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ABSTRACT

Visual representation models leveraging attention mechanisms are challenged by
significant computational overhead, particularly when pursuing large receptive
fields. In this study, we aim to mitigate this challenge by introducing the Heat
Conduction Operator (HCO) built upon the physical heat conduction principle.
HCO conceptualizes image patches as heat sources and models their correlations
through adaptive thermal energy diffusion, enabling robust visual representations.
HCO enjoys a computational complexity of O(N1.5), as it can be implemented
using discrete cosine transformation (DCT) operations. HCO is plug-and-play,
combining with deep learning backbones produces visual representation models
(termed vHeat) with global receptive fields. Experiments across vision tasks
demonstrate that, beyond the stronger performance, vHeat achieves up to a 3×
throughput, 80% less GPU memory allocation and 35% fewer computational
FLOPs compared to the Swin-Transformer.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012; He et al., 2016) have been the
cornerstone of visual representation since the advent of deep learning, exhibiting remarkable perfor-
mance across vision tasks. However, the reliance on local receptive fields and fixed convolutional
operators imposes constraints, particularly in capturing long-range and complex dependencies within
images (Luo et al., 2016). These limitations have motivated significant interest in developing alterna-
tive visual representation models, including architectures based on ViTs (Dosovitskiy et al., 2021; Liu
et al., 2021) and State Space Models (Zhu et al., 2024; Liu et al., 2024). Despite their effectiveness,
these models continue to face challenges, including relatively high computational complexity and a
lack of interpretability.

When addressing these limitations, we draw inspiration from the field of heat conduction (Widder,
1976), where spatial locality is crucial for the transfer of thermal energy due to the collision of
neighboring particles. Notably, analogies can be drawn between the principles of heat conduction
and the propagation of visual semantics within the spatial domain, as adjacent image regions in a
certain scale tend to contain related information or share similar characteristics. Leveraging these
connections, we introduce vHeat, a physics-inspired vision representation model that conceptualizes
image patches as heat sources and models the calculation of their correlations as the diffusion of
thermal energy.

To integrate the principle of heat conduction into deep networks, we first derive the general solution
of heat conduction in 2D space and extend it to multiple dimensions, corresponding to various
feature channels. Based on this general solution, we design the Heat Conduction Operator (HCO),
which simulates the propagation of visual semantics across image patches along multiple dimensions.
Notably, we demonstrate that HCO can be approximated through 2D (inverse) discrete cosine
transformation (DCT/IDCT), effectively reducing the computational complexity to O(N1.5), Fig. 1.
This improvement boosts both training and testing efficiency due to the high parallelizability of DCT
and IDCT operations. Furthermore, as each element in the frequency domain obtained by DCT
incorporates information from all patches in the image space, vHeat can establish long-range feature
dependencies and achieve global receptive fields. To enhance the representation adaptability of vHeat,
we propose learnable frequency value embeddings (FVEs) to characterize the frequency information
and predict the thermal diffusivity of visual heat conduction.

We develop a family of vHeat models (i.e., vHeat-Tiny/Small/Base), and extensive experiments are
conducted to demonstrate their effectiveness in diverse visual tasks. Compared to benchmark vision
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Self-Attention

Heat Conduction Operator

(a)

(b)

Figure 1: Comparison of information conduction mechanisms: self-attention vs. heat conduction.
(a) The self-attention operator uniformly “conducts” information from a pixel to all other pixels,
resulting in O(N2) complexity. (b) The heat conduction operator (HCO) conceptualizes the center
pixel as the heat source and conducts information propagation through DCT (F) and IDCT (F−1),
which enjoys interpretability, global receptive fields, and O(N1.5) complexity.

backbones with various architectures (e.g., ConvNeXt (Liu et al., 2022b), Swin (Liu et al., 2021), and
Vim (Zhu et al., 2024)), vHeat consistently achieves superior performance on image classification,
object detection, and semantic segmentation across model scales. Specifically, vHeat-Base achieves
a 84.0% top-1 accuracy on ImageNet-1K, surpassing Swin by 0.5%, with a throughput exceeding
that of Swin by a substantial margin over 40% (661 vs. 456). To explore the generalization of vHeat,
we’ve also validated its superiority on robustness evaluation benchmarks and low-level vision tasks.
Besides, due to the O(N1.5) complexity of HCO, vHeat enjoys considerably lower computational
cost compared to ViT-based models, demonstrating significantly reduced FLOPs and GPU memory
requirements, and higher throughput as image resolution increases. In particular, when the input
image resolution increases to 768× 768, vHeat-Base achieves a 3× throughput compared to Swin,
with 80% less GPU memory allocation and 35% fewer computational FLOPs.

The contributions of this study are summarized as follows:

• We propose vHeat, a vision backbone model inspired by the physical principle of heat
conduction, which simultaneously achieves global receptive fields, low computational
complexity, and high interpretability.

• We design the Heat Conduction Operator (HCO), a physically plausible module conceptual-
izing image patches as heat sources, predicting adaptive thermal diffusivity by FVEs, and
transferring information following the principles of heat conduction.

• Without bells and whistles, vHeat achieves promising performance in vision tasks including
image classification, object detection, and semantic segmentation. It also enjoys higher
inference speeds, reduced FLOPs, and lower GPU memory usage for high-resolution images.

