE expansion strategy, we perform a comparative study using
the same initial dataset augmented through different baseline methods. Results are summarized in
Table 3, leading to the following key observations. Structured expansions consistently improve
performance. Compared to baseline, all three structured evolution methods—Provision, VLB, and

8

Table 4: Evaluation on the visual dialog task.

ConvBench ContextVD VisDialval
R2 Acc R@1

Qwen2.5-VL-7B 41.5 87.4 76.8
- Provision 42.6 90.5 79.3
- VLB 43.9 91.0 82.1
- SCOPE 45.2 94.3 85.6

InternVL-2.5-2B 39.8 85.7 74.2
- Provision 41.7 89.9 78.0
- VLB 42.1 91.1 80.5
- SCOPE 44.8 93.6 81.8

Table 5: Ablation study on MAP.

MMBenchtest ContextVD
Acc Acc

0 InternVL-2.5-2B
(SCOPE) 77.0 93.6

1 w/o curriculum scheduler 76.9 93.1
2 w/o gating module 75.3 87.4
3 w/o difficulty-aware loss 75.8 91.2
4 w/o MAP (direct fine-tuning) 75.1 87.1

5 Backbone 74.7 85.7

SCOPE—achieve notable performance gains by enhancing the quality and diversity of training in-
stances. This underscores the critical role of augmentation in strengthening model reasoning. SCOPE
outperforms other structured methods. SCOPE consistently achieves the highest improvements
across all evaluated benchmarks. Its advantage stems from broader data coverage, unconstrained by
scene-graph subgraph limitations or fixed-answer rewrites. Moreover, SCOPE substantially enhances
performance on multi-image tasks and reduces hallucination errors, indicating stronger generalization
and factual consistency. Scaling effects are more pronounced in larger models. The performance
gains from SCOPE-Train are more significant for larger models (e.g., 7B) compared to smaller
ones (e.g., 2B). This trend likely reflects the increased benefit derived from SCOPE’s multi-round
expansion, which introduces a higher proportion of complex, high-difficulty instances that better align
with the capacities of larger models. These findings show that SCOPE-Train enhances generalization
across domains and scales with model capacity, supporting its utility for robust multimodal reasoning.

5.4 Evaluation on Visual Dialog Task

To further evaluate the advantages of SCOPE-Train and its curriculum learning strategy, we investigate
their effectiveness in the context of Visual Dialog, a task characterized by sequential reasoning and
context-dependent understanding. Unlike conventional augmentation methods, SCOPE enables
continuous and controllable expansion of each original sample while preserving its core semantics.
This design enhances both sample diversity and structural alignment. As shown in Table 4, models
trained with SCOPE exhibit superior performance in multi-turn dialog reasoning tasks, particularly
those requiring contextual consistency and progressive understanding. We attribute this improvement
to the staged learning process: for each training instance, the model incrementally encounters three
increasingly challenging expansions, allowing it to gradually build the capacity needed for handling
dialog-based visual reasoning with greater fluency and robustness.

5.5 Ablation Experiment

Analysis of SCOPE extension method. To analyze the contribution of each expansion strategy to
model performance, we conduct controlled ablation experiments by incrementally applying different
combinations of expansion methods (R-Reasoning Path Expansion, V-Visual Context Editing, C-
Cross-Instance Composition) to the same backbone, using the original dataset as a baseline. As
shown in Table 6, our structured evolution strategies consistently improve model accuracy, with
reasoning path expansion yielding the most notable individual gains. Furthermore, we observe clear
synergistic effects when combining multiple expansion types, demonstrating that multi-dimensional
augmentation provides complementary benefits beyond any single method.

Analysis on the MAP. To evaluate the effectiveness of each component within the MAP curriculum
learning framework, we conduct ablation studies by individually removing each module and observing
its impact on final model performance (Table 5). Results show that eliminating the curriculum
scheduler leads to the smallest performance drop, suggesting that while easy-to-hard progression
aids gradual learning, it does not alter the overall quantity or quality of training samples. In contrast,
removing either the memory and attention modules or the difficulty-aware loss results in substantial
performance degradation, indicating that these components are essential for fully exploiting the
structured advantages of SCOPE’s expanded data. Furthermore, we additionally include a w/o MAP
setting that directly fine-tunes the backbone model. The noticeable performance gap between this
variant and the full MAP configuration confirms that MAP itself contributes complementary gains

9

Label Accuracy

R V C MMBenchtest ContextVD

0 Backbone 74.7 85.7

1 + R ✓ 75.6 89.0
2 + V ✓ 75.3 88.2
3 + C ✓ 74.9 88.5

4 + R + V ✓ ✓ 76.4 91.4
5 + R + C ✓ ✓ 76.1 91.3
6 + V + C ✓ ✓ 75.8 89.7

7 InternVL-2.5-2B
(SCOPE) ✓ ✓ ✓ 77.0 93.6

Table 6: Ablation study on extended data.

