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ABSTRACT

Adversarial Training (AT) is a widely-used algorithm for building robust neu-
ral networks, but it suffers from the issue of robust overfitting, the fundamental
mechanism of which remains unclear. In this work, we consider normal data
and adversarial perturbation as separate factors, and identify that the underlying
causes of robust overfitting stem from the normal data through factor ablation in
AT. Furthermore, we explain the onset of robust overfitting as a result of the model
learning robust features that lack generalization, which we refer to as non-effective
features. Specifically, we offer a detailed analysis of how the robustness gap be-
tween the training and test sets prompts the generation of non-effective features,
ultimately leading to robust overfitting. Additionally, we analysis various em-
pirical behaviors observed in robust overfitting and revisit different techniques to
mitigate robust overfitting from the perspective of non-effective features, provid-
ing a comprehensive understanding of the robust overfitting. This understanding
inspires us to propose two measures, attack strength and data augmentation, to
hinder the learning of non-effective features by the neural network, thereby allevi-
ating robust overfitting. Besides, extensive experiments conducted on benchmark
datasets demonstrate the effectiveness of the proposed methods in enhancing ad-
versarial robustness.

1 INTRODUCTION

Adversarial Training (AT) (Madry et al., 2018) has emerged as a reliable method for improving
a model’s robustness against adversarial attacks (Szegedy et al., 2014; Goodfellow et al., 2015). It
involves training networks using adversarial data generated on-the-fly and has been proven to be one
of the most effective empirical defenses (Athalye et al., 2018). AT has shown success in building
robust neural networks when applied to the MNIST dataset. However, achieving the same goal on
more complex datasets like CIFAR10 has proven to be challenging (Madry et al., 2018). Apart
from the limited capacity of current neural networks (Nakkiran, 2019), there is also a perplexing
phenomenon known as robust overfitting (Rice et al., 2020) that significantly hampers this process.
Specifically, when robust overfitting occurs during AT, the model’s robust accuracy on test data
continues to decline with further training. This phenomenon has been observed across different
datasets, network architectures, and AT variants (Rice et al., 2020).

Recently, various technologies have been proposed to empirically alleviate robust overfitting (Car-
mon et al., 2019; Chen et al., 2020b; Dong et al., 2022; Wu et al., 2020; Yu et al., 2022b). For in-
stance, Wu et al. (2020) proposed the double-perturbation mechanism, which adversarially perturbs
both inputs and weights to achieve a smoother weight-loss landscape. Yu et al. (2022b) introduced
the Minimum Loss Constrained Adversarial Training (MLCAT) prototype to prevent the model from
fitting the small-loss adversarial data. Both methods can alleviate robust overfitting while enhanc-
ing adversarial robustness. However, the essential issue, the fundamental mechanism behind robust
overfitting, remains unresolved and is of critical importance.

In this paper, we investigate the fundamental mechanism of robust overfitting. Firstly, we show
that the inducing factors of robust overfitting stem from normal data. Specifically, we treat normal
data and adversarial perturbations as separate factors, and devise factor ablation adversarial training
to assess their respective impacts on robust overfitting. We observe that simultaneously ablating
adversarial perturbations and normal data in adversarial training can greatly mitigate the robust
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overfitting, whereas adversarial training that only ablates adversarial perturbations still exhibits a
severe degree of robust overfitting. Given that these experiments strictly adhere to the principle of
controlling variables, with the sole difference being the presence of normal data in the training set,
we can infer that the underlying causes of robust overfitting stem from normal data.

Normal data can be regarded as a composition of features. To gain more insights into the mechanism
of robust overfitting, we provide a detail analysis for the onset of robust overfitting in adversarial
training from the perspective of feature generalization. To begin with, due to the distribution devia-
tion of normal data between training and test sets, certain non-generalizable robust features emerge
in the training set, which we denote as non-effective features. Subsequently, during the adversarial
training process, the model’s adversarial robustness on the training set exceeds that on the test set.
This results in a robustness gap between the training and test data. Considering that adversarial
perturbations are generated on-the-fly and adaptively adjusted based on the model’s robustness, the
robustness gap between the training and test data leads to distinct adversarial perturbation on the ro-
bust features in these datasets. The varying degree of adversarial perturbation on the robust features
in the training and test data amplify the distribution differences between these two datasets, thereby
degrading the generalization of robust features on the training set and facilitating the generation
of non-effective features. The increasing non-effective features further exacerbates the robustness
gap between training and test data, forming a vicious cycle. As adversarial training advances, the
robustness gap between the training and test sets progressively expands, promoting the generation
of non-effective features. When the model’s optimization is govern by these non-effective features,
it results in the phenomenon of robust overfitting. Correspondingly, we provide a comprehensive
explanation for various empirical behaviors associated with robust overfitting and revisit different
existing techniques for mitigating robust overfitting based on our analysis.

In order to support our analysis, we also devise two representative measures, namely attack strength
and data augmentation, to regulate the model’s learning of non-effective features. Specifically, i)
eliminating non-effective features through adversarial perturbations; and ii) aligning the model’s
adversarial robustness on the training set with that on the test set through data augmentation tech-
niques. Both measures provide a flexible way to control the generation of non-effective features.
We observe a clear correlation between the extent of robust overfitting and the model’s learning of
non-effective features: the fewer non-effective features the model learns, the less pronounced the
degree of robust overfitting. These findings align well with our analysis. Furthermore, extensive
experiments conducted in a wide range of settings also validate the effectiveness of the proposed
measures in enhancing adversarial robustness. To sum up, our contributions are as follows:

• We conducted a series of rigorously factor ablation experiments following the principles of
the controlled variable method, inferring that the factors inducing robust overfitting origi-
nate from normal data.

