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Road segmentation from remote sensing images is a critical task in many applications. In
recent years, various approaches, particularly deep learning-based methods, have been
proposed for accurate road segmentation. However, most existing road segmentation
methods always obtain unsatisfactory results (e.g., heterogeneous pixels) due to the com-
plex backgrounds and view occlusions of buildings and trees around a road; consequently,
road segmentation remains a challenging problem. In this study, we propose a novel global
context based dilated convolutional neural network (GC-DCNN) to address the aforemen-
tioned problem. The structure of GC-DCNN is similar to that of UNet. In particular, building
the encoder of GC-DCNN with three residual dilated blocks is suggested to further enlarge
the effective receptive field and learn additional discriminative features. Thereafter, a pyra-
mid pooling module is used to capture the multiscale global context features and fuse them
to achieve stronger feature representation. The decoder network upsamples the fused fea-
tures to the same size as the input image, combining the high-resolution features with the
contracting path of the encoder network. Moreover, the dice coefficient loss is adopted as
the loss function. This function differs from those in most previous studies but is more suit-
able for road segmentation. Extensive experimental results on two benchmark datasets
compared with several baseline models demonstrate the superiority of the proposed GC-
DCNN algorithm.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Automatic road segmentation from remote sensing images is an important research hotspot in the remote sensing and
pattern recognition fields. It plays an essential role in various applications, including vehicle navigation, urban planning,
and geographic information system updating [19,35]. However, manually labeling road areas in remote sensing images is
extremely time-consuming and tedious. In the past decades, machine learning was applied to various fields, such as images
[15,39], natural languages [9] and the Internet of things [10]. Many attempts have been made to use several predefined fea-
tures with machine learning techniques to realize the automatic road segmentation of remote sensing images, but they have
always failed to achieve satisfactory accuracy [37,34]. With the rapid development of deep learning techniques, convolu-
tional neural networks (CNNs) have achieved state-of-the-art performance in many recognition-related tasks, such as image
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classification [18,16], object detection [28,4] and semantic segmentation [23,33]. In the remote sensing field, CNNs are also
adopted to extract powerful features for various tasks [38,13,7], including road segmentation.

In general, road segmentation labels all road pixels from remote sensing images; hence, this task is actually a binary
pixel-level classification task, namely, road pixels and background pixels. Before deep learning techniques were applied
to road segmentation, most road segmentation methods were based on pixel-level labeling and road prior. For example,
Yuan et al. [37] introduced an oscillator network and adopted a three-step method to gradually achieve the segmentation
task. Unsalan et al. [34] proposed a system that contained three complex and interchangeable modules for automatic road
extraction. However, these methods frequently predict heterogeneous results and inaccurate road boundaries when dealing
with very high-resolution (VHR) remote sensing images with noise and occlusions of trees, cars, and surrounding buildings
due to extracted shallow features, excessive human intervention, and inability to cope with a complex background.

Since AlexNet (a simple CNN with five convolutional layers and three fully connected layers) [18] won first place in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 competition, deep learning techniques, as represented by
CNNs, have attracted considerable attention in the fields of computer vision and pattern recognition. Subsequently, fully con-
volutional networks (FCNs) [23] were first proposed for image semantic segmentation, and numerous image segmentation
algorithms were developed with remarkable performance improvements, such as encoderdecoder-based models [29,2,27]
and the dilated convolution-based DeepLab family [6,5]. These segmentation methods frequently achieve the highest accu-
racy rates on popular benchmarks, resulting in what many experts regard as a paradigm shift in the field.

With the remarkable progress in the semantic segmentation of natural images, deep CNNs have also been introduced to
the road segmentation task of remote sensing images. In [30,1], deep CNNs were applied to extract deep features from
remote sensing images. Cheng et al. [7] used an encoderdecoder network with unpooling and deconvolutional operations
to improve segmentation performance. However, these plain architectures fail to extract features with rich representation
information, which is crucial for remote sensing image analysis. To better utilize spatial contexts, Yang et al. [35] designed
a region-based CNN (RCNN) unit to build a deep network with limited memory consumption. This network has a theoret-
ically larger receptive field; however, numerous layers of shared weights in the encoder and the decoder may affect the per-
formance of feature transformation.

Although deep CNN-based methods have progressed considerably in the road segmentation of remote sensing images,
their performance can still be improved. Existing deep learning-based methods fail to address the view occlusion problem
to obtain coherent and smooth segmentation results because they are simple applications of CNN to the road segmentation
task.