2 RELATED WORK

Convolution Neural Networks. CNNs have been landmark models in the history of visual perception
(LeCun et al., 1998; Krizhevsky et al., 2012). The distinctive characteristics of CNNs are encapsulated
in the convolution kernels, which enjoy high computational efficiency given specifically designed
GPUs. With the aid of powerful GPUs and large-scale datasets (Deng et al., 2009), increasingly
deeper (Simonyan & Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Huang et al., 2017)
and efficient models (Howard et al., 2017; Tan & Le, 2019; Yang et al., 2021; Radosavovic et al.,
2020) have been proposed for higher performance across a spectrum of vision tasks. Numerous
modifications have been made to the convolution operators to improve its capacity (Chollet, 2017),
efficiency (Hua et al., 2018; Yu & Koltun, 2015) and adaptability (Dai et al., 2017; Wang et al.,
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2023b). Nevertheless, the born limitation of local receptive fields remains. Recently developed large
convolution kernels (Ding et al., 2022b) took a step towards large receptive fields, but experienced
difficulty in handling high-resolution images.

Vision Transformers. Built upon the self-attention operator (Vaswani et al., 2017), ViTs have
the born advantage of building global feature dependency. Based on the learning capacity of self-
attention across all image patches, ViTs has been the most powerful vision model ever, given a
large dataset for pre-training (Dosovitskiy et al., 2021; Touvron et al., 2021; Peng et al., 2022). The
introduction of hierarchical architectures (Liu et al., 2021; Dong et al., 2022; Wang et al., 2021; Lu
et al., 2021; Zhang et al., 2023; Tian et al., 2023; Dai et al., 2021; Ding et al., 2022a; Zhao et al., 2022)
further improves the performance of ViTs. The Achilles’ Heel of ViTs is the O(N2) computational
complexity, which implies substantial computational overhead given high-resolution images. Great
efforts have been made to improve model efficiency by introducing window attention, linear attention
and cross-covariance attention operators (Wang et al., 2020; Liu et al., 2021; Chen et al., 2021; Ali
et al., 2021), at the cost of reducing receptive fields or non-linearity capacity. Other studies proposed
hybrid networks by introducing convolution operations to ViTs (Wang et al., 2022; Dai et al., 2021;
Vaswani et al., 2021), designing hybrid architectures to combine CNN with ViT modules (Dai et al.,
2021; Srinivas et al., 2021; Lu et al., 2021).

State Space Models and RNNs. State space models (SSMs) (Gu et al., 2022; Nguyen et al., 2022;
Wang et al., 2023a), which have the long-sequence modeling capacity with linear complexity, are
also migrated from the natural language area (Mamba (Gu & Dao, 2023)). Visual SSMs were also
designed by adapting the selective scan mechanism to 2-D images (Zhu et al., 2024; Liu et al., 2024).
Nevertheless, SSMs based on the selective scan mechanism suffer from limited parallelism, restricting
their overall potential. Recent receptance weighted key value (RWKV) and RetNet models (Peng et al.,
2023; Sun et al., 2023) improved the parallelism while retaining the linear complexity. They combine
the efficient parallelizable training of transformers with the efficient inference of RNNs, leveraging
a linear attention mechanism and allowing formulation of the model as either a Transformer or an
RNN, thus parallelizing computations during training and maintaining constant computational and
memory complexity during inference. Despite the advantages, modeling a 2-D image as a sequence
impairs interpretability.

Biology and Physics Inspired Models. Biology and physics principles have long been the fountain-
head of creating vision models. Diffusion models (Song et al., 2020; Ho et al., 2020; Saharia et al.,
2022), motivated by Nonequilibrium thermodynamics (De Groot & Mazur, 2013), are endowed with
the ability to generate images by defining a Markov chain for the diffusion step. QB-Heat (Chen
et al., 2022) utilizes physical heat equation as supervision signal for masked image modeling task.
Spiking Neural Network (SNNs) (Ghosh-Dastidar & Adeli, 2009; Tavanaei et al., 2019; Lee et al.,
2016) claims better simulation on the information transmission of biological neurons, formulating
models for simple visual tasks (Bawane et al., 2018). The success of these models encourages us
to explore the principle of physical heat conduction for the development of vision representation
models.

3 METHODOLOGY

3.1 PRELIMINARIES: PHYSICAL HEAT CONDUCTION

Let u(x, y, t) denote the temperature of point (x, y) at time t within a two-dimensional region
D ∈ R2, the classic physical heat equation (Widder, 1976) can be formulated as

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
, (1)

where k > 0 is the thermal diffusivity (Bird, 2002), measuring the rate of heat transfer in a material.
By setting the initial condition u(x, y, t)|t=0 to f(x, y), the general solution of Eq. equation 1 can be
derived by applying the Fourier Transform (FT, denoted as F) to both sides of the equation, which
gives

F
(
∂u

∂t

)
= kF

(
∂2u

∂x2
+

∂2u

∂y2

)
. (2)
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(a) Heat Conduction Operator

DCT2D

IDCT2D

𝑘

Linear
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(b) HCO Layer
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Figure 2: HCO and HCO layer. FVEs, FFN, LN, DWConv respectively denote frequency value
embeddings, feed-forward network, layer normalization, and depth-wise convolution1.