• We provide a comprehensive understanding of the onset robust overfitting through a de-
tailed analysis of the generation of non-effective features.

• Based on the understanding, we devise two representative measures to impede the model’s
learning of non-effective features, validating our analysis. Moreover, extensive experiments
demonstrate that the proposed methods consistently enhance the adversarial robustness of
baseline methods by a noticeable margin.

2 RELATED WORK

In this section, we briefly review related literature from two perspectives: adversarial training and
robust overfitting.

2.1 ADVERSARIAL TRAINING

Let fθ, X and ℓ represent the neural network f with model parameter θ, the input space, and the
loss function, respectively. Given a C-class dataset S = {(xi, yi)}ni=1, where xi ∈ X and yi ∈ Y =
{0, 1, . . . , C − 1} denotes its corresponding label, the objective function of standard training is

min
θ

1

n

n∑
i=1

ℓ(fθ(xi), yi), (1)
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where the neural network fθ learns features in xi that are correlated with associated labels yi in
order to minimize the empirical risk of misclassifying normal inputs. However, empirical evi-
dence (Szegedy et al., 2014; Tsipras et al., 2018; Ilyas et al., 2019) suggests that networks trained
under this regime tend to fit fragile, non-robust features that are incomprehensible to humans. To
address this issue, adversarial training introduces adversarial perturbations to each data point by
transforming S = {(xi, yi)}ni=1 into S ′ = {(x′

i = xi + δi, yi)}ni=1. The adversarial perturbations
{δi}ni=1 are constrained by a pre-specified budget, i.e. {δ ∈ ∆ : ||δ||p ≤ ϵ}, where p can be 1, 2,∞,
etc. Therefore, the objective function for adversarial training (Madry et al., 2018) is

min
θ

1

n

n∑
i=1

max
δi∈∆

ℓ(fθ(xi + δi), yi), (2)

where the inner maximization process generates adversarial perturbations on-the-fly that maximizes
the classification loss. Subsequently, the outer minimization process optimizes the neural network
using the generated adversarial data. This iterative procedure aims to achieve an adversarially robust
classifier. The most commonly employed approach for generating adversarial perturbations in AT is
Projected Gradient Descent (PGD) (Madry et al., 2018), which applies adversarial attack to normal
data xi over multiple steps k with a step size of α:

δk = Π∆(α · sign∇xℓ(fθ(x+ δk−1), y) + δk−1), k ∈ N, (3)

where δk represents the adversarial perturbation at step k, and Π∆ denotes the projection operator.

Besides the standard AT, there exist several other common variants of adversarial training meth-
ods (Kannan et al., 2018; Zhang et al., 2019; Wang et al., 2019). One typical example is
TRADES (Zhang et al., 2019), which proposes a regularized surrogate loss that balances natural
accuracy and adversarial robustness:

min
θ

∑
i

{
CE(fθ(xi), yi) + β ·max

δi∈∆
KL(fθ(xi)||fθ(xi + δi))

}
, (4)

where CE is the cross-entropy loss that encourages the network to maximize natural accuracy, KL is
the Kullback-Leibler divergence that encourages improvement of robust accuracy, and the hyperpa-
rameter β is employed to regulates the tradeoff between natural accuracy and adversarial robustness.

2.2 ROBUST OVERFITTING

Robust overfitting was initially observed in standard AT (Madry et al., 2018). Later, Rice et al.
(2020) conducted a comprehensive study and discovered that conventional remedies used for over-
fitting in deep learning are of little help in combating robust overfitting in AT. This finding prompted
further research efforts aimed at mitigating robust overfitting. Schmidt et al. (2018) attributed ro-
bust overfitting to sample complexity theory and suggested that more training data are required for
adversarial robust generalization, which is supported by empirical results in derivative works (Car-
mon et al., 2019; Alayrac et al., 2019; Zhai et al., 2019). Recent works also proposed various
strategies to mitigate robust overfitting without relying on additional training data, such as sample
reweighting (Wang et al., 2019; Zhang et al., 2020; Liu et al., 2021), label smoothing (Izmailov et al.,
2018), stochastic weight averaging (Chen et al., 2020b), temporal ensembling (Dong et al., 2022),
knowledge distillation (Chen et al., 2020b), weight regularization (Liu et al., 2020; Wu et al., 2020;
Yu et al., 2022a;b), and data augmentation (Tack et al., 2022; Li & Spratling, 2023). While these
techniques can assist in mitigating robust overfitting, the fundamental mechanism behind robust
overfitting remains unclear. This uncertainty has somewhat constrained the widespread applicability
of current techniques. For instance, it has been noted that more training data does not necessarily
alleviate robust overfitting and can even harm robust generalization (Chen et al., 2020a; Min et al.,
2021). Additionally, it was shown that sample reweighting techniques with completely opposing
objectives can both effectively alleviate robust overfitting (Zhang et al., 2020; Yu et al., 2022b), and
data augmentation technique was found to be inadequate in combating robust overfitting in prior
attempts (Gowal et al., 2020; Rebuffi et al., 2021). These contradictions are common in the adver-
sarial training community and further emphasize the importance of understanding the mechanism
of robust overfitting. In this work, we investigate the onset of robust overfitting and explore its
underlying mechanism.
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Figure 1: (a) The test robustness of different experimental groups in factor ablation adversarial
training; (b) the adversarial loss and robustness of standard AT; (c) the test robustness of OROATAS

with varying attack strengths, and (d) the test robustness of OROATDA with different proportions of
small-loss adversarial data.

