Counterfactual Evolution of Multimodal Datasets via Visual Programming

Minghe Gao^{1,2}*, Zhongqi Yue³*, Wenjie Yan¹, Yihao Hu⁴, Wei Ji⁵ Siliang Tang¹, Jun Xiao¹, Tat-Seng Chua², Yueting Zhuang¹, Juncheng Li^{1†}

¹Zhejiang University ²National University of Singapore

³Nanyang Technological University ⁴Hainan University ⁵Nanjing University

{minghegao, 22551068, siliang, junx, yzhuang, junchengli}@zju.edu.cn

nickyuezhongqi@gmail.com, 20223003513@hainanu.edu.cn

weiji0523@gmail.com, chuats@comp.nus.edu.sg

Abstract

The rapid development of Multimodal Large Language Models (MLLMs) poses increasing demands on the diversity and complexity of multimodal datasets. Yet manual annotation pipelines can no longer keep pace. Existing augmentation methods often follow fixed rules and lack verifiable control over sample diversity and reasoning complexity. To address this, we introduce Scalable COunterfactual Program Evolution (SCOPE), a framework that uses symbolic Visual Programming to guide program evolution via counterfactual reasoning. SCOPE performs the three steps of counterfactual inference: (1) Abduction, by generating verifiable programs to model reasoning associations; (2) Action, by intervening on program structure along three axes—reasoning path, visual context, and cross-instance composition; and (3) Prediction, by categorizing evolved instances by difficulty, structure, and input multiplicity. Based on this process, we build SCOPE-Train and SCOPE-Test, evolving benchmarks with expert validation. To support training, we propose MAP, a curriculum learning strategy that aligns model capacity with sample difficulty. Experiments show that **SCOPE** improves reasoning performance, exposes model blind spots, and enhances visual dialog capabilities.

1 Introduction

Multimodal datasets [37, 11, 21, 5, 28] have been foundational to the development of powerful MLLMs. Recent works [10, 22, 35, 36] have devoted substantial effort to collecting and curating data for both the pretraining and evaluation, aiming to enhance the quality of raw datasets. An ideal dataset should be sufficiently diverse and scalable, with controllable attributes such as difficulty, input modality, and the ability to explicitly reflect reasoning processes. However, existing datasets are mostly static, lack diversity, or rely heavily on manual annotation that can no longer keep pace with model development. The growing mismatch between the speed of dataset evolution and model advancement has become a critical bottleneck in developing more generalizable and robust MLLMs. A systematic dataset evolution framework is urgently needed to address the limitations posed by low-quality data resources.

Several recent efforts have attempted to modify existing datasets, which can be broadly categorized into three approaches. A: Prompt-based transformations using large models, such as MAmmoTH-VL [16], CoSyn [41], and OmniSearch [20]. These methods feed original VQA or image-question

^{*}Equal contribution.

[†]Corresponding author.

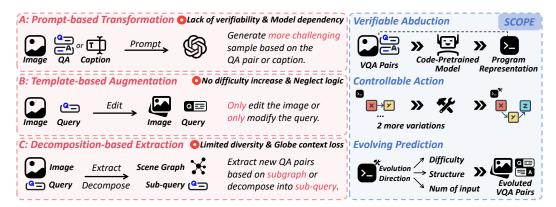


Figure 1: Comparison between current data evolution methods and SCOPE.

pairs into a large model and prompt it to generate more challenging examples. However, this approach lacks verifiability, heavily depends on the model's capabilities, and contradicts the original intention of improving models through data rather than relying on the model to generate data. **B:** Template-based augmentation, as seen in VLB [42] and SK-VQA [38], where predefined operations are applied to edit questions, modify images, or incorporate external knowledge to produce more diverse samples. Nonetheless, these methods do not increase sample difficulty and often overlook the underlying reasoning logic of the original problems, potentially rendering the augmented data ineffective. **C:** Decomposition-based local extraction, exemplified by AGQA-Decomp [13] and Provision [45]. These methods split complex questions into sub-questions or represent images as scene graphs to generate fine-grained samples from a local perspective. Yet, this leads to the loss of global context, accumulation of local biases through multiple iterations, and limited diversity. We summarize these limitations in Figure 1. Overall, they remain far from the ideal of dataset evolution—namely, verifiable transformations, controllable difficulty enhancement, and diverse sample generation.

To address these limitations, we introduce a counterfactual approach and adopt Visual Programming [39, 17] as the core tool. Visual Programming leverages code-pretrained models to synthesize executable programs for vision tasks, where vision-language reasoning is represented through symbolic code. This allows us to explicitly construct and trace a reasoning chain in a fully interpretable and verifiable manner throughout the entire process, laying the foundation for structured counterfactual inference through abduction, action, and prediction.

Specifically, we propose **SCOPE**, a three-stage dataset evolution framework: **In the verifiable abduction stage**, we generate Python programs for each vision-language task and link the verifiable code statements explicitly to the underlying reasoning paths. **In the controllable action stage**, we enable targeted extensions along three dimensions: reasoning path expansion, visual context editing, and cross-instance composition, thereby allowing for systematic and proactive intervention in the reasoning process. **In the evolving prediction stage**, instances are categorized based on reasoning difficulty, structural variation, and input multiplicity relative to the original samples, enabling continuous and diverse evolution from the source data. **Finally**, we propose MAP, a curriculum strategy that enables fine-grained scheduling, targeted module activation, and adaptive difficulty weighting, forming a training paradigm coupled with **SCOPE**'s program-centric design.

Building on **SCOPE**, we construct the benchmark sets *SCOPE-Train* and *SCOPE-Test*. Unlike static benchmarks, they support continuous evolution toward increased diversity and complexity. The test set was curated and verified by domain experts, achieving high approval rates during manual review. Static and comparative results against prior benchmarks are shown in Figure 2a and 2b.

Extensive experiments validate the effectiveness of **SCOPE** across multiple dimensions: (1) *SCOPE Test* reveals systematic blind spots in current models that remain undetected under conventional benchmarks, with expert review confirming the high quality of generated samples. (2) Models of varying scales benefit from **SCOPE**, exhibiting a clear scaling trend in reasoning performance. (3) Models trained with **SCOPE** demonstrate strong easy-to-hard generalization and achieve notable gains on visual dialog tasks. (4) The MAP curriculum learning framework further enhances training efficiency by aligning sample difficulty with model capacity across iterative expansion rounds. In summary, our contributions are threefold:

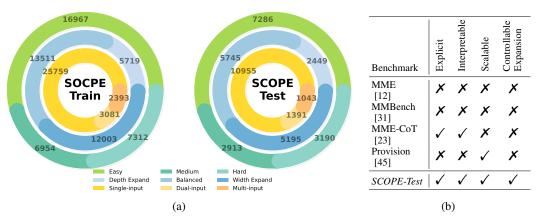


Figure 2: (a) Data distribution of SCOPE-Train and SCOPE-Test. (b) Benchmark comparison.

- We propose SCOPE, which constructs verifiable associations, enables controllable interventions, and supports counterfactual evolution through a symbolic program.
- We construct SCOPE-Train and SCOPE-Test, a continuously evolving benchmark supporting scalable training and fine-grained diagnostic evaluation.
- We introduce the Memory and Attention Path (MAP) Learning, which aligns training with SCOPE's structured difficulty progression, improves generalization on easy-to-hard samples.

2 Related Work

2.1 Visual Programming Edition.

Visual Programming [39, 17] has recently emerged as a promising paradigm for generating interpretable and modular reasoning pipelines in multimodal tasks by utilizing neural symbols or Python modules for task synthesis and execution. Unlike black-box end-to-end models or purely textual Chain-of-Thought (CoT) generation, it enables fine-grained control over the reasoning process through code editing. Prior work has explored its potential from various angles: De-fine [15] integrates feedback loops to improve code generation quality, while VPD [19] and Fact [14] transform execution traces into explicit reasoning paths for distillation learning. Although Provision [45] also uses Python code for data generation, it remains restricted by predefined scene graphs and lacks broader data-space adaptability. In contrast, our **SCOPE** framework advances Visual Programming from a generation tool to a controllable benchmark construction mechanism. By supporting both program-level augmentation and iterative evolution, **SCOPE** enables structured dataset expansion.

