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Abstract. The three-dimensional (3D) dental arch curve, representing
the spatial trajectory of dentition in either the maxilla or mandible, ex-
hibits systematic alignment of tightly and orderly arranged teeth along
its path. This structural configuration underscores its critical role as
comprehensive anatomical guidance in digital dentistry, enabling high-
precision tooth segmentation. In this study, we present a novel method
for 3D dental arch curve detection from the volumetric cone beam com-
puted tomography (CBCT) image, which, to our knowledge, represents
the first successful implementation of 3D dental arch curve detection
from the volumetric data. Specifically, we: (1) formulates and validates a
dental arch curve fitting function, (2) identifies 3D uniformly distributed
feature points proximal to the true dental arch curve through a feature
point network framework, and (3) optimizes model parameters of the
fitting function through a modified Expectation-Maximization (EM) al-
gorithm with gradient descent. The proposed detection is then used to
guide tooth segmentation through the curvilinear volume parameteri-
zation that unwind the vicinity of the dental arch curve. Experimen-
tal results demonstrate the accuracy for 3D dental arch curve detection
and performance enhancements in the downstream task of tooth seg-
mentation, improving segmentation precision compared to conventional
approaches.
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1 Introduction

The dental arch constitutes the curved arrangement of teeth within the maxilla
or mandible, with its morphology typically characterized through parametric
curve representations [17,5, 16]. Along this critical anatomical feature, teeth ex-
hibit precise spatial organization and are systematically and tightly aligned. For
volumetric data processing, this anatomical feature enables the extraction of
dentition region-of-interest (ROI) since the dental arch curve’s vicinity works as
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a filter to preserve diagnostically relevant dentition regions as illustrated in Fig.
1.

The dental arch in the volumetric data set is three-dimensional (3D) that
preserves authentic spatial inter-tooth relationships. However, current researches
reveal an absence of robust algorithms for the detection of the 3D dental arch
curve. Existing algorithms have succeeded in detecting dental arch curves with
two-dimensional (2D) cone beam computed tomography (CBCT) projections [16,
29,14] or three-dimensional (3D) dental mesh surfaces [22, 19, 30] through arch
point detection and subsequent curve interpolation. In 3D volumetric space, on
the other side, the critical challenge lies in reliably detecting arch points within
the 3D CBCT image. This detection challenge hindering progress in detecting
true 3D dental arch from the 3D CBCT image.

A specific curve can be described either by interpolation [11] or fitting [2]
from given points. Interpolation defines the curve by passing through all given
points and so require high accurate and reliable point detection. Fitting, on the
other hand, utilizes given points to estimate parameters of a function. The func-
tion with estimated parameters fits a curve. In 3D dental arch curve detection
from the volumetric data, detecting feature points uniformly distributed around
the true 3D dental arch is practicable. Thus, fitting presents a more sensible
strategy for 3D dental arch curve detection. Fitting based 3D dental arch curve
detection involves three main challenges: 1. Formulation of a fitting function
for the dental arch curve that suits the dental arch arrangement; 2. Automated
detection of uniformly distributed feature points along the dental arch trajec-
tory; and 3. Robust parameter estimation with latent variables that connect the
feature points and the fitting function.

To resolve these challenges, this study proposes a three-stage fitting-based
method for 3D dental arch curve detection in the 3D CBCT image as shown
in Fig. 1. The method comprises: 1. A parametric curve equation to fit the
dental arch curve; 2. A feature point network framework to identify uniformly
distributed feature points proximal to the true dental arch curve; 3. A modified
Expectation-Maximization (EM) algorithm [8] with the gradient descent [3] to
optimize parameters and latent variables.