Denoting ũ(ωx, ωy, t) as the FT-transformed form of u(x, y, t), i.e., ũ(ωx, ωy, t) := F(u(x, y, t)),
the left-hand-side of Eq. equation 2 can be written as

F
(
∂u

∂t

)
=

∂ũ(ωx, ωy, t)

∂t
. (3)

and by leveraging the derivative property of FT, the right-hand-side of Eq. equation 2 can be
transformed as

F
(
∂2u

∂x2
+

∂2u

∂y2

)
= −(ω2

x + ω2
y)ũ(ωx, ωy, t). (4)

Therefore, by combining the expression of both sides of the equation, Eq. equation 2 can be formulated
as an ordinary differential equation (ODE) in the frequency domain, which can be written as

dũ(ωx, ωy, t)

dt
= −k(ω2

x + ω2
y)ũ(ωx, ωy, t). (5)

By setting the initial condition ũ(ωx, ωy, t)|t=0 to f̃(ωx, ωy) (f̃(ωx, ωy) denotes the FT-transformed
f(x, y)), ũ(ωx, ωy, t) in Eq equation 5 can be solved as

ũ(ωx, ωy, t) = f̃(ωx, ωy)e
−k(ω2

x+ω2
y)t. (6)

Finally, the general solution of heat equation in the spatial domain can be obtained by performing
inverse Fourier Transformer (F−1) on Eq. equation 6, which gives the following expression

u(x, y, t) = F−1(f̃(ωx, ωy)e
−k(ω2

x+ω2
y)t) (7)

=
1

4π2

∫
D̃

f̃(ωx, ωy)e
−k(ω2

x+ω2
y)tei(ωxx+ωyy)dωxdωy. (8)

3.2 VHEAT: VISUAL HEAT CONDUCTION

Drawing inspiration from the analogies between the principles of physical heat conduction and the
propagation of visual semantics within the spatial domain (i.e., ‘visual heat conduction’), we propose
vHeat, a physics-inspired deep architecture for visual representation learning. The vHeat model is
built upon the Heat Conduction Operator (HCO), which is designed to integrate the principle of heat
conduction into handling the discrete feature of vision data. We also leverage the thermal diffusivity
in the classic physical heat equation (Eq equation 1) to improve the adaptability of vHeat to vision
data.

3.2.1 HEAT CONDUCTION OPERATOR (HCO)

To extract visual features, we design HCO to implement the conduction of visual information across
image patches in multiple dimensions, following the principle of physical heat conduction. To this end,

1Please refer to Sec. D.3 in Appendix, where we demonstrate that while depth-wise convolution aids in
feature extraction, the primary improvements are attributed to the proposed HCO.
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Learnable FVEs

Linear Layer

Predicted 𝑘

Fixed 𝑘

Illustration of 𝑈௧

(spatial domain)

Thermal Diffusivity
(frequency domain)

Fixed 𝑘

Figure 3: Illustration of temperature distribution U t w.r.t. thermal diffusivity k, given a heat source
as the initial condition. The predicted k leads to nonuniform visual heat conduction, which facilitates
the adaptability of visual representation. (Best viewed in color)

we first extend the 2D temperature distribution u(x, y, t) along the channel dimension and denote the
resultant multi-channel image feature as U(x, y, c, t) (c = 1, · · · , C). Mathematically, considering
the input as U(x, y, c, 0) and the output as U(x, y, c, t), HCO simulates the general solution of
physical heat conduction (Eq. equation 7) in visual data processing, which can be formulated as

U t = F−1(F(U0)e−k(ω2
x+ω2

y)t), (9)

where U t and U0 are abbreviations for U(x, y, c, t) and U(x, y, c, 0), respectively.

For applying F(·) and F−1(·) to discrete image patch features, it is necessary to utilize the discrete
version of the (inverse) Fourier Transform (i.e., DFT and IDFT). However, since vision data is
spatially constrained and semantic information will not propagate beyond the border, we additionally
introduce a common assumption of Neumann boundary condition (Cheng & Cheng, 2005), i.e.,
∂u(x, y, t)/∂n = 0,∀(x, y) ∈ ∂D, t ≥ 0, where n denotes the normal to the image boundary ∂D.
As vision data is typically rectangular, this boundary condition enables us to replace the 2D DFT
and IDFT with the 2D discrete cosine transformation, DCT2D, and the 2D inverse discrete cosine
transformation, IDCT2D (Strang, 1999). Therefore, the discrete implementation of HCO can be
expressed as

U t = IDCT2D(DCT2D(U0)e−k(ω2
x+ω2

y)t), (10)

and its internal structure is illustrated in Fig. 2(a). Particularly, the parameter k stands for the thermal
diffusivity in physical heat conduction and is predicted based on the features within the frequency
domain (explained in the following subsection).

Notably, due to the computational efficiency of DCT2D, the overall complexity of HCO is O(N1.5),
where N denotes the number of input image patches. Please refer to Sec. B in Appendix for the
detailed implementation of HCO using DCT2D and IDCT2D.

3.2.2 ADAPTIVE THERMAL DIFFUSIVITY

In physical heat conduction, thermal diffusivity represents the rate of heat transfer within a material.
While in visual heat conduction, we hypothesize that more representative image contents contain
more energy, resulting in higher temperatures in the corresponding image features within U(x, y, c, t).
Therefore, it is suggested that the thermal diffusivity parameter k should be learnable and adaptive to
image content, which facilitates the adaptability of heat condution to visual representation learning.

Given that the output of DCT (i.e., DCT2D(U0) in Eq. equation 10) lies in the frequency domain,
we also determine k based on frequency values (k := k(ωx, ωy)). Since different positions in the
frequency domain correspond to different frequency values, we propose to represent these values
using learnable Frequency Value Embeddings (FVEs), which function similarly to the widely used
absolute position embeddings in ViTsDosovitskiy et al. (2021) (despite in the frequency domain). As
shown in Figure 2 (a), FVEs are fed to a linear layer to predict the thermal diffusivity k, allowing it
to be non-uniform and adaptable to visual representations.
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Figure 4: The network architecture of vHeat.