2.2 Counterfactual Data Generation

Counterfactual data generation [33, 4] has emerged as a promising strategy for improving model robustness and mitigating language biases in multimodal learning. Approaches such as COCO-Counterfactuals [25] and Counterfactual Prompt Learning (CPL) [18] generate hypothetical variants of image-text pairs or prompts to challenge spurious correlations. Notably, Counterfactual Samples Synthesizing (CSS) [6] introduces a model-agnostic training scheme that creates counterfactual examples by masking critical objects in images or keywords in questions, enhancing both visual-explainable and question-sensitive capabilities of VQA models. However, most existing methods rely on heuristic rules and lack fine-grained control over reasoning complexity. In contrast, our SCOPE framework integrates counterfactual generation into a structured causal learning paradigm via symbolic Visual Programming, enabling interpretable and scalable dataset evolution.

3 Method

To enable controllable dataset evolution, we introduce **SCOPE**, as illustrated in Figure 3. Starting from an image—question—answer triplet, we employ Visual Programming to generate a Python program, retaining only those that execute correctly (Section 3.1). This executable representation serves as the foundation for structured expansion: reasoning path expansion, visual context editing, and

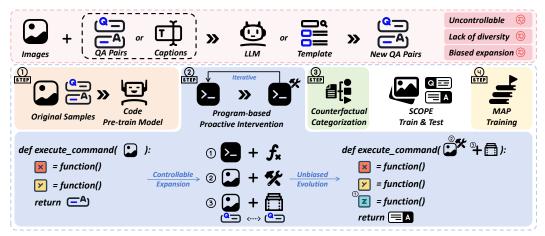


Figure 3: The pipeline of **SCOPE**: we generate executable visual programs for the given instances, enabling iterative controllable expansion and categorization of their evolutionary progression.

cross-instance composition (Section 3.2). The expanded instances are then categorized by reasoning difficulty, structural variation, and input multiplicity (Section 3.3). Finally, we introduce MAP that aligns model curriculum training with the structured evolution of the dataset (Section 3.4).

3.1 Verifiable Abduction through Visual Programming Generation

Programs, with their explicit logic and variable dependencies, offer greater verifiability and interpretability than natural language. Leveraging Visual Programming, we translate image—question pairs into executable Python code, enabling fine-grained manipulation of inputs and functions. This symbolic form serves as a verifiable abduction of the reasoning path, ensuring structural coherence and semantic grounding. Moreover, code-based reasoning aligns with the strengths of pretrained models in program synthesis, supporting efficient knowledge integration and streamlined expansion.

More formally, given an image x and its corresponding query q, we use a program generator π (e.g., GPT-4o) to produce executable code $z=\pi(x,q)$. This program is then evaluated by an execution engine $\phi(z,x)$ that applies z to the input. If the program output matches the ground-truth a, the instance is retained. Each valid instance is represented as a four-tuple (q,x,z,a)—comprising the question, image, program, and answer—which serves as the foundation for all subsequent expansions. Additional implementation details, including API calls and prompts, are provided in the **Appendix**.

3.2 Controllable Action by Proactive Intervention

To address the limitations of heuristic or template-based augmentation. **SCOPE** introduces a structured expansion paradigm grounded in symbolic reasoning. Through program-level control, it supports a systematic intervention from simple to complex instances via logic composition, visual variation, and cross-source integration. Specifically, we propose three expansion strategies:

Reasoning Path Expansion. We use a modular API library of atomic functions (e.g., find, exist) that encapsulate distinct reasoning steps. These functions can be composed or nested within program structures to increase reasoning depth or width. For example, extending "How many apples are there?" to "How many red apples are there?" involves inserting a verify_property call. This compositional scheme ensures extensibility and preserves logical traceability for analysis.

Visual Context Editing. To diversify visual contexts, we perform localized edits on segmented image entities using tools like SAM [24]. By replacing, altering, or removing objects, we generate fine-grained visual variations while holding the program structure constant. This method supports incremental complexity increases in visual reasoning and mitigates biases arising from overexposure to image, promoting controllable generalization.

Cross-Instance Composition. To enhance cross-domain diversity, **SCOPE** expands single-instance tasks into multi-image or multi-source settings by combining examples from different datasets with semantically aligned questions. This approach maximizes code reuse through shared program

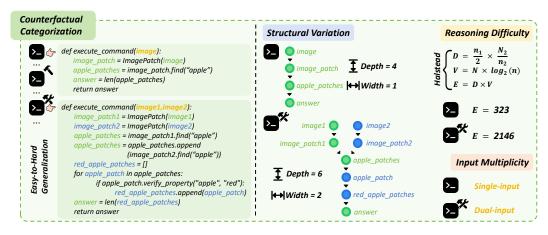


Figure 4: **SCOPE** categorizes the data based on changes in task difficulty, program structure, and input modalities before and after code expansion, involved images can be found in **Appendix**.

structures and reduces visual redundancy. It enables composition across heterogeneous domains, facilitating richer task representations while avoiding contamination typical in monolithic datasets.

3.3 Evolving Prediction through Counterfactual Categorization

Following the intervention, each instance is accompanied by a structured program representation. Unlike natural language, code offers explicit syntactic and semantic regularities, enabling systematic comparison with the original program and categorization: reasoning difficulty, dependency structure, and input multiplicity. The figure 4 illustrates the analysis of these three dimensions.

Reasoning Difficulty. The complexity of a program reflects the cognitive effort required to solve the corresponding task. We adopt the Halstead effort from software engineering to assess difficulty:

$$E = D \times V$$
 where $V = N \log n$, $n = n_1 + n_2$, $D = \left(\frac{n_1}{2}\right) \times \left(\frac{N_2}{n_2}\right)$

Here, n_1, n_2 are the counts of unique operators and operands, and N_1, N_2 are their total occurrences, with $n = n_1 + n_2$, $N = N_1 + N_2$. A higher E reflects increased reasoning complexity. We use this metric in different threshold to classify the instance into three levels: easy, medium, and hard.

Structural Variation. We represent each program as a directed acyclic graph (DAG), where nodes denote variables and edges capture dependency relations. Depth (longest path) and width (maximum fan-in) characterize the structure. We define depth and width expansion factors as relative increases in these values post-expansion. An expansion is classified as depth, width, or balanced, depending on which factor dominates or whether both expand comparably. This taxonomy ensures a balanced representation of program complexities, avoiding overrepresentation of singular structural patterns.

Input Multiplicity. Expansions may also vary the input modality, transitioning from single-image to multi-image VQA tasks. We track the number of distinct input sources per instance as a proxy for input complexity. This metric enables separation of reasoning complexity from input diversity and supports nuanced analysis of how cross-modal integration contributes to generalization.

3.4 Memory and Attention Path Curriculum Learning

SCOPE offers a natural foundation for curriculum learning by supporting the generation of samples with progressively increasing difficulty. To fully leverage this property, we design a progressive curriculum learning framework that aligns with **SCOPE**'s controllable evolution paradigm.

