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Figure 1: This work proposes Bézier Splatting, a new differentiable vector graphics (VGs) renderer
that achieves an order-of-magnitude computational speedup in comparison with the state-of-the-art
method DiffVG [15] (tested on a NVIDIA RTX 4090 GPU).

Abstract

Differentiable vector graphics (VGs) are widely used in image vectorization and
vector synthesis, while existing representations are costly to optimize and struggle
to achieve high-quality rendering results for high-resolution images. This work
introduces a new differentiable VG representation, dubbed Bézier Splatting, that
enables fast yet high-fidelity VG rasterization. Bézier Splatting samples 2D Gaus-
sians along Bézier curves, which naturally provide positional gradients at object
boundaries. Thanks to the efficient splatting-based differentiable rasterizer, Bézier
Splatting achieves 30× and 150× faster per forward and backward rasterization
step for open curves compared to DiffVG. Additionally, we introduce an adaptive
pruning and densification strategy that dynamically adjusts the spatial distribution
of curves to escape local minima, further improving VG quality. Furthermore, our
new VG representation supports conversion to standard XML-based SVG format,
enhancing interoperability with existing VG tools and pipelines. Experimental
results show that Bézier Splatting significantly outperforms existing methods with
better visual fidelity and significant optimization speedup. The project page is
xiliu8006.github.io/Bezier_splatting_project.

1 Introduction
Vector graphics (VGs) represent images through parametric primitives such as points, curves, and
shapes. Unlike raster images, they enable structured representations, lossless resizing, compact
storage, and precise content editing, making them crucial for various applications such as user
interfaces and animation.

Recently, differentiable VG rasterization gains significant attention, as it allows raster-based al-
gorithms to edit or synthesize VGs through gradient-based optimization. DiffVG [15] is the first
differentiable VG framework that leverages the anti-aliasing algorithm to differentiate the vector
curves that are inherently discontinuous in pixel space. However, it suffers from slow training
and low-fidelity rendering, particularly for high-resolution images. LIVE [18] further introduces a
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layer-wise coarse-to-fine strategy to improve quality and topology. However, it is highly computation-
ally expensive, requiring 5 hours to vectorize a 2K-resolution image. Additionally, learning-based
methods such as Im2Vec [21] train neural networks to map pixels to VGs, but they are restricted
to simple graphics and struggle with out-of-domain generalization. Towards scalable applications
of VGs, these challenges highlight the need for a differentiable VG method with better efficiency,
fidelity, and generalization capability.

This work presents Bézier Splatting, a new differentiable VG representation that optimizes Bézier
curves through Gaussian splatting-based rasterization. We sample 2D Gaussian points along Bézier
curves and their interior regions, then leverage the Gaussian Splatting framework [12] for efficient
curve rasterization. Unlike DiffVG [15] which requires computationally intensive boundary sampling
and gradient computation, 2D Gaussians inherently provide direct positional gradients at object
boundaries through its differentiable Gaussian formulation, enabling over 150× faster backward
computation over DiffVG for open curves. We further introduce an adaptive pruning and densification
strategy that adaptively removes redundant curves while adding new ones to necessary regions during
optimization. It helps the optimization process escape the local minima of current spatial distributions
of curves, formulating a “global receptive field” for further improving the VG optimization process.
As shown in Fig. 1, Bézier Splatting outperforms the state-of-the-art differentiable VG rasterizer
DiffVG [15] for both open and closed curves in terms of efficiency and rendering quality. We
summarize the contribution of this work as follows.

• We propose a novel differentiable vector graphic representation, Bézier Splatting, which
achieves an order-of-magnitude computational speedup while producing high-quality ren-
dering results.

• We present an adaptive pruning and densification strategy to improve the optimization
process of Bézier curves by escaping the local minima of the spatial distributions of curves.

• Extensive experiments demonstrate that Bézier Splatting outperforms existing differentiable
VG rendering methods in efficiency and visual quality.

2 Related works
2.1 Vectorization and Rasterization
Image vectorization and vector graphic (VG) rasterization are important research topics in computer
graphics and computer vision. DiffVG [15] introduces the first differentiable VG rasterization
framework, laying a foundation for optimizing and generating vectorized representations through
gradient-based methods. It expands the applicability of VGs to a broader range of tasks including
image vectorization, text-to-VG generation, and painterly rendering. Based on DiffVG [15], LIVE
[18] and O&R [7] further proposes a layer-wise path initialization strategy, vectorizing raster images
into compact and semantically consistent VG representations while preserving image topology. Du et
al. [4] use linear gradients to fill the regional colors, and Chen et al. [3] propose a specific implicit
neural representation to model regional color distributions, enhancing the color representation within
closed Bézier curves. However, these DiffVG-based VG rasterization approaches [15, 18, 4, 3] suffer
from slow optimization, often requiring several hours to process a 2K-resolution image with 1,024
curves.

With the advancement of deep learning, another line of approaches directly learns deep neural
networks for vector synthesis. Lopes et al. [16] combine image-based encoder and VG decoder
to generate fonts. Img2Vec [21] integrates the encoder with recurrent neural networks (RNNs) by
leveraging sequential modeling for structured vector synthesis. SVGFormer [2] further adopts a
Transformer-based architecture [25] to improve the capacity for representing complex geometric
structures. More recently, diffusion models [8] have been applied to text-to-VG synthesis [33, 11,
30, 29]. However, existing learning-based VG synthesis approaches are limited to generating simple
graphics, and struggle with out-of-domain data. In this work, we propose a novel VG representation
dubbed Bézier Splatting that achieves high-fidelity VG rendering within minutes of optimization for
high-resolution images.