3 THE ONSET OF ROBUST OVERFITTING IN ADVERSARIAL TRAINING

In this section, we commence with factor ablation experiments to identify the underlying causes of
robust overfitting (Section 3.1). Subsequently, we offer an intuitive analysis for the onset of robust
overfitting through the lens of feature generalization. To this end, we explain various empirical
behaviors associated with robust overfitting and revisit existing techniques for mitigating robust
overfitting based on our analysis (Section 3.2). Finally, we develop two representative measures to
support our analysis (Section 3.3).

3.1 FACTOR ABLATION ADVERSARIAL TRAINING

Inspired by the data ablation experiments in Yu et al. (2022b), which revealed that small-loss adver-
sarial data leads to robust overfitting by removing adversarial data during training, we propose factor
ablation adversarial training to gain deeper insights into robust overfitting. We follow the same rule
as the data ablation experiments, using a fixed loss threshold to differentiate between large-loss and
small-loss adversarial data. For instance, in the CIFAR10 dataset, data with an adversarial loss of
less than 1.5 are regarded as small-loss adversarial data. Unlike the data ablation experiments , where
adversarial data is treated as a unified entity, we treated normal data and adversarial perturbations
within small-loss adversarial data as separate factors and conducted more detailed factor ablation
experiments to identify the inducing factor of robust overfitting. Specifically, we trained a PreAct
ResNet-18 model on CIFAR-10 using standard AT under the ℓ∞ threat model and removed specified
factors before robust overfitting occurred (i.e., at the 100th epoch), including: i) baseline, which is
a baseline group without removing any factors; ii) data & perturbation, which removes both the
normal data and adversarial perturbations from small-loss adversarial data; and iii) perturbation,
which only removes the adversarial perturbations from small-loss adversarial data.

It’s important to note that the experimental groups mentioned above were entirely identical before
the occurrence of robust overfitting. This ensures that these experiments adhered to a rigorous con-
trolled variable principle, with the only difference between the various experimental groups being
the specific factors removed from the training data at the 100th epoch. The experimental results
of factor ablation adversarial training are summarized in Figure 1(a). We observe that the data &
perturbation group exhibits a significant relief in robust overfitting, while both the baseline and
perturbation groups still experience severe robust overfitting. Since the only difference between
the data & perturbation group and the perturbation group is the presence of normal data in the
training set, we can clearly infer that normal data is the inducing factor of robust overfitting. Similar
effects were also observed across different datasets, network architectures, and adversarial training
variants (see Appendix A), indicating that this is a general finding in adversarial training.

3.2 THE ONSET OF ROBUST OVERFITTING

In this part, we delve into the analysis of how normal data contributes to robust overfitting from
the perspective of feature generalization. Building on this understanding, we further explain various
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Figure 2: Illustration of the onset of robust overfitting.

empirical behaviors associated with robust overfitting and revisit existing techniques for mitigating
robust overfitting.

From the experimental results in Section 3.1, we can know that the factors inducing robust overfitting
originate from normal data. Normal data can be considered as a composition of features. According
to Ilyas et al. (2019), these features can be further categorized into robust features and non-robust
features. Specifically, given a model and a specified attack budget, if the correlation between a
feature and its corresponding label consistently holds under the specified attack budget, then this
feature is considered robust; otherwise, it is classified as non-robust. However, due to the distribution
deviation between the training and test datasets, some robust features in the training set may lack
generalization. We refer to these features as non-effective features. Next, we proceed to further
analyze the generation of non-effective features during the adversarial training process.

During adversarial training, adversarial perturbations are generated on-the-fly and adaptively ad-
justed based on the model’s robustness. In the initial stages of adversarial training, due to the
similarity in the model’s robustness between the training and test datasets, the generated adver-
sarial perturbations on the robust features are relatively close in these datasets. Thus, most robust
features in the training set can still exhibit good generalization, thereby enhancing the model’s ad-
versarial robustness on the test set. However, as training progresses, the model’s robustness in the
training dataset increases significantly faster than its robustness on the test dataset, as evidenced in
Figure 1(b) by the adversarial loss and robustness observed on both datasets. This leads to a widen-
ing robustness gap between the training and test datasets. Consequently, the generated adversarial
perturbation on the robust features becomes progressively more distinct in these datasets, which
degrades the generalization of robust features on the training set and facilitates the generation of
non-effective features, causing the model to learn an increasing number of non-effective features.
As non-effective features proliferate, the robustness gap between the training and test sets contin-
ues to grow, forming a vicious cycle, as illustrated in Figure 2. Once the model’s optimization is
governed by these non-effective features, the model’s adversarial robustness on the test dataset will
continue to decline. This, in turn, gives rise to the phenomenon of robust overfitting.

Empirical behaviors of robust overfitting. We notice that robust overfitting exhibits some empir-
ical behaviors in adversarial training: 1) Removing small-loss adversarial data can prevent robust
overfitting. 2) As the adversarial perturbation budget increases, the degree of robust overfitting ini-
tially rises and then decreases. Our analysis naturally explains these phenomena: 1) adversarial data
with small loss indicates that the model’s robustness on these data is good, maintaining a substantial
gap compared to the model’s robustness on the test set. The robustness gap promotes the generation
of non-effective features on these data. Therefore, removing small-loss adversarial data from the
training set can decrease the generation of non-effective features, effectively mitigating robust over-
fitting. 2) As the perturbation budget increases from 0, the distinction of adversarial perturbation for
robust features in the training and test datasets gradually expands, resulting in a higher likelihood
of non-effective features generation during training. This explains why natural training does not
exhibit robust overfitting, and as the adversarial perturbation budget increases, the degree of robust
overfitting also rises. However, with a further increase in the perturbation budget, the degree of ro-
bust overfitting decreases. This is because the model’s robustness on the training set itself is limited
under a large perturbation budget, narrowing the robustness gap between the training and test sets.
This reduction in the robustness gap alleviates the generation of non-effective features in the training
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Algorithm 1 OROATAS

1: Input: Network fθ , training data S, mini-batch B, batch size n, learning rate η, PGD step size α, PGD
budget ϵ, PGD steps K, adjusted PGD budget ϵa, adjusted PGD steps Ka, small-loss data threshold t.