Practically, considering that k and t (the conduction time) are multiplied in Eq. equation 10, we
empirically set a fixed value for t and predict the values of k. Specifically, FVEs are shared within
each network stage of vHeat to facilitate the convergence of the training process.

3.2.3 VHEAT MODEL

Network Architecture. We develop a vHeat model family including vHeat-Tiny (vHeat-T), vHeat-
Small (vHeat-S), and vHeat-Base (vHeat-B). An overview of the network architecture of vHeat is
illustrated in Fig. 4, and the detailed configurations are provided in Sec. C in Appendix. Given an
input image with the spatial resolution of H ×W , vHeat first partitions it to image patches through
a stem module, yielding a 2D feature map with H

4 × W
4 resolution. Subsequently, multiple stages

are utilized to create hierarchical representations with gradually decreased resolutions of H
4 × W

4 ,
H
8 × W

8 , H
16 ×

W
16 and increasing channels. Each stage is composed of a down-sampling layer followed

by multiple heat conduction layers (except for the first stage).

Heat Conduction Layer. The heat conduction layer, Fig. 2 (b), is similar to the ViTs block while
replacing self-attention operators with HCOs and retaining the feed-forward network (FFN). It
first utilizes a 3× 3 depth-wise convolution layer. The depth-wise convolution is followed by two
branches: one maps the input to HCO and the other computes the multiplicative gating signal like
(Liu et al., 2024). HCO plays a crucial role in each heat conduction layer, Fig. 2 (b), where the
mapped features from a linear layer are first processed by the DCT2D operator to generate features
in the frequency domain. Additionally, HCO takes FVEs as input for frequency representation to
predict adaptive thermal diffusivity k through a linear layer. By multiplying the coefficient matrix
e−kω2t and performing IDCT2D, HCO implements the discrete solution of the visual heat equation,
Eq. equation 10.

3.3 DISCUSSION

• What is role of the thermal diffusivity coefficient e−k(ω2
x+ω2

y)t? When multiplying with
DCT2D(U0), e−k(ω2

x+ω2
y)t acts as an adaptive filter in the frequency domain to perform visual

heat conduction. Different frequency values correspond to distinct image patterns, i.e., high fre-
quency corresponds to edges and textures while low frequency corresponds to flat regions. With
adaptive thermal diffusivity, HCO can enhance/depress these patterns within each feature channel.
Aggregating the filtered features from all channels, vHeat achieves a robust feature representation.

• Why does temperature U(x, y, c, t) correspond to visual features? Visual features are essentially
the outcome of the feature extraction process, characterized by pixel propagation within the feature
map. This process aligns with the properties of existing convolution, self-attention, and selective
scan operators, exemplifying a form of information conduction. Similarly, visual heat conduction
embodies this concept of information conduction through temperature, denoted as U(x, y, c, t).

• What is the relationship/difference between HCO and self-attention? HCO dynamically
propagates energy via heat conduction, enabling the perception of global information within the input
image. This positions HCO as a distinctive form of attention mechanism. The distinction lies in its
reliance on interpretable physical heat conduction, in contrast to self-attention, which is formulated
through token similarity. Furthermore, HCO works in the frequency domain, implying its potential to
affect all image patches through frequency filtering. Consequently, HCO exhibits greater efficiency

6
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compared to self-attention, which necessitates computing the relevance of all pairs across image
patches.

4 EXPERIMENT & ANALYSIS

Experiments are performed to assess vHeat and compare it against popular CNN and ViT models.
Visualization analysis is presented to gain deeper insights into the mechanism of vHeat. The evaluation
spans image classification, object detection, semantic segmentation, out-of-distribution classification,
and low-level vision tasks. Please refer to Sec. C for experimental settings.

4.1 EXPERIMENTAL RESULTS

Image classification. The image classification results are summarized in Table 1. With similar
FLOPs, vHeat-T achieves a top-1 accuracy of 82.2%, outperforming Swin-T by 0.9%, and Vim-S by
0.8%, respectively. Notably, the superiority of vHeat is also observed at both Small and Base scales.
Specifically, vHeat-B achieves a top-1 accuracy of 84.0% with only 11.2G FLOPs and 68M model
parameters, outperforming Swin-B by 0.5%, and Vim-B by 0.8%, respectively.

In terms of computational efficiency, vHeat enjoys significantly higher inference speed across
Tiny/Small/Base model scales compared to benchmark models. For instance, vHeat-T achieves a
throughput of 1514 images/s, 87% higher than Vim-S, 26% higher than ConvNeXt-T, and 22% higher
than Swin-T, while maintaining a performance superiority, respectively.

Table 1: Performance comparison of image classification on ImageNet-1K. Test throughput values
are measured with an A100 GPU, using the toolkit released by (Wightman, 2019), following the
protocol proposed in (Liu et al., 2021). The batch size is set as 128, and the PyTorch version is 2.2.