2.2 Gaussian Splatting
3D Gaussian Splatting [12, 38] emerges as a promising approach for novel view synthesis (NVS)
and attracts significant attention from the community. Its explicit 3D Gaussian-based volumetric
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representation enables high-fidelity 3D reconstruction, while the differentiable tile-based rasterization
pipeline ensures real-time and high-quality rendering. It has been applied to various domains and
tasks, such as 4D modeling [17, 28] and 3D scene generation [31, 23]. Several works further improve
the Gaussian primitives for better representation quality. SuGaR [5] proposes to approximate 3D
Gaussians with 2D Gaussians for enhanced surface reconstruction. 2D Gaussian Splatting [9] directly
adopts 2D Gaussians for 3D reconstruction for simplified optimization and improved geometric
fidelity. TetSphere splatting[6] further employs tetrahedral meshes as the geometric primitives
to achieve high-quality geometry. Particularly for 2D image representation, GaussianImage [35]
adopts 2D Gaussians [9] for efficient image representation, achieving a compact and expressive
alternative to rasters or implicit representations [22, 19]. Image-GS [36] further enhances it through
a content-adaptive compression approach. This work proposes to integrate Gaussian splatting with
vector representations for differentiable VG rasterization. By sampling 2D Gaussians on Bézier
curves and rasterizing through the efficient Gaussian splatting pipeline, the proposed Bézier Splatting
representation enables fast yet high-quality VG rendering, even for high-resolution images with
complex structures.

3 Method
3.1 Overall
Given a raster image, our goal is to efficiently vectorize it into a VG representation that closely
resembles the input while preserving the details. Existing methods, including DiffVG [15] and its
following work [18, 3], incur substantial computational costs due to the pixel color accumulation
computation. Specifically, DiffVG first constructs a bounding volume hierarchy (BVH) tree to
determine the curves that intersect with each individual pixel, then solves equations to precisely
determine whether a pixel lies within a region and to compute the inward or outward gradients at
boundary points.

To overcome this inefficiency, this work proposes a novel VG representation, Bézier Splatting, which
is inspired by the high computational efficiency and expressive fitting capacity of Gaussian splatting
[35] for rasterization. Bézier Splatting samples 2D Gaussian points along Bézier curves and their
interior regions, then leverages the Gaussian splatting method for efficient rasterization, enjoying the
following advantages:

• This design significantly accelerates the forward and backward pass of Bézier curve rasteriza-
tion, achieving an order-of-magnitude speedup without specialized optimization techniques;

• The 2D Gaussian representation inherently provides direct position gradients for object
boundaries, eliminating the need for additional computations such as boundary sampling
and gradient derivation via the Reynolds transport theorem in DiffVG [15];

• It supports richer texture representation by allowing properties such as spatially varying
opacity and width, facilitating complex effects such as linear-gradient color transitions
within a single curve.

To further improve the fidelity and expressiveness of Bézier Splatting, we introduce a pruning
and densification approach (Sec. 3.5), which dynamically removes redundant Bézier curves while
adaptively adding necessary curves in regions that have high reconstruction error. Fig. 2 illustrates
the algorithm flow of Bézier Splatting. More details are discussed in the following sections.

3.2 Primitives of Bézier Splatting
Bézier curves. We adopt Bézier curves as the parametric primitives of VGs. The representation
includes N Bézier curves with a degree of M , as:

Bi(t) =
M∑
j=0

BM
j (t)P

(i)
j , t ∈ [0, 1], i ∈ {1, . . . , N}, (1)

where t is a normalized position on the curve, P (i)
j represents the j-th control point of the i-th Bézier

curve, and BM
j (t) is the Bernstein polynomial of degree M , given by:

BM
j (t) =

(
M

j

)
(1− t)M−jtj . (2)
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Figure 2: An illustration of the algorithm flow of Bézier Splatting. It begins by randomly initializing
Bézier curves and uniformly sampling Gaussians points along them. These Gaussians are then
rasterized into the image, enabling gradient-based computation to optimize parameters of both Bézier
curves and Gaussians. Curves with negligible opacity or extremely small shapes are removed, while
new curves are adaptively added into areas with high reconstruction error, ensuring curves are placed
in areas requiring finer details. → forward,← backpropagation,← error map.

Each Bézier curve Bi(t) is associated with an RGB color parameter ci ∈ R3, and an opacity parameter
oi ∈ [0, 1] that defines the transparency of the curve.

To formulate an open curve, we follow DiffVG [15] to adopt three sequentially connected Bézier
curves with two control points on each. An open curve requires an additional width parameter to
define the stroke thickness. For a closed curve, we adopt two connected Bézier curves, enabling a
more efficient sampling in enclosed regions. For closed curves, color filling is applied. The connected
Bézier curves in either an open or closed curve share the color parameters, but they have separate
opacity parameters to better model the opacity changes along the curves or within closed areas for
enriching the texture representation capacity.

2D Gaussians on curves. Our Bézier Splatting novelly associates 2D Gaussians with each Bézier
curve. The standard formulation of 2DGS [9] parameterizes each 2D Gaussian by position, color,
rotation, scale, opacity, and depth. However, to ensure a compact and differentiable representation,
these parameters of Gaussians in our Bézier Splatting are inherited from the corresponding control
points. We discuss more details of the sampling of Gaussians, rasterization process, and backaward
computation in the following sections.