0 1 2 3 4
Number of Iterative Evolutions

86

88

90

92

94

96

98

Ac
cu

ra
cy

 o
n

Co
nt

ex
tV

D(
%

)

Accuracy
Qwen2.5-VL-7B
InternVL-2.5-2B

0

1

2

3

4

5

6

Re
la

tiv
e

im
pr

ov
em

en
t (

%
)

Improvement
Qwen2.5-VL-7B
InternVL-2.5-2B

Figure 6: Ablation study on extended iterations.

beyond data quality. This extended analysis helps disentangle the respective effects of the dataset and
the training strategy, providing a clearer picture of MAP’s independent impact.

Analysis on the number of evolutions. We analyze model performance after each round of iterative
expansion, as shown in the line plot, and focus on the relative improvement between consecutive
rounds using bar plots to control for the impact of increased data volume (Figure 6). The results
reveal consistent performance gains across expansion rounds, with relative improvements stabilizing
after the third iteration. While further expansion could continue to enhance model performance, we
limit the number of rounds to three due to computational cost considerations.

6 Discussion: Generalizability of Visual Programming

A key advantage of adopting the visual programming paradigm is its broad generalizability beyond
conventional VQA. Existing program-based frameworks such as ViperGPT [39], VISPROG [17],
and De-fine [15] have already demonstrated that modular, Python-like programs can perform not
only image QA but also visual grounding, instruction following, image editing, and even video
understanding—all without retraining or task-specific architectures. By representing multimodal
reasoning as executable code, SCOPE provides a unified and interpretable interface that can be
adapted to a wide range of visual tasks.

Building on this foundation, SCOPE’s evolution process operates purely at the program level, meaning
that the same principles of reasoning-path expansion, visual context editing, and cross-instance
composition can be applied to any task where outputs can be represented as code execution results.
In practice, this includes tasks such as instruction-conditioned image generation, cross-frame video
reasoning, and visual planning. Moreover, the modular API design allows seamless extension: new
domain-specific functions can be incorporated into the library without redesigning templates or
retraining the model, enabling scalable adaptation to emerging domains.

In summary, the visual programming paradigm empowers SCOPE to serve as a general, interpretable,
and extensible framework for multimodal reasoning and generation, capable of producing structured
code outputs for virtually any vision-language task.

7 Conclusion

In conclusion, we present SCOPE, a program-centric framework for controllable and verifiable dataset
evolution in multimodal learning. By leveraging visual programming, counterfactual reasoning, and
the MAP curriculum, SCOPE enables systematic data expansion with explicit reasoning paths and
adaptive difficulty control. Our constructed benchmarks, SCOPE-Train and SCOPE-Test, not only
reveal critical limitations in existing models but also promote scalable and interpretable training,
paving the way for more robust and generalizable MLLMs.

10

8 Acknowledgement

This work was supported by the National Key Research and Development Program of China
(2024YFB3312900), the National Natural Science Foundation of China (62441617), Zhejiang Provin-
cial Natural Science Foundation of China (No. LD25F020001) and Fundamental Research Funds
for the Central Universities (226-2025-00057), Ningbo Yongjiang Talent Introduction Programme
(2024A-401-G), the Zhejiang NSF (LRG25F020001), Zhejiang University Education Foundation
Qizhen Scholar Foundation, Wallenberg-NTU Presidential Postdoctoral Fellowship.

References
[1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit

Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

[2] Manoj Acharya, Kushal Kafle, and Christopher Kanan. Tallyqa: Answering complex counting questions.
arXiv preprint arXiv:1810.12440, 2018.

[3] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang,
Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo
Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.

[4] Chun-Hao Chang, George Alexandru Adam, and Anna Goldenberg. Towards robust classification model
by counterfactual and invariant data generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15212–15221, 2021.

[5] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing web-scale
image-text pre-training to recognize long-tail visual concepts. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 3558–3568, 2021.

[6] Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang Pu, and Yueting Zhuang. Counterfactual
samples synthesizing for robust visual question answering. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10800–10809, 2020.

[7] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng
Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han Lv, Yi Wang,
Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye Ge, Kai Chen, Kaipeng
Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and
Wenhai Wang. Expanding performance boundaries of open-source multimodal models with model, data,
and test-time scaling, 2025.

[8] X.AI Corp. Grok-1.5 vision preview: Connecting the digital and physical worlds with our first multimodal
model. https://x.ai/blog/grok-1.5v, 2024.

[9] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh,
and Dhruv Batra. Visual Dialog. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[10] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui
Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu,
Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye,
Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen,
Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng

11

Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi
Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X.
Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie,
Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning, 2025.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[12] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for
multimodal large language models, 2024.

[13] Mona Gandhi, Mustafa Omer Gul, Eva Prakash, Madeleine Grunde-McLaughlin, Ranjay Krishna, and
Maneesh Agrawala. Measuring compositional consistency for video question answering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5046–5055, 2022.

