Incremental Sequence Classification
with Temporal Consistency

Lucas Maystre* Gabriel Barello Tudor Berariu Aleix Cambray
UiPath UiPath UiPath UiPath
London, UK Bellevue, WA, USA London, UK London, UK
Rares Dolga Alvaro Ortega Gonzalez Andrei Nica David Barber
UiPath & UCL UiPath UiPath UiPath & UCL
London, UK London, UK London, UK London, UK
Abstract

We address the problem of incremental sequence classification, where predictions
are updated as new elements in the sequence are revealed. Drawing on temporal-
difference learning from reinforcement learning, we identify a temporal-consistency
condition that successive predictions should satisfy. We leverage this condition to
develop a novel loss function for training incremental sequence classifiers. Through
a concrete example, we demonstrate that optimizing this loss can offer substantial
gains in data efficiency. We apply our method to text classification tasks and
show that it improves predictive accuracy over competing approaches on several
benchmark datasets. We further evaluate our approach on the task of verifying
large language model generations for correctness in grade-school math problems.
Our results show that models trained with our method are better able to distinguish
promising generations from unpromising ones after observing only a few tokens.

1 Introduction

Learning to classify a sequence © = (x4, ..., 2zr) into one of K classes is a fundamental problem in
machine learning [44 [16]]. In this work, we focus on an incremental variant in which the sequence is
revealed element by element, and a predictive model must provide predictions at every timestep. As a
concrete example, consider a movie review, represented as a sequence of tokens.

A touching movie . It is full of emotions and wonderful acting .
L (| | I | | E— I L I L I L (]
x1 T2 3 T4 Ts Ze6 x7 s T9 Z10 11 T12 13

We ask the question: Can we predict the sentiment of this review using only the first two or three
tokens? More generally, can we learn a predictive model that accurately classifies any prefix T <y,
consisting of the first £ < T' elements of a sequence? This problem naturally arises in domains where
there is a cost associated to waiting for the full sequence; In healthcare or finance, for example, the
cost might be time or opportunity [45}34]. Recently, sequence classifiers have also been deployed as
verifiers to improve applications of large language models (LLMs), where generating full sequences
incurs a non-trivial computational cost [8, |39} 31]].

A key property of the incremental classification problem is that any calibrated predictive model should
be temporally-consistent. That is, the predictive class distribution given a prefix x<; should equal the
expected class distribution given the extended prefix & <1, where the expectation is taken over x4 1.
We take advantage of this temporal-consistency property to develop a novel loss function for training

*Corresponding author, e-mail: lucas@maystre.ch.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:lucas@maystre.ch

incremental classifiers (Section [2)). Our approach shares many parallels with temporal-difference (TD)
learning [37], an important class of methods in reinforcement learning (RL) [38]. Exploiting these
parallels, we study a simple sequence model and demonstrate that optimizing our loss function can
lead to substantial data-efficiency gains over the standard maximum-likelihood approach (Section [3).

We apply our method to text classification using decoder-only transformers (Section). We first
evaluate it on four benchmark datasets and find that models trained with our temporal-consistency loss
achieve higher predictive accuracy—both on prefixes and on full sequences. When fine-tuning models
of the OPT family [49]], the improvement in predictive performance is comparable to increasing
the size of the base model by a factor 10. We then explore the emerging application of verifying
LLM generations. On GSM8K math word problems [8]], our method yields verifiers that accurately
distinguish correct from incorrect generations after observing only a few tokens. We illustrate how
this enables a more favorable trade-off between answer accuracy and computational cost.

Our approach is inspired by celebrated methods in RL and is rigorously grounded in theory. It is
simple to implement, adds negligible computational overhead during training and inference, and
improves predictive performance across all the datasets we evaluated. As such, we believe it will be
valuable to machine-learning practitioners.

1.1 Related work

Early sequence classification [44, 45 27]] addresses a problem that is distinct but complementary
to ours: determining when enough information has been observed to make a reliable prediction. In
contrast, we focus exclusively on what to predict at each prefix. Our goal is to maximize classifi-
cation accuracy across all timesteps, without addressing the decision-making aspect. We note that
incremental classifiers trained with our method could serve as components in early classification
architectures [34, 4]].

TD learning [37, 38]] leverages a temporal-consistency condition, closely related to ours, to learn
value functions in RL. Classical TD learning is concerned with modeling the reward-to-go, a scalar
quantity. Our work can be understood as extending the core idea underpinning TD learning to the
multiclass classification setting. Distributional RL [29] 2| |9] shares some algorithmic features, but
does not address classification. Cheikhi and Russo [7]] recently analyzed the data-efficiency benefits
of TD learning, and we build on their results in Section E} Beyond scalar values, ideas from TD
learning have also been applied to survival analysis [26} 40] and early event prediction [48].

Incremental classifiers have recently been applied to verify LLM generations, either during post-
training [39}[21]] or at inference time [8 47,131, where they are referred to as token-level verifiers [8]]
or outcome-supervised reward models [39} 21]]. Verification is typically framed as a binary classifica-
tion problem, with verifiers trained using a cross-entropy loss against the final observed outcome, a
baseline we refer to as direct cross-entropy (DCE). Some prior work use soft targets, as we do, but
these targets are still derived solely from observed outcomes [41} 20]. A notable exception is Mudgal
et al. [31]], who frame verification as a regression problem and learn a token-level value function
using TD learning. However, they rely on a squared loss, which is ill-suited to binary outcomes [18].
Our work bridges this gap by developing a TD-style approach tailored to classification.

2 Direct and temporally-consistent estimators

In order to introduce our approach to learning incremental sequence classifiers, we shift our perspec-
tive slightly. Instead of a sequence of arbitrary elements, which we have denoted by « = (21, ..., z1)
in the introduction, we now consider a sequence of Markov states s = (s, ..., sr). That is, we
assume that the ground-truth distribution p(s, y) of states and class label satisfies

p(seyr | 86,5 81) = p(sesr | 8t), Py | st5.-.581) =py | s¢), (H

for any t < T, and for any ¢ < T and any y, respectively. This is not a restrictive assumption: By
slight abuse of notation, one can write s, = &<, and p(s¢11 | $¢) = p(x141 | T<¢), and trivially
satisfy these two Markov properties. The Markov-chain perspective will be useful to relate our
developments to temporal-difference learning, and to provide intuition into the statistical benefits of
our method in Section 3

Notation and problem setup Let [M] denote the set of consecutive integers 1, ..., M. We are
given a dataset of N labelled sequences D = {(s™,y") : n € [N]}, where y™ € [K], and where
different sequences might be of different lengths. We seek to learn a probabilistic classifier pg(y | st),
parametrized by 0, that approximates the ground-truth distribution p(y | s;). We denote by pg(- | s¢)
the K-dimensional probability vector [pg(1 | s;) --- pe(K | s;)], and by d,, the K-dimensional
one-hot vector with a 1 in position y.

Direct cross-entropy A natural approach for learning pg(y | s¢) is to maximize the likelihood of
the observed samples from p(y | s¢) in the dataset D, or equivalently, to minimize the cross-entropy
relative to these samples. Given a labeled sequence (s, y), we define the following loss function,
which penalizes deviations from the label y simultaneously across all t < 7.

loce(0;5,y) = — 1, logpe(y | s0) = Sop_ H[8, || pe(- | 5¢)]. 2
where H[p||q] = — Zle P log gy, is the cross-entropy function. Given the full dataset D, we find
Opce < argming), {pce(6; S, yn).- 3)

We call this approach direct cross-entropy (DCE), because the target distribution is the observed
one-hot class label d,,. In LLM verification applications, this is the predominant approach to training
token-level verifiers [8, 139} 121} |41, 20].