2: Output: Adversarially robust model fθ .
3: repeat
4: Read mini-batch (xB, yB) from training set S.
5: x′

B ← xB + δ, where δ ∼ Uniform(−ϵ, ϵ)
6: for k = 1 to K do
7: x′

B ← Πϵ(x
′
B + α · sign(∇x′

B
ℓ(fθ(x

′
B), yB)))

8: end for
9: x = xB(ℓ(fθ(x

′
B), yB) ≤ t)

10: y = yB(ℓ(fθ(x
′
B), yB) ≤ t)

11: x′ ← x+ δ, where δ ∼ Uniform(−ϵa, ϵa)
12: for k = 1 to Ka do
13: x′ ← Πϵa(x

′ + α · sign(∇x′ℓ(fθ(x
′), y)))

14: end for
15: x′

B(ℓ(fθ(x
′
B), yB) ≤ t) = x′

16: θ ← θ − η∇θ
1
n

∑n
i=1 ℓ(fθ(x

′(i)
B ), y

(i)
B )

17: until training converged

data. Consequently, the degree of robust overfitting gradually decreases. Due to space constraints,
we provide more analysis of existing techniques for mitigating robust overfitting in Appendix B.

3.3 THE PROPOSED METHODS

As mentioned in Section 3.2, we analyse the Onset of Robust Overfitting in Adversarial Training
(OROAT) as a result of learning non-effective features, which are derived from the model’s robust-
ness gap between the training and test sets. In this part, we introduce two approaches to support
our analysis: attack strength, which belongs to the feature-elimination approach, and data augmen-
tation, which belongs to the robustness-alignment approach. These two methods are representative
and, more importantly, orthogonal in regulating the learning of non-effective features during train-
ing, thereby fully validating our analysis of OROAT.

OROAT through attack strength. The feature-elimination approach reduces the model’s learning
of non-effective features by eliminating them from the training dataset. Adversarial training (Good-
fellow et al., 2015; Madry et al., 2018) is the primitive method in this direction. It utilizes adversarial
perturbations to eliminate the non-robust features in the training dataset.

To achieve different degrees of non-effective feature elimination, we applied varying levels of attack
strength to generate adversarial perturbations, thereby adjusting the generalization of the robust
features learned by the model. Specifically, we trained PreAct ResNet-18 on CIFAR10 under the
ℓ∞ threat model and used different perturbation budgets ϵ on small-loss adversarial data, ranging
from 0/255 to 24/255. In each setting, we evaluated the robustness on CIFAR10 test data under
the standard perturbation budget of ϵ = 8/255. The pseudocode is provided in Algorithm 1. This
approach utilizes the attack strength strategy to eliminate different levels of non-effective features,
referred to as OROATAS.

The results of OROATAS with different attack strengths are summarized in Figure 1(c). We observe
a clear correlation between the applied attack strength and the extent of robust overfitting. Specif-
ically, the more non-effective features are eliminated, the milder the degree of robust overfitting.
When the perturbation budget is 0/255, robust overfitting is most pronounced. However, when the
perturbation budget exceeds a certain threshold, such as 16/255, the model exhibits almost no robust
overfitting. It is worth noting that similar patterns are also observed across different datasets, net-
work architectures, and adversarial training variants (as shown in Appendix C). These experimental
results clearly demonstrate that robust overfitting is driven by these non-effective features.

OROAT through data augmentation. On the other hand, the robustness-alignment approach pre-
vents the generation of non-effective features by aligning the model’s robustness between the train-
ing and test datasets. The double-perturbation mechanism (Wu et al., 2020) and minimum loss
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Algorithm 2 OROATDA

1: Input: Network fθ , training data S, mini-batch B, batch size n, learning rate η, PGD step size α, PGD
budget ϵ, PGD steps K, small-loss data proportion p, small-loss data threshold t.

2: Output: Adversarially robust model fθ .
3: repeat
4: Read mini-batch (xB, yB) from training set S.
5: x′

B ← xB + δ, where δ ∼ Uniform(−ϵ, ϵ)
6: for k = 1 to K do
7: x′

B ← Πϵ(x
′
B + α · sign(∇x′

B
ℓ(fθ(x

′
B), yB)))

8: end for
9: nt =

∑
I(ℓ(fθ(x′

B), yB) ≤ t)
10: if nt/n > p then
11: repeat
12: x = xB(ℓ(fθ(x

′
B), yB) ≤ t)

13: y = yB(ℓ(fθ(x
′
B), yB) ≤ t)

14: x = DataAugmentation(x)
15: x′ ← x+ δ, where δ ∼ Uniform(−ϵ, ϵ)
16: for k = 1 to K do
17: x′ ← Πϵ(x

′ + α · sign(∇x′ℓ(fθ(x
′), y)))

18: end for
19: x′

B(ℓ(fθ(x
′
B), yB) ≤ t)(ℓ(fθ(x

′), y) > t) = x′(ℓ(fθ(x
′), y) > t)

20: nt =
∑

I(ℓ(fθ(x′
B), yB) ≤ t)

21: until nt/n ≤ p
22: end if
23: θ ← θ − η∇θ

1
n

∑n
i=1 ℓ(fθ(x

′(i)
B ), y

(i)
B )

24: until training converged

constraint (Yu et al., 2022b) are the foundational methods in this direction, which utilize weight
perturbations to diminish the model’s robustness specifically on the training set.