[14] Minghe Gao, Shuang Chen, Liang Pang, Yuan Yao, Jisheng Dang, Wenqiao Zhang, Juncheng Li, Siliang
Tang, Yueting Zhuang, and Tat-Seng Chua. Fact: Teaching mllms with faithful, concise and transferable
rationales. In Proceedings of the 32nd ACM International Conference on Multimedia, pages 846–855,
2024.

[15] Minghe Gao, Juncheng Li, Hao Fei, Liang Pang, Wei Ji, Guoming Wang, Zheqi Lv, Wenqiao Zhang, Siliang
Tang, and Yueting Zhuang. De-fine: De composing and re fin ing visual programs with auto-feedback. In
Proceedings of the 32nd ACM International Conference on Multimedia, pages 7649–7657, 2024.

[16] Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig, Wenhu
Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction tuning at scale. arXiv
preprint arXiv:2412.05237, 2024.

[17] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14953–14962, June 2023.

[18] Xuehai He, Diji Yang, Weixi Feng, Tsu-Jui Fu, Arjun Akula, Varun Jampani, Pradyumna Narayana, Sugato
Basu, William Yang Wang, and Xin Eric Wang. Cpl: Counterfactual prompt learning for vision and
language models. arXiv preprint arXiv:2210.10362, 2022.

[19] Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ranjay
Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic reasoning into
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9590–9601, 2024.

[20] Jingshan Huang, Fernando Gutierrez, Harrison J Strachan, Dejing Dou, Weili Huang, Barry Smith, Judith A
Blake, Karen Eilbeck, Darren A Natale, Yu Lin, et al. Omnisearch: a semantic search system based on
the ontology for microrna target (omit) for microrna-target gene interaction data. Journal of biomedical
semantics, 7:1–17, 2016.

[21] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
compositional question answering. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6700–6709, 2019.

[22] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276,
2024.

[23] Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhui Wang, Jianhan Jin,
Claire Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal models for
reasoning quality, robustness, and efficiency. arXiv preprint arXiv:2502.09621, 2025.

[24] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything,
2023.

12

[25] Tiep Le, Vasudev Lal, and Phillip Howard. Coco-counterfactuals: Automatically constructed counterfactual
examples for image-text pairs. Advances in Neural Information Processing Systems, 36:71195–71221,
2023.

[26] Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:
Benchmarking multimodal large language models with text-rich visual comprehension. arXiv preprint
arXiv:2404.16790, 2024.

[27] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision–ECCV 2014:
13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13, pages
740–755. Springer, 2014.

[29] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 26296–26306, June 2024.

[30] Shuo Liu, Kaining Ying, Hao Zhang, Yue Yang, Yuqi Lin, Tianle Zhang, Chuanhao Li, Yu Qiao, Ping
Luo, Wenqi Shao, et al. Convbench: A multi-turn conversation evaluation benchmark with hierarchical
capability for large vision-language models. arXiv preprint arXiv:2403.20194, 2024.

[31] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? In
European conference on computer vision, pages 216–233. Springer, 2024.

[32] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding. arXiv
preprint arXiv:2403.05525, 2024.

[33] Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Diptikalyan Saha. Generate your counterfactuals:
Towards controlled counterfactual generation for text. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 13516–13524, 2021.

[34] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question
answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf conference on
computer vision and pattern recognition, pages 3195–3204, 2019.

[35] OpenAI. Gpt-4v(ision) system card, 2023.

[36] OpenAI. Learning to reason with llms, 2024.

[37] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
dataset for training next generation image-text models. Advances in neural information processing systems,
35:25278–25294, 2022.

[38] Xin Su, Man Luo, Kris W Pan, Tien Pei Chou, Vasudev Lal, and Phillip Howard. Sk-vqa: Synthetic knowl-
edge generation at scale for training context-augmented multimodal llms. arXiv preprint arXiv:2406.19593,
2024.

[39] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
11888–11898, October 2023.

[40] Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma, Nan
Xu, Wenxuan Zhou, Kai Zhang, et al. Muirbench: A comprehensive benchmark for robust multi-image
understanding. arXiv preprint arXiv:2406.09411, 2024.

[41] Yue Yang, Ajay Patel, Matt Deitke, Tanmay Gupta, Luca Weihs, Andrew Head, Mark Yatskar, Chris
Callison-Burch, Ranjay Krishna, Aniruddha Kembhavi, et al. Scaling text-rich image understanding via
code-guided synthetic multimodal data generation. arXiv preprint arXiv:2502.14846, 2025.

[42] Yue Yang, Shuibai Zhang, Wenqi Shao, Kaipeng Zhang, Yi Bin, Yu Wang, and Ping Luo. Dynamic
multimodal evaluation with flexible complexity by vision-language bootstrapping, 2024.

13

[43] Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang,
Yuqi Lin, Shuo Liu, et al. Mmt-bench: A comprehensive multimodal benchmark for evaluating large
vision-language models towards multitask agi. arXiv preprint arXiv:2404.16006, 2024.

