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Abstract

Gaussian Process Latent Variable Models
(GPLVMs) have become increasingly popular
for unsupervised tasks such as dimensional-
ity reduction and missing data recovery due
to their flexibility and non-linear nature. An
importance-weighted version of the Bayesian
GPLVMs has been proposed to obtain a tighter
variational bound. However, this version of the
approach is primarily limited to analyzing simple
data structures, as the generation of an effective
proposal distribution can become quite challenging
in high-dimensional spaces or with complex data
sets. In this work, we propose VAIS-GPLVM,
a variational Annealed Importance Sampling
method that leverages time-inhomogeneous
unadjusted Langevin dynamics to construct the
variational posterior. By transforming the posterior
into a sequence of intermediate distributions
using annealing, we combine the strengths of
Sequential Monte Carlo samplers and VI to
explore a wider range of posterior distributions
and gradually approach the target distribution.
We further propose an efficient algorithm by
reparameterizing all variables in the evidence
lower bound (ELBO). Experimental results on
both toy and image datasets demonstrate that
our method outperforms state-of-the-art methods
in terms of tighter variational bounds, higher
log-likelihoods, and more robust convergence.

1 INTRODUCTION

Gaussian processes (GPs) Rasmussen [2003] have become
a popular method for function estimation due to their non-
parametric nature, flexibility, and ability to incorporate prior
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knowledge of the function. Gaussian Process Latent Vari-
able Models (GPLVMs), introduced by Lawrence [2005],
have paved the way for GPs to be utilized for unsuper-
vised learning tasks such as dimensionality reduction and
structure discovery for high-dimensional data. It provides a
probabilistic mapping from an unobserved latent space H
to data-space X.

The work by Titsias and Lawrence [2010] proposed a
Bayesian version of GPLVMs and introduced a varia-
tional inference (VI) framework for training GPLVMs us-
ing sparse representations to reduce model complexity.
This method utilizes an approximate surrogate estimator
g(X,H) to replace the true probability term p(X), i.e.
Eq(H) [g(X,H)] = p(X). VI typically defines an evidence
lower bound (ELBO) as the loss function for the model in
place of log p(X). To describe the accuracy of this lower
bound, we discuss a Taylor expansion of log p(X),

Eq(H) [log g(X,H)] ≈ log p(X)− 1

2
varq(H)

[
g(X,H)

p(X)

]
(1)

The formula has been discussed in numerous works, in-
cluding Thin et al. [2020], Maddison et al. [2017], Domke
and Sheldon [2018]. Therefore, as the variance of the es-
timator decreases, the ELBO becomes tighter. Based on
this formula and the basic principles of the central limit
theorem, importance-weighted (IW) VI Domke and Shel-
don [2018] seeks to reduce the variance of the estimator by
repeatedly sampling from the proposal distribution q(H),
i.e., g (X,H) = 1

K

∑K
k=1

[
p(X,Hk)
q(Hk)

]
,whereHk ∼ q (Hk).

An importance-weighted version Salimbeni et al. [2019] of
the Bayesian GPLVMs based on this has been proposed to
obtain a tighter variational bound. While this method can
obtain a tighter lower bound than the classical VI, it is a com-
mon problem that the relative variance of this importance-
sampling based estimator tends to increase with the dimen-
sion of the latent variable. Moreover, the generation of an
effective proposal distribution can become quite challeng-
ing in high-dimensional spaces or with complex data sets.



The problem of standard importance sampling techniques
is that it can be challenging to construct a proposal distri-
bution q(H) that performs well in high-dimensional spaces,
as shown in Rainforth et al. [2018], Rudner et al. [2021].

To address these limitations, we propose VAIS-GPLVM,
a variational Annealed Importance Sampling method that
leverages time-inhomogeneous unadjusted Langevin dynam-
ics to construct the variational posterior. Our method builds
on the foundations of AIS, originally derived from nonequi-
librium statistical mechanics Jarzynski [1997], and later
extended in Crooks [1998], Neal [2001]. AIS remains a
gold-standard technique for unbiased evidence estimation,
as it explores a broader range of posterior distributions and
gradually approaches the target distribution Del Moral et al.
[2006], Salimans et al. [2015], Grosse et al. [2013, 2015].

Specifically, our proposed approach leverages an anneal-
ing procedure to transform the posterior distribution into a
sequence of intermediate distributions, which can be approx-
imated by using a Langevin stochastic flow. This dynamic is
a time-inhomogeneous unadjusted Langevin dynamic that
is easy to sample and optimize. We also propose an efficient
algorithm designed by reparameterizing all variables in the
ELBO. Furthermore, we propose a stochastic variant of our
algorithm that utilizes gradients estimated from a subset of
the dataset, which improves the speed and scalability of the
algorithm . Our experiments on both toy and image datasets
show that our approach outperforms state-of-the-art meth-
ods in GPLVMs, demonstrating lower variational bounds,
higher log-likelihoods, and more robust convergence.

Overall, our contributions are as follows:

• We propose VAIS-GPLVM, a variational An-
nealed Importance Sampling method that uses time-
inhomogeneous unadjusted Langevin dynamics to con-
struct the variational posterior. This approach miti-
gates the issue of weight collapse in high-dimensional
GPLVMs, yielding a tighter lower bound and im-
proved variational approximation for complex, high-
dimensional data.

• We propose an efficient algorithm designed by repa-
rameterizing all variables to further improve the estima-
tion of the variational lower bounds. We also leverage
stochastic optimization to maximize optimization effi-
ciency.

• Our experiments on both toy and image datasets
demonstrate that our approach outperforms state-of-
the-art methods in GPLVMs, showing lower variational
bounds, higher log-likelihoods, and more robust con-
vergence.

2 BACKGROUND

2.1 GPLVM VARIATIONAL INFERENCE

In GPLVMs, we have a training set comprising of N D-
dimensional real valued observations X = {xn}Nn=1 ∈
RN×D. These data are associated with N Q-dimensional la-
tent variables, H = {hn}Nn=1 ∈ RN×Q where Q < D pro-
vides dimensionality reduction Titsias and Lawrence [2010].
The forward mapping H → X is described by multi-output
GPs independently defined across dimensions D. The work
by Titsias and Lawrence [2010] proposed a Bayesian ver-
sion of GPLVMs using sparse representations to reduce
model complexity. We typically define the conditional dis-
tribution as p(fd | ud,H) = N (fd;µd, Qnn), where
µd = KnmK

−1
mmud, Qnn = Knn −KnmK

−1
mmKmn, ud

is the inducing variable Titsias [2009]. Here, Knn is the co-
variance matrix evaluated over latent inputs {hn}Nn=1 using
a user-defined positive-definite kernel function kθ(h,h′),
parameterized by a shared set of kernel hyperparameters
θ across all output dimensions D. The data likelihood is
modeled as a Gaussian distribution, i.e.,

p(X | F,H) =

N∏
n=1

D∏
d=1

N
(
xn,d;fd (hn) , σ

2
)