To deal with the aforementioned problem, we propose a novel global context-based dilated CNN (GC-DCNN) for road seg-
mentation in the current study. This network can extract efficient features that are combined with multiscale global feature
information to enrich final feature representation. In contrast with most previous studies [5,36,21] that always embed the
dilated convolution into the last one or two blocks of the feature extractor, such as ResNet-50 and VGG, to enlarge the recep-
tive field while keeping the resolution high, we design a sophisticated residual dilated block (RDB) and use it to build the
entire encoder network for feature extraction. With the help of the proposed RDB, the encoder network can handle a wide
range of spatial information in each block without increasing the number of parameters, and finally, obtains high-resolution
features with a large receptive field and multiscale context information. These features are beneficial for improving feature
representation ability and alleviating the effects of noises and occlusions. Before the decoder network restores the extracted
features, we use the spatial pyramid pooling module (PPM) to produce multilevel global context features and concatenate
them with the original extracted features to form the final features with richer representation information. These features
are then upsampled layer by layer by the decoder network. Furthermore, in contrast with most previous methods that
use the cross entropy (CE) loss or mean squared error (MSE) loss, we adopt the dice coefficient loss as the loss function
in the proposed GC-DCNN. This loss function, which is inspired by medical image segmentation [24], can better consider
class imbalance between road pixels and background pixels. The dice coefficient loss is directly optimized on the evaluation
metric F1 score, which can better balance accuracy and recall rate in the binary road segmentation task. Extensive experi-
ments have been performed on two public road segmentations of remote sensing image datasets, and the experimental
results demonstrate that the proposed GC-DCNN model exhibits state-of-the-art performance compared with other state-
of-the-art methods.

The rest of the paper is organized as follows. Section 2 briefly reviews the related literature. Section 3 describes the entire
architecture and loss function of GC-DCNN. Section 4 presents the evaluation results and several ablation experiments.
Lastly, Section 5 concludes this study.
2. Related work

In this section, we review the deep learning based methods and related algorithms for remote sensing image road
segmentation.

Since the eight-layer AlexNet [18] won the championship in the ILSVRC Competition 2012, deep learning techniques have
been widely studied and applied to various tasks, such as image classification [16,31], object detection [28,8], and semantic
segmentation [23]. In the field of semantic segmentation, Long et al. [23] first proposed an FCN for natural scene image
segmentation in 2014. This FCN exhibited significant performance improvement compared with traditional segmentation
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methods [14,12]. Thereafter, Ronneberger et al. [29] proposed a well-designed symmetric network, called UNet, which used
a U-shaped encoderdecoder architecture to deal with the biomedical image segmentation problem. Hierarchical features are
extracted from the input images in the encoder network, and then the decoder network restores the final extracted feature
maps combined with the corresponding hierarchical features in the encoder network. UNet can predict more precise output
and perform better than FCN due to its symmetric structure and feature fusion at different levels of the decoder. The ideas of
a symmetric structure and feature fusion have also been introduced in many other fields [20,32,11]. Badrinarayanan et al. [2]
and Hyeonwoo et al. [27] preserved the symmetric deep encoderdecoder framework while introducing different structures
and operations in an encoderdecoder network. Both studies used the same unpooling operation, in which the indices of the
maximum locations selected during pooling operation were recorded and then passed to the decoder part to upsample the
feature maps. Another approach for improving segmentation accuracy is to enlarge the receptive field of a network and uti-
lize the global context information. Chen et al. [5] used dilated convolution to obtain a larger receptive field in high resolu-
tion and the atrous spatial PPM to capture multiscale global context information.

Several studies pioneered the application of deep learning techniques to the road segmentation of remote sensing images.
Zhang et al. [40] proposed the ResUNet framework, which extended UNet with a residual block for facilitating information
propagation and achieving improved performance in road segmentation. Cheng et al. [7] developed cascaded deep CNNs for
the road segmentation and centerline extraction tasks. The network for road segmentation adopted a symmetric encoderde-
coder structure. Mattyus et al. [26] proposed an approach called DeepRoadMapper, in which a CNN-based method was
adopted to generate a coarse road segmentation result, and then the binary thresholding and morphological thinning meth-
ods were used to construct the final road network graph. However, the DeepRoadMapper works efficiently for images with-
out complex topology and occlusion, which is an ideal case in the real world. In [25], a penalty term was introduced to the
binary CE loss to account for topology information. The penalty term was an L2 loss for measuring the difference between
high-level features and the ground truth. Furthermore, Bastani et al. [3] proposed the RoadTracer framework, which used an
iterative search process guided by a CNN-based decision function and directly obtained a road network graph from the CNN
output. The RoadTracer is highly dependent on the performance of the CNN, and thus, may fail to identify some road seg-
ments due to errors made by the CNN.