The clinical applications of 3D dental arch curves are primarily in guiding
tooth segmentation, the task that segments and numbers individual tooth within
the 3D CBCT image. Therefore, we also propose a curvilinear volume parame-
terization method based on the 3D dental arch curve in this study, as illustrated
in Fig. 1. Through this parameterization, the dentition region within the CBCT
image can be transformed into two curvilinear volumes as two narrow cuboid vol-
umes specifically designed to localize the maxillary and mandibular dentitions,
respectively. Within each curvilinear volume, all maxillary or mandibular teeth
are closely and orderly arranged from left to right and constitute the dominant
region of the space. In contrast, within the original CBCT image, teeth exhibit
an arch-shaped arrangement, and the dentition occupies only a minor portion
of the overall volume. Consequently, compared to performing segmentation di-
rectly within the CBCT space, our proposed curvilinear volume parameterization
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method, based on the 3D dental arch curve, serves as an effective plug-and-play
tool to enhance the accuracy of existing tooth segmentation methods. To validate
the efficacy of the curvilinear volume parameterization method based on the 3D
dental arch curve, we conducted comprehensive tests using several baseline seg-
mentation methods, including nnUNet 2D [12], nnUNet 3D [13], SegResNet [21],
and MedNext [23]. The experimental results demonstrate that curvilinear vol-
ume parameterization, functioning as a plug-and-play tool, effectively improves
tooth segmentation accuracy.
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Fig. 1. Overview of the proposed method for fitting 3D dental arch curves, and serving
as a plug-and-play tool for segmenting individual teeth from a 3D CBCT image. a. The
input 3D CBCT image. b. Proposed 3D dental arch curve detection. c. Curvilinear vol-
ume parameterization to transform the CBCT image into two narrow cuboid volumes
where teeth are closely and orderly arranged from left to right. d. Tooth segmentation
implementation in the curvilinear volumes. e. Curvilinear volume parameterization to
transform the segmented teeth into the CBCT image.

2 Methods

2.1 Dental Arch Curve Fitting Function

Contemporary orthodontic research emphasizes that any plan of dental arch
determination must be flexible enough to produce arches varying in form through
a parabola, cubic parabola, etc. [5]. Therefore, our 3D dental arch curve fitting
function is a parametric curve that combines two cubic parabolas and a linear
polynomial to capture both anatomical curvature and alveolar bone orientation:

O1u + 02@62 + 93u3 + 04
C(u) = (z(u),y(u), 2(v)) = | Osu+ Ou® + O7u® + 05 (1)
Oou? + 19u + 011

where u € [0, 1] parameterizes the dental arch trajectory in the DICOM coordi-
nate system (x-axis: Left to Right, y-axis: Anterior to Posterior, z-axis: Inferior
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to Superior) [28] and {61, ...,011}are unobserved parameters for curve fitting.
The parametric curve in Equation (1) achieves both anatomical fidelity and com-
putational efficiency. The cubic parabola terms describe the natural variations
and smooth transitions of the arch-shaped structure of the dental arch curve.
The parabola term approximates the orientation of the alveolar bone. The 11
parameters in Equation (1) balances complexity of the fitting function and the
optimization feasibility. The three polynomial expressions in Equation (1) enable
derivatives for parameter estimation.

2.2 Feature Point Network Framework

Our feature point network framework processes a 3D CBCT image to uniformly
distributed feature points along the maxillary and mandibular dental arch tra-
jectories, as illustrated in Fig. 1. The critical component of the framework is
ground truth generation. After collecting ground truths, we employ a 3D resid-
ual encoder U-Net [1,13] implemented within the nnU-Net framework [12]. The
nnU-Net framework automatically configures hyperparameters verified in seg-
mentation tasks [13,9]. This approach transforms the feature point detection
task into a simpler binary volume segmentation problem. All segmented fore-
ground voxels within the network output can subsequently be utilized as feature
points for dental arch curve detection.

