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Abstract
Deep learning for medical image classification needs large amounts

of carefully labeled data with the aid of domain experts. However,

data labeling is vulnerable to noises, which may degrade the ac-

curacy of classifiers. Given the cost of medical data collection and

annotation, it is highly desirable for methods that can effectively

utilize noisy labeled data. In addition, efficiency and universality are

essential for noisy label training, which requires further research.

To address the lack of high-quality labeled medical data and meet al-

gorithm efficiency requirements for clinical application, we propose

a simple yet effective approach for multi-field medical images to

utilize noisy data, named Pseudo-T correction. Specifically, we
design a noisy label filter to divide the training data into clean and

noisy samples. Then, we estimate a transition matrix that corrects

model predictions based on the partitions of clean and noisy data

samples. However, if the model overfits noisy data, noisy samples

becomemore difficult to detect in the filtering step, resulting in inac-

curate transition matrix estimation. Therefore, we employ gradient

disparity as an effective criterion to decide whether or not to refine

the transition matrix in the model’s further training steps. The

novel design enables us to build more accurate machine-learning

models by leveraging noisy labels. We demonstrate that our method

outperforms the state-of-the-art methods on three public medical

datasets and achieves superior computational efficiency over the

alternatives.
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1 Introduction
Medical image classification plays a vital role in clinical treatment

tasks and diagnosis applications [29, 38, 39]. The success of these

classification tasks is contingent upon learning highly discrimi-

native representations using deep neural networks from a huge

amount of carefully labeled data with the assistance of domain

experts. However, labeling samples by medical experts for medical

image classification is expensive, and collecting labels may suffer

from the noises [17]. For instance, as demonstrated in Fig. 1, the ma-

lignant histology lymph node images exhibit colors and structures

that are strikingly similar to benign ones. This indicates that noisy

annotations are an unavoidable part of medical image processing

in real-world settings.

With the development of deep learning, various methods have

been widely used in medical image classification [3, 6, 28] to solve

the issue of noisy labeling. There exist two general resolving di-

rections, one is to collect more data [7, 34], although data col-

lection methods are typically affected by noisy labels. Another

way is to fully utilize clean labels while ignoring the noisy la-

bels [11, 12, 18, 36]. Despite making better annotations, these meth-

ods are over-complex in the architecture design compared with

vanilla classification training, thus becoming sensitive to outliers.

Equally, simply and provably processing noisy labeled medical data

https://doi.org/10.1145/3664647.3681274
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Figure 1: Examples of typical confusing malignant and be-
nign images from skin lesions and histology lymph nodes,
which are prone to inaccurate labeling during the practical
annotation process.

is significant to assist doctors in diagnosis, few researches have

been conducted in medical image classification. Specifically, the ex-

isting state-of-the-art method RMIC [38] introduces a complicated

teacher-student model that has two carefully designed distillation

modules. This is problematic as it costs more resources and time to

yield a model. Though the issue can be overcome by optimizing the

speed and enhancing the hardware configuration, it is still better to

have a lightweight method without sacrificing prediction accuracy.

Improving model efficiency is equally important as maintaining

model accuracy. Apparently, many clinical applications require real-

time decision [23] to allow human-in-the-loop, while a complex

model cannot meet such a requirement. Besides, sophisticated deep

learning models for healthcare are challenging to install and update

on power-constrained devices [21]. Additionally, it is critical to em-

ploy simple noisy label training, while the correctness is provable.

Such methods have merely been studied so far in medical image

classification.

Despite their extraordinary effectiveness, it has been repeatedly

observed that the performance of these methods is easily influenced

by the bias of the training set in complex real-world scenarios [38].

For instance, such bias could come from the variations of disease

patterns. A typical issue is that these data biases can cause noise

labeling problems. Therefore, an important topic in the realm of

medical image analysis is handling multimodal noise. As far as we

know, recent research has used cross-modal weak supervision by

utilizing convolutional neural networks (CNN). While various pre-

vious cross-modal weak supervision methods have shown promise

in medical applications, the research conducted to date has been on

generating weak labels in an application-specific manner [5]. There

is no theoretical analysis that describes the performance expecta-

tions of the resulting models, which would support any of these

application-specific cross-modal weak supervision approaches. Ad-

ditionally, these methods can only handle MRI or CT, and the gen-

eralizability needs to be improved.

By analyzing the existing noisy label learning work for medical

image classification, we find that most of the existing methods focus

on detecting and utilizing single-mode clean labels only. Neverthe-

less, these methods are heuristic without provable properties and

require much more training parameters than vanilla classification

model [18, 21, 23]. Noticing the gaps, we contribute as follows:

• We propose a simple and provable noisy label learning strat-

egy that can leverage the labels of clean and noisy data.

Specifically, we estimate a transition matrix to correct model

outputs to fit the observed labels.