During AT, the model’s robustness on the training set typically exceeds that on the test set. For a
given sample, we can roughly estimate the model’s robustness by examining the adversarial loss
associated with that sample. For instance, a larger adversarial loss indicates that the model pos-
sesses weaker robustness on the given sample. To conduct AT with varying model robustness on the
training set, we employ data augmentation techniques to adjust the proportion of small-loss adver-
sarial data in each minibatch. Specifically, at the beginning of each iteration, we check whether the
proportion of small-loss adversarial data meets the specified threshold. If this proportion is below
the specified threshold, we apply data augmentation to these small-loss examples within the mini-
batch until the desired proportion is reached. The pseudocode is provided in Algorithm 2, where the
data augmentation method we use is AugMix (Hendrycks et al., 2020). We refer to this adversarial
training framework, empowered by the data augmentation technique, as OROATDA.

The results of OROATDA with different proportions of small-loss adversarial data are summarized in
Figure 1(d). We observe a clear correlation between the proportion of small-loss data and the extent
of robust overfitting. As the model’s robustness on the training dataset decreases, the degree of robust
overfitting becomes increasingly mild. Furthermore, these effects are consistent across different
datasets, network architectures, and adversarial training variants (as shown in Appendix D). These
empirical results strongly support our analysis of OROAT, indicating that the model’s robustness
gap promotes the generation of non-effective features.

4 EXPERIMENT

In this section, we evaluate the effectiveness of the proposed methods. Section 4.1 demonstrates that
both OROATAS and OROATDA consistently enhance the adversarial robustness compared to the
baselines. In Section 4.2, we conduct the analysis and discussion regarding the proposed methods.

Setup. We conduct extensive experiments across different benchmark datasets (CIFAR10 and CI-
FAR100 (Krizhevsky et al., 2009)), network architectures (PreAct ResNet-18 (He et al., 2016) and
Wide ResNet-34-10 (Zagoruyko & Komodakis, 2016)), and adversarial training variants (AT (Madry
et al., 2018) and TRADES (Zhang et al., 2019)). In addition to adversarial training variants, we also
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Table 1: Evaluation of adversarial robustness for OROATAS and OROATDA. The results were
calculated as the average of three random trials. We omit the standard deviations as they are small
(Natural< 0.6%, PGD-20< 0.3% and AA< 0.2%).

Network Dataset Method Best Last

Natural PGD-20 AA Natural PGD-20 AA

PreAct ResNet-18

CIFAR10
AT 82.31 52.28 48.09 84.11 44.46 42.01
OROATDA 82.58 53.95 48.48 85.45 49.69 44.44
OROATAS 77.68 56.37 49.37 78.04 51.96 45.97

CIFAR100
AT 55.14 28.93 24.53 55.83 20.87 18.92
OROATDA 55.79 29.40 24.80 57.92 25.51 21.59
OROATAS 51.02 30.25 25.63 51.06 26.19 22.67

CIFAR10
TRADES 81.50 52.92 48.90 82.27 49.95 46.92
OROTRADESDA 82.89 53.14 49.12 83.28 52.13 48.41
OROTRADESAS 80.92 53.49 49.88 80.97 52.04 48.91

CIFAR10
AWP 81.01 55.36 50.12 81.61 55.05 49.85
OROAWPDA 81.12 55.89 50.49 81.63 55.32 50.19
OROAWPAS 78.68 56.52 50.75 79.06 55.70 50.59

CIFAR10
MLCAT 81.70 58.33 50.54 82.26 58.25 50.46
OROMLCATDA 82.06 58.76 50.61 82.50 58.57 50.52
OROMLCATAS 77.12 59.01 50.83 78.79 58.79 50.68

Wide ResNet-34-10

CIFAR10 AT 85.49 55.40 52.31 86.50 47.14 45.74
OROATAS 82.64 59.07 53.04 82.71 49.68 46.59

CIFAR100 AT 60.90 31.35 27.42 59.07 26.03 24.39
OROATAS 56.55 33.04 28.58 52.75 27.23 24.58

CIFAR10 TRADES 84.78 56.25 53.12 84.70 48.49 46.69
OROTRADESAS 83.36 57.07 53.79 84.64 49.48 47.25

CIFAR10 AWP 85.30 58.35 53.07 85.39 57.16 52.49
OROAWPAS 84.47 59.67 54.35 84.87 57.66 52.93

CIFAR10 MLCAT 86.72 62.63 54.73 87.32 61.91 54.61
OROMLCATAS 85.41 63.60 55.25 84.74 62.47 54.88

include two typical methods for mitigating robust overfitting: AWP (Wu et al., 2020) and MLCAT
(Yu et al., 2022b). For training, we followed the same optimization parameters as in Rice et al.
(2020) for a fair comparison. In terms of evaluation, we utilized PGD-20 (Madry et al., 2018) and
AutoAttack (AA) (Croce & Hein, 2020) as adversarial attack methods. The detailed descriptions of
the experimental setup are in the Appendix E.