Although these deep learning-based methods have made considerable progress in the field of road segmentation of
remote sensing images, they still suffer from several deficiencies in solving the complex background and occlusion problem.
First, [7] concluded that road segmentation is actually a binary classification task. Considering the number of training pixels,
available computational resources, and expected running time, most deep learning-based methods opt to limit the number
of convolutional layers in the entire network to approximately 20, in which the encoder accounts for approximately half,
resulting in a extremely limited receptive field on the high-level layers for capturing the long-range context. Second, most
existing methods disregard the technique of capturing multiscale context information and fusing it with the extracted high-
level features to generate strong representative features; this technique has been utilized in the natural image segmentation
field [22,41]. In the current study, we propose GC-DCNN to address the aforementioned problems. GC-DCNN adopts the
encoderdecoder structure. The encoder network of GC-DCNN built by dilated residual blocks can access a large range of pix-
els (spatial information) with minimal discriminative information loss in each block, and finally, produces high-resolution
features with a large effective receptive field. With the use of global pyramid processing, multiscale context information
is obtained to enhance feature representation, which helps boost the final performance. The decoder network recovers
the fused features obtained from the cascaded PPM and realizes a precise segmentation result. The dice coefficient loss,
rather than the CE loss or the MSE loss, is adopted to deal with the class imbalance issue of the road and the background.
The quantitative and qualitative results on two datasets demonstrate that the proposed method can effectively handle occlu-
sion areas and achieve homogenous and smooth road segmentation results.
3. Proposed method

In this section, we discuss the details of the proposed RDB, PPM, architecture of GC-DCNN, and loss function, which are
the key elements of our proposed method.
3.1. RDB

In the traditional deep CNN model, a plain convolutional kernel, shown in Fig. 1(a), with a fixed size window slides over
feature maps and transforms the spatial context information into high-level features with semantic information layer by
layer. However, Zhou et al. [42] showed that the empirical receptive field of CNNs is smaller than the theoretical field, par-
ticularly on the deeper layers. Thus, many networks fail to sufficiently utilize a large range of spatial information (i.e., the
global context), which may alleviate the occlusion issue and noise pixels in the road segmentation task. We design the
RDB unit, shown in Fig. 1(c), on the basis of the residual block unit, shown in Fig. 1(b) [16], to enlarge the receptive field
in the limited resolution reduction and utilize more spatial context. In contrast with the common unit used in many net-
works, we adopt full pre-activation [17] to build the RDB unit. As shown in Fig. 1(c), the RDB unit uses the feature maps
(pre-activation) as input. After a batch normalization (BN) layer and a rectified linear unit (ReLU) activation layer, the first
3 � 3 convolutional layer without dilated operation is applied to generate the new feature maps, followed by two other com-



Fig. 1. Building blocks of CNN: (a) plain (b) residual, and (c) residual dilated blocks.
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binations of BN, ReLU, and 3 � 3 convolutional layers. Therefore, the block has three 3 � 3 convolutional layers. To enlarge
the effective receptive field of the block and utilize more spatial information, we use a dilated convolution operator. As
shown in Fig. 2, this operator introduces sparsity into the convolution kernel and can apply the same filter at different ranges
using various dilation ratios. We set the dilation ratio to 2 of the last two convolutional layers in the RDB to increase the
receptive field of the final 3 � 3 convolutional layers from 7 to 11. Inspired by the residual block, we add the input and final
feature maps before the unit output. This process is called shortcut connection. The designed structure facilitates the flow of
information and the fusion of multiscale features. The RDB can be formulated as follows:
yl ¼ h xlð Þ þF xl;Wlð Þ
where yl and xl are the output and input of the RDB unit respectively, Fð�Þ denotes the residual function and h xlð Þ is a iden-
tity mapping function which typically is h xlð Þ ¼ xl.
Fig. 2. Dilated convolution with different dilation ratios.
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3.2. PPM

In deep CNNs, the global context information that can be used largely depends on the size of the receptive field of a net-
work. Recent studies [22,41,5] have indicated that global context information exerts a significant impact on the performance
of semantic segmentation. However, the effective receptive field of CNNs is always smaller than the theoretical case even if a
deeper network is built [42]. Global average pooling is an efficient method for obtaining global context information, and it
has been frequently used in image classification and semantic segmentation tasks [22]. Zhao et al. [41] proposed PPM, which
used multilevel global average pooling to aggregate multigrained global features for scene parsing tasks. We use PPM on the
final feature maps of the encoder network to obtain the global representation, allowing us to utilize multiscale global context
information with limited network depth in road segmentation task.

As shown in Fig. 3, PPM has four level scales with bin sizes of 1, 2, 3, and 6. The first level is the global average pooling on
the input feature map to generate a single bin. At the succeeding pyramid level, feature maps are divided into different sub-
regions and pooled to produce the representation of different locations by using pooling kernels of different sizes. Suppose
the height and width of the input features are H and W, respectively; the bin size of each level is N, and the sizes of the pool-
ing kernels are H/N and W/N. The output of PPM preserves the global context information with different sizes due to the
structure. A 1 � 1 convolutional layer is applied to each pyramid level to reduce the dimensions of global feature maps
to 1/4 of the input and ensure that different-level features have the same weight. Then, the low-dimensional feature maps
are upsampled to the same size as the original feature maps via bilinear interpolation. Lastly, the different-level and input
features of PPM are concatenated as the final global context features. PPM can be formulated as follows:
yp ¼ Concat r1 xp
� �

;r2 xp
� �

;r3 xp
� �

;r4 xp
� �

;xp
� �
where yp and xp are the output and input of PPM, respectively; rð�Þ denotes the function, which successively consists of pool-
ing, convolution transform, and upsampling; and Concatð�Þ is the concatenation operation.