• We theoretically prove that our method achieves the same

optimal as learning with all clean labels on expectation. To

overcome the model overfitting noisy data, we employ gradi-

ent disparity as a criterion so that the fixed transition matrix

can be accurately modeled by exploiting the noise.

• Extensive experiments demonstrate the superior performance

of the proposed framework. Our method also has been exten-

sively validated on three public medical datasets with noisy

labels, notably outperforming state-of-the-art methods.

2 Related Work
2.1 Deep Learning With Noisy Labels
Tomitigate the impacts of noisy labels on deep learning, researchers

proposed approaches to increase the deep neural networks’ robust-

ness in recent years.

Attempts have been made to evaluate the training labels’ correct-

ness. The concept of a supervisor model, MentorNet, is introduced

by Jiang et al. [11]. MentorNet is initialized to approximate a pre-

defined sample weighting scheme. During training, it learns with

the base deep learning network and re-weights the sample labels

based on their reliability. However, the ubiquity of ambiguous hard

samples makes the method difficult for medical images, since the

images of two classes can be pretty similar. Other than that, other

approaches tend to gradually correct the target labels according to

the model’s prediction. Reed et al. [27] proposed the bootstrapping

method, considering the training label confidence by evaluating

the model prediction consistency on similar input data. Instead of

trusting all training labels to be ground truth, the model’s current

prediction also plays an important role in deciding the model’s

label targets. Based on the bootstrapping approach, Iscen et al. [10]

penalizes prediction divergence between samples with similar fea-

tures via an additional consistency loss layer. However, this method

introduces additional computational costs to determine the sim-

ilarity and weighted predictions. It is usually costly for medical

image datasets, which are usually large in image feature dimensions.

Other than that, the samples with noisy labels are not utilized.

Meanwhile, some methods increase the training loss robustness

to noisy labels. Sukhbaatar et al. [30] allows the model to capture

the label transition matrix by introducing a constrained linear noise

layer, handling both label flips and outliers. Patrini et al. [25] pro-

posed two loss correction procedures, which are independent of the

neural network’s application and architecture. With an assumption

of possessing a known label transition matrix T, the loss can be cor-

rected bymultiplyingwith the inverse of T. However, thesemethods

require a certain amount of clean data ahead of time, and the tran-

sition matrix is hard to capture due to the complexity of medical

image data. Being independent of any prior information, [13] fil-

ters noisy labels and trains on the labels with high confidence by

selectively applying negative and positive learning.
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Figure 2: The proposed Pseudo-T correctionmethod, including (a) the overview of our framework, (b) indicates the specific
procedure of estimating the transition matrix. We first input the noisy dataset into our network and divide all samples into
noisy and clean groups. To tackle the challenge of noisy label detection, a noisy label filter (NLF) divides all the training data
by leveraging the predicted cross-entropy loss of our network. Noisy data are framed by red lines, and their labels need to
be corrected. Then, we design a transition matrix that corrects model predictions based on the partitions of clean and noisy
data samples. To prevent overfitting of the model to noisy data, we utilize gradient disparity (GD) as a stopping criterion to
determine whether to fix the transition matrix 𝑇 in further model training steps.

2.2 Noisy Labels in Medical Imaging
Labeling medical images is expensive and time-consuming as it

requires human experts to manually classify them. The data source

can also inevitably suffer from noises [17]. Some ambiguous im-

ages may confuse exports and some large-scale datasets require

automation tools to extract labels, resulting in a certain level of

wrong annotation [38]. To address such an issue, many researches

were conducted.

Some researchers focus on identifying noisy data from clean

datasets. Dgani et al. [4] trains a stochastic matrix to determine

the likelihood that a label is noisy. Zhu et al. [41] proposes a label

quality evaluation criteria to only feed preferable data to optimize

the network’s parameters. Kim et al. [12] developed the FINE frame-

work to filter out noisy data based on their eigenvectors.

Rather than implementing a noisy data filter, some approaches

also consider utilizing them to enhance feature detection, and mean-

while, suppressing their influence by re-weighting. Xue et al. [37]

designs an iterative learning framework to identify wrongly anno-

tated data and hard samples. A module is also developed to consider

the usefulness of those data by assigning appropriate weights. Xue

et al. [38] introduces the RMICmethod, which involves a co-training

framework. The framework includes two student-teacher models,

which classify clean and noisy labels independently. Their classifi-

cations are fed to one another as new inputs in the next training

cycle. Within a student-teacher network, the clean and noisy data

are respectively considered by four losses. To increase the teacher

network’s robustness to noisy labels, its weight is updated by the

student network’s exponential moving average. The noisy labels

are also utilized by a self-supervising learning strategy to improve

the network’s feature learning. Liu et al. [18] addresses the “noisy

supervised domain adaptation” problem for medical imaging seg-

mentation with S-CUDA, which also contains two peer networks.