4.1 ROBUSTNESS EVALUATION

The evaluation results of OROATAS and OROATDA are summarized in Table 1. Here, “Best” refers
to the highest achieved robustness during training, “Last” refers to the robustness of the checkpoint
at the last epoch, and “Natural” denotes the accuracy on normal data. Note that we use the prefix
“ORO” to denote the corresponding baselines that have integrated our proposed method. For ex-
ample, if the attack strength strategy is applied to TRADES, we represent it as OROTRADESAS.
We observe that the proposed approaches significantly enhance adversarial robustness over standard
AT, demonstrating the effectiveness of OROATAS and OROATDA. Furthermore, this performance
improvement is consistent across different datasets, network architectures, and adversarial training
variants, indicating that our proposed methods reliably enhance adversarial robustness. Moreover,
it is worth noting that both AWP and MLCAT have already effectively mitigated robust overfitting.
The proposed approaches still contribute to a complementary improvement in adversarial robust-
ness. The enhanced adversarial robustness on AWP and MLCAT by our proposed methods further
highlights the significance of understanding the underlying mechanisms of robust overfitting.

4.2 ANALYSIS AND DISCUSSION

Ablation analysis. To analyze the role of the introduced attack strength component and data aug-
mentation component in mitigating robust overfitting and enhancing adversarial robustness, we con-
ducted an ablation study with standard AT using PreAct ResNet-18 on the CIFAR10 dataset. Specif-
ically, we varied the perturbation budget in the attack strength component from 0/255 to 24/255 and
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Table 2: Ablation study of OROATAS and OROATDA methods. The results were calculated as the
average of three random trials.

Method Budget/Rate Best Last

Natural PGD-20 AA Natural PGD-20 AA

OROATAS

0/255 84.57±0.23 50.75±0.10 45.17±0.06 86.71±0.38 41.30±0.14 36.61±0.13
4/255 83.94±0.40 51.09±0.23 46.26±0.03 85.68±0.21 41.38±0.26 39.11±0.12
8/255 81.92±0.46 51.96±0.14 47.74±0.12 83.87±0.36 43.56±0.06 41.42±0.02
12/255 80.49±0.57 54.80±0.08 48.59±0.08 80.85±0.42 49.99±0.19 45.36±0.16
16/255 77.48±0.36 56.35±0.20 49.11±0.14 76.84±0.28 53.20±0.16 46.24±0.06
20/255 75.07±0.49 55.90±0.15 48.19±0.08 73.97±0.31 53.24±0.20 45.46 ±0.08
24/255 74.24±0.21 54.71±0.06 46.86±0.05 72.71±0.50 52.54±0.10 44.63±0.03

OROATDA

1.0 82.00±0.30 52.17±0.17 47.77±0.08 84.37±0.36 43.96±0.25 41.61±0.19
0.8 82.42±0.38 52.26±0.24 48.08±0.15 84.61±0.47 47.76±0.12 43.78±0.02
0.6 82.58±0.42 53.95±0.08 48.48±0.08 85.45±0.52 49.69±0.25 44.44±0.15
0.4 83.06±0.20 55.46±0.15 46.98±0.06 84.89±0.22 51.03±0.08 44.18±0.02
0.2 83.08±0.35 55.99±0.22 45.18±0.16 84.83±0.40 52.53±0.17 43.29±0.08

adjusted the threshold for small-loss adversarial data in the data augmentation component from 1.0
to 0.2. The results are summarized in Table 2. For robust overfitting, it was observed that as these
components became more aggressive, such as when the attack strength component removes more
non-effective features or when the data augmentation component further decreases the model’s ro-
bustness on the training dataset, the degree of robust overfitting becomes milder. These results
strongly support our analysis regarding the onset of robust overfitting. On the other hand, regarding
the model’s adversarial robustness, we observed a trend of initially increasing and then decreasing.
The observed trend can be attributed to the effects of these introduced components. While effective
in suppressing robust overfitting, these components also have a detrimental effect on the model’s
adversarial robustness. For example, the attack strength component will also eliminate some use-
ful robust features, and the data augmentation component will degrade the model’s defense against
strong attacks. In the early stages, the advantage of these components in suppressing robust over-
fitting is predominant, leading to an overall improvement in the model’s robustness. However, as
these components become more aggressive, their disadvantages eventually outweigh the benefits of
suppressing robust overfitting, resulting in a decrease in the model’s robustness.

Discussion. The proposed approach introduces additional components into the adversarial training
framework, thus increasing computational complexity. For the attack strength component, its com-
putational cost depends on the perturbation budget; the larger the budget, the more additional attack
iterations are required. Regarding the data augmentation component, the computational cost of this
component is primarily influenced by the threshold set for small-loss adversarial data. When the
threshold is low, a significant computational cost is needed to meet algorithm objectives due to the
stochastic nature of data augmentation techniques. Due to its high computational cost, we restricted
experiments involving the data augmentation component to the low-capacity PreAct ResNet-18, as
shown in Table 1. While the proposed methods may not represent the optimal algorithm for ad-
dressing robust overfitting, especially in consideration of computational complexity and adversarial
robustness, we want to emphasize that their design was intended to support our analysis of the onset
of robust overfitting. Furthermore, their experimental results strongly validate our analysis and have
demonstrated substantial improvements in adversarial robustness across a wide range of baselines.
We hope that our understanding of the underlying mechanisms of robust overfitting will inspire
future research to explore more efficient methods for handling robust overfitting.