(2)

where F = {fd}Dd=1, xd is the d-th column of X, and m is
the number of inducing points. It is assumed that the prior is
defined as p(ud) = N (0,Kmm) and p(hn) = N (0, IQ).
Since hn ∈ RQ is unobservable, we need to do joint infer-
ence over f(·) and h. Under the typical mean-field assump-
tion of a factorized approximate posterior q(fd)q(hn). We
denote ψ as all variational parameters and γ as all GP hy-
perparameters. Thus, we arrive at the classical Mean-Field
(MF) ELBO:

MF-ELBO(γ, ψ) =

N∑
n=1

D∑
d=1

(

∫
q(fd)q (hn) log p (xn,d | fd,hn) dhn dfd

−KL (q (hn) ∥p (hn))−KL (q(ud)∥p(ud))),

(3)

where we use the typical approximation to integrate out the
inducing variable,

q (fd) =

∫
p (fd|ud)q (ud) dud. (4)

In Equation (4), p (fd|ud) is a simplification of the tradi-
tional Sparse Gaussian Process (Sparse GP) approach. In
the Sparse GP model, we typically assume p (fd|ud,hn) as
the conditional probability distribution of the latent variable
hn , and we integrate over hn. Proofs can be seen in the
Appendix.



2.2 IMPORTANCE-WEIGHTED VARIATIONAL
INFERENCE

A main contribution of Salimbeni et al. [2019] is to pro-
pose a variational scheme for LV-GP models based on
importance-weighted VI Domke and Sheldon [2018] via
amortizing the optimization of the local variational param-
eters. IWVI provides a way of lower-bounding the log
marginal likelihood more tightly and with less estimation
variance by Jensen’s inequality at the expense of increased
computational complexity. The IW-ELBO is obtained by
replacing the expectation likelihood term in Vanilla VI with
a sample average of K terms:

IW-ELBO(γ, ψ) =

N∑
n=1

D∑
d=1

(Bn,d −KL (q(ud)∥p(ud))),

(5)

where Bn,d = E
fd,hn

log 1
K

∑
k p (xn,d | fd,hn,k)

p(hn,k)
q(hn,k)

.

Proofs can be seen in the Appendix.

Although the IW objective outperforms classical VI in terms
of accuracy, its effectiveness is contingent on the variabil-
ity of the importance weights: p (xn,d | fd,hn,k)

p(hn,k)
q(hn,k)

.
When these weights vary widely, the estimate will effec-
tively rely on only the few points with the largest weights, as
shown in Rainforth et al. [2018]. To ensure the effectiveness
of importance sampling, the proposal distribution defined by
q (hn,k) must therefore be a fairly good approximation to
p (xn,d | fd,hn,k) p (hn,k), so that the importance weights
do not vary widely. Related theoretical proofs can be seen in
Domke and Sheldon [2018], Maddison et al. [2017], Rain-
forth et al. [2018].

When hn,k is high-dimensional, or the likelihood
p (xn,d | fd,hn,k) is multi-modal, finding a good impor-
tance sampling distribution can be very difficult, limiting
the applicability of the method. Unfortunately, original re-
search by Salimbeni et al. [2019] only discusses the case
when hn is a one-dimensional latent variable, and they ac-
knowledge that reliable inference for more complex cases is
not yet fully understood or documented. To circumvent this
issue, we provide an alternative for variational GPLVMs
using Annealed Importance Sampling (AIS) Crooks [1998],
Neal [2001], Wu et al. [2016], which defines state-of-the-art
estimators of the evidence and designs efficient proposal im-
portance distributions. Specially, we propose a novel ELBO,
relying on unadjusted Langevin dynamics, which is a simple
implementation that combines the strengths of Sequential
Monte Carlo samplers and variational inference as detailed
in Section 3.

3 VARIATIONAL AIS SCHEME IN
GPLVMS

3.1 VARIATIONAL INFERENCE VIA AIS

Annealed Importance Sampling (AIS)Neal [2001],
Del Moral et al. [2006], Salimans et al. [2015] is a
technique for obtaining an unbiased estimate of the
evidence p(X). To achieve this, AIS uses a sequence of K
bridging densities {qk(H)}Kk=1 that connect a simple base
distribution q0(H) to the posterior distribution p(H|X). By
gradually interpolating between these distributions, AIS
allows for an efficient computation of the evidence. This
method is particularly useful when the posterior is difficult
to sample from directly, as it allows us to estimate the
evidence without evaluating the full posterior distribution
directly. We can express this as follows:

p(X) =

∫
p(X,H)dH = Eqfwd(H0:K)

[
qbwd (H0:K)

qfwd (H0:K)

]
(6)

where the variational distribution qfwd and the target distri-
bution qbwd can be written as:

qfwd (H0:K) = q0 (H0) T1 (H1 | H0) · · · TK (HK | HK−1)

qbwd (H0:K) = p (X,HK) T̃K (HK−1 | HK) · · · T̃1 (H0 | H1)

(7)

Here, we assume Tk is a forward MCMC kernel that leaves
qk(H) invariant, which ensures that {Tk}Kk=1 are valid tran-
sition probabilities, i.e.,

∫
qk(Hk−1)Tk (Hk | Hk−1) dHk−1 = qk (Hk) . (8)

And T̃k is the “backward” Markov kernel moving each
sample Hk into a sample Hk−1 starting from a virtual
sample HK . qfwd represents the chain of states generated
by AIS, and qbwd is a fictitious reverse chain which be-
gins with a sample from p(X,H) and applies the transi-
tions in reverse order. In practice, the bridging densities
have to be chosen carefully for a low variance estimate of
the evidence. A typically method is to use geometric av-
erages of the initial and target distributions to construct
the sequence, i.e., qk(H) ∝ q0(H)1−βkp(X,H)βk for
0 = β0 < β1 < · · · < βK = 1. AIS has been proven
theoretically to be consistent as K → ∞ Neal [2001] and
achieves accurate estimate of log p(X) empirically with the
asymptotic bias decreasing at a 1/K rate Grosse et al. [2013,
2015].



With this, we can derive the AIS bound,

log p(X) ≥ Eqfwd(H0:K)

[
log

qbwd (H0:K)

qfwd (H0:K)

]
= Eqfwd(H0:K)

[log p (X,HK)− log q0 (H0)

−
K∑

k=1

log
Tk(Hk | Hk−1)

T̃k (Hk−1 | Hk)
].