Notably, the number of pyramid levels and the bin size of each level can be modified. They are highly related to the size of
feature maps that are fed into PPM. We can select these hyperparameters in accordance with the situation to maintain a rea-
sonable gap in representation.
3.3. GC-DCNN architecture

Here, we illustrate in detail how the GC-DCNN with an RDB unit and PPM described earlier is built. As shown in Fig. 4, the
GC-DCNN is a U-type network that is composed of an encoder network, PPM, and a decoder network. The encoder part
extracts hierarchical features from the input image, and the global context information is aggregated by PPM. The decoder
network restores the fused features to predict the pixel-level road and background areas.
P
O

O
L

CONV

CONV

CONV

CONV

U
P

S
A

M
P

L
E

CONCAT

N N N

Fig. 3. Pyramid pooling module.
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Following the setting of CasNet [7], we design a smaller network for the road segmentation of remote sensing images
rather than the commonly used segmentation network. GC-DCNN has 21 convolutional layers. In contrast with most previ-
ous studies [21,43] that only used dilated convolution in the bridge stage, we build the entire encoder network with RDBs.
The encoder network consists of the two initial convolutional layers and three RDBs. The two initial convolutional layers con-
vert the input RGB image into the primary high-dimensional features, and then the features are fed into subsequent blocks to
generate the multiscale hierarchical feature. Instead of using the max pooling operation to downsample the feature maps, we
set the stride of the first convolutional layer to 2 in each RDB unit. Therefore, the total stride of the encoder network is 8. PPM
works similar to a bridge, which uses the final features of the encoder as the input and produces the features with global
context representation for the decoder part. The decoder network is also composed of three special RDB units, whose dilation
ratios are set to 1 for refinement. These block units are connected via the upsampling operation, which is implemented by
the transposed convolution operator in Pytorch with a kernel size and stride of 2. The upsampled features in each level are
concatenated with the corresponding hierarchical features of the encoder in the depth dimension to obtain features with rich
spatial details. The last 1 � 1 convolutional layer converts the high-dimensional features into single-channel features, and
the loss function is calculated with the ground truth after the sigmoid activation function. Table 1 provides the details of
each layer, including the different parts of GC-DCNN, the number of layers, the hyperparameters (e.g., kernel size, output
channels, stride, and dilated ratio of the convolutional layer), and the output size of each layer. Notably, we omit the BN layer
and the ReLU activation function between the convolutional layers for brevity.

Compared with the conventional network for road segmentation, our proposed GC-DCNN exhibits the following
advantages:

1) Under the same network architecture, the encoder network built by RDBs has a larger receptive field and captures
more spatial information during feature extraction without additional parameters and computations.
2) The PPM embedded into the model generates and fuses multiscale global features based on input features, providing
features with stronger representation ability for the decoder network.

3.4. Loss function

Instead of adopting the loss function used in most existing methods [7,40,26] (e.g., CE loss), we adopt a more suitable loss
function, called the dice coefficient loss, in our method. This function is inspired by medical image segmentation [24]. As
shown in Fig. 5, a strong imbalance exists between the area of the road foreground and the complex background, similar



Table 1
Network structure of deep GC-DCNN.

Name Unit level Layer Filter Stride Dilated ratio Output size

Input 256 � 256 � 3
Encoder Level 1 Conv 1 3 � 3/64 1 1 256 � 256 � 64

Conv 2 3 � 3/64 1 1 256 � 256 � 64
Level 2 Conv 3 3 � 3/128 2 1 128 � 128 � 128

Conv 4 3 � 3/128 1 2 128 � 128 � 128
Conv 5 3 � 3/128 1 2 128 � 128 � 128

Level 3 Conv 6 3 � 3/256 2 1 64 � 64 � 256
Conv 7 3 � 3/256 1 2 64 � 64 � 256
Conv 8 3 � 3/256 1 2 64 � 64 � 256

Level 4 Conv 9 3 � 3/512 2 1 32 � 32 � 512
Conv 10 3 � 3/512 1 2 32 � 32 � 512
Conv 11 3 � 3/512 1 2 32 � 32 � 512

PPM Level 5 32 � 32 � 1024
Decoder Level 6 Upsampling 2 � 2/256 2 1 64 � 64 � 256