We propose an algorithm to generate ground truth feature points from man-
ual tooth segmentation masks [7, 15], addressing the labor-intensive challenges of
manual feature point annotation along 3D dental arches. The procedure initiates
by fitting a parabolic curve to the axial projection of tooth centroids:

&(x) = Bix + Paa® + B3 (2)

where parameters 31, 82, 83 are optimized through least squares estimation [27]
from the axial coordinates of all maxillary /mandibular tooth voxels. To ensure
uniform feature point distribution, the parabola in Equation (2) undergoes uni-
form discrete sampling by =, = t((n — 0.5)d), n € {1,..., N}, where t(-) rep-
resents the inverse function of the arc length function of the parabola, d is the
interval, and NN specifies the feature point count. At each discrete point x,,
the orthogonal plane perpendicular to the tangent vector of x, is computed
as ¢ + (81 + 2B2xn)y — xn — (B1 + 2822,)E(xn) = 0. Feature points are de-
fined as centroids of the intersection areas between these planes and the maxil-
lary /mandibular tooth volumes. These centroids are encoded in 3D label maps
with label 1 for maxillary feature points and label 2 for mandibular feature
points and processed with 555 morphological dilation to create network training
targets. This automated pipeline ensures anatomical accuracy while eliminating
manual annotation inconsistencies.

2.3 Modified EM algorithm with Gradient Descent

EM algorithm is an iterative statistical estimation method, particularly effective
for parameter optimization in latent variables [8]. Its robustness in handling
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latent variables makes it particularly suitable for 3D curve fitting challenges.
The parameter estimation for Equation (1) employs a modified Expectation-
Maximization (EM) framework that integrates gradient descent optimization [3]
to address latent variable challenges in 3D curve fitting. This hybrid approach
combines the statistical rigor of EM with numerical optimization capabilities.
The initialization step begins with ordered feature point coordinates { P, ...,
Py} = {(z1,y1,21),- -, (N, YN, 2n)} sorted by ascending z-values. Each fea-
ture point associates with a latent parameter u; for ¢ € {1,..., N}, initialized
| Pi—Pi ],
S, 1P—P

uy = 0. The error function quantifies cumulative deviation by F = Zf\;l |1P; —

with

through centripetal parameterization [4]: u; = u;—1 +

C(u;)||3. In the maximization step, the partial derivative gT]i = 0 gives the
update for 6, = (61,062,063, 04), with analogous updates for 6, = (05, 8s, 07, 0s)
and 0, = (0y,010,611). In the Expectation step, the latent variables uy,...,uyn
are optimized via gradient descent with learning rate n: uz(-kﬂ) = ugk) — ng—i,
1 =1,..., N where superscript k& denotes iteration index. g—fl, ey 8%:\1 are com-

puted through chain rule differentiation of the error function. In the iteration
step, iteration alternates between coefficient updates and latent variable opti-
mization until convergence or fixed iteration numbers. This dual optimization
strategy combines the global convergence properties of EM with local refinement
through gradient descent, thus balancing efficiency and accuracy.

2.4 Curvilinear Volume Parameterization

Given a fitted dental arch curve C'y;;(u), we define tubular coordinates as {(z, v,
Z)‘(Z‘,y, Z) = Cfit(u) + O‘B(u) + ’YN(’U,),U € [Oa 1]7 o € [740340}77 € [tlvtﬂ}a

where T'(u) = Igilizgzg\’ N(u) = %, and B(u) = T x N are the unit tangent,

normal, and binormal vectors, [t1,t2] = [—40,56] for the maxillary teeth and
[—56,40] for the mandibular teeth. Let the length of Ct;(u) with u € [0,1] be
L. This tubular coordinates unwinds the vicinity of the dental arch curve C f;;(u)
into a rectilinear 3D volume V € RE*80x96 through discretely sampling R, at
Au =1/L, Aa = Ay = 1 using bicubic interpolation and (u,a,v) < (z,vy, 2)
via diffeomorphic mapping. This unwinding process is reversible naturally.