3.3 Sampling Gaussians on Bézier Curves
This work introduces a fast differentiable VG rasterizer based on Gaussian splatting, allowing
gradients from raster images to be backpropagated to the 2D Gaussians, then further backpropagated to
the Bézier curves through a differentiable sampling strategy, resulting in a highly efficient optimization
of the Bézier curves.

Specifically, for each Bézier curve Bi(t), we uniformly sample K points along it based on Eq. 1. The
sampled point set bi is:

bi =
[
Bi(t0),Bi(t1), . . . ,Bi(tK−1)

]
, (3)

where tk is uniformly sampled from [0, 1].

Sampling 2D Gaussians on open curves. We represent an open curve by using 3 sequential Bézier
curves Bi(t) with a degree of 4 to form a single continuous stroke, by following the same setting as
DiffVG [15]. The stroke consists of 10 control points, as the end point of each Bézier curve serves
as the start point of the next. To ensure that the final rendering result generates a continuous stroke
with consistent width and color, we calculate the x-direction scale of a Gaussian point by the distance
between neighboring points by following Eq. 7, while the y-direction scale is a learnable parameter
that represents the stroke width.

For both closed and open curves, the depth d of a Gaussian is assigned based on the area of curves,
ensuring smaller curves are not occluded by larger ones. It prevents them from being ignored during
optimization, as the gradient would not count Gaussians when the accumulated opacity exceeds 1.

Sampling 2D Gaussians on closed curves. Achieving accurate color filling is non-trivial for closed
curves. A straightforward approach involves uniformly sampling a large number of points, identifying
intersecting curves, solving equations to determine which curves cover them, and then computing
scaling factors based on the sampled points. However, this process is computationally expensive,
making it inefficient for curve rasterization and optimization.
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To address this limitation, we propose a new structure named paired Bézier curve structure, which
supports two groups of Bézier curves with equal cardinality and arbitrary degrees, forming a closed
region. This structure enables efficient and flexible sampling within the enclosed region between the
two curve groups. Specifically, the two Bézier curves B1(t) and BR+1(t) share the same start and end
points, forming the inside curves and boundaries of a closed region. A total of R intermediate Bézier
curves are generated by linearly interpolating the corresponding control points P (0)

j and P
(R+1)
j as:

P
(k)
j = (1− tk)P

(0)
j + tkP

(R+1)
j , k = 1, . . . , R, (4)

where tk ∈ [0, 1] are sampled from a normalized cumulative distribution function (CDF). The
interpolated control points {P (k)

j } define intermediate curves that form a dense strip between the
two boundaries. Note that this paired structure can naturally extend to cases where each curve is
composed of multiple connected Bézier segments, provided that all segments have the same number
of control points, similar to the representation used in DiffVG [15].

This non-uniform sampling ensures that points near the boundary curves have small scales, mitigating
the influence of interior Gaussians to the exterior of closed area. The interpolated Bézier curves are:

Binterp
k (t) =

M∑
j=0

BM
j (t)P

(k)
j , k = 1, . . . , R. (5)

Then, 2D Gaussians are sampled on these interpolated curves, by following the same procedure
as open curves (Eq. 3), resulting in a structured and efficient point sampling within the enclosed
region. Furthermore, to mitigate artifacts caused by non-convex curve shapes during interpolation,
we incorporate the Xing loss from LIVE [18], which enforces convexity constraints on curve shapes,
to improve the stability of the interpolation process. The full set of sampled points on the i-th Bézier
curve is:

X =
[
b0,b1, . . . ,bR+1

]
∈ R(R+2)×K×2. (6)

Let Xr,k denote the 2D position of the k-th sampled point on the r-th interpolated curve. To construct
anisotropic 2D Gaussian primitives aligned with the local geometry, we define the spatial scales as
follows. The x-direction of each 2D Gaussian is defined to align with the local tangent direction
of the curve (i.e., along the curve), while the y-direction is perpendicular to it (i.e., across adjacent
curves).

The scale σx(r, k) is computed from the Euclidean distance between consecutive points along the
curve, and σy(r, k) is computed from the distance between corresponding points on adjacent curves:

σx(r, k) = |Xr,k+1 −Xr,k|2/ρ,
σy(r, k) = |Xr+1,k −Xr,k|2/ρ.

(7)

Here, ρ is a global constant that controls the overall density and overlap of the Gaussians. The rotation
θr,k of each Gaussian is defined by the angle of the local tangent vector, estimated from neighboring
points as

θr,k = atan2 (yr,k+1 − yr,k−1, xr,k+1 − xr,k−1) . (8)

For boundary points, the rotation is set to align with the nearest available neighbor.