2.1 A family of temporally-consistent estimators

Intuitively, a drawback of the direct approach is that, for early states s; (with ¢ < T'), the training
signal provided by observed label y is noisy. Indeed, the prediction pg(y | s¢) needs to account for
two sources of uncertainty, a) the uncertainty about how the remainder of the sequence sy41,..., s
will unfold, and b) the uncertainty about the label y given the last state s;. We make progress by
observing that

P | 5t) = Ep(spa1sn Py | se41)], Q)

for all y and all ¢ < T', an identity that follows from (I). This identity captures a notion of temporal
consistency: It states that the class distribution at step ¢ is equal to the class distribution at step ¢ + 1
on average. Driven by this observation, we propose the following loss function, which for ¢ < T’
penalizes the temporal inconsistency relative to a reference model parametrized by 0’:

lrc(0;0',s,y) = H|4, H po(- | s7)] + EtT:_ll Hpo (- | s¢41) H pol- | s1)]. (5)

Comparing (2) and (©) carefully, we can think of this temporal-consistency (TC) loss as replacing
the hard targets 9, by soft targets pg- (- | s¢+1) capturing the predictive distribution at the next state.

Given the full dataset D, we start with random parameters 6(*), and iteratively solve
00+ < argmin, >, bre(6; 09 5, 1,). 6)

In Section 3} we study a tractable setting and show that this iteration converges to a fixed point 87,
and that the estimator is consistent, i.e., that pe:_(y | st) — p(y | s¢) as the dataset size N — oo.

We can extend the identity (@) to multiple steps, capturing the temporal consistency of class dis-
tributions across longer time spans (c.f. Appendix [A.T). We use this to formulate a generalized
temporal-consistency loss,

lrea(0;0',5,y) = ZtT:1 H[Zt Hpe(' | 3t)]>

_ @)
Ze =)\T_téy +(1-X f:f Ne=1pg, (| st+k),

where \ € [0, 1] is a hyperparameter. In this loss function, the target z; providing the training signal
is a weighted average of the predictive distributions £ steps ahead, with exponentially decreasing
weights. The larger) is, the larger the influence of distant states isﬂ In fact, TC-)\ generalizes both
TC (B) and DCE (@). Setting A = 0 recovers TC, while A = 1 yields DCE. Throughout the paper, we
refer to any model trained with the TC-\ loss with A < 1 as femporally consistent.

'"We can think of the mean of the geometric distribution A/(1 — \) as the effective lookahead, i.e., as “how
far” the target looks ahead on average.

2.2 Connections to temporal-difference learning

Our approach is inspired by temporal-difference (TD) learning, a key idea in reinforcement learning
[37, 138, 28]]. Quoting [Sutton|s seminal paper, “whereas conventional prediction-learning methods
assign credit by means of the difference between predicted and actual outcomes, the new methods
assign credit by means of the difference between temporally successive predictions.” Recasting our
developments into the language of reinforcement learning, we can think of the probabilistic classifier
we learn as a state-value function, capturing the eventual final outcome of a trajectory at any given
intermediate state. The temporal-consistency condition (@) is a form of Bellman equation, relating
the value function across successive states. Similarly to TD learning, our approach uses the temporal
inconsistency of predictions across successive states as the learning signal. Our generalized loss
function (/) is inspired by the TD(\) family of algorithms.

A key difference is that we consider categorical outcomes and a cross-entropy loss, as opposed to
the scalar outcomes and squared loss usually employed in TD learning algorithms. In Section 4]
we compare our approach to classical value-estimation methods from RL, by treating our K-way
classification problem as K separate value estimation problems.

3 Convergence, consistency and data efficiency

In this section, we analyze the DCE and TC estimators in problems with a finite number of states.
We consider tabular models, where a separate probability is learned for each state-class pair. This
tractable setting enables a theoretical comparison of the properties of DCE and TC. Specifically, we
show that @) the TC optimization procedure in () converges and b) yields a consistent estimator of the
true class probabilities, and that c) the TC estimator is more data-efficient than DCE. Complete proofs
of all propositions are provided in Appendix Our perspective in this section is partly inspired
by dynamic programming and its application to stochastic shortest path problems, as presented in
Bertsekas and Tsitsiklis [3, Sec. 2.2].

In the finite-state case, we formalize the problem of multiclass sequence classification as that of
finding the absorption probabilities of a Markov chain on M transient states and K absorbing states
[32]. The transient states correspond to M distinct values each element of the sequence s can take,
and the absorbing states correspond to K classes. The Markov chain is fully characterized by the
pair (Q, R), where the M x M matrix Q describes the transition probabilities between every pair
of transient states, and the M x K matrix R describes the transition probabilities from transient to
absorbing states. We assume that it is possible to reach a terminal state from any transient state within
a finite number of steps. That is, for any transient state m, there is a ¢ > 0 such that [QtR]mk >0
for some k. Our goal is to estimate the absorption probabilities p¥., = p(y = k | s; = m) from data,
organized into the M x K matrix P*.

Before addressing the estimation problem, note that if the ground-truth transition matrices @ and R
are known, P* can be computed by starting from an initial guess Py and refining it iteratively as

P =QPF + R ®
Proposition 1. For any M x K row-stochastic Py, the fixed-point iteration) converges to P*.

Now consider the setting where, instead of access to @ and R, we are given a dataset D = {(s", y") :
n € [N]} of trajectories sampled from the Markov chain. Each trajectory is composed of a transient
sequence s” and terminates in an absorbing state y”. We explore two approaches to estimating the
absorption probabilities.

Direct estimation We can estimate the absorption probabilities directly, as the empirical fraction of
sequences passing through m ending in k. Denoting by T'(s) the length of sequence s and letting
D' = U(s,y)ep Us<r(s) 1(5¢, %)} be the union of all pairs of transient state and eventual absorbing
state in D, we have

ﬁgyilrk = E(s,y)ND’ [1{y:k} | s = m]a

where (s,) ~ D’ denotes uniform sampling on D’. We collect these estimates into the matrix P9,

102 {51
W
* 107 3
(IQ* ; == theory
~10™* 4 -+ DCE
3 TC
| T il T
10° 10! 10

Figure 1: Left: Markov chain with 7" layers of W states each, and two absorbing states. Right: Mean-
squared error of the direct (DCE) and indirect (TC) estimates for a state in the first layer state as a
function of W. We set N = 20V and report the mean and 95% confidence intervals over 100 runs.

Indirect estimation Alternatively, we can first estimate the matrices) and R by using the empirical
one-hop transition counts. Letting A = U,)ep Ur<(s) 1 (515 St41) } and B = U y)ep{(57(s), ¥) }
be the union of all transitions between successive transient states and between transient and absorbing
states, respectively, and 7 = A U B, we write

Gmm' = B(s.s)nT[lisr=my | 5 = m], Pk = B syt [lis=k} | § =m]. ©)

We can then plug the estimates Q and R into the fixed-point iteration (8)), and iterate until convergence.
We denote the resulting estimate by P™™. By Proposition |} this fixed point corresponds to the exact

absorption probability matrix of the empirical Markov chain (Q, R), but it is only an approximation
of the ground-truth the absorption probabilities.

The following proposition relates the TC loss (3)) and its iterative optimization procedure (6)), intro-
duced in Section to the indirect estimator P™ we have just derived.

Proposition 2. Let pg(y = k | st = m) = k. Then, the TC iterative optimization procedure (3) is
equivalent to the fixed-point iteration (8) on the empirical Markov chain (Q, R) defined by (9).

It follows that, in the tabular case, the TC estimator is guaranteed to converge. Furthermore, under
mild assumptions on the data-generating distribution’} the TC estimator is consistent, i.e.,

P™ 5 P*as N — oo.

Similarly, we can relate the optimization of the DCE loss to the direct estimator P (see
Proposition d]in Appendix [A).