(9)

This objective can be obtained by applying Jensen’s inequal-
ity. For the GPLVM model, we can naturally derive its AIS
lower bound:

LAIS(ψ, γ)

=

N∑
n=1

D∑
d=1

Eqfwd(h0:K)q(fd) [log p (xn,d | fd,hn,K)]

+

N∑
n=1

Eqfwd(h0:K) [log p (hn,K)− log q0 (hn,0)]

−
K∑

k=1

Eqfwd(H0:K) log
Tk (Hk | Hk−1)

T̃k (Hk−1 | Hk)

−
D∑

d=1

KL (q(ud) ∥ p(ud))

(10)

where ψ and γ indicate the sets of all variational param-
eters and all GP hyperparameters, respectively. Our pur-
pose is to evaluate this bound. First we note that the last
KL term is tractable if we assume the variational poste-
riors of ud are mean-field Gaussian distributions. So we
concentrate on the terms in the expectation that we can
evaluate relying on a Monte Carlo estimate. It is obvious
that log p (xn,d | fd,hn,K) is available in closed form as
the conditional likelihood is Gaussian Titsias [2009]. There-
fore, the first three term can be computed by the popular
“reparameterization trick” Rezende et al. [2014], Kingma
and Welling [2013] to obtain an unbiased estimate of the
expectation over qfwd (H0:K) and q (fd) (detailed in Sec-
tion 3.3). Afterwards, to evaluate expectation over qfwd, we
construct an MCMC transition operator Tk which leaves
qk invariant via a time-inhomogeneous unadjusted (over-
damped) Langevin algorithm (ULA) as used in Welling and
Teh [2011], Heng et al. [2020], Wu et al. [2020], Marceau-
Caron and Ollivier [2017] and jointly optimize ψ and γ by
stochastic gradient descent. For visualization, we present our
AIS method alongside the traditional IW method’s graphical
model in Fig. 1.

3.2 TIME-INHOMOGENEOUS UNADJUSTED
LANGEVIN DIFFUSION

Tk can be constructed using a Markov kernel with an in-
variant density such as MH or HMC, which enables qfwd to

Figure 1: The graphical models of (a) IW and (b) our method.
We leverages an annealing procedure to transform the pos-
terior distribution into a sequence of intermediate distribu-
tions.

converge to the posterior distribution of H. For the sake of
simplicity, we consider the transition density Tk associated
to this discretization,

Tk (Hk | Hk−1)

= N (Hk;Hk−1 + η∇ log qk (Hk−1) , 2ηI)
(11)

where η > 0 is the step size and qk is bridging den-
sities defined in Section 3.1. Since we have qk(H) ∝
q0(H)1−βkp(X,H)βk in Section 3.1, the annealed potential
energy is derived as:

∇ log qk (·) = βk∇ log p(X, ·) + (1− βk)∇ log q0(·).
(12)

According to conditional probability formula log p(X, ·) =
log p (X|·) + log p (·), the model log likelihood simplifies
to:

∇ log p(X|·) = −1

2

D∑
d=1

∇(log det
(
Qnn + σ2I

)
+ (xd − µd)

T (
Qnn + σ2I

)−1
(xd − µd)).

(13)

Since Eq. (13) is analytical, the gradient can be computed
through automatic differentiation Baydin et al. [2018]. The
dynamical system propagates from a base variational dis-
tribution q0 to a final distribution qK which approximates
the posterior density. Let η := T/K, then the proposal qfwd

converges to the path measure of the following Langevin
diffusion (ht)t∈[0,T ] defined by the stochastic differential
equation (SDE),

dHt = ∇ log qt(H)dt+
√
2 dBt, H0 ∼ q0 (14)

where (Bt)t∈[0,T ] is standard multivariate Brownian motion
and qt corresponds to qk in discrete-time for t = tk = kη.
For long times, the solution of the Fokker-Planck equa-
tions Risken [1996] tends to the stationary distribution
q∞(H) ∝ exp(p(X,H)). Additional quantitative results



Algorithm 1 Stochastic Unadjusted Langevin Diffusion (ULA) AIS algorithm for GPLVMs

Input: training data X, mini-batch size B, sample number K, annealing schedule {βk}, stepsizes η
Initialize all GPLVM hyperparameters γ, all variational parameters ψ
repeat

Sample mini-batch indices J ⊂ {1, . . . , N} with |J | = B
Draw ϵ from standard Gaussian distribution.
Set H0 = an + Lnϵ
Set L = − log q0(H0)
for k = 1 to K do

Draw ϵk from standard Gaussian distribution.
Set ∇ log qk (·) = βk∇(NB log p (XJ |·) + log p (·)) + (1− βk)∇ log q0(·)
Set Hk = Hk−1 + η∇ log qk (Hk−1) +

√
2ηϵk−1

Set ϵ̃k−1 =
√

η
2 [∇ log qk (Hk−1) +∇ log qk (Hk)]− ϵk−1

Set Rk−1 = 1
2

(
∥ϵ̃k−1∥2 − ∥ϵk−1∥2

)
Set L = L −Rk−1

end for
Sample mini-batch indices I ⊂ {1, . . . , N} with |I| = B
Draw ϵfd

from standard Gaussian distribution for d = 1, 2, ..., D .
Set L = L+ log p (HK) + N

B log p (XI | ϵfd , ϵ0:K−1, ϵ)−
∑D

d=1 KL (q(ud) ∥ p(ud))
Do gradient descent on L(ψ, γ)

until ψ, γ converge

measuring the law of hT for such annealed diffusions have
been showed in Andrieu et al. [2016], Tang and Zhou [2021],
Fournier and Tardif [2021]. For ease of sampling, we define
the corresponding Euler-Maruyama discretization as,

Hk = Hk−1 + η∇ log qk (Hk−1) +
√

2ηϵk−1, (15)

where ϵk ∼ N (0, I), as done in Heng et al. [2020], Wu
et al. [2020], Nilmeier et al. [2011]. Since such process
is reversible w.r.t. qk, based on Nilmeier et al. [2011], the
reversal T̃k is typically realized by,

Hk−1 = Hk + η∇ log qk (Hk) +
√

2ηϵ̃k−1, (16)

where ϵ̃k−1 = −
√

η
2 [∇ log qk (Hk−1) +∇ log qk (Hk)]−

ϵk−1. Based on Eq. (11), the term related to Tk in Eq. (10)
can be written explicitly as:

K∑
k=1

Rk−1 =

K∑
k=1

log
Tk (Hk | Hk−1)

T̃k (Hk−1 | Hk)

=

K∑
k=1

1

2

(
∥ϵ̃k−1∥2 − ∥ϵk−1∥2

)
.

(17)

We abbreviate this probability ratio as Rk−1. Additional
proofs can be seen in Appendix A.