3.4 Splatting-based Differentiable Rasterization
Once all Gaussians on Bézier curves are sampled, the rasterization process follows the Gaussian
splatting pipeline [12], which is very fast in both forward and backward computation. Different
from GaussianImage [35], we use α-blending for pixel rendering instead of the accumulation-based
blending. Accumulation-based blending calculates the pixel value based on all overlapping Gaussians,
such that it conflicts with the rendering principles of VGs, where occlusion plays a crucial role in
defining vector structures. α-blending ensures proper occlusion handling, as it allows foreground
elements to contribute more to the final pixel value. The rendering of a pixel is:

Cn =
∑
i∈M

ciαi

i−1∏
j=1

(1− αj). (9)
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Cn is the n-th pixel color, ci is the color of corresponding Gaussians, αi is computed by the projected
2D covariance Σi:

αi = oi exp
−σi , σi =

1

2
dT
nΣ

−1
i dn. (10)

where dn is the distance between the pixel and Gaussian center, and Σi can be modeled by θi, σi
x and

σi
y as:

Σi = (RiSi)(RiSi)
T . (11)

Ri =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
, Si =

[
σi
x 0
0 σi

y

]
. (12)

Discussion on method efficiency. The rasterization process of Bézier Splatting is very efficient,
since we directly sample 2D Gaussians from Bézier curves in a differentiable manner, then splat
them to the 2D plane. The rasterization pipeline remains end-to-end differentiable while being highly
optimized for parallel computation and large-scale matrix operations. As a result, Bézier Splatting is
a highly efficient and fully differentiable VG representation, which ensures both fast rendering and
gradient-based optimization. It not only preserves the flexibility of VGs but also allows seamless
integration into deep learning frameworks, making it well-suited for tasks requiring high-quality and
editable vector representations.

3.5 Optimization
Training objective. Given a raster image I ∈ RH×W×3, the goal of image vectorization is to
vectorize the image into Bézier curves while ensuring a high-fidelity reconstruction. We first
randomly generate a set of Bézier curves to lay on the canvas, then employ the differentiable rasterizer
discussed in Sec. 3.4 to render a raster image Î ∈ RH×W×3. The Bézier curves can then be
optimized through any gradient-based loss functions. In this work, we formulate the optimization
objective as minimizing the loss between I and Î while enforcing the curves to be convex. Therefore,
we only adopt an L2 loss and a Xing loss LXing [18], as:

L = λ1∥Î − I∥22 + λ2LXing (13)

where λ1 and λ2 are hyperparameters that trade off the two loss functions.

Adaptive curve pruning and densification. The gradients of 2D Gaussians are influenced by local
pixels only. Therefore, it is hard for 2D Gaussians to dynamically reallocate to regions requiring finer-
grained details. The Gaussians would be trapped in local minima, leading to redundant Gaussians that
are optimized as either low opacity or excessively large size, resulting in artifacts in rendering results.

In standard 3D Gaussian Splatting pipeline [12], Gaussians with low opacity or excessive size are
pruned, whereas those with high gradient responses are split into two. However, this strategy is not
directly applicable to Bézier curves. Note that in volumetric representations, large Gaussians are
usually unnecessary for modeling any particular structure. In contrast, VG representations often
encompass large uniform regions such as backgrounds or areas with homogeneous colors (e.g., walls).
Consequently, the size-based pruning strategy would remove critical structures in VG representations.
Similarly, splitting a Bézier curve into two can introduce significant randomness, as high-gradient
regions do not always indicate poor reconstruction in VGs. Since VGs assume a uniform color within
each enclosed region, complex textures naturally produce high gradients. This does not imply the
region should be split, as it may disrupt the semantic consistency of the VG representation.

To address this issue, this work introduces a new pruning and densification strategy to dynamically
adjust the density of Bézier curves throughout the optimization process. For pruning redundant Bézier
curves, we apply three criteria to ensure a stable and precise optimization process. First, we remove
curves with opacity below a dynamic threshold that gradually decreases as optimization progresses,
ensuring that weakly contributing curves are eliminated while preserving essential structures. Second,
we remove curves with an area below a predefined threshold, as they contribute minimally to the
final representation. To remove visually insignificant or noisy Bézier curves, we apply an opacity-
based filtering strategy: for per-segment opacities, we discard curves whose middle segment is
significantly fainter than both ends—often indicating that a single curve improperly spans a region
better represented by multiple curves; otherwise, we discard curves with overall opacity below a
threshold (e.g., 0.2) to eliminate globally low-visibility curves. Third, we remove curves that exhibit
high color similarity with surrounding curves and have significant overlap, as they provide little
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Table 1: Computational speed for rendering a 2,040×1,344 image with 2,048 curves.
Open curve Closed curve

DiffVG [15] Bézier Splatting Speedup DiffVG [15] Bézier Splatting Speedup
Forward pass 141.3ms 4.5ms 31.4× 85.2ms 14.1ms 6.0×
Backward pass 701.3ms 4.7ms 149.2× 448.3ms 24.58ms 18.2×

DiffVG, PSNR: 21.12 LIVE, PSNR: 20.96

LIVSS, PSNR: 18.40 Ours, PSNR: 21.79

Raster input

Raster input DiffVG, PSNR: 23.95 Ours, PSNR: 26.50

2,048 open  curves
512 closed  curves

Figure 3: A qualitative comparison of our method and the state-of-the-art differentiable VG rasteriza-
tion methods, including DiffVG [15], LIVE [18], and LIVSS [27].

additional information and can be pruned without affecting the final representation. By removing
such curves, we allow the optimization to introduce more appropriate replacements, leading to a
more accurate and visually coherent vectorized representation. For curve densification, we adopt an
error-driven curve allocation strategy inspired by LIVE [18]. Specifically, we compute connected
error regions, rank them by area, and add new Bézier curves into the highest-error regions. This
adaptive redistribution mechanism ensures that curves are allocated to where they would contribute
the most to the reconstruction fidelity. The pruning and densification strategy enables a “global
receptive field” for redistributing curve density, effectively preserving visual details for high-fidelity
rendering while maintaining a compact vector representation.