3.1 Statistical benefits

In general, DCE and TC will not result in the same estimate, i.e., P £ P9 rajsing the question:
Which estimator is better? In related work, Cheikhi and Russo [7]] study direct and indirect estimators
for the state-value function of a Markov reward process. They find that, depending on the structure of
the Markov reward process, the indirect estimator can be significantly more data-efficient than (and is
always at least as efficient as) the direct estimator.

In Figure[I] we revisit one of their examples and adapt it to our classification setting. We consider an
absorbing Markov chain with 7" layers of W distinct states each. For any ¢ < T', the probability of
transitioning from a state at layer ¢ to any other state at layer ¢ 4+ 1 is 1/TV. From any state at layer 7T,
we transition to one of two absorbing states, 0 and 1, with probability 1/2 each. Given this, it is easy
to verify that p* , = 1/2 for any transient state m and any absorbing state k € {0, 1}. We collect N
trajectories of length T + 1, sampling the first state uniformly at random, and subsequent states as
described previously. The next proposition shows that, for any state in the first layer, the expected
squared error of the indirect estimator is W times smaller than that of the direct estimator.

2Assuming that the initial state distribution and the transition probabilities are such that, for every transient
state, there is a non-zero probability of it being sampled in the sequence.

Proposition 3 (Adapted from [7]]). For any T > 1 and any state m in the first layer,

N—o0

E [(ﬁirrrlzdk - P;k)ﬂ /E [(ﬁ?"rizrk - p:nk)ﬂ — 1/W.

We validate this result empirically in Figure[T](right), where we report on numerical simulations using
N = 20W. In this Markov chain, the indirect estimator is increasingly more data-efficient as W
increases. Intuitively, the indirect approach acts as a form of regularization, by requiring the solution
to satisfy the temporal-consistency property (@), which arises from the problem’s Markov structure.
The indirect approach benefits from a form of data pooling: By minimizing the inconsistency across
successive states instead of regressing the target outcome directly, we take advantage of information
from other trajectories that originated from different states and crossed paths.

Beyond the tabular setting In the remainder of this paper, we move beyond the tabular setting
studied above and fine-tune parametric large language models on very large state spaces. The
theoretical results developed in this section no longer strictly apply, yet we believe that the underlying
intuition remains valuable for interpreting our method’s performance on complex, real-world tasks.
In text classification, for example, many distinct word sequences can result in a similar semantic
state predictive of the target label. Optimizing for consistency across successive states can therefore
improve data efficiency, similarly to the tabular toy example. With temporal consistency, the model
implicitly exploits information from sequences that begin differently but reach similar intermediate
semantic states, the same data-pooling phenomenon underpinning the gains of the indirect method in

Figure[T]

4 Empirical evaluation

In this section, we apply our methodology to text classification with decoder-only transformers. First,
in Section {. 1| we evaluate multiple different approaches to training incremental classifiers. We
compare the predictive performance of models on four well-known text classification benchmarks.
Then, in Section[d.2] we consider a concrete application to verifying LLM generations. We show
that an accurate token-level correctness classifier enables solving grade-school math problems
computationally more efficiently.

Model architecture & training Decoder-only (i.e., causal) transformers [23} [33]] are particularly
well-suited to incremental sequence classification. As the ¢th output of a decoder on an input sequence
x depends only on the prefix ©<;, we can compute predictions at every prefix efficiently, with a
single forward inference pass. Throughout this section, we model class probabilities as

po(- | x<;) = softmax(Ah; + b), (10)

where h; € RP is the hidden vector at the last layer of a transformer at position ¢, and A € R¥*P
and b € R are the parameters of a classification head. We start with a pre-trained language model,
and jointly optimize (A, b) as well as all the parameters of the transformer, which we collectively
refer to as 6. We make two minor practical adjustments with respect to the optimization procedure
outlined in Section 2] First, we update the parameters using stochastic gradient updates. Second, we
average the loss over all prefixes of each sequence, instead of summing them. This means that every
sequence contributes to the loss equally, irrespective of its length. Appendix [B]describes the precise
training procedure and documents how we select hyperparameters.

4.1 Text classification datasets

We consider four text classification datasets, spanning tasks such as movie review sentiment pre-
diction (IMDB [25]]) and topic classification (OHSUMED [30]], NEWSGROUPS [[19]], AG-NEWS [L1O]).
The number of classes K ranges from 2 to 23. We provide summary statistics for all datasets in
Appendix [B.2] including the number of training and test samples and the distribution of document
length. In addition to the standard setting, where the goal is to predict the class label given the full
sequence x, we are interested in evaluating the performance of classifiers in the incremental setting,
where we need to make a prediction after observing only a prefix x<; consisting of the first ¢ tokens.

We fine-tune pre-trained language models from the OPT family [49]. Unless otherwise noted, we
report results on the 125 M-parameter version of the family, with hidden size D = 768. Our primary

Table 1: Predictive performance of incremental text classifiers on four datasets. We report the
classification accuracy on 4-token and 16-token prefixes, and on full sequences (all tokens). We
highlight the best and second-best performing models.

OHSUMED NEWSGROUPS IMDB AG-NEWS
4 16 all 4 16 all 4 16 all 4 16 all
Most frequent 160 16.0 160 5.3 53 53 500 500 500 250 250 250

GPT 4o 315 540 575 75 110 804 580 670 943 774 874 883
Filtering 22.1 469 462 104 198 720 641 734 921 779 86.6 872
Last token 16.7 450 80.6 6.5 94 879 566 684 947 544 783 948
Specialist 245 598 80.6 236 473 879 598 733 947 778 91.8 948
Direct {2 loss 30.3 650 804 19.7 299 883 63.6 747 943 800 926 94.7
LSTD(M) 327 649 780 262 367 878 646 754 947 81.1 92.8 949
DCE 305 655 81.1 27.7 401 89.0 635 747 944 80.0 92.6 948

TC- (ours) 33.7 683 818 334 447 885 647 757 949 814 93.0 950

focus is on comparing models trained by using the DCE (2)) and TC-X (7) loss functions. Both of
these approaches train a single model to classify prefixes of any length (including the full sequence).
In addition, we also consider the following baselines and competing methods.

Most frequent A naive baseline that always predicts the most frequent class in the training split.

GPT-40 We design a simple prompt asking GPT-40 (version 2024-08-06) to classify a text, by giving
the list of classes, one example for each class, and the text itself. We access GPT-40 through
OpenATI’s commercial API. Details are provided in Appendix [B.2]

Filtering We fine-tune a class-conditional language model pg(| y) on the training data, by using
a standard next-token prediction task. At test time, we use Bayes’ rule to reverse the
conditional probability as p(y |) = Z 1pg(x | y)p(y), where p(y) is a prior distribution
and Z =3, pe(x | y)p(y).

Last token Similarly to the DCE loss (2), we minimize the cross-entropy relative to the observed
label. But unlike the DCE loss, we include only a single cross-entropy term per sequence,
corresponding to the prediction based on the hidden vector h at the last token (i.e., capturing
the full sequence). To the best of our knowledge, this is the most widespread approach to
text classification with decoder-only transformers [43} 12} [17]].

Specialist This approach is similar to the last foken method, but improves upon it by training a
distinct, specialized model for each prefix length. Instead of full sequences, each model is
trained exclusively on prefixes of the corresponding length.

Direct /5 loss This approach is similar to DCE but removes the softmax and replaces the cross-
entropy loss with a squared loss. This is analogous to standard offline Monte Carlo methods
for value function estimation in RL [38| Chap. 5].

LSTD()\) The offline temporal-difference value estimation method of Bradtke and Barto [5]], recently
applied to language modelling in Mudgal et al. [31]. This approach is similar to TC-\,
without the softmax and with a squared loss instead of the cross-entropy loss.