The high-confident noisy labels are identified and corrected by the

network’s predictions for future reuse.

2.3 K-Mean Clustering
K-mean clustering is one of the most widely used data mining algo-

rithms, grouping up samples with the closest mean. In recent years,

many efforts have been made to improve the K-mean algorithm ef-

ficiency. Leng et al. [15] chooses cluster initial points by comparing

the data point distances with a small threshold. It refines the clus-

ters and decides whether to merge them with an influence factor to

measure the similarities between the two clusters. Napoleon and

Lakshmi [22] proposes a more efficient K-mean clustering approach

of two phases. The clustering centroids are initialized in the first

phase, and data points are assigned and clusters are finalized in

the second phase. Rauf et al. [26] further improves the clustering

efficiency by first classifying data into K arrays of the same size. The

clusters are then finalized in the second phase by computing and

comparing the distance between data points to the cluster means.

3 Preliminary
3.1 Problem Setting
We denote 𝒙 ∈ X as an image sample, �̃� ∈ {𝒆𝑖 |𝑖 ∈ [𝐾]} is its
observed label but possibly noisy (i.e., incorrect), a.k.a corrupted
label. Here, 𝐾 is the number of classes, 𝒆𝑖 is a 𝐾-dimensional one-

hot vector, whose 𝑖-th entry is 1 and else are 0s. The ground truth

label 𝒚 ∈ Y of the sample is unknown. Under these setting, we

train a classifier 𝒇𝜃 to fit the input imagesX to their noisy labels
˜Y,

we aim to optimize the our classifier 𝑓𝜃 with {X, ˜Y}. The expected
risk is defined as

R(𝒇𝜃 ) = E(𝒙,𝒚 )∼𝑃X, ˜Y [L(
ˆ𝑓𝜃 (𝒙), �̃�)], (1)
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whereL is cross-entropy loss, andwe aim to find𝜃∗ := argminR(𝒇𝜃 ).

Label Noise. The process of label corruption can be represented

by randomly flipping a true label 𝒚 to �̃� with probability 𝑝 (�̃� |𝒚).
Thus, we observe samples from distribution 𝑝 (𝒙,𝒚), where 𝑝 (𝒙,𝒚) =∑

𝒚 𝑝 (�̃� |𝒚)𝑝 (𝒚 |𝒙)𝑝 (𝒙). Such a transition can be expressed as a

Markov transition matrix 𝑇 ∈ [0, 1]𝐾×𝐾 , with 𝑇𝑖 𝑗 := 𝑝 (�̃� = 𝒆 𝑗 |𝒚 =

𝒆𝑖 ), such that 𝒑�̃� |𝒙 = 𝑇⊤𝒑𝑦 |𝒙 .

3.2 Forward Correction in Learning on Label
Noise

Risk correction is a simple yet effective approach in learning on

label noise [25, 30, 31], among which forward correction dominates

the performance in practice [25]. Without risk correction, training

a neural network results in a prediction for the corrupted labels

𝑝 (�̃� |𝒙). Forward correction corrects the model prediction using

transition matrix 𝑇 . For classification based on minimizing cross-

entropy, we have the forward corrected loss:

Lfwd

ce
(𝒆𝑖 , 𝑝 (𝒚 |𝒙)) = − log𝑝 (�̃� = 𝑒𝑖 |𝒙) (2)

= − log
𝐾∑︁
𝑗=1

𝑝 (�̃� = 𝒆𝑖 |𝒚 = 𝒆 𝑗 )𝑝 (𝒚 = 𝒆 𝑗 |𝒙) (3)

= −𝑙𝑜𝑔
𝐾∑︁
𝑗=1

𝑇𝑖 𝑗𝑝 (𝒚 = 𝒆 𝑗 |𝒙) . (4)

Obviously, forward correction simply replaces the prediction trained

on the noisy label 𝑝 (𝒚 = 𝒆 𝑗 |𝒙) with 𝑇𝑖 𝑗𝑝 (𝒚 = 𝒆 𝑗 |𝒙).

Optimal in Forward Correction. In our context, the model is

optimal in the sense that the minimizer of the corrected loss task

coincides with the minimizer of the supervised task on true labels

as if the perfect true labels 𝒚 can be observed.