4 Experiments
4.1 Experimental Setups

Implementation details. We implement Bézier Splatting in PyTorch [20] and optimize it by using
the Adam optimizer [13] with a StepLR learning rate scheduler. The learning rate is initialized
at 0.01 for color, 2e-4 for Bézier curve control points, and 0.1 for opacity. For the pruning and
densification strategy, the opacity threshold is set to 0.02, and the overlap threshold based on Axis-
Aligned Bounding Boxes (AABB) is set to 0.9. Following the approach in LIVE [18], new curves
are initialized in a circular pattern, and the number of added curves matches the number of removed
ones to maintain a constant total curve count. Open curves are optimized for 15,000 iterations, and
closed curves are optimized for 10,000 iterations. Pruning and densification are applied every 400
steps until the last but 1,000 steps, after which they are halted to stabilize the representation.

Datasets. We comprehensively evaluate our method across different image domains. We use the
publicly available DIV2K [24] dataset for evaluating natural images. Due to the high computational
cost of baseline method LIVE [18], we uniformly subsample the DIV2K dataset by selecting one out
of every four images, resulting in a final evaluation set of 200 images from the original 800-image

7



Table 2: Quantitative evaluation and optimization efficiency of differentiable VG methods on the
DIV2K dataset [24].

Method 256 curves 512 curves 1024 curves
SSIM↑ PSNR↑ LPIPS↓ Opt.↓ SSIM↑ PSNR↑ LPIPS↓ Opt.↓ SSIM↑ PSNR↑ LPIPS↓ Opt.↓

Open DiffVG [15] 0.552 19.83 0.563 18.9min 0.587 21.47 0.537 22.0min 0.616 22.62 0.517 30.6min
Ours 0.600 22.17 0.540 3.4min 0.646 23.79 0.498 3.3min 0.699 25.45 0.448 3.2min

Closed

DiffVG [15] 0.578 20.69 0.548 16.4min 0.601 21.82 0.531 18.5min 0.631 22.95 0.509 25.1min
LIVE [18] 0.576 20.09 0.543 2.6h 0.611 21.70 0.521 4.2h 0.648 23.11 0.495 5.1h
LIVSS [27] 0.586 17.71 0.542 39.2min 0.630 18.71 0.530 54.3min 0.678 19.83 0.517 1.4h
Ours 0.580 20.74 0.546 7.8min 0.607 22.11 0.528 8.3min 0.639 23.45 0.507 8.6min

Open, 512

Open, 256

Closed, 1024Closed, 512 Closed, 2048

Figure 4: Our Bézier Splatting achieves high-quality image vectorization results for various types of
images including artworks, cartoons, and natural images. Curve type and count are indicated at the
bottom right of each sample.

dataset. Additionally, we test our method on non-photorealistic images, including the artwork images
from Clipart1K dataset [10] and cartoon images from Danbooregions dataset [32], to demonstrate its
effectiveness for diverse types of images, as shown in Fig. 4.

4.2 Method Comparison
Table 1 reports the forward and backward runtime for processing 2,048 curves on an image with
a resolution of 2,040×1,344. Compared to DiffVG [15], our method significantly accelerates VG
rasterization by 31.4× faster per forward step and 149.2× faster per backward step for open curves.
For closed curves, our color filling strategy requires sampling 20 additional Bézier curves per closed
curve, while our method remains highly efficient, achieving 6× faster forward and 18.2× faster
backward computation.

Table 2 quantitatively evaluates the quality of differentiable VG representations by three commonly
used metrics, MS-SSIM [26], PSNR, and LPIPS [34]. Our method demonstrates higher optimization
efficiency and rendering fidelity for both open and closed curves with different curve numbers.

Fig. 3 visually compares DiffVG [15], LIVE [4], [27], and our Bézier Splatting under 512 closed
curves and 2048 open curves. Compared to DiffVG [15], our method captures significantly more
fine-grained textures. Compared to LIVE [18], our method effectively enhances rendering quality,
resulting in higher-fidelity results. This improvement stems from our method’s ability to globally
optimize all curves, rather than LIVE’s layer-by-layer path-adding strategy. Compared to LIVSS
[27], our method demonstrates superior ability in preserving fine structural details, especially in text
regions. Due to its heavy reliance on layer-wise semantic simplification, LIVSS struggles to optimize
regions where semantic information is ambiguous or difficult to extract. Moreover, by optimizing
the entire VG simultaneously, our approach ensures a cohesive and natural appearance, avoiding the
accumulation of errors and inconsistencies introduced by layer-wise updates.

As shown in Fig. 4, Bézier Splatting consistently renders high-quality VGs across various image
domains from photorealistic natural images, watercolor paintings, to cartoon images. Unlike learning-
based image vectorization methods [16, 21, 2], which can not easily generalize to out-of-domain data,
our method can flexibly handle different types of images.

4.3 Layer-wise Image Vectorization

Existing works such as LIVE [18], SGLIVE [37] and LIVSS [27] have demonstrated that layer-wise
vectorization strategies can significantly improve the topology and compositionality of DiffVG-
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Raster Input Bézier Splatting Bézier Splatting + Layer-wise Strategy

Figure 5: As a differentiable VGs renderer, Bézier Splatting can integrate with topology-aware
strategies such as layer-wise vectorization [18] to further improve compositionality and detail.