3 Experiments and Discussions

3.1 Materials

This study utilizes a hybrid dataset of 110 3D CBCT images with corresponding
voxel-level tooth segmentation ground truth volumes, comprising 98 cases from
[7,6] and 12 cases from [15]. The dataset [7,6] contains 4531 CBCT volumes,
of which 148 are publicly available. Among these 148 volumes, 50 are small
field-of-view (FOV) CBCT images lacking complete maxillary and mandibular
structures, while the remaining 98 large FOV CBCT volumes constitute our uti-
lized subset. The dataset [15] comprises 12 CBCT volumes, all of which were
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employed in this study. The hybrid dataset encompasses 15 distinct acquisi-
tion protocols with spatial resolutions ranging from 0.25x0.25%0.27 mm? to
0.4%0.4x0.4 mm® and field-of-view dimensions spanning 12.1x12.1x8.51 cm?
to 16x16x13.1 cm®. To address the absence of manual tooth numbering, we im-
plemented the FDI World Dental Federation notation system [10] as illustrated
in Fig. 1 through manual labeling, creating a classification strategy comprising
33 distinct anatomical categories: 32 permanent tooth identifiers (combining 4
jaw quadrants and 8 tooth types) plus background.

3.2 Experimental Setup

Experiments were performed on a GIGABYTE G292-Z42 workstation featuring
an Intel Xeon Platinum 8352V processor, NVIDIA RTX 4090 GPU, NVIDIA L20
GPU, and 64GB DDR4 memory, operating under Ubuntu 22.04 LTS. From the
complete dataset of 110 CBCT scans with voxel-level annotations, we employed
stratified sampling to construct training (88 cases) and testing (22 cases) cohorts
while preserving anatomical diversity and scanner manufacturer balance. The
training set comprised 79 scans from [7,6] and 9 cases from [15], while the test
set included 19 scans from [7,6] and 3 from [15]. This partitioning strategy
ensured representative coverage of both conventional and challenging dental arch
morphologies across different imaging protocols.

3.3 Feature Point Detection Performance

Since the detected feature points reside within the CBCT volumetric space
and are represented as small cubic regions, feature point detection accuracy
was quantified through the Dice Similarity Coefficient (DSC) [25], defined as

DSC = |2 ;,fﬂgl‘ , where P and G denote predicted and ground truth feature point
regions. The range of DSC is [0,1], with a larger value indicating better prediction
accuracy. As shown in Fig. 2(a), our feature point network achieves mean DSC
scores of 85.39 + 3.81% (maxillary feature points, Class 1) and 83.9 £+ 0.036%
(mandibular feature points, Class 2), demonstrating its localization accuracy.
Notably, case 5 (DSC= 74.43% for Class 1) and case 9 (DSC= 72.39% for Class
2) presented unique challenges: case 5 exhibited metal artifacts in the maxillary
region with partial dentition loss, while case 9 contained two impacted mandibu-
lar wisdom teeth with associated positional anomalies.

Visual analysis of these challenging cases as shown in Figs. 2(b)-(c) revealed
three main characteristics: True positive regions (blue regions) consistently cap-
tured essential dental arch trajectory features despite anatomical complexities;
false negative regions (red regions) predominantly occurred in interproximal re-
gions where feature point ambiguity naturally exists; and false positive regions
(green regions) localized to regions excluded from natural dental arch trajectory,
specifically metal artifacts in case 5 and impacted mandibular wisdom teeth in
case 9. This strategic error distribution patterns in Figs. 2(b)-(c) indicate the fea-
ture point network learned to prioritize anatomically meaningful feature points.
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3.4 Dental Arch Curve Fitting Analysis

The convergence characteristics of our modified EM algorithm are demonstrated
through progressive curve fitting outcomes across multiple iterations as shown in
Fig. 2(d). Employing 1,000 gradient descent steps with a conservative learning
rate n = 1 x 1076 per EM iteration, the method achieves acceptable accuracy
within just one iteration cycle. While increased iterations (10-50) further re-
fine the fit, diminishing returns become evident, as evidenced by near-identical
10- and 50-iteration fitting function curves in Fig. 2(d). This rapid convergence
stems from the algorithm’s hybrid optimization strategy that synergizes partial
derivative parameter solutions with gradient descent-based latent variable up-
dates. Computational efficiency analysis reveals linear time scaling relative to
iteration count, with single-iteration processing requiring 0.394 & 0.047 seconds
for maxilla and 0.367 + 0.052 seconds for mandible seconds and 10 iterations re-
quiring 3.664 4+0.414 seconds for maxilla and 3.643 £+ 0.549 seconds for mandible.
The network’s ability to maintain feature points’ anatomical plausibility, even in
suboptimal detection scenarios, confirms its robustness for the subsequent dental
arch curve fitting procedure.