Theorem 3.1. (Equal optimal [25])
Given the forward corrected loss defined in Eq. 4 and 𝑇 is non-

singular, the minimizer of the corrected loss under the noisy label
distribution is the same as the minimizer of the original loss under
the true label distribution:

argmin

𝑓

E𝑝 (𝑥,�̃�)
[
Lfwd

ce
(𝑇 𝑓 (𝑥), 𝑦)

]
= argmin

𝑓

E𝑝 (𝑥,𝑦) [Lce (𝑓 (𝑥), 𝑦)]
(5)

Proof. Consider a link function 𝜓 : Δ𝐾−1 ↦→ R𝑐 , which is

invertible, the softmax function is the inverse link function in cross-

entropy lossL𝑐𝑒 = − log 𝑝 (𝒚 = 𝒆𝑖 )𝑖 = − log
exp(𝑊 (𝑛)

𝑖 · 𝒙 (𝑛−1)+b
(𝑛)
𝑖 )∑𝑐

𝑘=1
exp(𝑊 (𝑛)

𝑘 · 𝒙
(𝑛−1)+b(𝑛)

𝑘 )
,

where 𝑛 is the index of layers. Let 𝒉(·) represent the features that
pass through the softmax function. With proper composite loss

properties of cross-entropy, the minimizer satisfies

𝒉∗ = argmin

𝒉
E𝒙,𝒚L𝜓 (𝒚,𝒉(𝒙)) = 𝜓 (𝑝 (𝒚 |𝒙)), (6)

Algorithm 1 The training process of Pseudo-T correction.

Input: Training data (𝒙, 𝑦) ∈ (X,Y), network 𝒈(𝒙 ;𝜽 ), transition
Matrix 𝑇 , Epoch T .

1: repeat
2: for 𝑡 ← 1 to T do
3: Batch← Sample 𝑥

4: Update 𝒈 by minimizing Eq. 4

5: Compute the cross-entropy loss L
6: if GD =! best GD

7: Clean & Noisy Sample 𝒙 ← NLF (Sec. 4.2.1)

8: update transition Matrix 𝑇

9: do
10: 𝑇𝑖 𝑗 = 𝑝 (�̃� = 𝒆 𝑗 |𝒚 = 𝒆𝑖 )
11: else
12: fix transition Matrix 𝑇

13: Update label probabilistic modeling (Sec. 4.3)

14: until Convergence or T reach maximum iterations.

The proof follows [25]. Notice that:

Lfwd

ce
(𝒚 = 𝒆𝑖 |𝒙) (7)

=Lce (𝒚,𝑇𝜓−1 (𝒉(𝒙))) (8)

=L𝜙
ce
(𝒚,𝒉(𝒙)), (9)

where 𝜙−1 = 𝜓−1 ◦ 𝑇 and 𝜙 = (𝑇 −1) ◦ 𝜓 . Eq. 9 is the proper

composite with link 𝜙 . Finally, from Eq. 9, the loss minimizer is

𝒉∗ = argmin

𝒉
E𝒙,�̃�L𝜙 (𝒚,𝒉(𝒙))

= 𝜙 (𝑝 (�̃� |𝒙))
= 𝜓 (𝑇 −1𝑝 (�̃� |𝑥))
= 𝜓 (𝑝 (𝒚 |𝒙))

□

4 Equations
4.1 Overview of the Framework
The goal of our work is to design a simple method for medical image

analysis (see Fig. 2), while its correctness is provable. The overall

training pipeline of our method is still described in Algorithm 1,

Motivated by the essential theoretical guarantee in Theorem 3.1,

we focus on applying the simple loss forward correction to medical

tasks. However, the existing related works [25] typically assume

the transition matrix 𝑇 is known, which is impractical in medical

applications. Medical image annotation contains complex human

decisions, thus the real𝑇 is difficult to model. To estimate transition

matrix 𝑇 for forwarding correction, we first use label prediction

by noisy label filter (NLF) (see Section 4.2.1) to distinguish clean

samples from noisy samples that serve as the input for training

the network. Then, the gradient disparity is applied as a stopping

criterion to determine if the matrix is fixed. Finally, the transition

matrix is applied to give different confidences to the clean and noisy

labels, adapted to the noisy (see Section 4.2).
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4.2 Estimating Transition Matrix 𝑇
The main purpose of this work is to estimate the transition matrix

𝑇 for forward correction described in Section 3.2. To this end, the

key step is to estimate the probability of a sample in class 𝑖 is

labeled as 𝑗 , 𝑇𝑖 𝑗 = 𝑝 (�̃� = 𝒆 𝑗 |𝒚 = 𝒆𝑖 ). We propose to estimate the

𝑇𝑖 𝑗 from the sample distribution of the training dataset. Given that

corrupted labels �̃� ∈ ˜Y are observed for 𝑁 training samples if their

corresponding true labels were known, we can count the number

of samples 𝑁𝑖 in class 𝑖 . Hereby, the estimated transition matrix is

expressed as 𝑇𝑖 𝑗 = 𝑝 (�̃� = 𝒆 𝑗 |𝒚 = 𝒆𝑖 ) ≃ | {�̃�𝑛=𝑗 |𝑛∈[𝑁𝑖 ] } |
𝑁𝑖

for 𝑖, 𝑗 ∈ 𝐾 ,
where 𝐾 is the number of classes.