Converted SVG

Converted SVG

Deform & Replicate

Remove

Recolor

MoveBézier Splatting Rendering

Bézier Splatting Rendering

Figure 6: Our Bézier Splatting representation is compatible with the standard SVG XML format and
supports flexible vector editing operations.

generated vector graphics [15]. Since the proposed Bézier Splatting is a fast and differentiable VGs
renderer alternative to DiffVG, is naturally compatible with these topology-aware strategies and can
leverage them to further enhance the structural quality of the optimized vector outputs. As shown in
Fig. 5, we incorporate the layer-wise vectorization approach from LIVE [18] into the Bézier Splatting
optimization process This integration yields improved compositional integrity and finer details for
regions with complex patterns such as the butterfly’s wings.

4.4 Editability and Compatibility with SVG XML Format

Our Bézier Splatting representation is fully compatible with the standard SVG XML format, ensuring
the same editability as standard SVGs and seamless integration with existing SVG tools. As shown
in Fig. 6, a high-fidelity SVG can be obtained via a simple conversion algorithm (see Appendix
for details). Once converted to SVG, the vectorized output is fully editable at the primitive level,
allowing users to freely deform, remove, move, replicate, and recolor individual elements.

5 Conclusion

This work has presented Bézier Splatting, a novel differentiable vector graphics (VGs) representation
that leverages Gaussian splatting for efficient Bézier curve optimization. Our method achieves 30×
faster forward computation and 150× faster backward computation in rasterization compared to
existing methods, while also delivering high rendering fidelity. Additionally, our adaptive pruning
and densification strategy improves optimization by dynamically adjusting curve placement during
optimization. Extensive experiments have demonstrated that Bézier Splatting outperforms existing
differentiable VG methods in both training efficiency and visual quality, making it a promising
solution for scalable applications of VGs.

Limitation and future work. The closed curves in Bézier Splatting are enforced to have convex
shapes using Xing loss [18] to prevent false interpolation results, which may slightly reduce the
capacity of VG representations. Additionally, the closed curves require sampling more Gaussian
points to represent area boundaries precisely, leading to slower computation compared to open curves.
An interesting future direction is to leverage the efficiency and differentiability of our approach for
high-quality VG synthesis applications such as text-to-VG generation or text-guided VG editing.
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A Ablation Study

The effectiveness of adaptive pruning and densification and layer-wise vectorization strategy.
We conduct an ablation study to evaluate the effectiveness of our adaptive pruning and densification
strategy. Quantitative results are shown in Table 3. To further investigate the flexibility of our
framework, we incorporate a layer-wise curve addition strategy inspired by LIVE [18], where curves
are progressively added during training. Although this strategy achieves slightly better reconstruction
metrics, it doubles the training time compared to our adaptive pruning and densification approach,
making it less favorable for time-sensitive applications. Fig. 7 shows our result with layer-wise image
vectorization strategy.

Table 3: An ablation study on adaptive pruning and densification and layer-wise training strategy,
evaluated on 512 closed curves with DIV2K dataset [24].

Method SSIM↑ PSNR↑ LPIPS↓ Opt↓

No Strategy 0.590 21.10 0.530 8.3 min
– w/ Prune&Densify 0.607 22.11 0.528 8.3 min
– w/ Layer-wise 0.613 22.21 0.521 16.2 min

Closed, 32

Closed, 512Closed, 256

GT Closed, 64

Closed, 128

Figure 7: Our Bézier Splatting is fully compatible with the layer-wise vectorization strategies [18].

Comparing different numbers of curves. We progressively increase the number of curves for
vectorizing a watercolor image (Fig. 8) with numerous small spots. As the number of curves grows,
our approach first reconstructs the foreground object, the bird, then gradually refines the smaller spots.
This demonstrates that our method prioritizes the primary structure before optimizing finer details,
effectively distributing curves to balance global structure and local texture representation, thanks to
our adaptive pruning and densification strategy.

256 512 1024 2048 Raster Input

Figure 8: A comparison of different curve numbers by Bézier Splatting.

A systematic evaluation of computation time. To systematically evaluate the computational
efficiency of our framework, we report detailed timing statistics across varying configurations of
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Table 4: A systematic evaluation of computation time. We test the forward and backward time (ms)
under varying numbers of sampled curves within one closed Bézier curve (Inter. #), and the total
number of Bézier curves (Curve #).

Inter. # Curve # Forward w/ gradient Sample Gaussians Splatting Backward Render (FPS)
20 2048 10.66 4.12 6.11 21.64 103.45
40 2048 14.79 5.11 9.32 25.06 68.30
80 2048 27.01 8.22 17.74 33.40 37.90

40 256 7.20 3.81 3.09 16.72 150.30
40 512 7.70 3.88 3.67 17.42 144.30
40 1024 10.39 4.06 5.96 19.96 114.30
40 2048 14.79 5.11 9.32 25.06 68.30

interpolation curve numbers and curve resolutions, as summarized in Table 4. The total forward time
includes two major parts: the Gaussian sampling and the Gaussian splatting. Increasing the number
of interpolated curves within the closed Bézier curves leads to a near-linear growth in both forward
and backward runtimes, demonstrating good computational scalability. When fixing the interpolation
number (e.g., at 40) and varying the number of Bézier curves, the forward time increases moderately,
reflecting the additional cost of handling finer spatial detail. The splatting stage dominates the forward
time at higher number of curves due to the increased number of sampled points per region, while the
Gaussian sampling time is the primary bottleneck at lower number of curves. This is attributed to
overheads from sequential memory allocation and data transfer operations, which are not effectively
parallelized on the GPU, suggesting potential for further optimization.