For TC-A and LSTD()), we treat A as a hyperparameter. Values for this and for all other hyper-
parameters are presented in Appendix The time it takes to train a TC-A model is virtually
indistinguishable (within 1%) from that used to train a DCE model, confirming that the overhead
required to compute the soft targets {z;} in (7) is negligible compared to the cost of LLM forward
and backward passes.

In Table [T} we report the predictive accuracy of classifiers on hold-out sequences, given prefixes
of 4 tokens, 16 tokens, and full sequences. For DCE and TC-\ and the corresponding squared-loss
methods, we report additional metrics and more prefix lengths in the appendix. As expected, the
accuracy of every classifier increases as more tokens are available. However, even with only 4 or 16
tokens (often representing a small fraction of the full sequence), some approaches reach a non-trivial
accuracy.

4 tokens 8 tokens 16 tokens Full sequence

1.0

B DCE
0.9 7 e TC-A | |]
0.8 - - -

0.7

0.6

ohsumed: ROC AUC

0.5 -
125M 350M 1.3B 125M 350M 1.3B 125M 350M 1.3B 125M 350M 1.3B

Figure 2: Predictive performance of OPT models with 125 M, 350 M, and 1.3 B parameters, respec-
tively, on the OHSUMED dataset. We report the area under the ROC curve (mean and 95% confidence
interval over 10 runs; higher is better).

We observe that TC-\ outperforms DCE and other approaches in all but two cases, where it ranks
second. This supports the insights from Section 3.1} incorporating temporal-consistency into the loss
function improves predictive performance, even on real-world sequences and with large parametric
models. Gains are more substantial for short prefixes, but—perhaps surprisingly—optimizing for
temporal-consistency also improves full-sequence classification accuracy. Relatedly, we observe that
training incremental classifiers is beneficial even when the goal is only to classify full sequences.
Indeed, both DCE and TC-\ outperform the last-token approach in this setting. This was noticed by
Cobbe et al. [8]], who suggest that including prefixes in the loss provides a useful auxiliary signal. Our
findings reinforce this observation. Finally, we note that the filtering method generally underperforms
approaches using a classification head, consistent with conventional wisdom that, for classification
problems, discriminative models can be more effective than generative models [1]].

Cross-entropy vs. squared loss When comparing DCE and TC-\, which use a cross-entropy
loss, to their squared-loss counterparts (direct ¢5 loss and LSTD()), respectively), we observe the
following. Temporal consistency tends to improves performance regardless of the loss function,
especially on partial sequences. Models trained with a cross-entropy loss perform significantly better
than those trained with a squared loss on datasets with many classes (OHSUMED and NEWSGROUPS).
For binary or three-way classification tasks (IMDB and AG-NEWS), both loss functions yield a similar
accuracy. However, Figure [f]in the appendix shows that methods optimizing a squared loss produce
noticeably less well-calibrated predictive probabilities.

Increasing model size Focusing on the OHSUMED dataset and the DCE and TC-\ methods, we
train OPT models with 125 M, 350 M, and 1.3 B parameters. Figure [2[shows the area under the ROC
curve (ROC AUC) for predictions after 4, 8, and 16 tokens, as well as for full sequences. These
results offer the following perspective on the benefits of temporal consistency: DCE requires a model
that is approximately 10x larger to match the performance of TC-\.

Varying the temporal-consistency parameter In Figure 3] (leff), we show the accuracy of TC-\
models trained on OHSUMED with different values of A. The setting A = 1, corresponsing to DCE, is
never optimal, but the best setting depends on the prefix length. When optimizing for full-sequence
accuracy, we observe empirically (across the four datasets) that performance is maximized with an
effective lookahead of 5-50 tokens, corresponding values of A between 0.8 and 0.98.

Beyond predictive performance We examine the effects of optimizing for temporal consistency
more closely. Given predictive distributions p; and p;; produced after seeing ¢ and ¢ + 1 tokens,
respectively, we compute the divergence KL[p;;1|p:]. Figure [3| (right) shows this divergence,
averaged of all successive prefixes of all sequences in the test set. This is the quantity that TC-\
explicitly optimizesﬂ and unsurprisingly DCE models are significantly less consistent. While we view
temporal consistency primarily as a means to improve predictive performance, stable and consistent
predictions might be valuable in their own right, for example in decision-making systems [34]].

KL [pt+1 ”pt] =H [pt+1 ||Pt] + cst, where the constant is independent of p;.

Ohsumed: accuracy vs. 4 Inconsistency of successive predictions

0.8 /—'_*—.N. 0.02 4
o 0.7 —4— 4tokens T—*— i
§ 0.6 8 tokens :T
§ 0.5 —$— 16 tokens £ 0.01
< 0.4 - —4$— Full seq. d Il DCE

03 4 ——a——o—o—o TC-A

B e e e B A 0.00 = b
0.0 0.5 0.8 0.9 095098 1.0 ‘(\s\)‘“ %(009 \«\6 %"\e\)}%
A

Figure 3: Left: Accuracy of OPT-125M classifiers on OHSUMED as a function of A (mean and 95%
CI over 5 runs). Right: Average KL-divergence between successive predictive distributions (mean
and 95% CI over 10 runs). Lower values correspond to predictive distributions that are more similar
across successive time steps.

7
& %,),OJ‘
L. L, Sy .
D 8 s o x S s B s G o0 s> e G >
1 1
~ 1.0
Vi
=
70.5-
2
)
Q‘O-O T T T T T T T T T \ T Iﬂl T T T |7| Ir\l T T T T T T T T T T T T T
\Qo&b% ,Q\o\o@&el\\ry ‘2‘6«3*0“ SN Y -%eooqx,(@@—. S YO SNV 2 S % &\0 &S -
Q)Q@@ & {bz‘ ¥ &

Figure 4: Predicted probability of correctness for two generations of Qwen2.5-0.5B for the prompt
David found $12 on the street. He then gave it to his friend Evan who has $1 and needed to buy a
watch worth $20. How much does Evan still need?

4.2 Language model verification on GSM8K

Next, we consider the problem of using an LLM to solve math word problems. In seminal work,
Cobbe et al. [8] propose a simple two-step procedure, consisting of a) sampling N generations
from the LLM, and b) scoring them with a verifier model, ultimately selecting the generation with
the largest score. This best-of-N approach was shown to significantly increase performance over a
single generation, at the expense of a larger computational cost (due to sampling /N generations).
In this setting, incremental verifiers bring substantial benefits: If the verifier is able to accurately
distinguish between correct and incorrect generations early on, we can focus computational resources
on extending only the most promising generations. This idea has recently received significant attention
(47,139, 211141 31} 20]. In this section, we demonstrate that our TC-\ approach holds promise for
learning better incremental LLM verifiers.

We study GSM8K, a dataset of grade-school math problems and their solutions [8]]. For our experi-
ments, we use Qwen2.5-0.5B, a pre-trained language model with 0.5 B parameters that is known to
perform well on GSMSK for its size [46]]. We proceed as follows. For each of the 7473 problems in
the training set, we sample 32 generations with temperature 0.7. We label each generation based on
whether or not the answer extracted from the generation matches the ground-truth solution. For each
problem, we keep exactly one correct and one incorrect generation (sampled uniformly at random),
resulting in a balanced dataset. We then train incremental verifiers by fine-tuning Qwen2.5-0.5B with
a classification head, as in (I0), using DCE and TC-\ (details provided in Appendix [B.3). Figure 4]
illustrates our setup: Given a problem, our model predicts the probability, token after token, that a
generation will eventually produce the correct answer.