4.2.1 Label Prediction by Noisy Label Filter (NLF). Patrini [25] as-
sumes that the transitionmatrix𝑇 is known ahead of time. However,

it is very hard to estimate such a matrix due to the complexity of

medical images. To estimate transition matrix 𝑇 , we first filter out

clean data, which are believed to be correctly labeled in the dataset.

Inspired byXue et al. [38], we use anNLF to separate clean and noisy

labels (a.k.a. wrong labels) based on data point-wise classification

loss. More specifically, we compute the cross-entropy loss L( ˆY, ˜Y)
at the end of every epoch, where

ˆY is the prediction result/are

the prediction results from 𝑓𝜃 (X). In our experiments, we use the

cross-entropy loss asL. Next, we input the loss into a noisy label fil-
ter (NLF) to predict {X, ˜Y} into clear {X𝑐 , ˜Y𝑐 } and noisy {X𝑛, ˜Y𝑛}
samples. In detail, the NLF employs a two-component Gaussian

Mixture Model (GMM) to cluster the samples into two groups based

on their point-wise cross-entropy losses (i.e., , ℓ𝑖 = 𝑝 (�̃�𝑛 |𝒙𝑛)) for
data point 𝑛.

The NLF method only selects the most confident samples as

clean samples at the initializing stage, and the confidence threshold

gradually decreases as the model becomes more robust. With a high

confidence threshold at the beginning, the consistency of the tran-

sition matrix𝑇 is maintained to the greatest extent. Meanwhile, we

added gradient disparity (GD) as a stopping criterion to determine

whether or not we should stop updating the transition matrix T.

4.2.2 Estimate 𝑁𝑖 Via Clustering. The key challenge exposed is the
true label being unknown, thus the number of samples 𝑁𝑖 within a

given true label 𝑖 are unavailable. To tackle this issue, we propose an

unsupervised pseudo-labeling strategy to estimate 𝑁𝑖 . Specifically,

we warm up the model without correction for 𝜏 steps and then

perform clustering on the data feature representations to form 𝐾

clusters, then assign each cluster a label based on the majority

voting on a subset of clean samples within each cluster.

We first extract informative low-dimensional representations

from the inputmedical images. Convolution neural networks (CNNs)

show their efficiency in extracting the feature. Further, a recent

work [16] shows that extracted features are representative and ro-

bust even when being trained on label noise. In our method, we

use a ResNet-18 [9] as the feature extractor and one linear layer

as the classifier training on the observed noisy labels. Then, we

perform K-means clustering [26] on the extracted features to split

the training data into 𝐾 clusters.

4.2.3 Assign Pseudo Labels to Clusters. Towards estimating 𝑁𝑖 ,

one step further is to assign a pseudo label to each cluster. For

each cluster 𝐶𝑖 , 0 ≤ 𝑖 < 𝐾 , we split the data samples (X𝐶𝑖 ,Y𝐶𝑖 )

in cluster 𝐶𝑖 into clean (X𝐶𝑖
𝑐 , ˜Y𝐶𝑖

𝑐 ) (correctly labeled) and noisy

(X𝐶𝑖
𝑐 , ˜Y𝐶𝑖

𝑛 ) (wrongly labeled) samples using the NLF method given

in Section 4.2.1.

The label of each cluster depends on the majority voting on the

prediction of clean data. To achieve more reliable pseudo labeling,

we only choose the top 60% of the clean data given the noise level

in medical data annotation is typically small high (i.e., ≤ 40%) for

mapping each 𝐶𝑖 to a non-overlapped pseudo-class.

4.2.4 Estimate 𝑇𝑖 𝑗 via Counting. After labeling each cluster, we

denote the number of each class 𝑗 ∈ [𝐾] in cluster 𝐶𝑖 with pseudo

true label 𝑖 as 𝑐
𝑗
𝑖
= |{�̃�𝑛 = 𝑗 |𝑛 ∈ |𝐶𝑖 |}| and

∑𝐾
𝑗=1 𝑐

𝑗
𝑖
= | ˜Y𝐶𝑖

𝑐 |. Thus,
𝑐
𝑗
𝑖
is achieved by counting the number of samples in each class

based on the corrupted labels �̃� ∈ ˜Y. For 𝑖, 𝑗 ∈ 𝐾 , we have the

estimation of transition matrix 𝑇 written as

𝑇𝑖 𝑗 = 𝑝 (�̃� = 𝒆 𝑗 |𝒚 = 𝒆𝑖 ) ≃
|{�̃�𝑛 = 𝑗 |𝑛 ∈ [𝑁𝑖 ]}|

𝑁𝑖
≃

𝑐
𝑗
𝑖

|𝐶𝑖 |
. (10)

For Estimate 𝑇𝑖 𝑗 , the model will learn the clean data in the early

epochs based on the memorization effect. Thus, the model tends

to find the noisy label and predict the correct transition matrix 𝑇 .