Fig. 2. Evaluations of dental arch curve detection. a. Accuracy of feature point detec-
tion. b. Feature point detection results of Case 5. c. Feature point detection results of
case 9. d. A case for dental arch curve fitting with 1, 10, and 50 EM iteration cycles.

3.5 Feasibility Analysis of Dental Arch Curve Fitting Function

When defining the fitting function in Equation (1), we assume that this fitting
function can fit a 3D dental arch curve that primarily lies around a plane. This
hypothesis of dental arch morphology was validated through geometric analysis
of 220 fitted curves (110 in maxilla, 110 in mandible) from their corresponding
ground truth feature points. For each fitted curve, we computed the optimal
approximation plane by minimizing the orthogonal distance. All orthogonal dis-
tances are larger than 0, with mean orthogonal deviation of 0.053 £ 0.056 mm.
This confirms the feasibility of our parametric curve fitting function in capturing
the near-planar 3D dental arch curve.

3.6 Curvilinear volume parameterization for tooth segmentation

We propose curvilinear volume parameterization to establish 3D dental arch
detection as a plug-and-play tool for tooth segmentation.To validate this tool’s
efficacy, we compared four popular segmentation architectures: nnU-Net 2D [12],
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nnU-Net 3D [13], SegResNet [21], and MedNext [23]. For each architecture, train-
ing and testing were performed separately on both: (1) the original 3D CBCT
volumes, and (2) their transformed cuboid volumes generated through curvi-
linear volume parameterization. Comparative analysis extends to recent tooth
segmentation methods [6, 14, 18, 26, 24, 20] with their reported performance met-
rics and 3D CBCT images used. Quantitative results are presented in Table 1.
Let TP, TN, FP, FN represent true positives, true negatives, false positives,
and false negatives, three metrics [25] quantify segmentation accuracy including
Dice = %, Precision = TPTJF%, and Recall = TPZ%. Experimen-
tal results show that the dental arch curve successfully guides tooth segmenta-
tion, achieving segmentation metrics equivalent to state-of-the-art methods.

Table 1. Comparison with existing methodologies in individual tooth segmentation

Methodolo Dental arch| 3D CBCT Metrics (%)
&y guide images used|Precision| Dice |Recall
No 74.05 |72.15| 71.34
nnUNet 2D [12] Yes 10 93.83 [93.57|93.30
No 7407 [72.37| 7277
nnUNet 3D [13] Yes 10 93.72 |93.91| 94.09
No 7447 |73.34] 74.25
SegResNet [21] Yes 10 93.66 |93.88| 94.10
No 74.10 |72.66] 73.34
MedNext 23] Yes 1o 94.33 [94.33| 94.32
Cui et al. [6] - 20 - 91.98| -
Jang et al. [14] - 97 95.97 |94.79/ 93.71
Li et al. [18] - 350 92.13 [91.13/91.23
Tan et al. [26] - 314 - 95.78| -
Shaheen et al. [24] - 186 - 90 | -
Liu et al. [20] - 451 - 943 -
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5 Conclusion

This study first proposes 3D dental arch curve detection from volumetric CBCT
image and demonstrates that precise 3D dental arch curve detection serves as
a plug-and-play tool for automated tooth segmentation. Experimental results
show our 3D dental arch curve detection is accurate and robust. The dental arch
curve guided tooth segmentation benchmarking methodologies are much more
accurate than the corresponding benchmarking methodologies without dental
arch curve guide.
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