Conv 12 3 � 3/256 1 1 64 � 64 � 256
Conv 13 3 � 3/256 1 1 64 � 64 � 256
Conv 14 3 � 3/256 1 1 64 � 64 � 256

Level 7 Upsampling 2 � 2/128 2 128 � 128 � 128
Conv 15 3 � 3/128 1 1 128 � 128 � 128
Conv 16 3 � 3/128 1 1 128 � 128 � 128
Conv 17 3 � 3/128 1 1 128 � 128 � 128

Level 8 Upsampling 2 � 2/64 2 256 � 256 � 64
Conv 18 3 � 3/64 1 1 256 � 256 � 64
Conv 19 3 � 3/64 1 1 256 � 256 � 64
Conv 20 3 � 3/64 1 1 256 � 256 � 64

Output Conv 21 1 � 1/1 1 1 256 � 256 � 1
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to several medical image segmentation tasks. If CE loss is used, then these small loss values can overwhelm the rare class
(road pixels) when summing up numerous easy examples (background pixels). We utilize the dice coefficient loss function
to guide the optimization of the proposed network and efficiently deal with the class imbalance issue. The extensive exper-
imental results show that the performance of the dice coefficient loss is better.

The formulation of binary CE loss can be written as follows:
Loss ¼ � 1
N

XN

i¼1

yi logpi þ 1� yið Þ log 1� pið Þ
where N denotes the total number of pixels of the input image, pi indicates the predicted probability that this pixel is an
expected pixel, and yi is the label of the ground truth of the ith pixel. yi ¼ 1 if the pixel belongs to the foreground, otherwise,
yi = 0.

The dice coefficient loss can be formulated as follows:
Loss ¼ 1� 2TP
2TP þ FN þ FP

¼ 1�
2
XN

i

pigi

XN

i

p2
i þ

XN

i

g2
i

where TP denotes the true positive, FP denotes the false positive, and FN denotes the false negative. pi 2 ½0;1� is the value of
the ith pixel that belongs to the predicted binary segmentation mask, and gi is the value of the ith pixel that belongs to the
ground truth binary mask. N is the total number of pixels in the predicted mask or ground truth mask. The loss function is
optimized directly on the evaluation metric F1 score, as described in the experimental part.
4. Experiments

In this section, we evaluate the proposed GC-DCNN algorithm on two different publicly available road datasets to demon-
strate its superiority. Seven comparative methods, namely, FCN [23], UNet [29], ResUNet [40], CasNet [7], RoadCNN [3],
RCNN-UNet [35] and Topo-UNet [25] are selected as baselines. The visual and quantitative segmentation results are pre-
sented. We perform ablation experiments to prove the effectiveness of the proposed RDB and introduced PPM. We also
investigate the influences of different loss functions on road segmentation performance.



Fig. 5. The original images and corresponding labels in two different dataset. The areas of road and background are imbalanced.
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4.1. Experimental settings

4.1.1. Datasets
.

1) CasNet dataset (CNDS): CNDS, built by Cheng et al. [7], contains 224 VHR images collected from Google Earth. The size of
each image in the dataset is at least 600 � 600 pixels, and the spatial resolution is 1.2 m per pixel. Most images contain
complex backgrounds and occlusions caused by trees or cars, making the road segmentation task challenging. We follow
the setting of [7] and randomly select 180 images as the training set and 14 images as the validation set. The remaining 30
images are used as the test set.
2) Roadtracer dataset (RTDS): This dataset was created and first used in [3]. RTDS is a large corpus of high-resolution satel-
lite images and ground truth road network graphs covering the urban core of 40 cities in 6 countries. In each city, approx-

imately 24 km2 of the center area is selected as the sample of the dataset for a total of 300 images with a resolution of
4096 � 4096. Following [3], images from 25 cities are randomly selected for training, while the test set contains images
from the 15 remaining cities.

4.1.2. Data preprocessing and augmentation
We cannot directly train the models with the original images due to the high resolution of remote sensing images and the

limited GPU resource. Moreover, the number of samples in the original dataset is insufficient for training these deep
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learning-based models. Therefore, following previous studies [7,3], data preprocessing and augmentation are adopted before
model training.

1) CNDS: Following [7], given an image in the training and validation sets, we first crop 5 fixed-position patches (4 corner
patches and the center one) and another 15 patches selected randomly from the free position of the image. The size of the
patches is 256 � 256. We flip each patch in the horizontal direction and rotate the original and flipped patches at a step of
90� 4 times. Thus, the size of the training and validation sets is increased by a factor of 160 (20 � 2 � 4). For the test set,
we perform cropping operation without rotation.
2) RTDS: We use the same setting as [3] and divide all the 4096 � 4096 images in the dataset into 256 patches with size
256 � 256.