Next, the loss from the clean and noisy labels can differ greatly.

The NLF can filter the noisy ones. Furthermore, the clustering can

distinguish between clean and noisy pairs. These three techniques

can help the estimated transition matrix converge to the real one.

4.3 Label Probabilistic Modeling and Updating
After we have estimated the transition matrix 𝑇 , we apply the

forward correction to the output from the linear layer 𝑓 (𝒙) by
multiplying 𝑇 to 𝑓 (𝒙) as 𝑇 𝑓 (𝒙). 𝑇 plays the role of re-weighting

𝑓 (𝒙), making the model give different confidentiality to the clean

label and noisy label and also adapt to the noise. The optimization

goal is to optimize classifier 𝑓 that minimizes Eq. 4.

5 Experiment
5.1 Experimental Setting
We implement our approach with PyTorch [24] 1.8.0 and Torchvi-

sion 0.9.0 with 2 NVIDIA 2080Ti GPUs. The models are trained

using Adam optimizer [14] by setting coefficients of Adam 𝛽1 =

0.9, 𝛽2 = 0.999, and 𝜖 = 10
−8
. The learning rate is 0.0001 and re-

mains constant during the whole training process. The batch size

and total epochs are set to 64 and 50, respectively. In addition, we

set the warmup step 𝜏 = 10 as the default value.

5.2 Dataset
5.2.1 ISIC Skin Dataset. The ISIC skin dataset [2] comes from

the Melanoma Project initiated by the International Skin Imaging

Collaboration. There are 2600 melanoma dermoscopy images in

this dataset, classifying malignant and benign classes. The dataset

consists of 2000 melanoma dermoscopy images for training and

600 for testing. In addition to these data, we also utilize an extra

1582 images from the ISIC training archives for training. All images

are resized to 224 × 224, and are augmented by randomly adopting

horizontal flipping, vertical flipping, or image rotation.
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Table 1: Comparison of classification results with state-of-the-art methods on the ISIC and the HCDD dataset (Accuracy, %).
Noise here refers to the noisy sample ratio in the whole dataset. The results are presented in Mean(std) format. The bold
numbers are the best result among all the methods.

Dataset Noise Cross entropy Mentornet Co-teaching ELR JoCoR JoCoR+NIB RMIC Ours

0.05 84.25(0.66) 83.47(0.27) 83.98(0.45) 84.28(0.23) 68.78(1.41) 69.92(1.91) 85.40(0.22) 87.79(0.55)
ISIC 0.1 83.01(0.37) 83.83(0.37) 83.39(0.50) 83.18(0.35) 64.41(2.31) 66.74(0.81) 84.33(0.31) 86.39(0.38)

0.2 81.36(0.61) 82.15(0.49) 83.22(0.21) 83.37(0.48) 60.78(3.80) 62.05(1.13) 84.17(0.32) 85.39(0.26)
0.4 69.65(0.65) 70.40(0.33) 74.78(0.44) 72.98(0.26) 52.02(3.25) 53.07(0.16) 76.67(0.14) 79.17(0.58)
0.05 91.28(0.57) 92.65(0.32) 92.88(0.36) 92.69(0.33) 88.85(1.89) 90.46(0.33) 93.88(0.35) 94.11(0.27)

HCDD 0.1 88.95(0.31) 91.05(0.27) 91.39(0.48) 90.84(0.24) 86.58(1.92) 87.34(1.09) 92.75(0.30) 92.63(0.36)
0.2 82.67(0.49) 85.66(0.27) 86.05(0.17) 87.12(0.28) 86.41(1.61) 84.95(1.60) 90.88(0.20) 91.83(0.38)
0.4 63.41(0.63) 69.43(0.47) 76.03(0.18) 73.86(0.17) 75.81(2.29) 74.98(3.12) 79.00(0.34) 80.48(0.26)

Table 2: The accuracy of different methods on NIH chest X-
ray datasets. The average accuracy and standard deviation of
5 random runs are reported and the best results are in bold.
The results are presented in Mean(std) format.

Method Pneumothorax Nodule or Mass

Cross entropy 0.870(0.33) 0.843(0.39)

Mentornet 0.866(0.27) 0.837(0.31)

Co-teaching 0.873(0.21) 0.820(0.15)

ELR 0.871(0.23) 0.832(0.21)

RMIC 0.891(0.14) 0.846(0.22)

Ours 0.895(0.21) 0.851(0.14)

5.2.2 Kaggle Histopathologic Cancer Detection Dataset. The Kaggle
histopathologic cancer detection dataset (HCDD) is a marginally

modified version of the PatchCamelyon (PCam) [1, 32]. The dataset

is a binary classification for malignant and benign, containing low-

resolution images of lymph node sections with about 30, 0000mark-

ers extracted from digital histopathological scans. We randomly

select 6200 and 800 images from the training images as our training

data and test data, respectively. All the images are resized to the

size of 224 × 224.