We first define a curriculum scheduler that ranks training samples by increasing difficulty, prioritizing (1) input multiplicity, (2) structural variation, and (3) reasoning complexity. For example, single-image, depth-oriented, low-complexity samples are treated as easiest, while multi-image, width-oriented, high-effort samples are considered hardest. In structural variation, we heuristically regard width expansions as more challenging than depth ones, a rationale that will be further analyzed in the

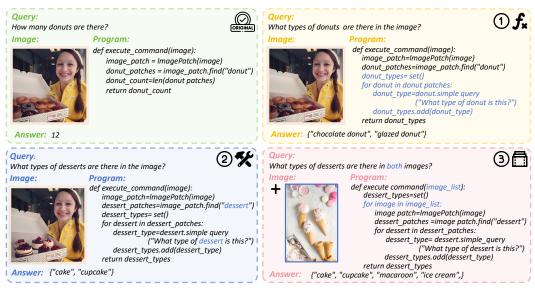


Figure 5: An example of **SCOPE** evolution and the annotation format is provided in the **Appendix**.

experimental section. Next, we introduce two adaptive modules: a memory-augmented branch \mathcal{M} for depth-oriented tasks, and a parallel attention branch \mathcal{A} for width-oriented tasks. A gating function \mathcal{F} selects the appropriate path based on the sample type.

$$\mathcal{F}(x_i) = \begin{cases} \mathcal{M}(x_i), & \text{if } r_i = depth, \\ \mathcal{A}(x_i), & \text{if } r_i = width, \\ \frac{1}{2}\mathcal{M}(x_i) + \frac{1}{2}\mathcal{A}(x_i), & \text{if } r_i = balanced. \end{cases}$$

Third, we incorporate a difficulty-aware loss function. In addition to the base training objective, we apply a normalized Halstead effort score (from Section 3.3) as a dynamic weight to modulate each sample's contribution to the loss.

$$\mathcal{L}_i = \tilde{E}_i \cdot \mathcal{L}_{\text{base}}(x_i), \quad \tilde{E}_i = \frac{E_i}{\sum_{j=1}^n E_j}$$

$$\mathcal{L}_{\text{total}} = \frac{1}{n} \sum_{i=1}^n \tilde{E}_i \cdot L_{\text{base}}(x_i)$$

This encourages the model to adaptively allocate learning focus according to reasoning complexity. Together, these components enable effective curriculum-style training over **SCOPE**'s structured expansions, yielding models with improved reasoning capabilities.

4 SCOPE Benchmark

Dataset collection and construction. The benchmark is built by applying the **SCOPE** framework to perform program-guided expansions over samples from six widely used vision-language datasets: SEED-Bench2 [26], MME [23], MM-Bench [31], GQA [21], OK-VQA [34], and Tally-QA [2]. To avoid information leakage and ensure fair evaluation, only the official *dev or test* splits are used for expansion. Detailed statistics on dataset composition are provided in the **Appendix**, and a static distribution of different attributes is shown in Figure 2a. Based on Halstead effort scores, we define reasoning difficulty using two empirical thresholds: 4000 and 6000, which separate instances into *easy, medium*, and *hard* levels. The final dataset is divided into *SCOPE-Train* and *SCOPE-Test* with a 70:30 ratio. Compared with traditional static benchmarks, **SCOPE** enables program-centric, multi-round augmentation and difficulty-aware diagnostics. A comparative summary with prior datasets is presented in Figure 2b. We also provide a statistical overview of the question distribution across the three evolution stages of SCOPE, which can be found in Table 1.

Table 1: Question distribution statistics of **SCOPE** across training and test sets.

Question Type	SCOPE-Train (Number / Proportion (%))	SCOPE-Test (Number / Proportion (%))
Counting	4,309 / 13.8%	1,579 / 11.8%
Object Attribute (color, texture, shape)	6,471 / 20.7%	2,534 / 18.9%
Spatial Relationships	5,377 / 17.2%	2,589 / 19.3%
OCR-based Reasoning	6,127 / 19.6%	2,411 / 18.0%
Multi-hop	5,903 / 18.9%	2,958 / 22.1%
Others	3,046 / 9.8%	1,318 / 9.9%
Total	31,233 / 100.0%	13,389 / 100.0%

Table 2: Comparison of various models on SCOPE-Test.

Model	Reasoning Difficulty		Structural Variation			Input Multiplicity			
	Easy	Medium	Hard	Depth	Balanced	Width	Single-input	Multi-input(>=2)	Overall
GPT-40	93.1	87.5	79.1	89.5	88.4	88.2	89.1	86.0	88.54
LLaVA-1.5-13B	71.8	67.2	46.7	69.9	63.7	63.6	67.3	53.8	64.81
DeepSeek-VL-7B	74.6	71.4	55.2	73.4	71.6	64.7	71.2	60.5	69.27
Phi-3.5-Vision-4B	74.0	66.1	47.0	68.8	66.1	64.2	67.7	57.6	65.85
Qwen2.5-VL-7B	86.4	77.1	67.9	83.5	81.2	76.9	81.2	74.4	79.97
- Provision	87.6	79.2	70.8	84.7	83.4	78.6	83.4	74.5	81.78
- VLB	88.9	80.6	73.4	85.6	84.9	80.7	85.4	74.5	83.41
- SCOPE	92.8	84.7	76.7	89.7	87.0	86.2	89.3	77.7	87.20
InternVL-2.5-2B	83.1	76.7	60.1	79.3	77.0	73.9	77.8	69.1	76.22
 Provision 	83.5	77.3	63.6	79.9	79.1	74.4	79.0	70.2	77.41
- VLB	84.8	78.9	68.5	82.1	83.3	74.4	81.7	70.4	79.63
- SCOPE	87.6	80.7	70.5	85.2	83.9	78.5	83.7	74.3	82.03

Human acceptance analysis. To assess the correctness and coherence of the *SCOPE-Test* instances, we conducted human evaluations across three successive rounds of expansion. For each round, 1,000 randomly sampled instances were reviewed to verify the alignment between program outputs and target answers. The resulting human acceptance rates were 96%, 92%, and 91%, respectively, confirming that **SCOPE** generates logically valid and progressively challenging instances.

Evaluation metric and open-source evolution. We use accuracy as the evaluation metric, computed along the three evolution dimensions—difficulty, dependency structure, and input modality—to assess model performance under diverse expansion types. To promote transparency and reproducibility, we release the full **SCOPE** benchmark along with tools for program-based, controllable dataset expansion. More importantly, **SCOPE** is designed as a generalizable framework rather than a fixed dataset: we encourage researchers to apply it across domains to evolve their own multimodal benchmarks. By enabling community-driven, multi-round dataset construction, **SCOPE** provides a foundation for an open, collaborative ecosystem of benchmark development and evaluation.

5 Experiment

To evaluate the **SCOPE** methodology and its benchmark, we conduct a series of comprehensive experiments. Section 5.1 outlines the experimental setup. We then present three main evaluations: (1) *SCOPE-Test* enables fine-grained diagnosis of existing models across multiple reasoning dimensions (Section 5.2); (2) *SCOPE-Train* improves reasoning performance across models with different parameter scales (Section 5.3); and (3) MAP's staged learning process yields notable gains in visual dialog tasks requiring sequential, context-aware reasoning (Section 5.4). Finally, we conduct ablation studies to assess the contributions of each component in our framework (Section 5.5).

5.1 Experimental Setup

Model Setup. We train multimodal models using *SCOPE-Train* on two architectures of different scales: Qwen2.5-VL-7B [3] and InternVL-2.5-2B [7]. For program generation, we use GPT-4o [22], a multimodal language model, to produce executable Python code. Unlike ViperGPT [39], which targets end-to-end VQA, **SCOPE** focuses on dataset expansion and evolution. To support this, both the input image and ground-truth answer are provided as prompts to guide more accurate, task-aligned program synthesis.

Table 3: Comparison of various models and methods on different benchmarks.

Model	MMVet _{turbo}	RealWorldQA	$MMBench_{test}$	SeedBench2-Plus	MuirBench	MMT_{val}	$POPE_{avg}$
GPT-40	69.1 75.4 83.4		72.0	68.0	65.4	86.9	
LLaVA-1.5-13B	38.3	55.3	64.3	-	24.4	52.1	85.9
DeepSeek-VL-7B	41.5	54.2	73.2	-	-	54.0	88.1
Phi-3.5-Vision-4B	43.2	53.6	76.0	62.2	-	53.6	-
Qwen2.5-VL-7B	67.1	68.5	83.5	70.4	59.6	60.9	86.4
- Provision	66.4	69.1	82.7	70.1	59.8	59.3	85.6
- VLB	66.8	69.0	84.1	70.7	61.3	61.4	84.8
- SCOPE	69.1	69.5	86.8	72.3	65.2	62.6	87.2
InternVL-2.5-2B	60.8	60.1	74.7	60.9	40.6	54.5	90.6
- Provision	60.5	61.0	73.3	61.4	39.7	52.6	89.3
- VLB	60.8	60.7	75.4	61.4	40.9	55.7	90.5
- SCOPE	63.4	63.0	77.0	62.1	44.3	55.2	90.7

Settings. To ensure fair and comprehensive comparison, we evaluate **SCOPE** against three representative evolution strategies:

Provision [45]: This method parses images into scene graphs and extracts subgraphs by selecting specific nodes and edges, thereby generating new instances while preserving relational structure.