We filter the samples with less than 1000 pixels of road area in both datasets to effectively calculate loss in training and
accuracy in testing. Finally, 28,420 and 590 samples remain in the training and test sets of CNDS, respectively. The number of
images in the training and test se of RTDS is 102,212 and 12,936, respectively.

4.1.3. Evaluation metrics
Four commonmetrics, namely, completeness (COM), correctness (COR), quality (Q), and F1 score, are used to evaluate the

quantitative performance of road segmentation. COM measures the percentage of matched areas in the ground truth map.
COR represents the proportion of matched road areas in the predicted segmentation map. Q combines COM and COR. The F1
score is a harmonic average between COM and COR that can measure the robustness of methods. The four metrics are for-
mulated as follows:
COM ¼ TP
TPþ FN

; COR ¼ TP
TPþ FP

;

Q ¼ TP
TPþ FNþ FP

; F1 ¼ 2� COM� COR
COMþ COR
where TP, FP and FN denote the true positive, false positive and false negative respectively. Notably, a larger metric value
indicates better performance.

In addition, two efficiency metrics, namely, Params (the number of model parameters) and speed (the running speed of
the model), are included to measure processing efficiency.

4.1.4. Implementation details
The proposed GC-DCNN is implemented using the Pytorch framework and trained on 4 NVIDIA TitanXp GPU in a dis-

tributed manner. During training, images with size 256 � 256 are randomly sampled from the dataset and then fed into
the network. Given the limited GPUmemory, the minibatch size is set as 12 for each GPU, and the Adam optimizer with betas
of 0.9 and 0.999 is adopted to optimize the GC-DCNN model with the original learning rate of 0.001. We train the model for
50 epochs and drop the learning rate by a factor of 0.1 at 10 and 40 epochs. In the inference process, we set the threshold at
0.5, indicating that the final value of each position in the output probability map is 1 if the predicted value is greater than 0.5
and 0 otherwise.

4.1.5. Comparison methods
Comparison methods can be divided into two major categories: two baselines for the general image segmentation task

and five improved methods for the road segmentation task. In addition, considering the fairness for all the methods, we
slightly adjust the backbone networks of several baselines for the same feature extraction ability. We adopt the original
architectures of several baselines, including CasNet, ResUNet, RoadCNN, and RCNN-UNet and make no changes. Here, we
briefly describe the comparison methods as follows.

1) FCN: FCN is the first work to train a fully convolutional network end-to-end for pixelwise prediction and achieve state-
of-the-art performance during that time. FCN takes an arbitrary sized image as input and has been used as a solid baseline
in many semantic segmentation studies.
2) UNet: UNet was initially proposed for the biomedical image segmentation, which has an encoderdecoder structure.
UNet has been extended to many other segmentation tasks due to its sophisticated structure and excellent performance.
We construct a similar encoder network for UNet in this experiment to keep the same feature extraction ability as other
methods.
3) CasNet: Cheng et al. [7] proposed the cascaded end-to-end CNN for road segmentation and centerline extraction. We
select the network for the road segmentation part, which has the symmetrical encoderdecoder structure without skip
connection for 20 convolutional layers in CasNet.
4) ResUNet: ResUNet combines the advantages of UNet and residual learning, promoting information propagation among
different-level features and making the training easy.
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5) RoadCNN: RoadCNN is the deep learning-based baseline in [3]. RoadCNN consists of 20 convolutional layers and over
512 channel layers with dropout.
6) RCNN-UNet: RCNN-UNet designs an RCNN unit, in which convolutional filters share weights to build a deeper network
to better utilize the spatial context.
7) Topo-UNet: In this method, a new loss function, called topology-aware loss, is proposed as a penalty term with binary
CE loss to account for the topology information. Here, we adopt the UNet mentioned in 2) as the encoderdecoder network
for a fair comparison.

4.2. Performance evaluation

4.2.1. Evaluation on CNDS
We firstly evaluate the performance of all the methods on the CNDS test set. The quantitative comparisons are reported in

Table 2, and the visual segmentation results of different methods are presented in Fig. 6.
In Table 2, the best performance of each evaluation metrics is highlighted in bold. GC-DCNN outperforms all the com-

pared methods in all the four metrics. The overall accuracies of all the methods are relatively high and comparable because
the roads in CNDS are relatively neat and the background is not too complex. The basic FCN model has the lowest accuracy
because the predicted segmentation result is directly upsampled from high-level feature maps without refinement. The
other methods based on the encoderdecoder structure perform better because the refinement process and feature fusion
strategy provide richer spatial detail information. Although RoadCNN exhibits a performance similar to that of GC-DCNN
in COM, its COR is unsatisfactory. Compared with basic UNet, Topo-UNet, which is optimized with topology-aware loss,
achieves performance improvement. Our proposed GC-DCNN obtains the highest F1 score, demonstrating its stronger
robustness and generalization compared with the other methods. With regard to processing efficiency, the simple methods
have less parameters and faster speed. Meanwhile, our GC-DCNN achieves the best performance with competitive parame-
ters and speed.