Method Image
size #Param. FLOPs Test Throughput

(img/s)
ImageNet

top-1 acc. (%)

Swin-T (Liu et al., 2021) 2242 28M 4.6G 1242 81.3
ConvNeXt-T (Liu et al., 2022b) 2242 29M 4.5G 1198 82.1

DCFormer-SW-T (Li et al., 2023) 5122 28M 4.5G - 82.1
Vim-S (Zhu et al., 2024) 2242 26M 5.3G 811 81.4

vHeat-T (Ours) 2242 29M 4.6G 1514 82.2

Swin-S (Liu et al., 2021) 2242 50M 8.7G 720 83.0
ConvNeXt-S (Liu et al., 2022b) 2242 50M 8.7G 687 83.1

DCFormer-SW-S (Li et al., 2023) 5122 50M 8.7G - 82.9
vHeat-S (Ours) 2242 50M 8.5G 945 83.6

Swin-B (Liu et al., 2021) 2242 88M 15.4G 456 83.5
ConvNeXt-B (Liu et al., 2022b) 2242 89M 15.4G 439 83.8

RepLKNet-31B (Ding et al., 2022b) 2242 79M 15.3G - 83.5
DCFormer-SW-B (Li et al., 2023) 5122 88M 15.4G - 83.5

Vim-B (Zhu et al., 2024) 2242 98M 19.0G 294 83.2
vHeat-B (Ours) 2242 68M 11.2G 661 84.0

Object Detection and Instance Segmentation. As a backbone network, vHeat is tested on the
MS COCO 2017 dataset (Lin et al., 2014) for object detection and instance segmentation. We load
classification pre-trained vHeat weights for downstream evaluation. Considering the input image
size is different from the classification task, the shape of FVEs or k should be aligned to the target
image size on downstream tasks. Please refer to Sec. D.1 for ablation of interpolation for downstream
tasks. The results for object detection are summarized in Table 2, and vHeat enjoys superiority in
box/mask Average Precision (APb and APm) in both of the training schedules (12 or 36 epochs). For
example, with a 12-epoch fine-tuning schedule, vHeat-T/S/B models achieve object detection mAPs of
45.1%/46.8%/47.7%, outperforming Swin-T/S/B by 2.4%/2.0%/0.8% mAP, and ConvNeXt-T/S/B
by 0.9%/1.4%/0.7% mAP, respectively. With the same configuration, vHeat-T/S/B achieve instance
segmentation mAPs of 41.2%/42.3%/43.0%, outperforming Swin-T/S/B and ConvNeXt-T/S/B. The
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advantages of vHeat persist under the 36-epoch (3×) fine-tuning schedule with multi-scale training.
Besides, vHeat enjoys much higher inference speed (FPS) compared with Swin and ConvNeXt. For
example, vHeat-B achieves 20.2 images/s, 46%/43% higher than Swin-B/ConvNeXt-B (13.8/14.1
images/s). These results highlight vHeat’s potential to deliver strong performance and efficiency in
dense prediction downstream tasks.

Semantic Segmentation. The results on ADE20K are summarized in Table 2 (right), and vHeat
consistently achieves superior performance. For example, vHeat-B respectively outperform NAT-
B (Hassani et al., 2023) and ViL-B (Alkin et al., 2024) by 1.1%/0.8% mIoU.

Table 2: Left: Results of object detection and instance segmentation on COCO dataset. FLOPs are
calculated with input size 1280 × 800. AP b and APm denote box AP and mask AP, respectively.
The notation ‘1×’ indicates models fine-tuned for 12 epochs, while ‘3×MS’ denotes the utilization
of multi-scale training for 36 epochs. Right: Results of semantic segmentation on ADE20K using
UperNet (Xiao et al., 2018). FLOPs are calculated with the input size of 512× 512.

Mask R-CNN 1× schedule on COCO

Backbone APb APm FPS (images/s) FLOPs

Swin-T 42.7 39.3 26.3 267G
ConvNeXt-T 44.2 40.1 29.3 262G

vHeat-T (Ours) 45.1 41.2 32.7 272G

Swin-S 44.8 40.9 19.7 359G
ConvNeXt-S 45.4 41.8 20.2 349G

vHeat-S (Ours) 46.8 42.3 25.9 348G
Swin-B 46.9 42.3 13.8 504G

ConvNeXt-B 47.0 42.7 14.1 486G
vHeat-B (Ours) 47.7 43.0 20.2 432G

Mask R-CNN 3× MS schedule on COCO
Swin-T 46.0 41.6 26.3 267G

ConvNeXt-T 46.2 41.7 29.3 262G
vHeat-T (Ours) 47.2 42.4 32.7 272G

Swin-S 48.2 43.2 19.7 359G
ConvNeXt-S 47.9 42.9 20.2 349G

vHeat-S (Ours) 48.8 43.7 25.9 348G

UperNet on ADE20K
Backbone mIoU FPS (images/s) FLOPs

Swin-T 44.4 31.8 237G
ConvNeXt-T 46.0 37.8 235G

ViL-S 46.3 - -
vHeat-T (Ours) 46.9 36.7 235G

Swin-S 47.6 22.1 261G
NAT-S 48.0 23.1 254G

ConvNeXt-S 48.7 27.7 257G
vHeat-S (Ours) 49.1 26.1 254G

Swin-B 48.1 19.2 299G
NAT-B 48.5 20.8 285G
ViL-B 48.8 - -

ConvNeXt-B 49.1 21.6 293G
vHeat-B (Ours) 49.6 23.6 293G

Robustness evaluation. To validate the robustness of vHeat, We evaluated vHeat-B on out-
of-distribution classification datasets, including ObjectNet (Barbu et al., 2019) and ImageNet-
A (Hendrycks et al., 2021). The results are presented in Table 3. We measure the Top-1 accuracy (%)
for these two benchmarks. It is evident that vHeat outperforms Swin and ConvNeXt significantly
(better results are marked in bold). These experiments highlight vHeat’s robustness across out-of-
distribution data, such as rotated objects, different view angles (ObjectNet), and natural adversarial
examples (ImageNet-A).

Table 3: Robust comparison of vHeat-B with Swin-B.