Predictive performance For this binary classification task, the ROC AUC metric is particularly
relevant, as it reflects the probability that the model correctly ranks a randomly-selected correct
generation higher than an incorrect one [13]]. Figure 5] (/eft) shows the performance of DCE and TC-\

Classifier performance Test-time scaling %10

0.9 A 3
== { loss == Greedy — Bestof N " B Bestof N
TC-4 0.8 1 I Coverage Boosted E, Boosted
8 0.8 —+ DCE > -+ Majority S 2 4 -
Q
< £ 0.6 - R 3
8 0.7 2 ¥
~ < %‘) 14
[—
0.6 0.4 Z
T T T T T T T 1 T T

1 2 4 8 16 32 64 128256 103 104 045 05 0.55
Number of generated tokens Average # of generated tokens Accuracy

Figure 5: Incremental verification for Qwen2.5-0.5B on GSMS8K. Left: The TC-\ verifier is better at
distinguishing between correct and incorrect generations eatly on. Center & right: A better trade-off
between accuracy and compute can be obtained by stopping unpromising generations early on.

as a function of the number of generated tokens. We observe that TC-) significantly outperforms DCE
when the number of tokens is small. With only 8 tokens, TC-\ is almost 70% accurate in distinguishing
correct from incorrect generations. Consistent with our findings on the text classification experiments,
on this binary classification task, models trained with a squared loss perform almost identically to
those trained with a cross-entropy loss in terms of ROC AUC. However, as shown in Figure[§]in the
appendix, they produce significantly worse predictive probabilities.

Application to test-time scaling We illustrate the benefit of accurate early correctness predictions
in a basic test-time scaling scenario, where we trade off answer accuracy against computational cost,
measured by the total number of generated tokens. We propose a simple modification to the best-
of-N method, which we call boosted best-of-N and which is a simplistic version of the speculative
rejection method recently proposed by Sun et al. [36]. Sample 10 tokens for each of 2N independent
generations, rank them using the TC-) incremental verifier, and continue sampling the remaining
tokens for the top-/N generations until completion. Finally, apply the verifier again to the N completed
generations and select the best one. Figure [5] (center & right) shows that our approach compares
favorably to vanilla best-of-/V and to majority voting [42]. For a given level of accuracy, the boosted
approach requires 23%-33% fewer tokens.

5 Limitations & future work

We have introduced TC-\, a loss function for training incremental sequence classifiers that draws
on insights from TD learning to improve predictive performance. Our empirical results focus on
text classification with transformers, but our approach is architecture-agnostic and applicable to
any sequence classification problem. Future work could explore its effectiveness on multimodal
applications, such as predicting task success from video frames in robotics [[11]] and games [[13]].

Given a limited compute budget, we have prioritized small-scale experiments. This has enabled us to
run comprehensive hyperparameter sweeps and to report performance averaged over multiple random
seeds, increasing our confidence in the results. Our experiments suggest that TC-\ could benefit
models at all scales (Figure [2). However, the effectiveness of temporally-consistent methods with
models larger than 1.3 B parameters has not yet been systematically evaluated. Likewise, while our
experiments on LLM verification and test-time scaling show promise, further evaluation is needed,
particularly in combination with state-of-the-art approaches such as speculative rejection [36]].

Finally, a promising direction for future work is applying TC-\ to multi-token prediction [35]], which
has been shown to improve LLM pre-training [[14} [22] and accelerate inference [6]. Importantly,
calibrated multi-token predictive distributions should satisfy a temporal-consistency condition that is
similar to (@), making this a natural fit for our approach.

10

References
[1] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

[2] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In Proceedings of ICML 2017, Sydney, Australia, Aug. 2017.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[4] J. M. Bilski and A. Jastrzgbska. CALIMERA: A new early time series classification method.
Information Processing & Management, 60(5), 2023.

[5] S.J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22:33-57, 1996.

[6] T.Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and T. Dao. Medusa: Simple LLM inference
acceleration framework with multiple decoding heads. In Proceedings of ICML 2024, Vienna,
Austria, July 2024.

[7] D. Cheikhi and D. Russo. On the statistical benefits of temporal difference learning. In
Proceedings of ICML 2023, Honolulu, HI, USA, July 2023.

[8] K. Cobbe, V. Kosaraju, et al. Training verifiers to solve math word problems. Preprint,
arXiv:2110.14168 [cs.CL], Oct. 2021.

[9] W. Dabney, M. Rowland, M. Bellemare, and R. Munos. Distributional reinforcement learning
with quantile regression. In Proceedings of AAAI 2018, New Orleans, LA, USA, Feb. 2018.

[10] G. M. Del Corso, A. Gulli, and F. Romani. Ranking a stream of news. In Proceedings of WWW
2005, Chiba, Japan, May 2005.

[11] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F. Hill, N. de Freitas, and S. Cabi.
Vision-language models as success detectors. In Proceedings of CoLLAs 2023, Montreal, QC,
Canada, Aug. 2023.

[12] D. Duki¢ and J. Snajder. Looking right is sometimes right: Investigating the capabilities of
decoder-only LLMs for sequence labeling. In Findings of the Association for Computational
Linguistics: ACL 2024, Bangkok, Thailand, Aug. 2024.

[13] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,
and A. Anandkumar. MineDojo: Building open-ended embodied agents with internet-scale

knowledge. In Advances in Neural Information Processing Systems 35, New Orleans, LA, USA,
Dec. 2022.

[14] F. Gloeckle, B. Y. Idrissi, B. Roziere, D. Lopez-Paz, and G. Synnaeve. Better & faster large
language models via multi-token prediction. In Proceedings of ICML 2024, Vienna, Austria,
July 2024.

[15] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143(1):29-36, 1982.

[16] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time
series classification: a review. Data Mining and Knowledge Discovery, 33(4):917-963, 2019.

[17] S. Kadavath, T. Conerly, et al. Language models (mostly) know what they know. Preprint,
arXiv:2207.05221 [cs.CL], July 2022.

[18] D. M. Kline and V. L. Berardi. Revisiting squared-error and cross-entropy functions for training
neural network classifiers. Neural Computing & Applications, 14:310-318, 2005.

[19] K. Lang. NewsWeeder: Learning to filter netnews. In Proceedings of ICML 1995, Tahoe City,
CA, USA, July 1995.

[20] J. H. Lee, J. Y. Yang, B. Heo, D. Han, and K. M. Yoo. Token-supervised value models for
enhancing mathematical reasoning capabilities of large language models. In Proceedings of
ICLR 2025, Singapore, Apr. 2025.

11

[21] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s verify step by step. In Proceedings of ICLR 2024, Vienna,
Austria, May 2024.

[22] A.Liu, B. Feng, et al. DeepSeek-V3 technical report. Preprint, arXiv:2412.19437 [cs.CL],
Dec. 2024.

[23] P.J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating
Wikipedia by summarizing long sequences. In Proceedings of ICLR 2018, Vancouver, BC,
Canada, Apr. 2018.

[24] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proceedings of ICLR
2019, New Orleans, LA, USA, May 2019.

[25] A.L.Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors
for sentiment analysis. In Proceedings of ACL-HLT 2011, Portland, Oregon, USA, June 2011.

[26] L. Maystre and D. Russo. Temporally-consistent survival analysis. In Advances in Neural
Information Processing Systems 35, New Orleans, LA, USA, Dec. 2022.

[27] Y. Meier, J. Xu, O. Atan, and M. Van der Schaar. Predicting grades. IEEE Transactions on
Signal Processing, 64(4):959-972, 2015.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with deep reinforcement learning. Preprint, arXiv:1312.5602 [cs.LG], Dec.
2013.

[29] T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka. Parametric return density
estimation for reinforcement learning. In Proceedings of UAI 2010, Catalina Island, CA, USA,
July 2010.

[30] A. Moschitti and R. Basili. Complex linguistic features for text classification: A comprehensive
study. In Proceedings of ECIR 2004, Sunderland, UK, Apr. 2004.