3.3 REPARAMETERIZATION TRICK AND
STOCHASTIC GRADIENT DESCENT

For ease of sampling, we consider a reparameterization ver-
sion of Eq. (10) based on the Langevin mappings associated

with qk given by

Tk(Hk−1) = Hk−1 + η∇ log qk (Hk−1) +
√

2ηϵk−1.
(18)

Based on the identity Hk = Tk(Hk−1), we have a repre-
sentation of Hk by a stochastic flow,

Hk = Tk (Hk−1) = Tk ◦ Tk−1 ◦ · · ·T1(H0) (19)

Moreover, for LVGP models, we also have a reparameteri-
zation version Salimbeni and Deisenroth [2017] of the pos-
teriors of H0 and fd in Eq. (10), that is,

hn,0 = an + Lnϵ

fd = KnmK
−1
mmmd

+

√
Knn −KnmK

−1
mm

(
Kmm − Sd

TSd

)
K−1

mmKmnϵfd

(20)

where vectors an ∈ RQ, md ∈ RN and upper triangu-
lar matrixs Ln, Sd are the variational parameters, ϵ ∈
RQ, ϵfd ∈ RN are standard Gaussian distribution. After
this reparameterization, a change of variable shows that AIS



Table 1: Comparison of MF, IW, and AIS under different number of iterations for two toy datasets

Dataset Data Dim Method Iterations Negative ELBO MSE Negative Expected Log Likelihood

Oilflow (1000,12)

MF-GPLVM
1000 3.44 (0.25) 6.83 (0.27) -1.42 (0.27)
2000 -1.67 (0.17) 3.59 (0.13) -8.38 (0.12)
3000 -3.07 (0.12) 2.79 (0.11) -11.24 (0.10)

IWVI-GPLVM
1000 0.01 (0.25) 4.52 (0.28) -6.26 (0.26)
2000 -3.19 (0.15) 2.77 (0.16) -9.46 (0.15)
3000 -4.13 (0.14) 2.60 (0.15) -12.20 (0.12)

VAIS-GPLVM (ours)
1000 0.78 (0.24) 4.99 (0.23) -4.01 (0.26)
2000 -5.04 (0.15) 2.65 (0.15) -10.33 (0.16)
3000 -6.82 (0.12) 2.16 (0.12) -13.06 (0.11)

Wine Quality (1599,11)

MF-GPLVM
1000 32.69(0.13) 63.98(0.12) 31.71(0.15)
2000 13.46(0.03) 48.95(0.05) 6.51(0.06)
3000 11.59(0.03) 45.81(0.04) 4.07(0.05)

IWVI-GPLVM
1000 22.65(0.07) 50.77(0.06) 19.94(0.09)
2000 11.47(0.02) 40.86(0.03) 3.72(0.04)
3000 10.73(0.03) 35.23(0.04) 2.71(0.03)

VAIS-GPLVM (ours)
1000 29.63(0.07) 57.49(0.05) 27.67(0.06)
2000 10.43(0.03) 34.60(0.03) 3.58(0.04)
3000 8.86(0.04) 32.23(0.04) 2.47(0.03)

bound in Eq. (10) can be rewritten as:

LAIS(ψ, γ)

=

N∑
n=1

D∑
d=1

Ep(ϵfd)p(ϵ0:K−1)p(ϵ)
[log p (xn,d | ϵfd , ϵ0:K−1, ϵ)]

+

N∑
n=1

Ep(ϵ0:K−1)p(ϵ) [log p (hn,K)− log q0 (hn,0)]

−
K∑

k=1

Ep(ϵ0:K−1)p(ϵ)Rk−1 −
D∑

d=1

KL (q(ud) ∥ p(ud)),

(21)

where Rk−1 is defined in Eq. (17) and hn,k is reparameter-
ized as hn,k = Tk ◦ Tk−1 ◦ · · ·T1 (hn,0) = ⃝k

i=1Ti(an +
Lnϵ).

In order to accelerate training and sampling in our infer-
ence scheme, we propose a scalable variational bounds that
are tractable in the large data regime based on stochastic
variational inference Hoffman et al. [2013], Salimbeni and
Deisenroth [2017], Kingma and Welling [2013], Hoffman
and Blei [2015], Naesseth et al. [2020] and stochastic gradi-
ent descent Welling and Teh [2011], Chen et al. [2014], Zou
et al. [2019], Teh et al. [2016], Sato and Nakagawa [2014],
Alexos et al. [2022] as described in Algorithm 1.

Instead of computing the gradient of the full log likeli-
hood, we suggest to use a stochastic variant to subsam-
pling datasets into a mini-batch DJ with |XJ | = B, where
J ⊂ {1, 2, .., N} is the indice of any mini-batch. In the
meantime, we replace the p (X,HK) term in Eq. (7) with
another estimator computed using an independent mini-
batch of indices I ⊂ {1, 2, .., N} with |XI | = B. We

finally derive a stochastic variant of the Stochastic Unad-
justed Langevin Diffusion AIS algorithm for the GPLVMs
as described in Algorithm 1.

4 RELATED WORK

IWVI IWVI Domke and Sheldon [2018] demonstrated
that importance weighting constitutes a form of augmented
variational inference, thereby revealing the looseness inher-
ent in previous variational objectives. This insight was later
extended to the case of α-divergences Geffner and Domke,
Daudel et al. [2023]. However, Rainforth et al. [2018]
showed that tighter ELBOs can reduce the gradient estima-
tor’s signal-to-noise ratio (SNR), impairing inference net-
work learning. Similarly, Salimbeni et al. [2019] addressed
this in Deep Gaussian Processes (DGPs) by introducing an
importance-weighted objective with latent noisy covariates,
balancing accuracy and computational cost through analytic
solutions.

Building on this, Rudner et al. [2021] found that increasing
importance samples degrades gradient SNR for latent vari-
able parameters, sometimes reducing gradients to pure noise.
They mitigated this by adapting doubly-reparameterized gra-
dient estimators to the DGP context, improving stability. In
contrast, our method utilizes the structured intermediate
distributions of AIS, inspired by Sequential Monte Carlo
(SMC), to achieve a more stable and accurate variational
approximation. This approach effectively avoids weight col-
lapse, particularly in high-dimensional scenarios.



Figure 2: We lowered the data dimensionality using our proposed method in the multi-phase oilflow dataset and visualized a
two-dimensional slice of the latent space that corresponds to the most dominant latent dimensions. The inverse lengthscales
learnt with SE-ARD kernel for each dimension are depicted in the middle plot, and the negative ELBO learning curves are
shown in the right plot. We set the same learning rate and compared the learning curves of two state-of-the-art models, MF
and Importance Weighted VI within 3000 iterations for GPLVMs.

Figure 3: In the Brendan faces reconstruction task with 75%
missing pixels, the top row represents the ground truth data
and the bottom row showcases the reconstructions from the
20-dimensional latent distribution.