[44] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and
Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv preprint
arXiv:2308.02490, 2023.

[45] Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai Huang, Manli Shu, An Yan, Zixian Ma, Juan Carlos
Niebles, Silvio Savarese, et al. Provision: Programmatically scaling vision-centric instruction data for
multimodal language models. arXiv preprint arXiv:2412.07012, 2024.

[46] Yifeng Zhang, Ming Jiang, and Qi Zhao. New datasets and models for contextual reasoning in visual
dialog. In European Conference on Computer Vision, 2022.

14

9 Appendix

This is the Appendix for the paper "Counterfactual Evolution of Multimodal Datasets via Visual
Programming". We organize the appendices and supplementary information mentioned in the paper
as follows:

• 7.1 SCOPE Raw Data Distribution;

• 7.2 Detailed Distribution of SCOPE after Expansion;

• 7.3 A SCOPE Data Example in Annotation;

• 7.4 The Corresponding Picture in Figure 4;

• 7.5 Limitation;

• 7.6 API and Function Library in Program Generation

9.1 SCOPE Raw Data Distribution

We selected six publicly available datasets as the initial data sources for SCOPE evolution. The
specific data distributions and selected subsets are detailed in Table 6.

Table 7: Data mixture of VQA benchmarks and datasets.

Dataset Set Description Number of samples

Seedbench2 General Benchmark 5543
MMBench General Benchmark 2521
MME General Benchmark 2042
GQA test-dev Compositional 1426
OK-VQA val External Knowledge 1186
TallyQA test Counting 2156

Total 14874

9.2 Detailed Distribution of SCOPE after Expansion

SCOPE underwent three rounds of evolution in total. The data distributions for the first two rounds
are additionally provided in Figures 7 and 8.

12197

4759

3866

41698699

7954

20660 162
SOCPE
Train

5289

1975

1662

17883807

3331

8856 70
SCOPE

Test

Easy
Depth Expand
Single-input

Medium
Balanced
Dual-input

Hard
Width Expand

Figure 7: SCOPE dataset after two evolutions

15

6683

2351

1377

2167
4617

3627

10410 1SOCPE
Train

2856

989

618

904
1989

1570

4462 1SCOPE
Test

Easy
Depth Expand
Single-input

Medium
Balanced
Dual-input

Hard
Width Expand

Figure 8: SCOPE dataset after only one evolution

9.3 A SCOPE Data Example in Annotation

We present a concrete annotation example, which is followed by both the SCOPE-Train and SCOPE-
Test datasets.

1{
2 "origin_data": {
3 "data_source": "MME",
4 "source_id": "856",
5 "question": "Will green be obtained by mixing the above two colors? Please answer yes or

no.",
6 "image": [
7 "images/MME/test1_856.jpg"
8],
9 "golden_answer": [

10 "Yes"
11],
12 "program": "def execute_command_856(image, possible_answers, query, ImagePatch,

VideoSegment, llm_query, bool_to_yesno, distance, best_image_match):\n # Answer is:def
execute_command(image, my_fig, time_wait_between_lines, syntax):\n image_patch =

ImagePatch(image)\n \n # Find the two colors in the image\n color_patches =
image_patch.find(\"color\")\n show_all(None, color_patches, \"color_patches\")\n \n

if len(color_patches) < 2:\n return \"no\" # Not enough colors to mix\n \n
Get the names of the two colors\n color_1 = color_patches[0].simple_query(\"What

is the name of this color?\")\n show_all(None, color_1, \"color_1\")\n color_2 =
color_patches[1].simple_query(\"What is the name of this color?\")\n show_all(None,
color_2, \"color_2\")\n \n # Use llm_query to determine if mixing the two colors
results in green\n query = f\"Will mixing {color_1} and {color_2} result in green?
Answer yes or no.\"\n result = image_patch.llm_query(query, long_answer=False)\n
show_all(None, result, \"result\")\n \n return result",

13 "program_answer": "yes",
14 "static analysis": {
15 "difficulty": "easy",
16 "extend_method": null
17 },
18 "image_count": 1
19 },
20 "evolution_data_1": {
21 "question": "Will green be obtained by mixing the above two colors? Please answer yes or

no.",
22 "image": [
23 "images/MME/mme_sample_856.jpg"
24],
25 "program": "def execute_command_856(image, possible_answers, query, ImagePatch,

VideoSegment, llm_query, bool_to_yesno, distance, best_image_match):\n # Answer is:def
execute_command(image, my_fig, time_wait_between_lines, syntax):\n image_patch =

ImagePatch(image)\n \n # Find the two colors in the image\n color_patches =
image_patch.find(\"color\")\n show_all(None, color_patches, \"color_patches\")\n \n

Ensure there are at least two colors to mix\n if len(color_patches) < 2:\n
return \"no\"\n \n # Get the names of the two colors\n color_1 = color_patches

[0].simple_query(\"What is the name of this color?\")\n show_all(None, color_1, \"
color_1\")\n color_2 = color_patches[1].simple_query(\"What is the name of this color