5.2.3 NIH Chest X-Ray Dataset. This dataset [33] contains 112,120
frontal-viewCXR images from 32,717 patients. Each image is labeled

with 14 possible pathological findings that are automatically mined

from the text reports. As clean testing data, we employed 1,962

manually labeled images [20]. We resized all the skin images to the

size of 224 × 224 and normalized each image by subtracting the

ImageNet mean and std.

5.3 Comparison of Classification Results With
State-of-the-Art Methods

The performance of our method under different unsupervised loss

weights on the histopathologic datasets. To demonstrate the effec-

tiveness of our algorithm, we compare Pseudo-T correctionwith
five state-of-the-art noisy label learning methods, including:

(1) MentorNet (2018) [11]. MentorNet proposes a neural network

to supervise the training of the base deep networks. They used a

group of clean data to weigh each training data. This method learns

a data-driven curriculum dynamically with the network.

(2) Co-teaching (2018) [8]. This method trains two deep neural

networks to teach each other given every mini-batch by selecting

some data of possibly clean labels. Secondly, the two networks

communicate with each other about what data should be used for

training. Then, each network updates itself and back-propagates

the data chosen by its partner networks.

(3) ELR (2020) [19]. A semi-supervised learning technique to

generate targe probabilities based on the model outputs. Then, ELR

develops a regularization term that indirectly prevents memorizing

the erroneous labels by guiding the model towards these targets.

(4)JoCoR (2020) [35]. A learning paradigm used in a co-training

network structure. It considers and trains the two networks as a

whole, and aims to reduce their diversity. The two networks first

make predictions on the same mini-batch and calculate the joint

loss to maximize the agreement between the two classifiers. The

small-loss examples are then selected to update the two networks

simultaneously; consequently, the two networks become similar.

(5) NIB (2021) [40]. A plugin module that separates hard sam-

ples from mislabelled samples to further increase the network’s

performance under a noisy environment. The module consists of

a probability transition matrix to generate accumulative soft la-

bels. The divergence between the soft labels and the network’s

predictions is calculated. With less divergence, the hard samples

are identified. Zhang et al. prove that NIB brings improvement to

the JoCoR framework with experiments.

(6) RMIC (2022) [38]. A collaborative training paradigm with

global and local representation learning. They use a self-ensemble

model with a noisy label filter to select the clean and noisy samples.

Then, the clean samples are trained and applied to eliminate the

disturbance from imperfect labeled samples. This method uses a

teacher-student co-training strategy for local and global knowledge

distillation.

5.3.1 Results on ISIC Dataset. Since the data is more imbalanced

and higher proportion of hard samples than the lymph node classifi-

cation task, it should be noted that the skin lesion classification data

is more challenging to use. In the malignant vs. benign classification

task on the ISIC dataset, Pseudo-T correction significantly out-

performed the alternative methods. From Table 1, it is observed that

when there is a 0.05 noise ratio setting, the poor sample utilization
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Figure 3: Ablation study on stopping criteria (GD). Left: ISIC, Right: HCDD.

(a) ISIC dataset (b) HCDD dataset

Figure 4: The performance of ablation study under different warmup epochs (𝜏) and noise ratio on ISIC dataset and HCDD
dataset. We report the testing accuracy under distinct settings with the format of mean and std.

Table 3: Classification results of with vs. without Pseudo-T correction on ISIC dataset (Accuracy, %). Noise here refers to the
noisy sample ratio in the whole dataset. The results are presented in Mean(std) format.

Pseudo-T correction Noise ACC (std) Pseudo-T correction Noise ACC (std)

w

0 88.74 (1.23)

w/o

0 87.73 (1.10)

0.05 87.64 (0.12) 0.05 87.53 (1.03)

0.1 86.88 (1.12) 0.1 86.53 (1.24)

0.2 84.66 (0.96) 0.2 84.53 (1.61)

0.4 81.11 (1.67) 0.4 76.41 (2.62)

rate and incorrect hard sample identification in the mild scenario

make co-teaching ineffective, while the biased sample selection and

down-weighted hard samples in the self-paced Mentornet model

hindered its effectiveness. The RMIC discovered a slight increase

in accuracy when the noise ratio was low, but when the noise ratio

approached 0.4, the performance drastically declined because their

cross-entropy loss on small loss data is not reliable in this situation.

Compared with our methods, the RMIC led to a minimal difference

in accuracy between decentralized training and the baseline, using

a noisy dataset led to a much larger difference between the two.