5 CONCLUSION

In this work, we develop factor ablation adversarial training and identify that the contributing fac-
tors to robust overfitting originate from normal data. Furthermore, we analysis the onset of robust
overfitting as a result of learning non-effective features and provide a comprehensive understanding
of robust overfitting. To support our analysis, we design two orthogonal approaches: attack strength
derived from feature elimination and data augmentation derived from robustness alignment. Exten-
sive experiments validate our analysis and demonstrate the effectiveness of the proposed approaches
in enhancing adversarial robustness across different adversarial training methods, network architec-
tures, and benchmark datasets.
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A ADDITIONAL EVIDENCE FOR FACTOR ABLATION ADVERSARIAL
TRAINING

In this section, we present additional empirical evidence regarding factor ablation adversarial train-
ing across different datasets, network architectures, and adversarial training variants. We use the
same experimental setup as described in Section 3.1, where we selectively remove specific abla-
tion factors during training. Specifically, in the data & perturbation group, we remove both the
normal data and the adversarial perturbations from the small-loss adversarial data. In the perturba-
tion group, we solely remove the adversarial perturbations from the small-loss adversarial data. As
shown in Figure 3, the data & perturbation group consistently exhibits a significant relief in ro-
bust overfitting, while the perturbation group demonstrates severe robust overfitting. These results
strongly suggest that the contributing factors to robust overfitting originating from the normal data
are generalizable across different settings in adversarial training.

B REVISITING EXISTING TECHNIQUES FOR MITIGATING ROBUST
OVERFITTING

Sample reweighting. Sample reweighting is a common technique in AT used to mitigate robust
overfitting. It assigns weighted values to each adversarial data point, differentiating the importance
of various training data. We’ve observed that the current literature employs the sample reweighting
technique in diverse ways. For example, Zhang et al. (2020) used sample reweighting to weaken
the model’s learning on small-loss adversarial data, while Yu et al. (2022b) used it to strengthen
the model’s learning on small-loss adversarial data. These two approaches utilize sample reweight-
ing with entirely opposing objectives, yet both effectively alleviate robust overfitting. Our analysis
can explain why both methods are effective in mitigating robust overfitting: the sample reweighting
technique in Zhang et al. (2020) reduces the importance of small-loss adversarial data, essentially
weakening the role of non-effective features learned on these data in model optimization, thus effec-
tively mitigating robust overfitting. The sample reweighting technique in Yu et al. (2022b) increases
the adversarial loss of small-loss adversarial data, essentially narrowing the model’s robustness gap
between the training and test sets. This reduces the generation of non-effective features and thereby
effectively alleviates robust overfitting. In summary, one approach weakens the importance of non-
effective features in model optimization, while the other decreases the generation of non-effective
features. Although the objectives of these two methods are completely opposite, both lead to a reduc-
tion in the model’s learning of non-effective features, and thus effectively alleviate robust overfitting.

Additional training data. Incorporating additional training data is a typical strategy to address
robust overfitting. For instance, Carmon et al. (2019); Alayrac et al. (2019); Zhai et al. (2019)
introduce more training data through semi-supervised learning to mitigate robust overfitting and
enhance adversarial robustness in AT. However, it remains unclear how much extra training data is
required to prevent robust overfitting (Gowal et al., 2020), and in some cases, additional training
data may not necessarily alleviate robust overfitting (Chen et al., 2020a; Min et al., 2021). Our
analysis offers intuitive explanations for these issues: as discussed in Section 3.2, robust overfitting
arises from the model learning non-effective features, and a crucial condition for the generation of
non-effective features is a substantial robustness gap between the training and test datasets. The
strategy of additional training data can directly influences the model’s robustness on the training
data, making it an effective method to prevent robust overfitting. On the other hand, if the added
training data fails to narrow the robustness gap between the training and test datasets or does not
restrain the impact of non-effective features in model optimization, it will be ineffective against
robust overfitting. In summary, for the technique of using additional training data, the quantity of
extra training data is not the determining factor. Instead, its effectiveness hinges on whether these
added training data can narrow the model’s robustness gap between the training and test datasets or
overwhelm the influence of non-effective features in model optimization.

Data augmentation. Data augmentation techniques involve applying random transformations to
training data during the training process. It has been empirically shown to reduce overfitting in
standard training. However, previous attempts (Gowal et al., 2020; Rebuffi et al., 2021) have shown
that data augmentation doesn’t provide much help for robust overfitting in AT. Later, some evi-
dence suggests that data augmentation can be effective when combined with regularization (Tack
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et al., 2022) or when used alone (Li & Spratling, 2023). Similarly, data augmentation also allows
for direct adjustments to the model’s robustness on the training dataset. Thus, it can serve as an
effective approach to address robust overfitting. However, data augmentation techniques generally
involve random image transformations and may not always achieve the desired effect. In particu-
lar, we utilize data augmentation techniques to design a method for achieving the alignment of the
model’s robustness between the training and test sets. We demonstrate that simple data augmen-
tation methods with a targeted transformation objective can be significantly helpful in alleviating
robust overfitting and enhancing adversarial robustness.

C ADDITIONAL EVIDENCE FOR OROATAS

In this section, we present additional results for OROATAS. We conduct OROATAS experiments
across different datasets, network architectures, and adversarial training variants. The results are
summarized in Figure 4. Consistently, we observe a clear correlation between the applied attack
strength and the extent of robust overfitting. The more non-effective features are eliminated, the
milder the degree of robust overfitting. Furthermore, when the attack strength exceeds a certain
threshold, the model exhibits almost no robust overfitting. These experimental results provide com-
pelling evidence that it is these non-effective features that lead to robust overfitting.