16

?\")\n show_all(None, color_2, \"color_2\")\n \n # Use llm_query to determine if
mixing the two colors results in green\n query = f\"Will mixing {color_1} and {

color_2} result in green? Answer yes or no.\"\n result = image_patch.llm_query(query,
long_answer=False)\n show_all(None, result, \"result\")\n \n return result",

26 "program_answer": "Yes",
27 "static analysis": {
28 "difficulty": "easy",
29 "extend_method": "balanced"
30 },
31 "image_count": 1
32 },
33 "evolution_data_2": {
34 "question": "If green is obtained by mixing the two colors, which color is more dominant

in the resulting green?",
35 "image": [
36 "images/MME/mme_sample_856.jpg"
37],
38 "program": "def execute_command_856(image, possible_answers, query, ImagePatch,

VideoSegment, llm_query, bool_to_yesno, distance, best_image_match):\n # Answer is:def
execute_command(image):\n colors = []\n for img in image:\n patch =

ImagePatch(img)\n color = patch.simple_query(\"What is the color?\")\n
colors.append(color.lower())\n \n if \"yellow\" in colors and \"blue\" in colors:\n

yellow_patch = None\n blue_patch = None\n for img in image:\n
patch = ImagePatch(img)\n if patch.simple_query(\"What is the color?\").

lower() == \"yellow\":\n yellow_patch = patch\n elif patch.
simple_query(\"What is the color?\").lower() == \"blue\":\n blue_patch =
patch\n \n if yellow_patch and blue_patch:\n yellow_area =
yellow_patch.width * yellow_patch.height\n blue_area = blue_patch.width *
blue_patch.height\n return \"yellow\" if yellow_area > blue_area else \"blue\"\
n return \"no green obtained\"",

39 "program_answer": "no green obtained",
40 "static analysis": {
41 "difficulty": "hard",
42 "extend_method": "width"
43 },
44 "image_count": 1
45 },
46 "evolution_data_3": {
47 "question": "If green is obtained by mixing yellow and blue, which color contributes more

to the green in terms of spatial dominance across all images, and how does their spatial
relationship (left/right) affect the resulting green?",

48 "image": [
49 "images/MME/extended_data_2_MME_commonsense_reasoning_0009.jpg",
50 "images/MME/mme_sample_856.jpg"
51],
52 "program": "def execute_command_856(image, possible_answers, query, ImagePatch,

VideoSegment, llm_query, bool_to_yesno, distance, best_image_match):\n # Answer is:def
execute_command(image):\n dominant_colors = []\n spatial_relationships = []\n \

n for img in image:\n patch = ImagePatch(img)\n yellow_patch = patch.
find(\"yellow\")\n blue_patch = patch.find(\"blue\")\n \n if
yellow_patch and blue_patch:\n yellow_area = yellow_patch[0].width *
yellow_patch[0].height\n blue_area = blue_patch[0].width * blue_patch[0].
height\n \n if yellow_area > blue_area:\n
dominant_colors.append(\"yellow\")\n else:\n dominant_colors.
append(\"blue\")\n \n # Determine spatial relationship\n
if yellow_patch[0].horizontal_center < blue_patch[0].horizontal_center:\n
spatial_relationships.append(\"yellow is left of blue\")\n else:\n

spatial_relationships.append(\"blue is left of yellow\")\n \n # Determine the
overall dominant color across all images\n yellow_count = dominant_colors.count(\"
yellow\")\n blue_count = dominant_colors.count(\"blue\")\n \n dominant_color =
\"yellow\" if yellow_count > blue_count else \"blue\"\n \n # Determine the most
common spatial relationship\n spatial_relationship = max(set(spatial_relationships),
key=spatial_relationships.count)\n \n return f\"The dominant color is {
dominant_color}, and {spatial_relationship}.\"",

53 "program_answer": "The dominant color is yellow, and yellow is left of blue.",
54 "static analysis": {
55 "difficulty": "hard",
56 "extend_method": "balanced"
57 },
58 "image_count": 2
59 }
60}

Listing 1: Annotation example.

17

9.4 The Corresponding Picture in Figure 4

In Figure 4, we illustrate the process of Counterfactual Categorization from a code-level perspective.
Due to space limitations, the corresponding visual examples are provided in the appendix.

Figure 9: Original image

Figure 10: Associated image through Cross-Instance Composition.

9.5 Limitation

In this section, we discuss several open directions and current limitations for future exploration. First,
although our dataset construction relies on six publicly available datasets, SCOPE is designed as a
dataset-agnostic evolution algorithm and can be applied to data from various domains. We encourage
future work to extend and validate its effectiveness on proprietary datasets. Second, in the MAP
curriculum learning stage, the difficulty ranking of structural variation is primarily based on heuristic
insights. We remain open to refining this ordering should more principled or effective strategies
become available.