VLB [42]: This strategy rewrites questions and edits images through predefined templates, recombining them to synthesize new instances without altering the original answers.

SCOPE (Ours): Our method constructs executable programs from original samples and systematically expands them along functional composition, input modality, and reasoning complexity, enabling scalable, unbiased, and controllable dataset evolution for multimodal benchmarks.

Baseline and Benchmark. To further assess the performance and generalizability of SCOPE, we include several strong multimodal baselines spanning different model scales: GPT-40 [22], LLaVA-1.5-13B [29], DeepSeek-VL-7B [32], and Phi-3.5-Vision-4B [1]. For evaluation, we adopt a diverse suite of benchmarks covering both general-purpose and domain-specific tasks: MMVet [44], Real-WorldQA [8], MMBench [31] for broad visual reasoning and real-world contextual understanding, Seedbench2-Plus [26] for text-rich visual comprehension, MMT [43], MuirBench [40] for multi-image inference, and POPE [27] for robustness against hallucination. Notably, the MMBench test set is not public, and SeedBench2-plus does not overlap with SeedBench2. Our expanded data is distinct from all test benchmarks, ensuring no risk of data leakage. We additionally use ConvBench [30], ContextVD [46], and VisDial [9] to assess Visual Dialog capabilities.

5.2 MLLM Evaluation on SCOPE-Test

We evaluate existing multimodal models on *SCOPE-Test*, focusing on performance across the three structured evolution dimensions. Results are summarized in Table 2, and key observations are as follows. **Reasoning Difficulty.** Model performance degrades substantially on hard instances, which typically require multi-hop reasoning or the integration of multiple intermediate results. This indicates persistent limitations in logical composition and complex inference across current MLLMs. **Structural Variation.** Models perform better on depth-oriented tasks, where each step builds sequentially on previous outputs, than on width-oriented tasks requiring simultaneous attention to multiple variables. This may reflect the influence of prevalent CoT tuning, which favors linear reasoning but offers limited support for managing concurrent dependencies or irrelevant distractions. **Source Modality.** Multi-image reasoning, especially across domains, remains a key challenge. GPT-40 shows the strongest cross-domain performance, underscoring the gap between proprietary models and current open-source MLLMs in broad multimodal generalization. These findings collectively underscore the need for benchmarks like **SCOPE** that systematically expose fine-grained reasoning challenges beyond conventional evaluations.

5.3 SCOPE-Train Enhances Model Reasoning Capabilities

To assess the effectiveness of the **SCOPE** expansion strategy, we perform a comparative study using the same initial dataset augmented through different baseline methods. Results are summarized in Table 3, leading to the following key observations. **Structured expansions consistently improve performance.** Compared to baseline, all three structured evolution methods—Provision, VLB, and

Table 4: Evaluation on the visual dialog task.

Table 5: Ablation study on MAP.

	ConvBench R ₂	ContextVD Acc	$VisDial_{val}$ $R@1$
Qwen2.5-VL-7B	41.5	87.4	76.8
- Provision	42.6	90.5	79.3
- VLB	43.9	91.0	82.1
- SCOPE	45.2	94.3	85.6
InternVL-2.5-2B	39.8	85.7	74.2
- Provision	41.7	89.9	78.0
- VLB	42.1	91.1	80.5
- SCOPE	44.8	93.6	81.8

	MMBench _{test}	ContextVD Acc
0 InternVL-2.5-2B (SCOPE)	77.0	93.6
1 w/o curriculum scheduler	76.9	93.1
2 w/o gating module	75.3	87.4
3 w/o difficulty-aware loss	75.8	91.2
4 w/o MAP (direct fine-tuning)	75.1	87.1
5 Backbone	74.7	85.7

SCOPE—achieve notable performance gains by enhancing the quality and diversity of training instances. This underscores the critical role of augmentation in strengthening model reasoning. SCOPE outperforms other structured methods. SCOPE consistently achieves the highest improvements across all evaluated benchmarks. Its advantage stems from broader data coverage, unconstrained by scene-graph subgraph limitations or fixed-answer rewrites. Moreover, SCOPE substantially enhances performance on multi-image tasks and reduces hallucination errors, indicating stronger generalization and factual consistency. Scaling effects are more pronounced in larger models. The performance gains from SCOPE-Train are more significant for larger models (e.g., 7B) compared to smaller ones (e.g., 2B). This trend likely reflects the increased benefit derived from SCOPE's multi-round expansion, which introduces a higher proportion of complex, high-difficulty instances that better align with the capacities of larger models. These findings show that SCOPE-Train enhances generalization across domains and scales with model capacity, supporting its utility for robust multimodal reasoning.

5.4 Evaluation on Visual Dialog Task

To further evaluate the advantages of *SCOPE-Train* and its curriculum learning strategy, we investigate their effectiveness in the context of Visual Dialog, a task characterized by sequential reasoning and context-dependent understanding. Unlike conventional augmentation methods, **SCOPE** enables continuous and controllable expansion of each original sample while preserving its core semantics. This design enhances both sample diversity and structural alignment. As shown in Table 4, models trained with **SCOPE** exhibit superior performance in multi-turn dialog reasoning tasks, particularly those requiring contextual consistency and progressive understanding. We attribute this improvement to the staged learning process: for each training instance, the model incrementally encounters three increasingly challenging expansions, allowing it to gradually build the capacity needed for handling dialog-based visual reasoning with greater fluency and robustness.

5.5 Ablation Experiment

Analysis of SCOPE extension method. To analyze the contribution of each expansion strategy to model performance, we conduct controlled ablation experiments by incrementally applying different combinations of expansion methods (R-Reasoning Path Expansion, V-Visual Context Editing, C-Cross-Instance Composition) to the same backbone, using the original dataset as a baseline. As shown in Table 6, our structured evolution strategies consistently improve model accuracy, with reasoning path expansion yielding the most notable individual gains. Furthermore, we observe clear synergistic effects when combining multiple expansion types, demonstrating that multi-dimensional augmentation provides complementary benefits beyond any single method.

Analysis on the MAP. To evaluate the effectiveness of each component within the MAP curriculum learning framework, we conduct ablation studies by individually removing each module and observing its impact on final model performance (Table 5). Results show that eliminating the curriculum scheduler leads to the smallest performance drop, suggesting that while easy-to-hard progression aids gradual learning, it does not alter the overall quantity or quality of training samples. In contrast, removing either the memory and attention modules or the difficulty-aware loss results in substantial performance degradation, indicating that these components are essential for fully exploiting the structured advantages of SCOPE's expanded data. Furthermore, we additionally include a w/o MAP setting that directly fine-tunes the backbone model. The noticeable performance gap between this variant and the full MAP configuration confirms that MAP itself contributes complementary gains

		Label		l	Accuracy		
		R	V	C	$\overline{\mathrm{MMBench}_{test}}$	ContextVD	
0	Backbone				74.7	85.7	
1	+ R	√			75.6	89.0	
2	+ V		✓		75.3	88.2	
3	+ C			\checkmark	74.9	88.5	
4	+ R + V	✓	✓		76.4	91.4	
5	+ R + C	\checkmark		\checkmark	76.1	91.3	
6	+ V + C		\checkmark	\checkmark	75.8	89.7	
7	InternVL-2.5-2B (SCOPE)	✓	✓	✓	77.0	93.6	

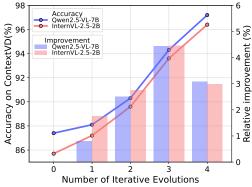


Table 6: Ablation study on extended data.