Table 5: A quantitative comparison between Adobe Image Trace [1] and our method across different
images.

Image ID 0004 0008 0012 0016 0020

Method Adobe [1] Ours Adobe [1] Ours Adobe [1] Ours Adobe [1] Ours Adobe [1] Ours

SSIM↑ 0.835 0.849 0.645 0.637 0.658 0.658 0.627 0.628 0.814 0.822
PSNR↑ 26.43 28.62 23.26 24.33 22.29 22.87 23.87 24.54 26.67 28.31
LPIPS↑ 0.380 0.387 0.489 0.489 0.523 0.518 0.534 0.543 0.505 0.503

Comparison with conventional image vectorization methods. We conduct a comparison against
the Image Trace from Adobe Illustrator [1] on five images from the DIV2K dataset. Both methods
are evaluated using the same number of parameters (around 20K). As shown in Table 5, our method
achieves higher fidelity, with an average PSNR of 25.734 db compared to 24.904 db of Image Trace.

Arbitrary resolution rendering. Our Bézier Splatting representation naturally supports rendering at
arbitrary resolutions because all Gaussian parameters are analytically derived from the underlying
Bézier curves. When higher-resolution images are required, proportionally increasing the sampling
rate is sufficient to maintain reconstruction fidelity. For example, doubling the resolution simply
doubles the sampling density. As shown in Table 6, rendering at higher resolutions (4K or 8K)
with increased sampling preserves a comparable level of visual quality to the 2K baseline, without
introducing noticeable artifacts. We report results on the first four images from the [24] to illustrate
this property.

Table 6: Results of Bézier Splatting rendered at different resolutions and sampling settings. Notation:
“orig.” denotes the baseline sampling rate used during optimization, and “×S” indicates S-times
higher sampling density.

Image ID 2K (orig.) 4K 8K
orig. (×2S) orig. (×4S)

0004 26.8976 27.1553 27.2761 25.9800 26.6594
0008 21.2063 21.0614 21.4340 19.8318 21.1214
0012 19.8816 19.9079 20.0900 18.9389 19.7760
0016 22.3456 22.4327 22.5408 21.7088 22.3140
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Algorithm 1 Adaptive Pruning and Densification for Closed Bézier Curves
Notation:
opacity(b) — mean opacity of curve b.
area(b) — area enclosed by curve b.
colordiff(bi, bj) — Euclidean color difference between curves bi and bj .
IoU(bi) — intersection-over-union between the bounding box of bi and neighboring curves

with colordiff < 0.03.
ConnectedComponents(E) — connected error regions extracted from the quantized error

map.

Input : Closed Bézier curve set B = {b1, . . . , bN}; opacity map α; error map E; iteration index t.
Output: Updated curve set B′.
Initialize B′ ← B.
Pruning phase
for i← 1 to N do

if opacity(bi) < τopacity(t) then
Remove bi from B′. {Low-opacity pruning}

end if
if area(bi) < τarea then

Remove bi from B′. {Small-area pruning}
end if
if IoU

(
bi, { bj ∈ B | colordiff(bi, bj) < 0.03 }

)
> 0.9 then

Remove bi from B′. {Redundant-overlap pruning}
end if

end for
Densification phase
R ← ConnectedComponents(E).
Rsorted ← SortByArea(R).
for each region rj ∈ Rsorted do

if curve budget allows then
Insert a new closed Bézier curve into rj .

end if
end for
return B′.

B Details of Adaptive Pruning and Densification

To provide a clearer understanding of our optimization behavior, we present here the detailed
procedure of the pruning–densification algorithm 1 used in our Bézier-splatting framework.This
algorithm is designed to mitigate the local-minima issue observed in 3D Gaussian Splatting (3DGS)
and is adapted in our Bézier-splatting framework, where suboptimal primitive initialization leaves
certain regions insufficiently covered. Inspired by the pruning–splitting mechanism of 3DGS [1], our
method dynamically reallocates Bézier curves according to the reconstruction error map: curves with
low opacity, small area, or high overlap with nearby curves of similar color are pruned, while new
curves are inserted into regions with high reconstruction error to improve coverage. This reallocation
keeps the total curve budget fixed, enhances reconstruction quality, and helps the optimization escape
poor local minima. For open curves, we additionally introduce a splitting rule: if the middle opacity
of a curve is more than 0.5 lower than that of both endpoints, the curve is split into two segments to
better adapt to local structure variations.

C Convert Bézier Splatting to Standard SVG Format

As described in Algorithm 2, we convert our optimized Bézier Splatting representation into a standard
SVG file for compatibility with downstream vector editing tools. Each curve is represented by a set of
3k + 1 control points Ci ∈ R(3k+1)×2, corresponding to k continuous cubic Bézier segments. These
control points are normalized to the range [−1, 1] and are first transformed into pixel coordinates
according to the canvas size (W,H).
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For each curve i, we initialize the SVG path string d with a [M P 0
i ] command. We then iteratively con-

struct each cubic segment using three internal control points: (p1, p2, p3) = (P 3j+1
i , P 3j+2

i , P 3j+3
i ),

and append the segment as a path command [C p1, p2, p3] to d. After all segments are processed,
a [Z] is appended to close the path.