9.6 API and Function Library in Program Generation

The prompts employed during the code generation process are listed in detail.
1import math
2
3class ImagePatch:
4 """A Python class containing a crop of an image centered around a particular object, as

well as relevant information.
5 Attributes
6 ----------
7 cropped_image : array_like
8 An array-like of the cropped image taken from the original image.
9 left, lower, right, upper : int

10 An int describing the position of the (left/lower/right/upper) border of the crop’s
bounding box in the original image.

11
12 Methods
13 -------
14 find(object_name: str)->List[ImagePatch]

18

15 Returns a list of new ImagePatch objects containing crops of the image centered around
any objects found in the

16 image matching the object_name.
17 exists(object_name: str)->bool
18 Returns True if the object specified by object_name is found in the image, and False

otherwise.
19 verify_property(property: str)->bool
20 Returns True if the property is met, and False otherwise.
21 best_text_match(option_list: List[str], prefix: str)->str
22 Returns the string that best matches the image.
23 simple_query(question: str=None)->str
24 Returns the answer to a basic question asked about the image. If no question is

provided, returns the answer to "What is this?".
25 compute_depth()->float
26 Returns the median depth of the image crop.
27 crop(left: int, lower: int, right: int, upper: int)->ImagePatch
28 Returns a new ImagePatch object containing a crop of the image at the given

coordinates.
29 """
30
31 def __init__(self, image, left: int = None, lower: int = None, right: int = None, upper:

int = None):
32 """Initializes an ImagePatch object by cropping the image at the given coordinates and

stores the coordinates as
33 attributes. If no coordinates are provided, the image is left unmodified, and the

coordinates are set to the
34 dimensions of the image.
35 Parameters
36 -------
37 image : array_like
38 An array-like of the original image.
39 left, lower, right, upper : int
40 An int describing the position of the (left/lower/right/upper) border of the crop’

s bounding box in the original image.
41 """
42 if left is None and right is None and upper is None and lower is None:
43 self.cropped_image = image
44 self.left = 0
45 self.lower = 0
46 self.right = image.shape[2] # width
47 self.upper = image.shape[1] # height
48 else:
49 self.cropped_image = image[:, lower:upper, left:right]
50 self.left = left
51 self.upper = upper
52 self.right = right
53 self.lower = lower
54
55 self.width = self.cropped_image.shape[2]
56 self.height = self.cropped_image.shape[1]
57
58 self.horizontal_center = (self.left + self.right) / 2
59 self.vertical_center = (self.lower + self.upper) / 2
60
61 def find(self, object_name: str) -> List[ImagePatch]:
62 """Returns a list of ImagePatch objects matching object_name contained in the crop if

any are found.
63 Otherwise, returns an empty list.
64 Parameters
65 ----------
66 object_name : str
67 the name of the object to be found
68
69 Returns
70 -------
71 List[ImagePatch]
72 a list of ImagePatch objects matching object_name contained in the crop
73
74 Examples
75 --------
76 >>> # return the foo
77 >>> def execute_command(image) -> List[ImagePatch]:
78 >>> image_patch = ImagePatch(image)
79 >>> foo_patches = image_patch.find("foo")
80 >>> return foo_patches
81 """
82 return find_in_image(self.cropped_image, object_name)
83
84 def exists(self, object_name: str) -> bool:
85 """Returns True if the object specified by object_name is found in the image, and

False otherwise.

19

86 Parameters
87 -------
88 object_name : str
89 A string describing the name of the object to be found in the image.
90
91 Examples
92 -------
93 >>> # Are there both foos and garply bars in the photo?
94 >>> def execute_command(image)->str:
95 >>> image_patch = ImagePatch(image)
96 >>> is_foo = image_patch.exists("foo")
97 >>> is_garply_bar = image_patch.exists("garply bar")
98 >>> return bool_to_yesno(is_foo and is_garply_bar)
99 """

100 return len(self.find(object_name)) > 0
101
102 def verify_property(self, object_name: str, visual_property: str) -> bool:
103 """Returns True if the object possesses the visual property, and False otherwise.
104 Differs from ’exists’ in that it presupposes the existence of the object specified by

object_name, instead checking whether the object possesses the property.
105 Parameters
106 -------
107 object_name : str
108 A string describing the name of the object to be found in the image.
109 visual_property : str
110 A string describing the simple visual property (e.g., color, shape, material) to

be checked.
111
112 Examples
113 -------
114 >>> # Do the letters have blue color?
115 >>> def execute_command(image) -> str:
116 >>> image_patch = ImagePatch(image)
117 >>> letters_patches = image_patch.find("letters")
118 >>> # Question assumes only one letter patch
119 >>> return bool_to_yesno(letters_patches[0].verify_property("letters", "blue"))
120 """
121 return verify_property(self.cropped_image, object_name, property)
122
123 def best_text_match(self, option_list: List[str], prefix: str=None) -> str:
124 """Returns the string that best matches the image.
125 Parameters
126 -------
127 option_list : str
128 A list with the names of the different options
129 prefix : str
130 A string with the prefixes to append to the options
131
132 Examples
133 -------
134 >>> # Is the foo gold or white?
135 >>> def execute_command(image)->str:
136 >>> image_patch = ImagePatch(image)
137 >>> foo_patches = image_patch.find("foo")
138 >>> # Question assumes one foo patch
139 >>> return foo_patches[0].best_text_match(["gold", "white"])
140 """
141 return best_text_match(self.cropped_image, option_list, prefix)
142
143 def simple_query(self, question: str = None) -> str:
144 """Returns the answer to a basic question asked about the image. If no question is