Model ObjectNet top-1 acc. (%) ImageNet-A top-1 acc. (%)

Swin-B 25.4 36.0
ConvNeXt-B 26.1 36.5
vHeat-B (Ours) 26.7 36.8

Low-level vision tasks. To validate the generalization of our proposed vHeat, we replaced self-
attention modules with HCOs in SwinIR (Liang et al., 2021) to form vHeatIR, and tested its perfor-
mance on several low-level vision tasks with the same settings with SwinIR, including grayscale/color
image denoising on Set12 (Roth & Black, 2005)/McMaster (Zhang et al., 2011) and JPEG com-
pression artifact reduction on LIVE1 (Sheikh, 2005). The results are summarized in Table 4, and
vHeatIR achieves outstanding results compared to other baseline models, which may be attributed to
HCO’s computation in the frequency domain. After training for a short period (15000 iterations),
the visualization of color image denoising (σ = 15) is shown in Fig. 5, where vHeatIR outputs
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Noisy image 

(𝜎=15)

SwinIR

(PSNR = 33.10 dB)

vHeatIR

(PSNR = 35.73 dB)

Figure 5: Color image denoising visualization of vHeatIR and SwinIR after 15000 training iterations
(σ = 15). The input image is selected from McMaster (Zhang et al., 2011).

Table 4: Quantitative comparison (average PSNR) on low-level vision tasks. † Results are reproduced
for a fair comparison.

Model Grayscale/Color Image Denoising
(Set12/McMaster, σ = 15)

JPEG Compression
Artifact Reduction
(LIVE1, q = 40)

DnCNN (Zhang et al., 2017) 32.86/33.45 33.96
DRUNet (Zhang et al., 2022) 33.25/35.40 34.58
SwinIR† (Liang et al., 2021) 33.33/35.55 34.61
vHeatIR (Ours) 33.37/35.60 34.64

a much cleaner image than SwinIR. The experimental results have validated the potential and the
generalization on low-level vision tasks of vHeat.

Computational cost. The comparisons of throughput / GPU memory / FLOPs of vHeat-B and other
ViTs are shown in Fig. 6. Thanks to HCO’s O(N1.5) computational complexity w.r.t. N image
patches, vHeat-B has a significant superiority over other base-level ViT models on throughput/FLOPs.
Fig. 6 (Right) shows that with the increase of input image resolution, vHeat enjoys the slowest
increase of computational overhead. Fig. 6 (Mid) shows that vHeat requires 80% GPU memory less
than Swin-Transformer given large input images. Given the larger image resolution, the superiority
becomes larger. These demonstrate vHeat’s great potential to handle high-resolution images.
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Figure 6: Left / Mid / Right: Throughput / GPU memory / FLOPs under different image resolutions.
The throughput and GPU memory are tested on 80 GB Tesla A100 GPUs with batch size 64. Swin-B
is tested with scaled window size here.

4.2 ANALYSIS OF DYNAMIC LOCALITY

Visual Heat Conduction. The proposed vHeat works upon an adaptive filtering mechanism. To
verify this claim, in Fig. 7, we visualize the temperature U t defined in equation 10 under predicted k
when a random patch is taken as the heat source. With a predicted k, vHeat delivers self-adaptive
visual heat conduction. As the heat conduction time (t) increases, the correlation between the selected
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patch and the entire image improves, which effectively filters out unrelated patches in the frequency
domain. Please refer to Sec. E in Appendix for vHeat’s effective receptive field visualization.

Pr
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d 
𝑘

t=0.1 t=0.5 t=1.0

Fi
xe

d 
𝑘

t=0.1 t=0.5 t=1.0

Figure 7: Temperature distribution (U t) when using a randomly selected patch as the heat source.
(Best viewed in color)

Ablation of thermal diffusivity. To show the effectiveness of shared FVEs, we conduct the following
experiments on ImageNet-1K. (1) Fix the thermal diffusivity k = 0.0/1.0/10.0. (2) Treat k as a
learnable parameter for each layer. (3) Use individual FVEs to predict k for each layer. As shown
in Table 5 (Left), when k = 0.0, the visual heat conduction doesn’t work. A larger fixed k value,
e.g., k = 5.0, enables HCO to work isotropically without considering the image content and the
performance reaches 81.7% top-1 accuracy. Predicting k by FVEs outperforms treating k as a
learnable parameter, which may be attributed to the strengthened prior knowledge of frequency values
provided by FVEs. Please refer to Sec. D.4 in Appendix for the detailed analysis. When k is predicted
by shared FVEs, the performance improves to 82.2%, which validates shared FVEs can effectively
reduce the learning diffusivity and further improve the performance.

Table 5: Left: Evaluating thermal diffusivity k with vHeat-T. Right: Comparison of vHeat with
global filters, where vHeat-B⋆ denotes replacing HCOs in vHeat-B with operators proposed in GFNet.

Settings top-1 acc. (%)

Fixed k = 0.0 81.0
Fixed k = 1.0 81.7
Fixed k = 5.0 81.8
k as a learnable parameter 81.5
Predicting k using individual FVEs 82.0
Predicting k using shared FVEs 82.2

Model #Param. FLOPs top-1 acc. (%)

GFNet-H-B 54M 8.4G 82.9
vHeat-S 50M 8.5G 83.6
vHeat-B⋆ 68M 11.2G 83.5
vHeat-B 68M 11.2G 84.0

4.3 COMPARISON WITH GLOBAL FILTERS

To systematically simulate the physical heat conduction, we designed the HCO. Nevertheless, the
HCO operates in the frequency domain in practice. Therefore, we compare HCO with (1) GFNet (Rao
et al., 2021) (a vision representation model based on global filters in the frequency domain), and (2)
replacing HCO with the operators proposed in GFNet for ablation. Results are summarized in Table
5 (Right), vHeat-S has a large superiority over GFNet-H-B under approximate model scale. Besides,
replacing HCO with operations proposed in GFNet achieves lower performance, which validates the
effectiveness of the proposed HCO and visual heat conduction modeling for representation.