Differentiable AIS Our method builds upon a well-
established line of research Neal [2001], Del Moral et al.
[2006], Zhang et al. [2021], Xu and Campbell [2023], Chen
et al. [2025], and is specifically designed to overcome the
known limitations of IW methods through AIS. We high-
light the key differences between our approach and the Dif-
ferentiable AIS (DAIS) method proposed by Zhang et al.
[2021]. DAIS circumvents the non-differentiability of tra-
ditional AIS by removing the Metropolis-Hastings correc-
tion, thereby enabling gradient-based optimization of the
marginal likelihood. It has also been extended to black-box
variational inference settings Jankowiak and Phan [2022].
However, unlike our method, DAIS relies on a perturbed
Hamiltonian system, whereas we adopt an inhomogeneous
Unadjusted Langevin Algorithm (ULA). These represent
fundamentally different formalisms: Hamiltonian mechan-
ics typically employ symplectic integrators such as leapfrog
methods, while Langevin dynamics utilize reverse stochas-

tic differential equations (SDEs). Moreover, our algorithm is
grounded in nonequilibrium statistical mechanics Nilmeier
et al. [2011] and is applied to Bayesian inference for Gaus-
sian Process Latent Variable Models (GPLVM), in contrast
to prior methods, which primarily focus on Bayesian linear
regression.

Diffusion models Our approach shares a fundamental con-
nection with diffusion models Ho et al. [2020], Song et al.
[2020], Li et al. [2023] through the use of nonequilibrium
statistical mechanics. While diffusion models, especially in
generative modeling Ruthotto and Haber [2021], Croitoru
et al. [2023], use reverse stochastic processes to transform
latent variables back to data space, they primarily focus on
data generation rather than variational inference. In contrast
to previous approaches, and similarly to Xu et al. [2024,
2025], our framework leverages the Unadjusted Langevin
Algorithm (ULA) to better approximate posterior distribu-
tions by directly optimizing variational objectives. Addition-
ally, our method models latent variable dynamics through
forces driving the system toward equilibrium, drawing inspi-
ration from nonequilibrium thermodynamics where systems
relax to steady states via perturbative dynamics.

5 EXPERIMENTS

5.1 BASELINE METHODS

In the following section, we present two sets of experiments.
In the first set of experiments, our aim is to demonstrate the
quality of our model in unsupervised learning tasks such
as data dimensionality reduction and clustering. This will
allow us to evaluate the ability of our model to preserve



Figure 4: The negative ELBO convergence curves of the three methods on the Frey Faces dataset. It is noted that as the
number of iterations increase, the y-axis scale gradually increases from left to right.

Table 2: Comparison of MF-GPLVM, IWVI-GPLVM, and VAIS-GPLVM under different number of iterations for two image
datasets

Dataset Data Dim Method Iterations Negative ELBO MSE Negative Expected Log Likelihood

Frey Faces (1965,560)

MF-GPLVM
1000 48274 (443) 468 (9) 46027 (356)
2000 6346 (20) 95 (1) 4771 (17)
3000 3782 (15) 69 (0.2) 2822 (3)

IWVI-GPLVM
1000 42396 (426) 394 (8) 39936 (312)
2000 5643 (15) 76 (1) 4292 (13)
3000 3596 (14) 63 (0.5) 2535 (4)

VAIS-GPLVM (ours)
1000 12444 (451) 121 (9) 10543 (322)
2000 5031 (16) 66 (1) 3130 (15)
3000 3249 (12) 57(0.3) 2226 (3)

MNIST (2163,784)
MF-GPLVM 2000 -432.32(0.33) 0.27(0.004) -552.87(0.28)

IWVi-GPLVM 2000 -443.64(0.37) 0.25(0.003) -567.13(0.31)

VAIS-GPLVM (ours) 2000 -453.18(0.27) 0.25(0.002) -569.93(0.26)

Figure 5: For MNIST with 75% missing pixels, we used
digits 1 and 7. The bottom row shows ground truth, while
the top row shows reconstructions from the 5D latent space.
The 2D plot on the right visualizes the dimensions with the
smallest lengthscales.

the original information in the data. In the second set of
experiments, we evaluate the expressiveness and efficiency
of our model on the task of image data recovery.

We compare three different approaches: (a) Classical Sparse
VI based on mean-field (MF) approximation Titsias and
Lawrence [2010]; (b) Importance-weighted (IW) VI Sal-
imbeni et al. [2019]; (c) The Unadjusted Langevin Diffu-
sion Variational AIS model (hereinafter referred to as VAIS-
GPLVM) is defined by the algorithm proposed in this paper.
We also provide guidelines on how to tune the step sizes
and annealing schedules in Algorithm 1 to optimize perfor-
mance. We conducted all our experiments on a Tesla A100
GPU.

5.2 DIMENSIONALITY REDUCTION

The multi-phase Oilflow data Bishop and James [1993] con-
sists of 1000, 12d data points belonging to three classes
which correspond to the different phases of oil flow in a
pipeline. We reduced the data dimensions to 10 while at-
tempting to preserve as much information as possible. We
report the reconstruction error and MSE with ±2 standard
errors over ten optimization runs. Since the training is unsu-
pervised, the inherent ground-truth labels were not a part of
training. The 2d projections of the latent space for oilflow
data clearly shows that our model is able to discover the
class structure.

To highlight the strength of our model, we set the same
experimental hyperparameters and compare the learning
curves of two state-of-the-art models. The results are shown
in Fig. 2. We also tested our model performance on another
toy dataset, Wine Quality Cortez et al. [2009], where we
used the white variant of the Portuguese "Vinho Verde" wine.
From table 1, we observe that after sufficient training, our
proposed method yields lower reconstruction loss and MSE
than IWVI and MF methods. It is noted that our proposed
method does not show an increase in time complexity com-
pared to the baseline method IW. Therefore, even though we
used a fixed number of iterations, we can ensure the fairness
of the experiments.



5.3 MAKE PREDICTIONS IN UNSEEN DATA

We conducted reconstruction experiments on MNIST and
Frey Faces to assess model uncertainty under missing struc-
tured inputs. For MNIST, we used digits 1 and 7 with a
5-dimensional latent space; each image is 784- dimensional.
For Frey Faces Roweis and Saul [2000], we used the full
dataset of 1965 images (20× 28 pixels, 560-dimensional)
with a 20-dimensional latent space. In both datasets, 5% of
training samples had 75% of their pixels removed to test
reconstruction. Results, shown in Fig. 3 and Fig. 5, reflect
sampling from the learned latent distributions. Our setup
follows prior work by Titsias and Lawrence [2010] and
Gal et al. [2014]. Additional details are provided in the
Appendix.