provided, returns the answer
145 to "What is this?". The questions are about basic perception, and are not meant to be

used for complex reasoning
146 or external knowledge.
147 Parameters
148 -------
149 question : str
150 A string describing the question to be asked.
151
152 Examples
153 -------
154
155 >>> # Which kind of baz is not fredding?
156 >>> def execute_command(image) -> str:
157 >>> image_patch = ImagePatch(image)
158 >>> baz_patches = image_patch.find("baz")
159 >>> for baz_patch in baz_patches:
160 >>> if not baz_patch.verify_property("baz", "fredding"):
161 >>> return baz_patch.simple_query("What is this baz?")
162

20

163 >>> # What color is the foo?
164 >>> def execute_command(image) -> str:
165 >>> image_patch = ImagePatch(image)
166 >>> foo_patches = image_patch.find("foo")
167 >>> foo_patch = foo_patches[0]
168 >>> return foo_patch.simple_query("What is the color?")
169
170 >>> # Is the second bar from the left quuxy?
171 >>> def execute_command(image) -> str:
172 >>> image_patch = ImagePatch(image)
173 >>> bar_patches = image_patch.find("bar")
174 >>> bar_patches.sort(key=lambda x: x.horizontal_center)
175 >>> bar_patch = bar_patches[1]
176 >>> return bar_patch.simple_query("Is the bar quuxy?")
177 """
178 return simple_query(self.cropped_image, question)
179
180 def compute_depth(self):
181 """Returns the median depth of the image crop
182 Parameters
183 ----------
184 Returns
185 -------
186 float
187 the median depth of the image crop
188
189 Examples
190 --------
191 >>> # the bar furthest away
192 >>> def execute_command(image)->ImagePatch:
193 >>> image_patch = ImagePatch(image)
194 >>> bar_patches = image_patch.find("bar")
195 >>> bar_patches.sort(key=lambda bar: bar.compute_depth())
196 >>> return bar_patches[-1]
197 """
198 depth_map = compute_depth(self.cropped_image)
199 return depth_map.median()
200
201 def crop(self, left: int, lower: int, right: int, upper: int) -> ImagePatch:
202 """Returns a new ImagePatch cropped from the current ImagePatch.
203 Parameters
204 -------
205 left, lower, right, upper : int
206 The (left/lower/right/upper)most pixel of the cropped image.
207 -------
208 """
209 return ImagePatch(self.cropped_image, left, lower, right, upper)
210
211 def overlaps_with(self, left, lower, right, upper):
212 """Returns True if a crop with the given coordinates overlaps with this one,
213 else False.
214 Parameters
215 ----------
216 left, lower, right, upper : int
217 the (left/lower/right/upper) border of the crop to be checked
218
219 Returns
220 -------
221 bool
222 True if a crop with the given coordinates overlaps with this one, else False
223
224 Examples
225 --------
226 >>> # black foo on top of the qux
227 >>> def execute_command(image) -> ImagePatch:
228 >>> image_patch = ImagePatch(image)
229 >>> qux_patches = image_patch.find("qux")
230 >>> qux_patch = qux_patches[0]
231 >>> foo_patches = image_patch.find("black foo")
232 >>> for foo in foo_patches:
233 >>> if foo.vertical_center > qux_patch.vertical_center
234 >>> return foo
235 """
236 return self.left <= right and self.right >= left and self.lower <= upper and self.

upper >= lower
237
238def best_image_match(list_patches: List[ImagePatch], content: List[str], return_index=False)

-> Union[ImagePatch, int]:
239 """Returns the patch most likely to contain the content.
240 Parameters
241 ----------