[31] S. Mudgal, J. Lee, et al. Controlled decoding from language models. In Proceedings of ICML
2024, Vienna, Austria, July 2024.

[32] J. R. Norris. Markov Chains. Cambridge University Press, 1997.

[33] A.Radford, J. Wu, D. Luan, D. Amodei, and 1. Sutskever. Language models are unsupervised
multitask learners. Technical report, OpenAl, 2019.

[34] P. Schifer and U. Leser. TEASER: Early and accurate time series classification. Data Mining
and Knowledge Discovery, 34(5):1336-1362, 2020.

[35] M. Stern, N. Shazeer, and J. Uszkoreit. Blockwise parallel decoding for deep autoregressive
models. In Advances in Neural Information Processing Systems 31, Montreal, QC, Canada,
Dec. 2018.

[36] H. Sun, M. Haider, R. Zhang, H. Yang, J. Qiu, M. Yin, M. Wang, P. Bartlett, and A. Zanette. Fast
best-of-N decoding via speculative rejection. In Advances in Neural Information Processing
Systems 36, Vancouver, BC, Canada, Dec. 2024.

[37] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:
9-44, 1988.

[38] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, second
edition, 2018.

[39] J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and
I. Higgins. Solving math word problems with process- and outcome-based feedback. Preprint,
arXiv:2211.14275 [cs.LG], Nov. 2022.

[40] M. Vargas Vieyra and P. Frossard. Deep end-to-end survival analysis with temporal consistency.
Preprint, arXiv:2410.06786 [cs.LG], Oct. 2024.

12

[41] P. Wang, L. Li, Z. Shao, R. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-shepherd: Verify
and reinforce LLMs step-by-step without human annotations. Preprint, arXiv:2312.08935
[cs.AI], Dec. 2023.

[42] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. In Proceedings of
ICLR 2023, Kigali, Rwanda, July 2023.

[43] T. Wolf, L. Debut, et al. HuggingFace’s transformers: State-of-the-art natural language process-
ing. In Proceedings of EMNLP 2020: System Demonstrations, virtual event, Oct. 2020.

[44] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. ACM SIGKDD
Explorations Newsletter, 12(1):40-48, 2010.

[45] Z. Xing, J. Pei, and P. S. Yu. Early classification on time series. Knowledge and Information
Systems, 31:105-127, 2012.

[46] A. Yang, B. Yang, et al. Qwen2.5 technical report. Preprint, arXiv:2412.15115 [cs.CL],
Dec. 2024.

[47] K. Yang and D. Klein. FUDGE: Controlled text generation with future discriminators. In
Proceedings of NAACL 2021, virtual event, June 2021.

[48] H. Yeche, A. Pace, G. Ritsch, and R. Kuznetsova. Temporal label smoothing for early event
prediction. In Proceedings of ICML 2023, Honolulu, HI, USA, July 2023.

[49] S.Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, et al. OPT: Open pre-trained transformer language models. Preprint, arXiv:2205.01068
[cs.CL], May 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and in the introduction are supported by the
remainder of the paper, and they respect the guidelines outlined below.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section 3] when developing a theory for our approach, we call out specific
assumptions that are likely not satisfied in real-world applications. However, the insights
appear to be robust, as supported by the empirical results presented in Section[d] Section [3]
discusses additional limitations of our work.

Guidelines:

13

The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Complete proofs for each of the three propositions presented in Section [3]are
provided in Appendix [A.2] For space reasons, we were unable to provide proof sketches in
the main body, but we made an effort to introduce the theoretical results gradually, in such a
way that the reader should have an intuitive understanding of why each result holds.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have attempted to document our experiments thoroughly, providing in the
appendix many additional details that we deemed out of scope for the main text, such as
specific dataset versions, hyperparameter configurations, the model selection procedure, and
more. We intend to complement this information with a comprehensive code release upon
publication.

14

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in our experiments are publicly available, as are the pretrained
language models we build upon (OPT [49] and Qwen2.5 [46]). We intend to release code
with instructions to support the reproduction of our main experiments upon publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All these details are provided in Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All plots in the paper include error bars reflecting 95% confidence intervals
across multiple random initializations, computed as 1.96 x standard error. TableE]omits
error measures for clarity, but the results corresponding to the DCE and TC-)\ rows are also
shown with error bars in Figure [6]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide this information in Appendix [B]

16

0.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS code of ethics, and we believe our work
conforms with it.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our paper proposes a general-purpose training method for improving incre-
mental sequence classification, without targeting any specific application domain. While we
acknowledge that downstream applications of such models may carry societal implications,
we do not identify any impacts (positive or negative) that are specific to the contributions of
this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve the release of models or datasets that present a high
risk of misuse. As such, no specific safeguards have been put in place.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available pretrained models and benchmark datasets in our
experiments. We have cited the original sources in the paper and have made a reasonable
effort to ensure that all assets are used in accordance with their licenses and terms of use.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets directly. We plan to release code
to support reproducibility and will ensure it is adequately documented.

Guidelines:

* The answer NA means that the paper does not release new assets.

18

paperswithcode.com/datasets

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

A Additional methodological details & proofs

In this appendix, we provide additional details relating to the material presented in Sections [2) and 3]

A.1 Generalized temporal-consistency condition

The temporal-consistency condition @) can be extended to k-step transitions as follows. Slightly
abusing notation and setting s71 = -+ = sy =y, and p(y | s8¢) = 1{y—s,y fort > T, we have

Py | 5t) = Eps,pulso) [P | st4r)],
for any y, any ¢ and any k. This follows from the Markov properties (T)).

A.2 Theoretical results

This sections provides proofs for Propositions [T} [2} and [3] It also introduces an additional result,
Proposition[d] that is the analogue of Proposition 2| for DCE.

. . N ..
For an N-dimensional vector «, we denote the L;-norm as |||, = Y, _|z;|. Similarly, for an
N x M matrix X, we denote the induced co-norm as || X ||oo = max)_, ||z, ||1, where x,, is the
nth row of X.

Proof of Proposition[l] Denote by a!,, the mth row of the matrix Q' R. By assumption, we know
that there is a 7 € N>q and a e > 0 such that ||a7, ||; > ¢ for all m. Let F : RM*E — RM*XK pe
the linear operator defined by F/(P) = QP + R. We will show that F™*! is a contraction mapping
in the induced co-norm, that is,

IFTFH(P) = FTTH(P)]| < (1= €)[|P — P,
for any two M x K row-stochastic matrices P, P’. By the Banach fixed-point theorem, it follows
that F' admits a unique fixed point P* = lim; o, F'*(P,) for any initial P,.

By construction, the matrix U = [Q R)] is row-stochastic, and thus ||U||cc = 1 and ||Q]|cc < 1. It
follows that Q"U = [Q™"' QT R] is such that |Q7U|| < [|Q||Z,[|[U||« < 1. Since every row of
Q7 R has L;-norm at least ¢, it must be that ||Q7 ||, < 1 — &. It follows that
IFTH(P) = FT 1 (P') oo = Q7T (P = P')lloc < Q7 || P — Pl
< (1=)P~ P'|lc. O

Proof of Proposition[2] Consider one step of the TC optimization problem (6], where we denote the
tabular model by using the M x K matrix © = [0,]. Letting ¢, = 3, oye7 1{s=m} We have

s,8")

O € argmin Y l1c(0,07, 5,.,y,)
(C)

=argmin Y H[5,]6,] + H[6|6,]
® (sweB (s.5)€A

= arg(;nin Z Cm {Z fmkH[ék Ham] + Z (jmm’H[av(r?’ em}}
m k m/’

= arg min e H|7, + A;;@(i) 0,.],
gl %: [q [16:]

where 7, = [Fmi] € RX, and g, = [dmm'] € RM and where the last equality uses the linearity of
the cross-entropy with respect to the target distribution. It follows that the cross-entropy is minimized

if ® = QO + R, which corresponds exactly to (). O

Proof of Proposition[3] The Markov chain of Figure [I] has exactly two absorbing states, and the
absorption probabilities sum up to 1. As such, we can focus on the variance of the estimator for pJ, ;.
We will construct a Markov reward process whose state-value function V'(m) is equivalent to the

20

absorption probability p}, ;. To this end, we collapse the two absorbing states 0 and 1 into a single
terminal state denoted by &. We instantiate the reward distribution as follows. For any transition
between two transient states, the reward is always 0. For any transition between a state at layer 7" and
the absorbing state &, the reward is 1 with probability 1/2 and zero otherwise.