To demonstrate the effectiveness of our method in pro-
ducing more accurate likelihoods and tighter variational
bounds on image datasets, we present in Table 2 the neg-
ative ELBO, negative log-likelihood, and mean squared
error (MSE) for reconstructed images on the Frey Faces and
MNIST datasets, comparing with state-of-the-art methods.
Our results show that our method achieves lower variational
bounds and converges to higher likelihoods, indicating su-
perior performance in high-dimensional and multi-modal
image data. This suggests that adding Langevin transitions
appears to improve the convergence of the traditional VI
methods.

We also present in Fig. 4 a comparison of the negative ELBO
convergence curves for Frey Faces datasets between our
method and two other state-of-the-art methods. To better il-
lustrate our lower convergence values, we gradually increase
the y-axis scale from left to right. An interesting observation
is that, compared to the IW and MF methods, our proposed
method sometimes exhibits sudden drops in the loss curve,
as shown in the leftmost plot of Fig. 4. This can be attributed
to the fact that, by adding Langevin transitions, the algo-
rithm’s variational distribution gradually moves from the
current distribution towards the true posterior distribution,
resulting in sudden drops in the loss function when reach-
ing the target distribution. Thus, such phenomena can be
regarded as a common feature of annealed importance sam-
pling and it becomes even more obvious in high-dimensional
datasets.

5.4 EFFECTIVE SAMPLE SIZE (ESS) ANALYSIS

In our experiments, we observed clear evidence of weight
collapse in IW-GPLVM, particularly as the dimensionality
of the latent space increases. Below, we present additional
results from the Brendan Faces reconstruction task, com-
paring IW-GPLVM and our proposed VAIS-GPLVM using
standard diagnostic metrics:

Effective Sample Size (ESS) Rainforth et al. [2018] quanti-

Table 3: Comparison of ESS and Weight Entropy for IWVI-
GPLVM and VAIS-GPLVM (Ours) on the Brendan Faces
Reconstruction Task. VAIS-GPLVM demonstrates a signifi-
cant improvement in both Effective Sample Size (ESS) and
Weight Entropy, indicating that it mitigates sample collapse
and promotes a more uniform weight distribution.

Metric IWVI-GPLVM VAIS-GPLVM (Ours)
ESS (K = 25) 4.1 20.3

Weight Entropy (K = 25) 0.9 2.6

fies the number of samples that effectively contribute to the
final estimate, despite using all K particles. It is defined as

ESS =
1∑K

k=1 w̃
2
k

, (22)

where w̃k are the normalized importance weights. A low
ESS indicates that only a few particles dominate the esti-
mate, reflecting weight collapse.

Weight Entropy is defined as

H(w̃) = −
K∑

k=1

w̃k log w̃k, (23)

which measures the dispersion of the importance weights.
Higher entropy suggests a more uniform distribution of
weights and better utilization of available samples.

As shown in the Table 3, VAIS-GPLVM achieves substan-
tially higher ESS and weight entropy, indicating more di-
verse and stable sampling behavior. In contrast, IW-GPLVM
suffers from severe weight concentration, corroborating its
known theoretical limitations and aligning with our earlier
motivation that IWVI tends to experience weight collapse
in high-dimensional settings.

6 CONCLUSION

In this paper, we propose VAIS-GPLVM, a novel variational
approach for GPLVMs based on Annealed Importance Sam-
pling. By leveraging annealing and unadjusted Langevin
dynamics, our method estimates the ELBO via a sequence
of tractable intermediate distributions. Empirical results on
high-dimensional and structured datasets demonstrate im-
proved variational bounds, faster convergence, and greater
robustness. Notably, sharp drops in the loss curve further
validate the effectiveness of our approach. Overall, VAIS-
GPLVM offers a promising direction for variational learning
in latent variable models.
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A DERIVATION OF EQUATION (3) AND (5)

A.1 DERIVATION OF EQUATION (3)

First, decompose the log evidence into a double summation form along the observation dimensions:

log p(X) =

N∑
n=1

D∑
d=1

log p(xn,d) (24)

Term-wise Application of Jensen’s Inequality Apply Jensen’s inequality to each term log p(xn,d) and introduce the variational
distribution to obtain:

log p(xn,d) ≥ Eq(fd,ud)q(hn)[log p(xn,d|fd, hn)]− KL(q(hn)|p(hn))− KL(q(fd, ud)|p(fd, ud)) (25)

where q(fd, ud) = p(fd|ud)q(ud).

Sum the bounds of all terms to obtain the initial variational lower bound:

MF-ELBOf (γ, ψ) =
∑
n,d

[
Eq(fd,ud)q(hn)[log p(xn,d|fd, hn)]− KL(q(hn)|p(hn))− KL(q(fd, ud)|p(fd, ud))

]
(26)

Sparse Variational Approximation:

q(fd) =

∫
p(fd|ud)q(ud)dud (27)

The KL term can then be simplified as:

KL(q(fd, ud)|p(fd, ud)) =
∫
p(fd|ud)q(ud) log

p(fd|ud)q(ud)
p(fd|ud)p(ud)

duddfd = KL(q(ud)|p(ud)) (28)

and we have,
Eq(fd,ud)q(hn)[log p(xn,d|fd, hn)] = Eq(fd)q(hn)[log p(xn,d|fd, hn)] (29)

Substitute the simplified KL term and Equation (29) into Equation (26) to obtain the MF-ELBO consistent with the main
text:

MF-ELBO(γ, ψ) =
∑
n,d

[
Eq(fd)q(hn)[log p(xn,d|fd, hn)]− KL(q(hn)|p(hn))− KL(q(ud)|p(ud))

]
(30)

A.2 DERIVATION OF EQUATION (5)

Following the IWAE approach, we apply importance-weighted variational inference to the latent variable hn (the initial
steps align with mean-field variational inference and are thus omitted). The MF-ELBO MF-ELBO(γ, ψ) is rewritten in the
previous step as: ∑

n,d

[
Eq

[
log

(
p(xn,d | fd, hn)p(hn)

q(hn)

)]
− KL(q(ud)|p(ud))

]
. (31)

Sampling: Independently drawK samples hn,1, . . . , hn,K from q(hn). Estimation Construction: Approximate the likelihood
term using importance weighting:

p(xn,d | fd, hn)p(hn)
q(hn)

≈ 1

K

K∑
k=1

p(xn,d | fd, hn,k)p(hn,k)
q(hn,k)

. (32)

This estimator satisfies consistency in expectation:

Eq(hn,1:K)

[
1

K

K∑
k=1

p(xn,d | fd, hn,k)p(hn,k)
q(hn,k)

]
= p(xn,d | fd). (33)



When K = 1, it reduces to the mean-field case:

Eq(hn,1)

[
p(xn,d | fd, hn,1)p(hn,1)

q(hn,1)

]
= p(xn,d | fd). (34)

Substitute the importance-weighted estimator into the ELBO to obtain Equation 5:

log p(xn,d) ≥ Eq(fd)q(hn)

[
log

(
1

K

K∑
k=1

p(xn,d | fd, hn,k)p(hn,k)
q(hn,k)

)]
− KL(q(ud)|p(ud)). (35)

This is the IW-ELBO in Equation (5) with
∑

n,d .