Figure 6: Ablation study on extended iterations.

beyond data quality. This extended analysis helps disentangle the respective effects of the dataset and the training strategy, providing a clearer picture of MAP's independent impact.

Analysis on the number of evolutions. We analyze model performance after each round of iterative expansion, as shown in the line plot, and focus on the relative improvement between consecutive rounds using bar plots to control for the impact of increased data volume (Figure 6). The results reveal consistent performance gains across expansion rounds, with relative improvements stabilizing after the third iteration. While further expansion could continue to enhance model performance, we limit the number of rounds to three due to computational cost considerations.

6 Discussion: Generalizability of Visual Programming

A key advantage of adopting the visual programming paradigm is its broad generalizability beyond conventional VQA. Existing program-based frameworks such as ViperGPT [39], VISPROG [17], and De-fine [15] have already demonstrated that modular, Python-like programs can perform not only image QA but also visual grounding, instruction following, image editing, and even video understanding—all without retraining or task-specific architectures. By representing multimodal reasoning as executable code, **SCOPE** provides a unified and interpretable interface that can be adapted to a wide range of visual tasks.

Building on this foundation, **SCOPE**'s evolution process operates purely at the program level, meaning that the same principles of reasoning-path expansion, visual context editing, and cross-instance composition can be applied to any task where outputs can be represented as code execution results. In practice, this includes tasks such as instruction-conditioned image generation, cross-frame video reasoning, and visual planning. Moreover, the modular API design allows seamless extension: new domain-specific functions can be incorporated into the library without redesigning templates or retraining the model, enabling scalable adaptation to emerging domains.

In summary, the visual programming paradigm empowers **SCOPE** to serve as a general, interpretable, and extensible framework for multimodal reasoning and generation, capable of producing structured code outputs for virtually any vision-language task.

7 Conclusion

In conclusion, we present **SCOPE**, a program-centric framework for controllable and verifiable dataset evolution in multimodal learning. By leveraging visual programming, counterfactual reasoning, and the MAP curriculum, **SCOPE** enables systematic data expansion with explicit reasoning paths and adaptive difficulty control. Our constructed benchmarks, *SCOPE-Train* and *SCOPE-Test*, not only reveal critical limitations in existing models but also promote scalable and interpretable training, paving the way for more robust and generalizable MLLMs.

8 Acknowledgement

This work was supported by the National Key Research and Development Program of China (2024YFB3312900), the National Natural Science Foundation of China (62441617), Zhejiang Provincial Natural Science Foundation of China (No. LD25F020001) and Fundamental Research Funds for the Central Universities (226-2025-00057), Ningbo Yongjiang Talent Introduction Programme (2024A-401-G), the Zhejiang NSF (LRG25F020001), Zhejiang University Education Foundation Qizhen Scholar Foundation, Wallenberg-NTU Presidential Postdoctoral Fellowship.

References

- [1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv* preprint arXiv:2404.14219, 2024.
- [2] Manoj Acharya, Kushal Kafle, and Christopher Kanan. Tallyqa: Answering complex counting questions. *arXiv preprint arXiv:1810.12440*, 2018.
- [3] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
- [4] Chun-Hao Chang, George Alexandru Adam, and Anna Goldenberg. Towards robust classification model by counterfactual and invariant data generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 15212–15221, 2021.
- [5] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In *Proceedings of the IEEE/CVF conference* on computer vision and pattern recognition, pages 3558–3568, 2021.
- [6] Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang Pu, and Yueting Zhuang. Counterfactual samples synthesizing for robust visual question answering. In *Proceedings of the IEEE/CVF conference on* computer vision and pattern recognition, pages 10800–10809, 2020.
- [7] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling, 2025.
- [8] X.AI Corp. Grok-1.5 vision preview: Connecting the digital and physical worlds with our first multimodal model. https://x.ai/blog/grok-1.5v, 2024.
- [9] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh, and Dhruv Batra. Visual Dialog. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
- [10] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng

- Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning, 2025.
- [11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
- [12] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models, 2024.
- [13] Mona Gandhi, Mustafa Omer Gul, Eva Prakash, Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. Measuring compositional consistency for video question answering. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5046–5055, 2022.
- [14] Minghe Gao, Shuang Chen, Liang Pang, Yuan Yao, Jisheng Dang, Wenqiao Zhang, Juncheng Li, Siliang Tang, Yueting Zhuang, and Tat-Seng Chua. Fact: Teaching mllms with faithful, concise and transferable rationales. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 846–855, 2024.
- [15] Minghe Gao, Juncheng Li, Hao Fei, Liang Pang, Wei Ji, Guoming Wang, Zheqi Lv, Wenqiao Zhang, Siliang Tang, and Yueting Zhuang. De-fine: De composing and re fin ing visual programs with auto-feedback. In Proceedings of the 32nd ACM International Conference on Multimedia, pages 7649–7657, 2024.
- [16] Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig, Wenhu Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction tuning at scale. arXiv preprint arXiv:2412.05237, 2024.
- [17] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (CVPR), pages 14953–14962, June 2023.
- [18] Xuehai He, Diji Yang, Weixi Feng, Tsu-Jui Fu, Arjun Akula, Varun Jampani, Pradyumna Narayana, Sugato Basu, William Yang Wang, and Xin Eric Wang. Cpl: Counterfactual prompt learning for vision and language models. *arXiv preprint arXiv:2210.10362*, 2022.
- [19] Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ranjay Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic reasoning into vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9590–9601, 2024.
- [20] Jingshan Huang, Fernando Gutierrez, Harrison J Strachan, Dejing Dou, Weili Huang, Barry Smith, Judith A Blake, Karen Eilbeck, Darren A Natale, Yu Lin, et al. Omnisearch: a semantic search system based on the ontology for microrna target (omit) for microrna-target gene interaction data. *Journal of biomedical semantics*, 7:1–17, 2016.
- [21] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer vision and* pattern recognition, pages 6700–6709, 2019.
- [22] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
- [23] Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhui Wang, Jianhan Jin, Claire Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal models for reasoning quality, robustness, and efficiency. *arXiv preprint arXiv:2502.09621*, 2025.
- [24] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything, 2023.

- [25] Tiep Le, Vasudev Lal, and Phillip Howard. Coco-counterfactuals: Automatically constructed counterfactual examples for image-text pairs. Advances in Neural Information Processing Systems, 36:71195–71221, 2023.
- [26] Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus: Benchmarking multimodal large language models with text-rich visual comprehension. *arXiv* preprint *arXiv*:2404.16790, 2024.
- [27] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.
- [28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13*, pages 740–755. Springer, 2014.
- [29] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 26296–26306, June 2024.
- [30] Shuo Liu, Kaining Ying, Hao Zhang, Yue Yang, Yuqi Lin, Tianle Zhang, Chuanhao Li, Yu Qiao, Ping Luo, Wenqi Shao, et al. Convbench: A multi-turn conversation evaluation benchmark with hierarchical capability for large vision-language models. arXiv preprint arXiv:2403.20194, 2024.
- [31] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? In *European conference on computer vision*, pages 216–233. Springer, 2024.
- [32] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding. *arXiv* preprint arXiv:2403.05525, 2024.
- [33] Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Diptikalyan Saha. Generate your counterfactuals: Towards controlled counterfactual generation for text. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pages 13516–13524, 2021.
- [34] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvf conference on computer vision and pattern recognition*, pages 3195–3204, 2019.
- [35] OpenAI. Gpt-4v(ision) system card, 2023.
- [36] OpenAI. Learning to reason with llms, 2024.
- [37] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. Advances in neural information processing systems, 35:25278–25294, 2022.
- [38] Xin Su, Man Luo, Kris W Pan, Tien Pei Chou, Vasudev Lal, and Phillip Howard. Sk-vqa: Synthetic knowledge generation at scale for training context-augmented multimodal llms. arXiv preprint arXiv:2406.19593, 2024.
- [39] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for reasoning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 11888–11898, October 2023.
- [40] Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma, Nan Xu, Wenxuan Zhou, Kai Zhang, et al. Muirbench: A comprehensive benchmark for robust multi-image understanding. arXiv preprint arXiv:2406.09411, 2024.
- [41] Yue Yang, Ajay Patel, Matt Deitke, Tanmay Gupta, Luca Weihs, Andrew Head, Mark Yatskar, Chris Callison-Burch, Ranjay Krishna, Aniruddha Kembhavi, et al. Scaling text-rich image understanding via code-guided synthetic multimodal data generation. arXiv preprint arXiv:2502.14846, 2025.
- [42] Yue Yang, Shuibai Zhang, Wenqi Shao, Kaipeng Zhang, Yi Bin, Yu Wang, and Ping Luo. Dynamic multimodal evaluation with flexible complexity by vision-language bootstrapping, 2024.