D ADDITIONAL EVIDENCE FOR OROATDA

In this section, we present additional evidence supporting the effectiveness of OROATDA. We con-
ducted OROATDA experiments using different datasets, network architectures, and adversarial train-
ing variants. The summarized results are shown in Figure 5. Consistently, we observe a clear corre-
lation between the proportion of small-loss data and the extent of robust overfitting. As the model’s
robustness on the training dataset decreases, the degree of robust overfitting becomes increasingly
mild. These results fully validate our analysis of OROAT, demonstrating that the model’s robustness
gap promotes the generation of non-effective features.

E EXPERIMENTAL SETUP

Our project is implemented in the PyTorch framework on a server equipped with four GeForce GTX
3090 GPUs. The code and related models will be publicly released for verification and use. Our
experiments employ the infinity norm as the adversarial perturbation constraint, and cover different
benchmark datasets (CIFAR10 and CIFAR100 (Krizhevsky et al., 2009)), network architectures
(PreAct ResNet-18 (He et al., 2016) and Wide ResNet-34-10 (Zagoruyko & Komodakis, 2016)), and
adversarial training approaches (AT (Madry et al., 2018), TRADES (Zhang et al., 2019), AWP (Wu
et al., 2020) and MLCAT (Yu et al., 2022b)).

We follow the training settings outlined in Rice et al. (2020), where the network is trained for 200
epochs using stochastic gradient descent (SGD) with momentum 0.9, weight decay of 5 × 10−4,
and an initial learning rate of 0.1. The learning rate is divided by 10 at the 100th and 150th epoch,
respectively. Standard data augmentation techniques, including random cropping with 4 pixels of
padding and random horizontal flips, are applied. For adversarial training, we use a 10-step PGD
attack with a perturbation budget of ϵ = 8/255 and step size of α = 2/255, which is a standard
setting in PGD-based adversarial training (Madry et al., 2018).

We evaluate model robustness under various criteria, including natural accuracy, 20-step PGD
(PGD-20) (Madry et al., 2018), and AutoAttack (AA) (Croce & Hein, 2020). The attack step of
the adversary in OROATAS linearly increases with the perturbation budget, i.e., a 10-step PGD for
ϵ = 8/255 and a 20-step PGD for ϵ = 16/255. The detailed hyperparameters are shown in Table 3.
Other hyperparameters of the baselines are set as per their original papers.

F THE IMPACT OF DATA AUGMENTATION

The role of the data augmentation component in the OROATDA method is to align the model’s ro-
bustness between the training and test sets. In this section, we investigate the impact of the adopted
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Table 3: The hyperparameter settings for OROATAS and OROATDA.

Network Dataset Method Hyperparameter

Small-loss Threshold t Perturbation Budget ϵa Small-loss Proportion p

PreAct ResNet-18

CIFAR10 OROATDA 1.7 - 0.6
OROATAS 1.7 14/255 -

CIFAR100 OROATDA 3.5 - 0.6
OROATAS 3.5 15/255 -

CIFAR10 OROTRADESDA 1.9 - 0.8
OROTRADESAS 1.9 10/255 -

CIFAR10 OROAWPDA 0.8 - 0.8
OROAWPAS 0.8 12/255 -

CIFAR10
OROMLCATDA 0.8 - 0.8
OROMLCATAS 0.8 11/255 -

Wide ResNet-34-10

CIFAR10 OROATAS 1.4 13/255 -

CIFAR100 OROATAS 4.2 16/255 -

CIFAR10 OROTRADESAS 1.9 10/255 -

CIFAR10 OROAWPAS 1.1 10/255 -

CIFAR10 OROMLCATAS 1.1 10/255 -
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Figure 3: Experimental results for factor ablation adversarial training (a) on the CIFAR100 dataset
using PreAct ResNet-18 with AT, (b) on the CIFAR10 dataset using Wide ResNet-34-10 with AT,
and (c) on the CIFAR10 dataset using PreAct ResNet-18 with TRADES.

data augmentation methods on the experimental results. Specifically, we assessed three popular data
augmentation methods - AutoAugment, RandAugment, and TrivialAugment - for the OROATDA al-
gorithm. For more detailed information on these data augmentation methods, please refer to Cubuk
et al. (2019; 2020); Müller & Hutter (2021). The experimental results are summarized in Figure 6.
We can observe that the stability of these data augmentation methods is comparatively lower than
that of the AugMix method (Hendrycks et al., 2020). This is attributed to the fact that these trans-
formations introduce more substantial alterations to the semantic content of the original image.
Nonetheless, we observe that all data augmentation methods are capable of effectively mitigating
robust overfitting by decreasing the proportion of small-loss adversarial data to a certain extent.
This indicates that the proposed OROATDA is generally effective regardless of the choice of data
augmentation methods.
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Figure 4: The test robustness of OROATAS (a) on the CIFAR100 dataset using PreAct ResNet-18
with AT, (b) on the CIFAR10 dataset using Wide ResNet-34-10 with AT, and (c) on the CIFAR10
dataset using PreAct ResNet-18 with TRADES.
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Figure 5: The test robustness of OROATDA (a) on the CIFAR100 dataset using PreAct ResNet-18
with AT, (b) on the CIFAR10 dataset using Wide ResNet-34-10 with AT, and (c) on the CIFAR10
dataset using PreAct ResNet-18 with TRADES.
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(a) AutoAugment
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(b) RandAugment
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(c) TrivialAugment

Figure 6: The test robustness of the OROATDA method with three different data augmentation
techniques: (a) AutoAugment; (b) RandAugment, and (c) TrivialAugment.
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