Each path d is then associated with a fill color (r, g, b), computed via sigmoid activation on the
optimized feature vector Fi, and opacity 1.0. The result is stored in a global path set S , and all paths
are assembled into the final SVG file S. This output is directly compatible with standard vector
graphics tools such as Adobe Illustrator.

Algorithm 2 Convert Bézier Splatting to Standard SVG
Input: Optimized control points C ∈ RN×(3k+1)×2, feature colors F ∈ RN×3, canvas size
(W,H)
Output: SVG file S containing cubic Bézier paths
for each curve i = 1 to N do
Pi ← Ci+1

2 · (W,H)
(r, g, b)← sigmoid(Fi)× 255
Initialize path d← [M P 0

i ]
for each segment j = 1 to k do
(p1, p2, p3)←(P 3j+1

i , P 3j+2
i , P 3j+3

i )
d⊕ [C p1, p2, p3]

end for
d⊕ Z
S ← S ∪ {path(d, fill = (r, g, b), opacity = 1.0)}

end for
Return: SVG file assembled from all paths

D Bézier Splatting Supports Flexible Curve Attributes

All 2D Gaussians in our method are generated via a differentiable sampling algorithm, which makes
it straightforward to incorporate user-defined shape attributes, such as linear-gradient fills in color or
opacity. To demonstrate the extensibility of our model, we evaluate the multi-opacity scheme for open
curves: each Bézier segment within an open curve is assigned an independent opacity value. This
design enables users to either maintain consistent sampling point appearance across segments or apply
customized interpolation strategies. This strategy significantly improves vectorization quality for
open curves, as shown in Table 7. Since closed curves are the primary representation format in SVG,
we adopt a uniform setting for opacity and color in those regions to ensure a full compatibility with
existing vector graphic tools. Nonetheless, users can still follow the above multi-opacity scheme to
implement linear-gradient fills for both opacity and color, enhancing the flexibility and expressiveness
of vector graphics.

Table 7: An ablation study on the number of opacity parameters per curve, evaluated on 512 open
curves with DIV2K dataset [24].

Method SSIM↑ PSNR↑ LPIPS↓

3-opacity 0.65 23.79 0.50
1-opacity 0.63 22.97 0.51

E More Comparisons

We present more qualitative comparisons on the DIV2K [24] dataset. As shown in Fig. 9, Fig. 10,
Fig. 11, Fig. 12, and Fig. 13, our method shows consistent improvements over the baselines, including
better preservation of fine details, higher rendering fidelity, fewer visual artifacts, and more accurate
geometric structures. Furthermore, as the number of curves increases, our method demonstrates
a significantly improved representational ability, enabling more precise reconstruction of complex
shapes, and fine-grained structures.
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We further evaluate our method on another natural image dataset, Kodak [14]. Due to the slow
vectorization speed of LIVE [18], we compare with DiffVG on open curves only. As shown in
Table 8, our method consistently outperforms DiffVG across quantitative metrics including PSNR,
SSIM, and LPIPS.

Table 8: A quantitative evaluation on the Kodak dataset [14] with 256 to 1024 curves. We report
results on open curves.

Method 256 512 1024
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Open DiffVG 0.601 23.43 0.535 0.645 24.70 0.495 0.699 26.04 0.439
Ours 0.679 26.18 0.457 0.743 27.90 0.383 0.797 29.24 0.310

Closed DiffVG 0.622 24.11 0.513 0.666 25.34 0.475 0.719 26.66 0.420
Ours 0.621 24.19 0.519 0.664 25.61 0.485 0.708 26.91 0.448

F More Image Vectorization Results

Fig. 14, Fig. 15, and Fig. 16 show more results on natural images from DIV2K [24] and Kodak
[14], as well as animation images from DanbooRegion [32], respectively. The results demonstrate
that both the global structure and local texture of the images are well reconstructed, highlighting the
effectiveness of our approach in capturing fine details and complex shapes.
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Figure 9: A qualitative comparison of our method and the existing differentiable VG rasterization
method on DIV2K dataset [24]. 18
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Figure 10: More qualitative comparisons of our method and the existing differentiable VG rasteriza-
tion method on DIV2K dataset [24]. 19
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Figure 11: More qualitative comparisons of our method and the existing differentiable VG rasteriza-
tion method on DIV2K dataset [24]. 20
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Figure 12: More qualitative comparisons of our method and the existing differentiable VG rasteriza-
tion method on DIV2K dataset [24]. 21
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Figure 13: More qualitative comparisons of our method and the existing differentiable VG rasteriza-
tion method on DIV2K dataset [24]. 22
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Figure 14: More image vectorization results by Bézier Splatting on DIV2K dataset [24].
23



Closed, 2048Closed, 1024Closed, 512Closed, 256GT

Figure 15: More image vectorization results by Bézier Splatting on Kodak [14] dataset.
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Figure 16: More image vectorization results by Bézier Splatting on DanbooRegion dataset [32].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We ensured that the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The discussions on limitations of this work can be found in the last section of
the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have discussed all implementation details of the proposed method in
Section 4 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The project page has been online. All datasets used in this work are publicly
available. The code will be publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have discussed all implementation details of the proposed method in
Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Existing literature did not provide error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details of compute resources can be found in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have ensured that this research followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the societal impacts in the last section of main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not have such risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original papers that produced the code package and datasets.
The licenses for re-packaged datasets will be provided on the dataset website.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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