- [43] Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi Lin, Shuo Liu, et al. Mmt-bench: A comprehensive multimodal benchmark for evaluating large vision-language models towards multitask agi. arXiv preprint arXiv:2404.16006, 2024.
- [44] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv preprint arXiv:2308.02490*, 2023.
- [45] Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai Huang, Manli Shu, An Yan, Zixian Ma, Juan Carlos Niebles, Silvio Savarese, et al. Provision: Programmatically scaling vision-centric instruction data for multimodal language models. arXiv preprint arXiv:2412.07012, 2024.
- [46] Yifeng Zhang, Ming Jiang, and Qi Zhao. New datasets and models for contextual reasoning in visual dialog. In *European Conference on Computer Vision*, 2022.

9 Appendix

This is the Appendix for the paper "Counterfactual Evolution of Multimodal Datasets via Visual Programming". We organize the appendices and supplementary information mentioned in the paper as follows:

- 7.1 SCOPE Raw Data Distribution;
- 7.2 Detailed Distribution of SCOPE after Expansion;
- 7.3 A SCOPE Data Example in Annotation;
- 7.4 The Corresponding Picture in Figure 4;
- 7.5 Limitation;
- 7.6 API and Function Library in Program Generation

9.1 SCOPE Raw Data Distribution

We selected six publicly available datasets as the initial data sources for SCOPE evolution. The specific data distributions and selected subsets are detailed in Table 6.

Dataset	Set	Description	Number of samples						
Seedbench2		General Benchmark	5543						
MMBench		General Benchmark	2521						
MME		General Benchmark	2042						
GQA	test-dev	Compositional	1426						
OK-VQA	val	External Knowledge	1186						
TallyQA	test	Counting	2156						
Total			14874						

Table 7: Data mixture of VQA benchmarks and datasets.

9.2 Detailed Distribution of SCOPE after Expansion

SCOPE underwent three rounds of evolution in total. The data distributions for the first two rounds are additionally provided in Figures 7 and 8.

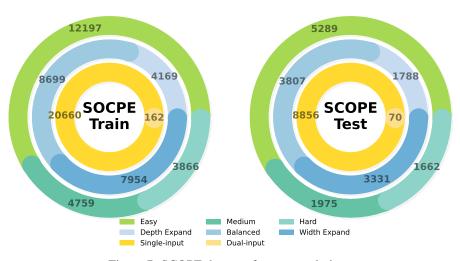


Figure 7: SCOPE dataset after two evolutions

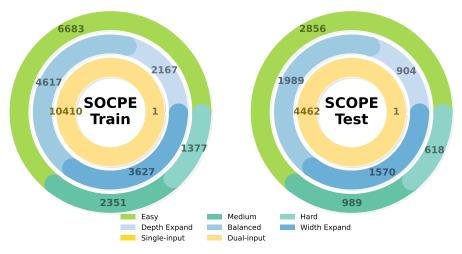


Figure 8: SCOPE dataset after only one evolution

9.3 A SCOPE Data Example in Annotation

We present a concrete annotation example, which is followed by both the SCOPE-Train and SCOPE-Test datasets.

```
"origin_data": {
      "data_source": "MME",
      "source_id": "856",
      "question": "Will green be obtained by mixing the above two colors? Please answer yes or
      no.",
        "images/MME/test1_856.jpg"
      "golden_answer": [
        "Yes"
10
      program": "def execute_command_856(image, possible_answers, query, ImagePatch,
      color_2, \"color_2\")\n \n # Use llm_query to determine if mixing the two colors results in green\n query = f\"will mixing {color_1} and {color_2} result in green?

Answer yes or no.\"\n result = image_patch.llm_query(query, long_answer=False)\n show_all(None, result, \"result\")\n return result",

"program_answer": "yes",

"static application."
13
      "static analysis": {
   "difficulty": "easy"
14
15
        "extend_method": null
16
18
      "image_count": 1
19
20
    "evolution_data_1": {
     "question": "Will green be obtained by mixing the above two colors? Please answer yes or
      "image": [
22
        "images/MME/mme_sample_856.jpg"
24
      "program": "def execute_command_856(image, possible_answers, query, ImagePatch,
      VideoSegment, llm_query, bool_to_yesno, distance, best_image_match):\n  # Answer is:def
       execute_command(image, my_fig, time_wait_between_lines, syntax):\n
      # Ensure there are at least two colors to mix\n if len(color_patches) < 2:\n
eturn \"no\"\n \n # Get the names of the two colors\n color_1 = color_patches
         return \"no\"\n
      [0].simple_query(\"What is the name of this color?\")\n show_all(None, color_1, \"
```

```
?\")\n show_all(None, color_2, \"color_2\")\n \n # Use llm_query to determine if
mixing the two colors results in green\n query = f\"Will mixing {color_1} and {
color_2} result in green? Answer yes or no.\"\n result = image_patch.llm_query(query,
long_answer=False)\n show_all(None, result, \"result\")\n \n return result",
         "program_answer": "Yes",
26
         "static analysis": {
27
           "difficulty": "easy",
28
           "extend_method": "balanced"
29
30
         "image_count": 1
31
      "evolution data 2": {
        "question": "If green is obtained by mixing the two colors, which color is more dominant
34
         in the resulting green?",
35
        "image": [
          "images/MME/mme_sample_856.jpg"
36
37
         "program": "def execute_command_856(image, possible_answers, query, ImagePatch,
         VideoSegment, llm_query, bool_to_yesno, distance, best_image_match):\n  # Answer is:def
          execute_command(image):\n colors = []\n for img in image:\n
                                                                                                                       patch =
         ImagePatch(img)\n color = patch.simple_query(\"What is the color?\")\n
colors.append(color.lower())\n \n if \"yellow\" in colors and \"blue\" in colors:\n
yellow_patch = None\n blue_patch = None\n for img in image:\n
patch = ImagePatch(img)\n if patch.simple_query(\"What is the color?\").
lower() == \"yellow\":\n
         patch = ImagePatch(img)\n
lower() == \"yellow\":\n
                                                                    yellow_patch = patch\n elif patch.
         lower() == \"yettow\":\n
simple_query(\"What is the color?\").lower() == \"blue\":\n
                                                                                                                       blue_patch =
         patch\n \n if yellow_patch and blue_patch:\n
                                                                                                                yellow_area =
         n return \"no green obtained\"",
30
        "program_answer": "no green obtained",
40
        "static analysis": {
           "difficulty": "hard",
41
           "extend_method": "width"
42
43
44
        "image_count": 1
45
      'evolution_data_3": {
46
        "question": "If green is obtained by mixing yellow and blue, which color contributes more
         to the green in terms of spatial dominance across all images, and how does their spatial
         relationship (left/right) affect the resulting green?",
48
        "image": [
           "images/MME/extended_data_2_MME_commonsense_reasoning_0009.jpg",
49
           "images/MME/mme_sample_856.jpg"
50
51
         "program": "def execute_command_856(image, possible_answers, query, ImagePatch,
         VideoSegment, llm_query, bool_to_yesno, distance, best_image_match):\n  # Answer is:def
         yellow_patch[0].height\n
                                                             blue_area = blue_patch[0].width * blue_patch[0].
                                                           if yellow_area > blue_area:\n
         height\n
                                  \n
         dominant_colors.append(\"yellow\")\n else:\n dominant append(\"blue\")\n \n # Determine spatial relationship\n
                                                                                                                  dominant colors.
        append(\"blue\")\n \n  # Determine spatial relationship\n
if yellow_patch[0].horizontal_center < blue_patch[0].horizontal_center:\n
spatial_relationships.append(\"yellow is left of blue\")\n else:\n
spatial_relationships.append(\"blue is left of yellow\")\n \n # Determine the
overall dominant color across all images\n yellow_count = dominant_colors.count(\"
yellow\")\n blue_count = dominant_colors.count(\"blue\")\n \n dominant_color =
\"yellow\" if yellow_count > blue_count else \"blue\"\n \n # Determine the most
common spatial relationship\n spatial_relationship = max(set(spatial_relationships),
key=spatial_relationships.count)\n \n return f\"The dominant color is {
dominant_color}, and (spatial_relationship).\"",
"program_answer": "The dominant color is yellow, and yellow is left of blue.",
"static analysis": {

        "static analysis": {
  "difficulty": "hard",
54
55
           "extend_method": "balanced"
56
57
58
         "image_count": 2
59
60}
```

Listing 1: Annotation example.