We can now recast our problem by using the terminology of Cheikhi and Russo [7} Sec. 7]. For every
transient state m we have

V(m) = ph, VME(m) = pl,, VTP (m) = pps.

We focus on states in the first and second layer. Given the sampling process we have defined in the
main text, any given state in the second layer will appear in N/W trajectories in expectation, and
the transition between any pair of first and second layer states will appear in N/W? trajectories in
expectation. It follows that, for any state m in the first layer and any state m’ in the second layer, the
coupling coefficient and the inverse trajectory pooling coefficient are given by

C(m,m') =1/W, C(m) = 1/W,
respectively. We can then apply Theorem 7.2 in Cheikhi and Russo [[7] to obtain the desired result. [

The next proposition relates the DCE loss (2) and the optimization problem (3), introduced in
Sectlonl 2] to the direct estimator P4 presented in Section 3

Proposition 4. Let po(y = k | s = m) = Opp. Then, P is a solution of the DCE optimization
problem (3.

Proof. Denote the tabular model by using the M x K matrix ® = [0,,]. Letting ¢,, =
Z(Say/)G'D’ 1{S:Tn}s we have

G]SCE S arg min Z EDCE 0O, s,, y'n)

= argmln Z [04]105]

(s,y)€D’

= arg min Zcm {Z pin H| 6;€||9m]}
= arg min e H Ad“ 0
81 Em: m |16m],

where pdi' = [pdi] € R¥, and where the last equality uses the linearity of the cross-entropy with
respect to the target distribution. It follows that the cross-entropy is minimized if ®@ = P, O

B Additional details on experimental evaluation

This section provides additional details on the experiments presented in the main paper. In Section[B.T]
we describe the precise procedure we employ to train and select models. In Section we provide
more details on the text classificiation experiments of Section[d.1] In Section [B.3] we provide more
details on the verification experiments of Section

B.1 Training, model selection & metrics

Algorithm [T] presents one step of the training loop for the TC-A and DCE approaches. Note that
DCE is obtained simply by setting A\ = 1, as explained in Section 2.1} With respect to the iterative
optimization procedure (6, we make two minor practical adjustments. First, we update the parameters
using stochastic gradient updates. Second, we average the loss over all prefixes of each sequence,
instead of summing them. This means that every sequence contributes to the loss equally, irrespective
of its length.

We run our experiments on an a3-highgpu-8g instance on Google Cloud, with 208 vCPUs, 1872
GB of memory, and 8 NVIDIA H100 GPUs. We ensure that every experiment runs on a single

21

Algorithm 1 TC-\ incremental classifier: single training step

Require: minibatch B, parameters 6, temporal-consistency parameter A, learning rate n

1: £(0) <0 > Initialize the loss function.
2: for (z,y) € Bdo > Iterate over the minibatch.
3: T <+ length(x)

4 ZT — 5,,

5 fort=T—-1,...,1do

6: zi <= Azep1 + (1= Npo(- | T<i41)

7. 06) < (6)+ = YT, Hlstoperad(z:) [p(- | <)

8: return 6 — %V@f (0) > Update the parameters.

GPU. For every dataset, we set the batch size to maximize GPU utilization. We use the AdamW
optimizer [24] with a dynamic learning rate. The learning rate starts at zero, increases linearly over a
warmup period, then decreases linearly to zero at the end of the optimization process. We vary the
following hyperparameters:

* the number of training epochs,

* the maximum learning rate,

* the warmup period (as a ratio of the total number of training steps),
* the weight decay, and

* the temporal-consistency parameter A (for TC-\ only).

We run experiments on a grid of hyperparameter configurations, and we select the configuration that
maximizes the full-sequence predictive accuracy on a small dataset of held-out sequences. Finally,
throughout section 4] we report the mean and standard deviation of the performance of the winning
hyperparameter configuration on the full test set, across 10 training runs with different random seeds.

We consider three metrics to measure the quality of a model pg(y | @) on held-out data. The
average accuracy is the fraction of examples where arg max, pg (y | «) matches the ground-truth
label y* (higher is better). The average negative log-likelihood (NLL) is the empirical average of
—log pe(y* |) (lower is better). The area under the ROC curve (ROC AUC) captures the model’s
ability to discriminate between a random positive and negative example; In the multiclass setting, we
use the one-vs-rest macro-average version. A higher ROC AUC is better.

B.2 Text classification datasets

We evaluate models on the following four well-known text classification benchmarks. Summary
statistics and licensing terms for each dataset are provided in Table 2]

OHSUMED The dataset contains abstracts of publications in medical journals [30]. The task is
to categorize each abstract into one of 23 themes, corresponding to sub-categories of
cardiovascular diseases. We use the archive ohsumed-all-docs.tar.gz available at
https://disi.unitn.it/moschitti/corpora.htm,

NEWSGROUPS The dataset contains newsgroup documents from 20 different newsgroups [19].
The task is to identify which newsgroup the document comes from. We
use the version of the dataset hosted at https://huggingface.co/datasets/
google-research-datasets/newsgroupl

IMDB The dataset contains movie reviews from the IMDDb website [25]. The task consists of identi-
fying the sentiment of the review (positive or negative). We use the version of the dataset
hosted athttps://huggingface.co/datasets/stanfordnlp/imdb,

AG-NEWS The dataset contains short news articles [10]]. The task is to identify the topic of each
article. We use the version of the dataset hosted athttps://huggingface.co/datasets/
fancyzhx/ag_news,

22

https://disi.unitn.it/moschitti/corpora.htm
https://huggingface.co/datasets/google-research-datasets/newsgroup
https://huggingface.co/datasets/google-research-datasets/newsgroup
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/fancyzhx/ag_news
https://huggingface.co/datasets/fancyzhx/ag_news

Table 2: Summary statistics for the text classification datasets. Statistics on the sequence length
assume that the text is tokenized with the GPT-2 tokenizer [33]].

Seq. length percentiles

Dataset License Nirain Nt K 50th 90th 99th
OHSUMED CCBY-NC 4.0 11520 6782 23 270 430 604
NEWSGROUPS unknown 11314 7532 20 373 935 4226
IMDB unknown 25000 25000 2 221 584 1159
AG-NEWS unknown 120000 7600 4 51 70 122

The NEWSGROUPS, IMDB and AG-NEWS datasets are provided with separate train and test splits,
which we reuse as-is. For OHSUMED, we create our own train and test splits, by partitioning the data
uniformly at random.

We fine-tune pre-trained models from the OPT family [49]], which are made publicly available under
the OPT-175B licenseﬂ Table provides the hyperparameter configurations for the fine-tuned OPT-
125M models whose performance we report in Table I)in the main text. These hyperparameters are
found using the process outlined in Section

Figure 6| presents detailed results for DCE, TC-, and the corresponding squared-loss variants, Direct
{2 loss and LSTD()), for prefixes of length 2,2 = 0,...,9, across three metrics. We report the
mean and the 95% confidence interval of 10 independent seeds, but the standard error is too small to
be visible on the plot. On all datasets, the TC-A models outperform the DCE models on almost all
metrics at almost all prefix lengths.