21

242 list_patches : List[ImagePatch]
243 content : List[str]
244 the object of interest
245 return_index : bool
246 if True, returns the index of the patch most likely to contain the object
247
248 Returns
249 -------
250 int
251 Patch most likely to contain the object
252 """
253 return best_image_match(list_patches, content, return_index)
254
255
256def distance(patch_a: ImagePatch, patch_b: ImagePatch) -> float:
257 """
258 Returns the distance between the edges of two ImagePatches. If the patches overlap, it

returns a negative distance
259 corresponding to the negative intersection over union.
260
261 Parameters
262 ----------
263 patch_a : ImagePatch
264 patch_b : ImagePatch
265
266 Examples
267 --------
268 # Return the qux that is closest to the foo
269 >>> def execute_command(image):
270 >>> image_patch = ImagePatch(image)
271 >>> qux_patches = image_patch.find(’qux’)
272 >>> foo_patches = image_patch.find(’foo’)
273 >>> foo_patch = foo_patches[0]
274 >>> qux_patches.sort(key=lambda x: distance(x, foo_patch))
275 >>> return qux_patches[0]
276 """
277 return distance(patch_a, patch_b)
278
279
280def bool_to_yesno(bool_answer: bool) -> str:
281 return "yes" if bool_answer else "no"
282
283def coerce_to_numeric(string):
284 """
285 This function takes a string as input and returns a float after removing any non-numeric

characters.
286 If the input string contains a range (e.g. "10-15"), it returns the first value in the

range.
287 """
288 return coerce_to_numeric(string)
289
290Write a function using Python and the ImagePatch class (above) that could be executed to

provide an answer to the query.
291
292Consider the following guidelines:
293- Use base Python (comparison, sorting) for basic logical operations, left/right/up/down, math,

etc.
294- Using the simple_query function to ask questions that require image information.
295- You may be given multiple images as input. Use all of them when answering the question. Each

image can be accessed separately, like: image[0], image[1].
296
297-You are given a list of images as input. Each item in this list is a single image,so Always

treat the input variable image as a list.
298-**Very important**, You MUST loop over each image and wrap it with the ImagePatch class:
299 for img in image:
300 patch = ImagePatch(img)
301
302When dealing with a list of images, avoid returning inside the for-loop. Instead, collect all

relevant information across images and return the final answer after the loop.
303If an object must be verified across multiple images, gather data first, then return a final

summary:
304- You **must examine all images**.
305- However, the final output should be a **single, unified answer**, not a list of per-image

outputs.
306- Do not return inside the loop. Instead, gather all relevant information across the images

and generate one overall result.
307- Even if some intermediate reasoning is per-image, combine the insights before returning.
308Bad:
309 return [answer_img1, answer_img2, ...]
310Good:

22

311 Analyze all - summarize - return one final answer (e.g., "yes", or an integer, or a
sentence)

312
313Query: INSERT_QUERY_HERE
314Answer: INSERT_ANSWER_HERE
315---
316
317First, write a Python function to answer the original visual question.
318Then, generate a follow-up question that requires deeper image reasoning-e.g., multi-object

logic, spatial relations, or attribute comparison.
319Write a second function to solve it, using higher code complexity, lower similarity, and

involving more of the previously mentioned functions or APIs.
320
321Format your answer as follows:
322Original Code:
323<original_code>
324
325Follow-up Question:
326<followup_question>
327
328Follow-up Code:
329<followup_code>

Listing 2: Prompt for code generation.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, in both the abstract and introduction, we clearly state that we propose
a counterfactual-based visual programming algorithm for dataset evolution, along with a
corresponding evolved dataset and a supporting algorithmic framework named MAP.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 7.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

24

Answer: [Yes]
Justification: We provide a detailed theoretical analysis in the Method section and conduct a
systematic empirical validation in the Experiment section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, in the first part of the Experiment section, we introduce the required
models, baselines, backbones, and benchmarks, ensuring that all necessary information for
reproducing the main experimental results is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

25

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we provide detailed information in the appendix, including dataset com-
position, static analysis at each stage, and the prompts required for the models. Additionally,
our code and data are made available in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we include a dedicated Setting subsection to describe the experimental
setup, and the Benchmark section provides a detailed explanation of the dataset construction
process and the train-test split ratio.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we provide the necessary APIs and prompts, and most of the experiments
can be conducted by directly using the provided APIs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss the potential positive societal impacts and have no negative
societal impacts.

Guidelines:

27

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Yes, we primarily rely on API access and do not use any harmful or sensitive
data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we use only publicly available datasets and open-source models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

28

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We propose a new evolved dataset, which is included in the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Yes, we provided a comprehensive explanation of the task and requirements,
and offered appropriate compensation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper describe potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

29

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes, we clearly state the intended purpose of using LLMs at every point where
they are involved in the workflow.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Visual Programming Edition.
	Counterfactual Data Generation

	Method
	Verifiable Abduction through Visual Programming Generation
	Controllable Action by Proactive Intervention
	Evolving Prediction through Counterfactual Categorization
	Memory and Attention Path Curriculum Learning

	SCOPE Benchmark
	Experiment
	Experimental Setup
	MLLM Evaluation on SCOPE-Test
	SCOPE-Train Enhances Model Reasoning Capabilities
	Evaluation on Visual Dialog Task
	Ablation Experiment

	Discussion: Generalizability of Visual Programming
	Conclusion
	Acknowledgement
	Appendix
	SCOPE Raw Data Distribution
	Detailed Distribution of SCOPE after Expansion
	A SCOPE Data Example in Annotation
	The Corresponding Picture in Figure 4
	Limitation
	API and Function Library in Program Generation