9.4 The Corresponding Picture in Figure 4

In Figure 4, we illustrate the process of Counterfactual Categorization from a code-level perspective. Due to space limitations, the corresponding visual examples are provided in the appendix.

Figure 9: Original image

Figure 10: Associated image through Cross-Instance Composition.

9.5 Limitation

In this section, we discuss several open directions and current limitations for future exploration. First, although our dataset construction relies on six publicly available datasets, SCOPE is designed as a dataset-agnostic evolution algorithm and can be applied to data from various domains. We encourage future work to extend and validate its effectiveness on proprietary datasets. Second, in the MAP curriculum learning stage, the difficulty ranking of structural variation is primarily based on heuristic insights. We remain open to refining this ordering should more principled or effective strategies become available.

9.6 API and Function Library in Program Generation

The prompts employed during the code generation process are listed in detail.

```
limport math
2
3class ImagePatch:
    """A Python class containing a crop of an image centered around a particular object, as
    well as relevant information.
5 Attributes
6 ------
7 cropped_image : array_like
8 An array-like of the cropped image taken from the original image.
9 left, lower, right, upper : int
    An int describing the position of the (left/lower/right/upper) border of the crop's bounding box in the original image.
11
12 Methods
13 ------
14 find(object_name: str)->List[ImagePatch]
```

```
15
         Returns a list of new ImagePatch objects containing crops of the image centered around
       any objects found in the
         image matching the object_name.
16
      exists(object name: str)->bool
         Returns True if the object specified by object_name is found in the image, and False
18
      otherwise.
19
     verify_property(property: str)->bool
         Returns True if the property is met, and False otherwise.
20
     best_text_match(option_list: List[str], prefix: str)->str
         Returns the string that best matches the image.
23
     simple_query(question: str=None)->str
24
         Returns the answer to a basic question asked about the image. If no question is
      provided, returns the answer to "What is this?".
25
     compute_depth()->float
26
         Returns the median depth of the image crop.
     crop(left: int, lower: int, right: int, upper: int)->ImagePatch
28
         Returns a new ImagePatch object containing a crop of the image at the given
      coordinates.
29
30
31
     def __init__(self, image, left: int = None, lower: int = None, right: int = None, upper:
      int = None):
          """Initializes an ImagePatch object by cropping the image at the given coordinates and
32
       stores the coordinates as
33
         attributes. If no coordinates are provided, the image is left unmodified, and the
      coordinates are set to the
34
        dimensions of the image.
35
         Parameters
36
         image : array_like
37
38
              An array-like of the original image.
39
          left, lower, right, upper : int
              An int describing the position of the (left/lower/right/upper) border of the crop'
40
      s bounding box in the original image.
41
42
          if left is None and right is None and upper is None and lower is None:
43
             self.cropped_image = image
44
              self.left = 0
              self.lower = 0
45
              self.right = image.shape[2] # width
self.upper = image.shape[1] # height
46
             self.cropped_image = image[:, lower:upper, left:right]
              self.left = left
51
              self.upper = upper
              self.right = right
             self.lower = lower
55
         self.width = self.cropped_image.shape[2]
         self.height = self.cropped_image.shape[1]
57
58
         self.horizontal_center = (self.left + self.right) / 2
self.vertical_center = (self.lower + self.upper) / 2
59
60
     def find(self, object_name: str) -> List[ImagePatch]:
61
           ""Returns a list of ImagePatch objects matching object_name contained in the crop if
62
      any are found.
          Otherwise, returns an empty list.
63
64
          Parameters
65
66
         object_name : str
             the name of the object to be found
67
68
69
         Returns
70
         List[ImagePatch]
             a list of ImagePatch objects matching object name contained in the crop
73
74
         Examples
75
         >>> # return the foo
76
          >>> def execute_command(image) -> List[ImagePatch]:
                  image_patch = ImagePatch(image)
foo_patches = image_patch.find("foo")
78
          >>>
79
         >>>
80
          >>>
                  return foo_patches
81
82
          return find_in_image(self.cropped_image, object_name)
83
84
     def exists(self, object_name: str) -> bool:
          """Returns True if the object specified by object_name is found in the image, and
 False otherwise.
```

```
86
          Parameters
87
88
           object name : str
89
              A string describing the name of the object to be found in the image.
90
91
92
          >>> # Are there both foos and garply bars in the photo?
93
          >>> def execute_command(image)->str:
94
                   image_patch = ImagePatch(image)
95
          >>>
96
          >>>
                   is_foo = image_patch.exists("foo")
97
                   is_garply_bar = image_patch.exists("garply bar")
          >>>
                   return bool_to_yesno(is_foo and is_garply_bar)
98
           >>>
99
          return len(self.find(object name)) > 0
100
101
102
      def verify_property(self, object_name: str, visual_property: str) -> bool:
          """Returns True if the object possesses the visual property, and False otherwise. Differs from 'exists' in that it presupposes the existence of the object specified by
103
104
       object_name, instead checking whether the object possesses the property.
105
          Parameters
106
107
           object_name : str
108
               A string describing the name of the object to be found in the image.
109
           visual_property : str
110
              A string describing the simple visual property (e.g., color, shape, material) to
       be checked.
112
           Examples
114
           >>> # Do the letters have blue color?
115
           >>> def execute_command(image) -> str:
                 image_patch = ImagePatch(image)
116
           >>>
           >>>
                   letters_patches = image_patch.find("letters")
           >>>
                   # Question assumes only one letter patch
118
119
           >>>
                   return bool_to_yesno(letters_patches[0].verify_property("letters", "blue"))
120
           ....
           return verify_property(self.cropped_image, object_name, property)
      def best_text_match(self, option_list: List[str], prefix: str=None) -> str:
           """Returns the string that best matches the image.
124
           Parameters
125
126
          option_list : str
128
              A list with the names of the different options
129
           prefix : str
130
              A string with the prefixes to append to the options
131
132
          Examples
134
          >>> # Is the foo gold or white?
135
           >>> def execute command(image)->str:
136
                  image_patch = ImagePatch(image)
           >>>
                   foo_patches = image_patch.find("foo")
           >>>
138
          >>>
                   # Ouestion assumes one foo patch
139
                   return foo_patches[0].best_text_match(["gold", "white"])
140
           return best_text_match(self.cropped_image, option_list, prefix)
141
142
      def simple_query(self, question: str = None) -> str:
143
            ""Returns the answer to a basic question asked about the image. If no question is
144
       provided, returns the answer to "What is this?". The questions are about basic perception, and are not meant to be
145
       used for complex reasoning
          or external knowledge.
146
           Parameters
147
148
149
           question : str
150
              A string describing the question to be asked.
152
          Examples
153
154
155
          >>> # Which kind of baz is not fredding?
156
          >>> def execute_command(image) -> str:
                   image_patch = ImagePatch(image)
baz_patches = image_patch.find("baz")
157
          >>>
158
           >>>
159
          >>>
                   for baz_patch in baz_patches:
                        if not baz_patch.verify_property("baz", "fredding"):
160
           >>>
161
           >>>
                            return baz_patch.simple_query("What is this baz?")
162
```

```
>>> # What color is the foo?
163
           >>> def execute_command(image) -> str:
164
                   image_patch = ImagePatch(image)
foo_patches = image_patch.find("foo")
165
           >>>
166
           >>>
                   foo_patch = foo_patches[0]
167
           >>>
                   return foo_patch.simple_query("What is the color?")
168
           >>>
169
           >>> # Is the second bar from the left quuxy?
170
           >>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
                   bar_patches = image_patch.find("bar")
           >>>
174
           >>>
                   bar_patches.sort(key=lambda x: x.horizontal_center)
175