Fig. 6 presents the visual road segmentation results of these methods on the same test image. All the compared methods
do not perform well in dealing with the occlusion problem caused by the tree (as highlighted in the sub-images) marked in
the segmentation results. By contrast, GC-DCNN solves this problem efficiently. This result can be attributed to the rich spa-
tial information provided by the larger receptive field of RDBs during the encoder process and the global context information
generated by PPM.

4.2.2. Evaluation on RTDS
The quantitative performance and visual performance of all the methods on RTDS are provided in Table 3 and Fig. 7,

respectively.
Table 3 shows that GC-DCNN significantly outperforms all the compared methods in COM, but exhibits ordinary perfor-

mance in COR, indicating that GC-DCNN finds more true positive pixels with only a few additional false positive pixels. The
highest values in Q and F1 also demonstrate that GC-DCNN achieves a more balanced and robust performance compared
with the other segmentation algorithms. Given the complex urban background, all the methods provide relatively low accu-
racy compared with the CNDS results. The efficiency of all the methods is the same as that for CNDS because we simply
change the evaluation dataset.

As shown in Fig. 7, the road segmentation results of FCN, UNet, CasNet, ResUNet, and RCNN-UNet are irregular due to the
occlusion of surrounding trees and several mispredicted road regions among all the baseline methods. The segmentation
result of GC-DCNN is smoother and more similar to the ground truth.

4.3. Ablation study

4.3.1. Ablation study of RDBs
Table 4 shows the results of GC-DCNN with different dilated convolution configurations. The encoder constructed with

stacked RDBs outperforms the encoder that typically uses dilated convolution in the bridge stage of UNet [21,43]. The result
proves that the encoder of GC-DCNN can extract more representative features than the latter in a road segmentation task.
Table 2
Evaluation results of different methods on the CNDS test set. The measure of time is seconds per image.

Method COM COR Q F1 Params Speed

FCN 91.36 93.75 86.12 92.34 29.14 M 0.003 s
UNet 91.87 93.93 86.75 92.75 35.66 M 0.009 s
CasNet 91.85 94.27 86.96 92.90 26.30 M 0.009 s
ResUNet 91.87 94.45 87.16 92.99 30.75 M 0.011 s
RoadCNN 92.85 94.57 88.15 93.57 77.15 M 0.025 s

RCNN-UNet 92.30 94.86 87.86 93.44 30.48 M 0.018 s
Topo-UNet 92.56 95.15 88.36 93.71 35.66 M 0.010 s
GC-DCNN 92:88 95:40 88:87 94:02 38.57 M 0.013 s



Table 3
Evaluation results of different methods on the RTDS test set.

Method COM COR Q F1 Params Speed

FCN 50.37 60.17 39.81 54.84 29.14 M 0.003 s
UNet 50.79 64.85 40.45 55.11 35.66 M 0.009 s
CasNet 57.85 62.16 43.93 58.61 26.30 M 0.009 s
ResUNet 53.55 60.35 40.38 55.38 30.75 M 0.011 s
RoadCNN 61.39 66:34 48.19 62.47 77.15 M 0.025 s

RCNN-UNet 58.58 62.69 44.60 59.20 30.48 M 0.018 s
Topo-UNet 59.27 65.11 46.50 61.02 35.66 M 0.010 s
GC-DCNN 67:18 64.62 50:24 64:59 38.57 M 0.013 s

(b) (c)

(d) (e) (f)

(g) (h)

(a)

(i)

Fig. 6. Visualization of road segmentation results on a test sample from CNDS. a: Original test image. b: Corresponding ground truth of image. c:
Segmentation result of FCN. d: Segmentation result of UNet. e: Segmentation result of CasNet. f: Segmentation result of ResUNet. g: Segmentation result of
RoadCNN. h: Segmentation result of RCNN-UNet. i: Segmentation result of our proposed GC-DCNN.
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Table 4
Investigation of the influence of the placement of dilated convolution. Road segmentation results on the test set of RTDS.

Method COM COR Q F1

GC-DCNN Bridge 65.97 64.64 49.65 64.08
RDB 67:18 64:62 50:24 64:59

(b) (c)

(d) (e) (f)

(g) (h)

(a)

(i)
Fig. 7. Visual results of all the road segmentation methods on a test image from RTDS. a: Original test image. b: Corresponding ground truth of image. c:
Segmentation result of FCN. d: Segmentation result of UNet. e: Segmentation result of CasNet. f: Segmentation result of ResUNet. g: Segmentation result of
RoadCNN. h: Segmentation result of RCNN-UNet. i: Segmentation result of our proposed GC-DCNN.
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When designing the RDB unit, we notice that different dilation ratio combinations exert varying effects on the final
results. To obtain the best performance, we conduct an ablation experiment to determine the optimal combination of dila-
tion ratios. Given that the first convolutional layer with a stride of 2 downsamples the resolution, we fix its dilation ratio at 1
and only discuss the last 2 convolutional layers of the RDB unit. We arrange the combinations of dilation ratios in ascending
order. The road segmentation results of GC-DCNN with different dilation ratios on RTDS are provided in Table 5. The best