Compute resources FEach experiment, consisting of training an evaluating a model, takes 5—90
minutes on a single GPU, depending on the dataset, the size of the model, and the number of epochs.
We estimate that the total compute used for all the experiments performed in the paper, including the
hyperparameter sweeps, amounts to approximately 2000 GPU hours.

B.2.1 GPT-40 baseline

We present the templates used for prompting GPT-40 in Figure[/] We use the structured outputs API
to ensure that the model always returns exactly one valid class label. For cost reasons, we sample of a
subset of 200 examples uniformly at random from the test set for each dataset and each prefix length
(4, 16, and all tokens), and restrict our evaluation to this subset. Approximately 0.7% of requests
trigger the ChatGPT filters (mostly in the IMDB and NEWSGROUPS datasets). We simply omit the
corresponding examples from the evaluation.

4See: https://github.com/facebookresearch/metaseq/blob/main/projects/0PT/MODEL_
LICENSE.md.

23

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md

Table 3: Hyperparameters used to fine-tune the OPT-125M models reported in the paper.

Dataset Model Batch size Epochs Max. LR Warmup Weight decay A
ohsumed Filtering 32 3 2x 107 0.03 1x1073 —
Specialist, 4 64 2 5x107 0.10 Ix10* —
Specialist, 16 64 2 5x107* 0.10 1x1073 —
Last token 64 4 1x107™* 0.10 1x107™* —
DCE 128 2 2x 107 0.10 1x107* —
TC-\ 128 4 1x10™ 0.10 1x1072 0.95
05 loss, direct 128 2 2% 107 0.10 1x10™ —
02 loss, TD-\ 128 4 1x10™* 0.10 1x102 095
newsgroups Filtering 4 4 5%x107 0.03 0 —
Specialist, 4 64 2 2x107 0.10 Ix10t —
Specialist, 16 64 4 5%x107 0.10 1x107% —
Last token 64 4 5%107° 0.10 Ix10 —
DCE 64 4 1x10™ 0.03 1x107 —
TC-A 64 4 1x107 0.10 1x107 098
05 loss, direct 64 4 1x107™* 0.03 1x107 —
05 loss, TD-\ 64 4 1x10™* 0.10 1x107 0.98
imdb Filtering 8 2 5%x107 0.03 1x107° —
Specialist, 4 8 2 5x107 0.10 Ix10* —
Specialist, 16 8 2 2x107° 0.10 1x107% —
Last token 8 2 2x 107 0.10 1x10™ —
DCE 8 1 2x107 0.10 1x107 —
TC-\ 8 2 2x107 0.10 1x107 0.80
05 loss, direct 8 1 2x107° 0.10 1% 107 —
03 loss, TD-\ 8 2 2x107° 0.10 1x107° 0.80
ag-news Filtering 64 2 5%107 0.03 0 —
Specialist, 4 64 2 1x107 0.10 1x102 —
Specialist, 16 64 2 1x107 0.10 1x107° —
Last token 64 2 1x107™* 0.10 1x107* —
DCE 128 2 1x10™ 0.03 1x 1073 —
TC-\ 128 2 1x10™ 0.10 1x107 0.90
02 loss, direct 128 2 1x10™* 0.03 1x107 —
05 loss, TD-\ 128 2 1x107™* 0.10 1x102 0.90

24

Accuracy ROC AUC Average NLL

3 _ 0--"~~.§§.~
T SR
]
Q
£ 2
=1
2z
S
1 -
T T T T T
3 -
=
: 2
2
z
o
=
1 -
T T T T T T T T T T
1.0
0.9 0.9 0.6
0.8
é %7 0.4
= 0.7 1 ’
0.7 1
0.6 0.6 0.2 -
T T T T T T T T T T T T T T T
1.00 1.25 <
_ N,
0.9 0.95 1.00 - ‘-\‘\
Se.
@] Rl TP
: 0.8 0.90 - 0.75 - o
on
0.7 _
N 0.85 0.50
0.6 E
0.80 — 0.25
T T T T T T T T T T T T T T T
1 4 16 64 256 1 4 16 64 256 1 4 16 64 256
Length of sequence prefix Length of sequence prefix Length of sequence prefix

Figure 6: Detailed results for OPT-125M models trained with DCE, TC- A, and the corresponding
squared-loss variants on the text classification datasets. Accuracy and ROC AUC: higher is better.
Average NLL: lower is better. We report means and 95% confidence intervals over 10 runs (too small
to be visible).

25

Listing 1: System prompt

Listing 2: Single example

Listing 3: User prompt

You are a helpful AI
assistant
specializing in
classifying text. The
possible class
labels are:

{class_names}

Here are some
examples of text with
their corresponding

class labels:

{examples}

BEGIN TEXT
{text}

END TEXT
label: {labell}

What is the label of
the following text?

BEGIN TEXT
{text}
END TEXT

Figure 7: Templates used for prompting GPT-4o0.

26

Table 4: Hyperparameters used to fine-tune the Qwen2.5-0.5B models reported in the paper.

Dataset ~ Model Batch size Epochs Max. LR Warmup Weight decay A
GSMS8K DCE 48 2 5x107° 0.03 1x 1072 —
TC-\ 48 2 5% 107° 0.10 1x107° 0.95
Direct £ loss 48 2 5% 107° 0.03 1x1072 —
LSTD()\) 48 2 5x107¢ 0.10 1x10° 0.95
Classifier performance
0.8 T TTETTNT—— L
- il SO
E 0.7 4
&
E 0-6 == & loss
05 J TC-2
: -4~ DCE

1 2 4 8 16 32 64 128 256
Number of generated tokens

Figure 8: Predictive negative log-likelihood of incremental Qwen2.5-0.5B verifiers on GSM8K (mean
and 95% CI over 10 runs).

B.3 Language model verification on GSMSK

For the language model verification experiments, we use the Qwen2.5-0.5B pre-trained language
model [46]], which is publicly available under the Apache 2.0 license. The GSM8K dataset [8]] is
publicly available under the MIT license. Hyperparameter selection follows the procedure outlined
for the text classification experiments in Section with one small change: instead of selecting
the best hyperparameter configuration based on the full-sequence accuracy, we select it based on
the full-sequence ROC AUC. Table [d] provides the hyperparameter configurations for the fine-tuned
Qwen2.5-0.5B models whose performance we report in Figure [5]in the main text.

In these experiments, there is one important conceptual difference with respect to the text classification
experiments of Section[d.1I] The sequence we seek to classify consists of the generated tokens only,
but the verifier also needs to access the prompt (i.e., the problem statement). We implement this by
concatenating the generated response to the prompt. However, when computing the loss, we mask
out the terms that correspond to tokens in the prompt.

Predictive NLL Figure |5 (left) in the main text shows that models trained with a squared loss
achieve essentially the same ROC AUC as those trained with cross-entropy. Figure 8] further shows
that models trained with a cross-entropy loss achieve substantially lower (i.e., better) negative log-
likelihood. Thus, when accurate & calibrated predictive uncertainties are important, optimizing the
cross-entropy objective performs better in practice.

27

	Introduction
	Related work

	Direct and temporally-consistent estimators
	A family of temporally-consistent estimators
	Connections to temporal-difference learning

	Convergence, consistency and data efficiency
	Statistical benefits

	Empirical evaluation
	Text classification datasets
	Language model verification on GSM8K

	Limitations & future work
	Additional methodological details & proofs
	Generalized temporal-consistency condition
	Theoretical results

	Additional details on experimental evaluation
	Training, model selection & metrics
	Text classification datasets
	GPT-4o baseline

	Language model verification on GSM8K