                  bar_patch = bar_patches[1]
           >>>
                   return bar_patch.simple_query("Is the bar quuxy?")
176
           >>>
           return simple_query(self.cropped_image, question)
178
179
180
      def compute_depth(self):
181
             ""Returns the median depth of the image crop
182
           Parameters
183
184
           Returns
185
186
           float
187
              the median depth of the image crop
188
189
           Examples
190
191
           >>> # the bar furthest away
192
           >>> def execute_command(image)->ImagePatch:
193
           >>>
                   image_patch = ImagePatch(image)
194
           >>>
                   bar_patches = image_patch.find("bar")
195
           >>>
                   bar_patches.sort(key=lambda bar: bar.compute_depth())
196
           >>>
                    return bar_patches[-1]
197
198
           depth_map = compute_depth(self.cropped_image)
199
           return depth_map.median()
200
201
      def crop(self, left: int, lower: int, right: int, upper: int) -> ImagePatch:
202
            """Returns a new ImagePatch cropped from the current ImagePatch.
203
           Parameters
204
205
           left, lower, right, upper : int
206
              The (left/lower/right/upper)most pixel of the cropped image.
207
208
209
           return ImagePatch(self.cropped_image, left, lower, right, upper)
210
211
      def overlaps_with(self, left, lower, right, upper):
            ""Returns True if a crop with the given coordinates overlaps with this one,
212
           else False.
213
           Parameters
214
215
           left, lower, right, upper : int
    the (left/lower/right/upper) border of the crop to be checked
216
217
218
219
           Returns
220
221
           bool
222
              True if a crop with the given coordinates overlaps with this one, else False
224
           Examples
225
           >>> # black foo on top of the qux
226
           >>> def execute_command(image) -> ImagePatch:
227
                image_patch = ImagePatch(image)
qux_patches = image_patch.find("qux")
228
           >>>
229
           >>>
230
           >>>
                   qux_patch = qux_patches[0]
                   foo_patches = image_patch.find("black foo")
           >>>
                  for foo in foo_patches:
           >>>
           >>>
                        if foo.vertical_center > qux_patch.vertical_center
234
           >>>
                            return foo
235
236
           return self.left <= right and self.right >= left and self.lower <= upper and self.
       upper >= lower
238def best_image_match(list_patches: List[ImagePatch], content: List[str], return_index=False)
      -> Union[ImagePatch, int]:
"""Returns the patch most likely to contain the content.
239
240
      Parameters
241
```

```
list patches : List[ImagePatch]
242
243
      content : List[str]
244
        the object of interest
245
      return index : bool
         if True, returns the index of the patch most likely to contain the object
246
247
248
     Returns
249
250
      int
         Patch most likely to contain the object
251
252
253
      return best_image_match(list_patches, content, return_index)
254
255
256def distance(patch_a: ImagePatch, patch_b: ImagePatch) -> float:
257
258
      Returns the distance between the edges of two ImagePatches. If the patches overlap, it
      returns a negative distance
259
     corresponding to the negative intersection over union.
260
261
     Parameters
262
263
      patch_a : ImagePatch
      patch_b : ImagePatch
264
265
266
      Examples
267
268
      # Return the qux that is closest to the foo
269
      >>> def execute_command(image):
270
      >>>
              image_patch = ImagePatch(image)
271
      >>>
              qux_patches = image_patch.find('qux')
272
      >>>
              foo_patches = image_patch.find('foo')
273
             foo_patch = foo_patches[0]
      >>>
             qux_patches.sort(key=lambda x: distance(x, foo_patch))
274
      >>>
             return qux_patches[0]
275
      >>>
276
277
     return distance(patch_a, patch_b)
278
279
280def bool_to_yesno(bool_answer: bool) -> str:
return "yes" if bool_answer else "no"
282
283def coerce_to_numeric(string):
284
285
      This function takes a string as input and returns a float after removing any non-numeric
      characters.
     If the input string contains a range (e.g. "10-15"), it returns the first value in the
      range.
287
288
      return coerce_to_numeric(string)
289
290Write a function using Python and the ImagePatch class (above) that could be executed to
      provide an answer to the query.
291
292Consider the following guidelines:
293- Use base Python (comparison, sorting) for basic logical operations, left/right/up/down, math,
       etc.
294- Using the simple_query function to ask questions that require image information.
295- You may be given multiple images as input. Use all of them when answering the question. Each
       image can be accessed separately, like: image[0], image[1].
297-You are given a list of images as input. Each item in this list is a single image, so Always
      treat the input variable image as a list.
298-**Very important**, You MUST loop over each image and wrap it with the ImagePatch class:
299 for img in image:
        patch = ImagePatch(img)
300
301
302When dealing with a list of images, avoid returning inside the for-loop. Instead, collect all
      relevant information across images and return the final answer after the loop.
303If an object must be verified across multiple images, gather data first, then return a final
      summary:
304- You **must examine all images**.
305- However, the final output should be a **single, unified answer**, not a list of per-image
      outputs.
306- Do not return inside the loop. Instead, gather all relevant information across the images
      and generate one overall result.
307- Even if some intermediate reasoning is per-image, combine the insights before returning.
308Bad:
309    return [answer_img1, answer_img2, ...]
310Good:
```

```
Analyze all - summarize - return one final answer (e.g., "yes", or an integer, or a sentence)

312
313Query: INSERT_QUERY_HERE
314Answer: INSERT_ANSWER_HERE
315---
316
317First, write a Python function to answer the original visual question.
318Then, generate a follow-up question that requires deeper image reasoning-e.g., multi-object logic, spatial relations, or attribute comparison.
319Write a second function to solve it, using higher code complexity, lower similarity, and involving more of the previously mentioned functions or APIs.
320
321Format your answer as follows:
322Original Code:
323<original_code>
324
325Follow-up Question:
326<followup_question>
327
328Follow-up Code:
329<follow-up Code:
329<followup_code>
```

Listing 2: Prompt for code generation.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Yes, in both the abstract and introduction, we clearly state that we propose a counterfactual-based visual programming algorithm for dataset evolution, along with a corresponding evolved dataset and a supporting algorithmic framework named MAP.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 7.5.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a detailed theoretical analysis in the Method section and conduct a systematic empirical validation in the Experiment section.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, in the first part of the Experiment section, we introduce the required models, baselines, backbones, and benchmarks, ensuring that all necessary information for reproducing the main experimental results is provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Yes, we provide detailed information in the appendix, including dataset composition, static analysis at each stage, and the prompts required for the models. Additionally, our code and data are made available in the supplementary materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Yes, we include a dedicated Setting subsection to describe the experimental setup, and the Benchmark section provides a detailed explanation of the dataset construction process and the train-test split ratio.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the statistical significance of the experiments.

Guidelines

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Yes, we provide the necessary APIs and prompts, and most of the experiments can be conducted by directly using the provided APIs.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss the potential positive societal impacts and have no negative societal impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: Yes, we primarily rely on API access and do not use any harmful or sensitive data.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Yes, we use only publicly available datasets and open-source models.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We propose a new evolved dataset, which is included in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [Yes]

Justification: Yes, we provided a comprehensive explanation of the task and requirements, and offered appropriate compensation.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]

Justification: The paper describe potential risks.

Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Yes, we clearly state the intended purpose of using LLMs at every point where they are involved in the workflow.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.