B DERIVATION OF THE OVERDAMPED LANGEVIN PATH PROBABILITY RATIO

For ease of sampling, we define the corresponding Euler-Maruyama discretization as,

Hk = Hk−1 + η∇ log qk (Hk−1) +
√
2ηϵk−1, (36)

where ϵk ∼ N (0, I). Based on results by Nilmeier et al. [2011], the backward step is realized by

Hk−1 = Hk + η∇ log qk (Hk) +
√
2ηϵ̃k−1, (37)

Thus we have,

η∇ log qk (Hk−1) +
√

2ηϵk−1 = −η∇ log qk (Hk)−
√

2ηϵ̃k−1 (38)

Then,

ϵ̃k−1 = −
√
η

2
(∇ log qk (Hk−1) +∇ log qk (Hk))− ϵk−1 (39)

Finally,

log
Tk (Hk | Hk−1)

T̃k (Hk−1 | Hk)
= log

p (ϵk−1)
∣∣∣det( ∂Hk

∂ϵk−1

)∣∣∣
p (ϵ̃k−1)

∣∣∣det(∂Hk−1

∂ϵ̃k−1

)∣∣∣
= log

p (ϵk−1)

p (ϵ̃k−1)

=
1

2

(
∥ϵ̃k−1∥2 − ∥ϵk−1∥2

)
(40)

C A STOCHASTIC VARIANT OF VAIS-GPLVM

Instead of computing the gradient of the full log likelihood, we suggest to use a stochastic variant to subsampling datasets
into a mini-batch DJ with |XJ | = B, where J ⊂ {1, 2, .., N} is the indice of any mini-batch. We can thus define an
estimator of ∇ log p(X | ·) in Eq. (12) as,

∇ log p(X | ·) ≈ N

B
∇ log p(XJ | ·) (41)

In the meantime, we replace the p (X,HK) term in Eq. (7) with another estimator computed using an independent mini-batch
of indices I ⊂ {1, 2, .., N} with |XI | = B, i.e.

p (X,HK) ≈ p (HK) p (XI | HK)
N
B (42)

With jointly using the reparameterization trick and stochastic gradient descent, we finally derive a stochastic variant of the
Stochastic Unadjusted Langevin Diffusion AIS algorithm for the LVGP models as describe in Algorithm 1. Thanks to GPU
acceleration, we can extend the proposed algorithm to larger datasets, such as image-based visual tasks.



D PRACTICAL GUIDELINES

In the context of this paper, the posterior distribution refers to the distribution of the latent variables given the observed
data. This distribution is often intractable and challenging to sample from directly. VAIS-GPLVM aims to approximate this
posterior distribution by transforming it into a sequence of intermediate distributions, which can be more tractable and easier
to sample from.

The annealing process gradually transforms the posterior distribution by introducing a temperature parameter β . By
annealing from β = 0 to β = 1 , we move from an initial distribution, where the posterior is approximated by a simpler
distribution to the target posterior distribution itself. The key idea behind annealing is it allows for a smoother exploration of
the posterior space. At each intermediate distribution, we can use importance sampling to estimate the evidence by sampling
from the proposal distribution and reweighting the samples using the ratios of the target and proposal distributions.

As the annealing process progresses, the samples from the proposal distribution gradually become more representative of
the target distribution. This means that the exploration of the posterior space is not limited to a specific region but covers a
wider range of possible configurations of the latent variables.

The benefit of this exploration is that it allows for a more accurate estimation of the evidence, which corresponds to a
tighter lower bound in the variational learning framework. By gradually annealing the temperature and exploring different
distributions, VAIS-GPLVM can capture more complex structures in the posterior distribution, leading to better variational
approximations in complex data and high-dimensional spaces.

When using the Unadjusted Langevin Diffusion method for sampling, one key challenge is to determine an appropriate
step size ηk A fixed step size may work well for some samples but may be suboptimal for others. To address this issue, we
can use the Adagrad Kingma and Ba [2014] optimizer to adaptively adjust the step size based on the historical gradient
information. Specifically, for each dimension of the sampled variables, we divide the initial step size by the square root of
the sum of squared gradient values for that dimension up to a noise. This technique can help achieve better performance and
faster convergence, especially when dealing with complex and high-dimensional distributions where finding an appropriate
step size is challenging. The adaptive step size adjustment can be implemented in combination with other techniques, such
as early stopping, to further improve the sampling efficiency.

ηk = 0.9ηk−1 + 0.1
η0√
Gk + ϵ

where Gk is the sum of squared gradient values up to step k in Eq. (17), ϵ is a small smoothing term to avoid division by
zero,and η0 is the initial step size.

In the context of Annealed Importance Sampling (AIS), choosing an optimal temperature schedule βk is a challenging task.
When choosing an appropriate annealing schedule for Stochastic Gradient Annealed Importance Sampling, there are several
trade-offs and considerations to keep in mind:

• Computational Efficiency: The annealing schedule should be carefully designed to balance the computational resources
required for estimating the evidence. Too many bridging densities can lead to excessive computational burden, while
too few densities may result in less accurate estimates.

• Exploration vs Exploitation: The annealing schedule should strike a balance between exploration and exploitation of
the posterior distribution. An aggressive schedule that moves quickly from the base distribution to the posterior may
lead to exploration limitations, while a slow schedule may lead to insufficient exploration and inefficiency.

• Smoothness of Transition: The annealing schedule should ensure a smooth transition between bridging densities.
Abrupt changes in the densities can result in high-variance importance weights, which may lead to inaccurate estimates.
Smooth transitions can be achieved by gradually adjusting the temperature or using appropriate interpolation functions.

We often use a linear schedule, where the temperature values are fixed and regularly spaced between 0 and 1. However, this
approach may not always work well in practice, as the search space is complex and high-dimensional.

Alternatively, we can try to learn the temperature values βk directly as additional inference parameters ϕ. This can be done
using various techniques, such as gradient-based optimization. By doing so, we can obtain a temperature schedule that is
tailored to the specific problem at hand and achieve better sampling performance. Additional experimental information can
be seen in Table 4.