Table 5
Results of GC-DCNN with different dilation ratios on the test set of RTDS. Here, we only present the dilation ratio of last two convolutional layers.

method Dilated Ratio COM COR Q F1

GC-DCNN (1,1) 67:48 63.57 49.68 64.20
(1,2) 66.85 64.54 50.02 64.45
(1,3) 66.42 64:95 50.10 64.44
ð2; 2Þ 67.18 64.62 50:24 64:59
(2,3) 66.84 64.45 49.97 64.34
(3,3) 66.88 64.27 49.84 64.20
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performance of COM and COR is the combination of (1,1) and (1,3), respectively. Meanwhile, GC-DCNN with a dilation ratio
combination of (2,2) achieves the best comprehensive Q and F1 scores. Different dilation ratio combinations produce various
feature representations, and the results show that (2,2) is the optimal combination for this task.

4.3.2. Ablation study of PPM
We perform an experiment on RTDS to investigate the effect of PPM, which produces the core global context feature in

GC-DCNN. The results are presented in Table 6. The network without PPM works poorly in all the metrics, whereas the net-
work with PPM exhibits more comprehensive advantages, indicating that the global context information plays an important
role in improving road segmentation performance. Fig. 8 presents the visual comparison results of GC-DCNN with PPM. The
model without PPM incorrectly predicts some background areas as roads, and the predicted road region is not as smooth as
that predicted by GC-DCNN with PPM.

4.3.3. Ablation study for loss function
Lastly, we discuss the impact of using different loss functions on the performance of GC-DCNN on CNDS and RTDS. Table 7

indicates that the model optimized using the dice coefficient loss exhibits the best performance on both datasets. For the
simpler dataset CNDS, the segmentation results of GC-DCNN with the two different loss functions are similar, but the model
based on the dice coefficient loss performs better on all the metrics. For the more challenging dataset, RTDS, in which road
pixels have more complex background, GC-DCNN with the dice coefficient loss shows significant improvement in the COM
metrics and approximately 3.6% higher in F1 score compared with the model with BCE loss but slightly worse performance in
)b()a(

Fig. 8. Visual results on a test image from RTDS. a: GC-DCNN without PPM. b: GC-DCNN with PPM.

Table 6
Investigation of the influence of PPM. Road segmentation results on the RTDS test set.

Method PPM COM COR Q F1

GC-DCNN no 65.32 64.32 49.08 63.47
yes 67:18 64:62 50:24 64:59



(a) (c) (d)(b)

(a) (b) (c) (d)

Fig. 9. Visual results on a test image from CNDS and RTDS. The first row of image belongs to CNDS and the second row belongs to RTDS. a: The original
image in the test set. b: Corresponding ground truth. c: Visual result of GC-DCNN with BCE loss. d: Visual result of GC-DCNN with dice coefficient loss.

Table 7
Road segmentation results with different loss functions on the CNDS and RTDS test sets. BCE: binary cross entropy loss. Dice: dice coefficient loss.

Method Dataset Loss function COM COR Q F1

GC-DCNN CNDS BCE 92.25 94.86 87.86 93.42
Dice 92:88 95:40 88:87 94:02

RTDS BCE 59.72 65:11 46.50 61.02
Dice 67:18 64.62 50:24 64:59
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COR. The preceding experimental results on the two different datasets demonstrate that GC-DCNN that is directly optimized
on the evaluation metrics is better in solving the occlusion problem and distinguishing between road regions and back-
ground areas. The visualization results of GC-DCNN with different loss functions on both datasets are presented in Fig. 9,
which shows similar experiment results.
5. Conclusion

In this study, we propose a novel GC-DCNN for the road segmentation of remote sensing images. GC-DCNN exhibits the
following advantages. 1) We design RDBs to enlarge the receptive field, such that the encoder network built with RDBs can
produce more discriminative features with high resolution. The residual connection strategy in a block facilitates the flow of
information and eases deep network training. 2) PPM is used to capture multiscale global context information and generate
features with rich representation. The designed RDB and PPM aim to enhance feature representation, which is crucial for
solving the occlusion problem and improving segmentation performance. 3) The dice coefficient loss is adopted as the loss
function to optimize the network. This loss can efficiently address the class imbalance problem in a binary segmentation
task. Extensive experiments are conducted on two real-world benchmark road segmentation datasets. The results show that
our proposed GC-DCNN method achieves state-of-the-art performance.
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