5 CONCLUSION

We introduce vHeat, a visual representation model that combines the benefits of global receptive
fields, computational efficiency, and enhanced interpretability. The effectiveness of the vHeat model
family, including vHeat-T/S/B models, has been demonstrated through extensive experiments and
ablation studies, significantly outperforming popular CNNs and ViTs. The results highlight the
potential of vHeat as a new paradigm for vision representation learning, offering fresh insights for
the development of physics-inspired vision models.
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A MOTIVATION

Modern visual representation models are built upon the attention mechanism inspired by biological
vision systems. One drawback of it is the lack of a clear definition of the relationship between
biological electrical signals and brain activity (energy). This drives us to break through the attention
mechanism and attempt other physical laws. Heat conduction is a physical phenomenon in nature,
characterized by the propagation of energy. The heat conduction process combines implicit attention
computation with energy computation and has the potential to be a new mechanism for visual
representation models.

B HCO IMPLEMENTATION USING DCT2D AND IDCT2D

Assume a matrix denoted as A and the transformed matrix denoted as B, the DCT2D and the
IDCT2D can be performed by

DCT2D : Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Amncos
(2m+ 1)pπ

2M
cos

(2n+ 1)qπ

2N
,

IDCT2D : Amn =

M−1∑
m=0

N−1∑
n=0

αpαqBpqcos
(2m+ 1)pπ

2M
cos

(2n+ 1)qπ

2N
,

(11)

where 0≤{p,m}≤M − 1, 0≤{q, n}≤N − 1, αp =


1√
M

,p = 0

2√
M

,p > 0

, and αq =


1√
N

, q = 0

2√
N

, q > 0

. M

and N respectively denote the row and column sizes of A. Considering the matrix multiplication is
GPU-friendly, we implement the DCT2D and IDCT2D in Eq. equation 11 by

C = (Cmp)M×M =

(
αpcos

(2m+ 1)pπ

2M

)
M×M

,

D = (Dnq)N×N =

(
αqcos

(2n+ 1)qπ

2N

)
N×N

,

B = CADT,

A = CTBD.

(12)

Suppose the number of total patches is N and the image is square, the shapes of A, B, C and D are
all

√
N ×

√
N , which illustrates the computational complexity of equation 12 and HCO is O(N1.5).

We compared our implementation of DCT/IDCT in vHeat with Torch-DCT, which is implemented
based on torch.fft. Our implemented vHeat-B (661 img/s) is much faster than Torch-DCT (367
img/s), validating our implemented GPU-friendly matrix multiplication is significantly efficient.
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C EXPERIMENTAL SETTINGS

Model configurations. The configurations of vHeat-T/S/B models are shown in Table 6. The FLOPs
and training parameters are reported after reparameterization in HCOs.

Table 6: Configurations of vHeat. The contents in the tuples represent configurations for four stages.

Size Tiny Small Base

Stem 3×3 conv with stride 2; Norm; GELU; 3×3 conv with stride 2; Norm
Downsampling 3×3 conv with stride 2; Norm
MLP ratio 4
Classifier head Global average pooling, Norm, MLP

Layers (2,2,6,2) (classification)
(2,2,5,2) (others)

(2,2,18,2) (classification)
(2,2,16,2) (others)

(2,2,18,2) (segmentation)
(4,4,20,4) (others)

Channels (96,192,384,768) (96,192,384,768) (128,256,512,1024) (segmentation)
(96,192,384,768) (others)

Image Classification. Following the standard evaluation protocol used in (Liu et al., 2022a), all
vHeat series are trained from scratch for 300 epochs and warmed up for the first 20 epochs. We
utilize the AdamW optimizer (Loshchilov & Hutter, 2017) during the training process with betas
set to (0.9, 0.999), a momentum of 0.9, a cosine decay learning rate scheduler, an initial learning
rate of 2 × 10−3, a weight decay of 0.08, and a batch size of 2048. The drop path rates are set
to 0.1/0.3/0.5 for vHeat-T/S/B, respectively. Other techniques such as label smoothing (0.1) and
exponential moving average (EMA) are also applied. No further training techniques are employed
beyond these for a fair comparison. The training of vHeat-T/S/B takes 4.5/7/8.5 minutes per epoch
on Tesla 16×V100 GPUs.

Object Detection. Following the settings in Swin (Liu et al., 2022a) with the Mask-RCNN detector,
we build the vHeat-based detector using the MMDetection library (Chen et al., 2019). The AdamW
optimizer (Loshchilov & Hutter, 2017) with a batch size of 16 is used to train the detector. The initial
learning rate is set to 1 × 10−4 and is reduced by a factor of 10× at the 9th and 11th epoch. The
fine-tune process takes 12 (1×) or 36 (3×) epochs. We employ the multi-scale training and random
flip technique, which aligns with the established practices for object detection evaluations.

Semantic Segmentation. Following the setting of Swin Transfomer (Liu et al., 2021), we construct a
UperHead (Xiao et al., 2018) on top of the pre-trained vHeat model to test its capability for semantic
segmentation. The AdamW optimizer (Loshchilov & Hutter, 2017) is employed and the learning
rate is set to 6× 10−5 with a batch size of 16. The fine-tuning process takes a total of standard 160k
iterations and the default input resolution is 512× 512.