Dataset Task N D Z Q LR K
Oilflow Dimensionality Reduction 1000 12 50 10 0.02 5

Wine Quailty Dimensionality Reduction 1599 11 50 9 0.02 5
Frey Face Missing Data Recovery 1965 560 50 20 0.02 25
MNIST Missing Data Recovery 2163 784 50 5 0.02 25

Table 4: Training experimental configuration where N and D denote the number of data points and data space dimensions,
Z denotes the number of inducing inputs shared across dimensions, Q denotes the dimesionality of the latent space, LR
denotes the learning rate, K denotes the length of the transition chain in VAIS-GPLVM and in IW K denotes the number of
repetitions of sampling .

E DETAILS FOR IMPLEMENTING ON MISSING DATA TASKS

Specially, our training procedure leverages the marginalisation principle of Gaussian distributions and the fact that the data
dependent terms of the ELBO factorise across data points and dimensions. This means we can trivially marginalise out the
missing dimensions xa, because each individual data point x is modelled as a joint Gaussian. Consider a high-dimensional
point x which we split into observed, xo and unobserved xa dimensions,∫ ∏

d∈a

∏
d∈o

p (xa,xo | fd,H) dxa =
∏
d∈o

p (xo | fd,H) (43)

Figure 6: Dimensionality Reduction Results for MF method. Figure 7: Dimensionality Reduction Results for IW method.

In this formula, the indices of missing and observed dimensions are denoted by a and o respectively, where D = a ∪ o
represents all dimensions in the data. The marginal distributions fd ∈ RN are defined in Eq. (4).The latent variables hn

for each data point are informed only by the observed dimensions. Furthermore, we can easily reconstruct the missing
dimensions during training by constructing a variational latent distribution q(H), as described in Section 4. This approach
enables us to efficiently handle missing dimensions in high-dimensional datasets without requiring major modifications to
the overall training process.

E.1 COMPARED TO STANDARD GPLVM

We have also conducted additional experiments comparing our proposed approach to the Standard GPLVM Lawrence [2003]
in Table 5. We performed experiments 10 times and averaged the results, analyzing the performance (in terms of MSE and
NLL) on four different datasets. Due to limited computational resources, we were only able to run the Standard GPLVM on
a subset of the image datasets. For the image reconstruction task, we randomly selected 300 images as the training set and
used consistent hyperparameters for the other experiments.

E.2 RUNTIME ANALYSIS

We observed that the runtime of Importance-Weighted (IW) VI and VAIS-GPLVM increases almost linearly with K. For
IW, this is due to the K repeated samplings of latent variables, each with a complexity of O(nm2) from the GPLVM model.
As K increases, the repeated samplings dominate the runtime. In contrast, VAIS-GPLVM requires only one such sampling,



Figure 8: Missing Data Recovery Results for MF method.
The bottom row represents the ground truth data and the top
row showcases the reconstructions from the 20-dimensional
latent distribution.

Figure 9: Missing Data Recovery Results for IW method.
The bottom row represents the ground truth data and the top
row showcases the reconstructions from the 20-dimensional
latent distribution.

Dataset (Size) Method MSE NLL

Oilflow (1000, 12) Standard GPLVM 2.45 (0.05) -12.42 (0.07)
VAIS-GPLVM (Ours) 1.71 (0.04) -15.81 (0.04)

Wine Quality (1599, 11) Standard GPLVM 30.53 (0.03) 2.82 (0.02)
VAIS-GPLVM (Ours) 30.79 (0.04) 2.42 (0.03)

Frey Faces (300, 560) Standard GPLVM 130.00 (7.00) 2632.00 (6.00)
VAIS-GPLVM (Ours) 115.00 (6.00) 2417.00 (5.00)

MNIST (300, 784) Standard GPLVM 0.36 (0.01) -484.00 (3.00)
VAIS-GPLVM (Ours) 0.31 (0.01) -496.00 (2.00)

Table 5: Comparison of MSE and NLL between Standard GPLVM and our VAIS-GPLVM across four datasets.

with additional computations focused on the lighter Langevin stochastic flow during annealing. As shown in Table 6, AIS
becomes more efficient than IW when K exceeds a certain threshold on the Frey Faces dataset.

Method K = 5 K = 10 K = 15 K = 20 K = 25
IWVI-GPLVM 1.46s 2.85s 4.06s 5.45s 7.03s

VAIS-GPLVM (Ours) 1.53s 2.65s 3.79s 4.80s 5.93s

Table 6: Comparison of running time between IWVI-GPLVM and VAIS-GPLVM in one epoch for Frey Faces

E.3 ADDITIONAL RESULTS

In this section, we will demonstrate the visual effects of the MF and IW methods on three datasets: Oilflow, MINIST, and
Frey Faces. These visualizations will be used for comparison with the main text. There results can be seen in Fig. 6, Fig.7,
Fig.8, Fig.9, Fig.10, Fig.11.

From the visual appearance, it may seem that all three methods produce similar reconstructions. However, upon closer
inspection, we can observe differences in certain details such as brightness and contrast. While these differences may
be difficult to discern with the naked eye, we have quantified them using the mean squared error (MSE) between the



Figure 10: Missing Data Recovery Results for MF method.
The top row represents the ground truth data and the bottom
row showcases the reconstructions from the 5-dimensional
latent distribution.

Figure 11: Missing Data Recovery Results for IW method.
The top row represents the ground truth data and the bottom
row showcases the reconstructions from the 5-dimensional
latent distribution.

reconstructed images and the ground truth. The MSE results for all three methods on the test set are reported in Tables 2 in
the main text.

F LIMITATIONS AND FUTURE WORK

One potential limitation could be the scalability of the method. As the size of the dataset increases, the computational
resources required for estimating the evidence using VAIS-GPLVM may become more demanding. This is particularly
true for large-scale datasets such as ImageNet, which contain millions of images. Running experiments on such massive
datasets might pose challenges in terms of computational efficiency and memory requirements. Given that ImageNet
involves higher-dimensional data, it may be more appropriate to combine GPLVM with other deep learning tools, such as
convolutional neural networks (CNNs) Li et al. [2021], He et al. [2020] and transformers Vaswani [2017], Lin et al. [2022].
Broader application scenarios are currently being explored to incorporate these tools effectively and leave room for future
work.

Additionally, the annealing schedule plays a crucial role in the exploration of the posterior distribution. Designing an
appropriate annealing schedule may require domain knowledge or trial and error experimentation. It might be necessary to
tune the schedule to ensure a balance between exploration and exploitation, as well as a smooth transition between bridging
densities.

Regarding the applicability of VAIS-GPLVM in real-world applications, its performance may depend on the specific
characteristics and requirements of the domain. Different datasets and applications may exhibit unique challenges, such as
data sparsity, high dimensionality, or non-linear relationships, which could affect the effectiveness of SG-AIS. Evaluating
the performance of SG-AIS in different domains and addressing these challenges would require further experimentation and
investigation.
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