D ADDITIONAL ABLATION STUDIES

D.1 INTERPOLATION OF FVES/k FOR DOWNSTREAM TASKS

We have tried several approaches to align the shape for ablation. (1) Directly interpolate FVEs to the
target shape of the input image. (2) Add 0 to the lower right region of FVEs to align the target shape.
(3) Add 0 to the lower right region of FVEs to 512 × 512, and interpolate to the target shape. (4)
Directly interpolate the predicted thermal diffusivity k to the target shape. The results are summarized
in Table 7. Through the comparison, we select adding 0, then interpolating FVEs to the target shape
for all downstream tasks.

D.2 PLAIN VHEAT MODEL

We’ve tested the performance of plain vHeat-B on ImageNet-1K classification. Keeping the same
as DeiT-B, plain vHeat-B has 12 HCO layers, 768 embedding channels and the patch size is set to
16. Results are shown in Table 8. The superiority of plain vHeat-B over DeiT-B also validates the
effectiveness of vHeat model.
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Table 7: Evaluating different methods to align the shape of FVEs/k when loading ImageNet-1K
pre-trained vHeat-B weights for detection and segmentation on COCO.

Method APb APm

Interpolating FVEs to predict k 47.4 42.9
Adding 0 to FVEs 47.4 42.7
Adding 0, then interpolating FVEs 47.7 43.0
Interpolating the predicted k 47.2 42.7

Table 8: Plain vHeat-B vs. DeiT-B on ImageNet-1K with 300 epochs supervised training.

Model #Param. FLOPs Acc

DeiT-B 86M 17.5G 81.8
Plain vHeat-B 88M 16.9G 82.6

D.3 DEPTH-WISE CONVOLUTION

We conduct experiments to validate the performance improvement from DWConv. We replace
depth-wise convolution with layer normalization for vHeat-B. Results are summarized in Table 9,
and vHeat-B achieves 83.8% Top-1 accuracy on ImageNet-1K classification, 0.2% lower than with
DWConv, which validates the main gains come from the proposed HCO. Besides, when k is fixed
as a large value, e.g. k = 10.0, replacing DWConv with layer normalization causes a significant
performance drop (-0.7% top-1 accuracy). The comparison validates predicting k by FVEs can
effectively improve the robustness of vHeat.

Additionally, we train vHeat without DWConv with a different recipe from vHeat with DWConv. The
batch size is set as 1024, the initial learning rate is set as 1× 10−3, and the weight decay is set as
0.05.

Table 9: Ablation experiments of depth-wise convolution (DWConv).

Model DWConv Acc

vHeat-B ✓ 84.0
vHeat-B ✗ 83.8 (-0.2)

vHeat-B (fix k=10.0) ✓ 83.6
vHeat-B (fix k=10.0) ✗ 82.9 (-0.7)

D.4 PREDICTING k BY FVES vs. TREATING k AS A LEARNABLE PARAMETER

After performing DCT, the features lack explicit frequency value, while FVEs provide the model
with prior knowledge of frequency values. Similar to how the introduction of positional encoding
can enhance performance even in models that include positional information (Gehring et al., 2017),
predicting k by FVEs, rather than treating k as a learnable parameter, reinforces prior frequency
information and more clearly represents the relationship between frequency and thermal diffusivity.

E RECEPTIVE FIELD VISUALIZATION

The Effective Receptive Field (ERF) (Luo et al., 2016) of an output unit denotes the region of input
that contains elements with a non-negligible influence on that unit. In Fig. 8, ResNet, ConNeXT, and
Swin have local ERF. DeiT (Touvron et al., 2021) and vHeat exhibit global ERFs. The difference lies
in that DeiT has a O(N2) complexity while vHeat enjoys O(N1.5) complexity.
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Resnet-50 ConvNeXt-T Swin-T DeiT-S VHeat-T

Figure 8: Visualization of the effective receptive fields (ERF) (Luo et al., 2016). The visualization of
baseline models are provided from VMamba (Liu et al., 2024). Pixels of higher intensity indicate
larger responses with the central pixel.

F HEAT CONDUCTION VISUALIZATION

We visualize more instances of visual heat conduction, given a randomly selected patch as the heat
source, Fig. 9, validating the self-adaptive visual heat conduction pattern through the prediction of k.

Predicted 𝑘
t=0.1 t=0.5 t=1.0

Fixed 𝑘
t=0.1 t=0.5 t=1.0

Figure 9: Temperature distribution (U t) when using a randomly selected patch as the heat source.
(Best viewed in color)

G ANALYSIS OF k IN EACH LAYER

We calculate average values of k in each layer of ImageNet-1K classification pre-trained vHeat-Tiny,
Fig. 10. In stage 2 and stage 3, average values of k corresponding to deeper layers are larger,
indicating that the visual heat conduction effect of deeper layers is stronger, leading to faster and
farther overall content propagation.
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Figure 10: Average values of k in each layer.

H FEATURE MAP VISUALIZATION

We visualize the feature before/after HCO in a random layer in stage 2 with randomly selected images
as input, Fig. 11. Before HCO, only a few regions of the foreground object are activated. After HCO,
almost the entire foreground object is activated intensively.

Input image Before the HCO After the HCO

Figure 11: Visualization of the feature before/after HCO in a random layer in stage 2 with ImageNet-
1K classification pre-trained vHeat-B. The images are randomly selected from ImageNet-1K.
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