The results show that our method can successfully handle noisy

labels since the transition matrix can effectively utilize the hard

samples and the noise label filter can filter out the noise labels.

5.3.2 Results on HCDD Dataset. To evaluate the generalization

ability, Table 1 also presents the testing accuracy (summarized from

three independent runs) of Pseudo-T correction and comparison

methods on different noise levels. Although the RMIC method

achieves the best, 92.75% value at noise equals 0.1 on the HCDD

dataset, this method is based on a co-training strategy, so it may

be challenging to employ their cross-entropy loss on small loss

data. This plausibly implies that Pseudo-T correction would be

very helpful and practical in clinical applications by fully using the

information of noise data.

In addition to successfully handling label noise, our method is

lightweight and easy to implement on resource-limited devices.

While using ResNet18 as our base model, Pseudo-T correction
contains 11.2 million trainable parameters, which is only 1/4 that

of RMIC and Co-teaching and around half of the other methods.

Compared to RMIC [38], our method gains comparable results to

RMIC while being simple and provable.

5.3.3 Results on NIH Chest X-Ray Dataset. The NIH Chest X-Ray

dataset is a real-world dataset with real noise. We present the com-

parison in test accuracy with state-of-the-art methods on the NIH

chest X-ray dataset in Table 2. From this Table 2, we can observe that

Pseudo-T correction still outperformed the baseline (e.g., Cross
entropy and Co-teaching) and other methods. For instance, our
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Figure 5: The performance of ablation study under different
warmup epochs (𝜏) and noise ratio onNIH chest X-ray dataset.
We report the testing accuracy under distinct settings.

method achieves 2.4% accuracy gains over ELR. Compared to RMIC,

our method achieves better performance with 0.5% accuracy-score

gains. We explain this to be that the sample selection is difficult

because of the tiny noise proportion and unbalanced sample dis-

tribution of the 14 diseases. Overall, this experiment shows the ro-

bustness of our method in a real clinical context. Thus, our method

is practical with considerably better adaptability.

5.4 Ablation Study
5.4.1 Sanity Check on the Estimated Transition Matrix 𝑇 . The tran-
sition matrix 𝑇 is an essential element in improving the classifica-

tion performance. We conducted multiple experiments to prove the

correctness of the transition matrix. For sanity check, we visualize

the convergence of transition matrix 𝑇 on the ISIC dataset when

the noisy ratio is 0.05 and 0.1. The investigations of𝑇 are presented

in Table 3. As shown in Table 3, our method achieves ACC of 0.1

noisy ratio gains over 0.35% compared to the without Pseudo-T

correction. In addition, compared to the without transition matrix

correction under a 0.4 noisy ratio, Pseudo-T correction added

after it achieves significant performance improvement, especially

with the increase of 4.7% ACC. Experimental results indicate that

the minimization of the corrected loss under the noise distribution

corrected by the correction matrix is the same as the minimization

of the original loss under the true label distribution. It demonstrates

the advantages of using Pseudo-T correction to reduce the risk

of training a classification model with incorrect information be-

cause the chances of randomly selecting a complementing label

that is not a real label are high.

5.4.2 Influence of Stopping Criteria (GD). To evaluate the stopping
criteria (GD) on the ISIC dataset and the HCDD dataset, we report

the results in Fig. 3. It can be seen from Fig. 3 that the proposed

Pseudo-T correction produces overall good results under a dis-

tinct noise ratio. As shown in Fig. 3, we report the comparison

results with vs. without stopping criteria (GD). From Fig. 3, the

“with GD" achieves the improve- ment of 4.07% compared with

“without GD" under 0.4 noise rate on the ISIC dataset. Equally, un-

der the noise rate is 0.05, our method achieves a good result with

GD. At a noise rate of 0.4, “with GD" increases the accuracy over

“without GD" by 1.3% on the HCDD dataset. Fig. 3 suggests that our

method using stopping criteria produces the overall better perfor-

mance, compared with that without stopping criteria on ISIC and

HCDD datasets. This means that our method would be very helpful

in noisy data by using gradient disparity as an effective criterion to

avoid overfitting noisy data with iterative methods.

5.4.3 Influence of Warmup Epoch. We evaluate the influence of

warmup epoch, by comparing the results of Pseudo-T correction
using different pre-training epochs under the settings of different

noise ratios. Specifically, we vary the noise ratio from the range of

[0.05, 0.1, 0.2, 0.4] and record the results in Fig. 4. It can be seen

from Fig. 4(a) that, with a very low warmup epoch (e.g., 𝜏 = 5), our

method cannot yield good results. With 𝜏 = 10, we can obtain rela-

tively better results. The results are reported in Fig. 4(a), Pseudo-T
correction using 0.05 noisy ratio and 15 warmup epochs to pro-

duce the best performance on the ISIC dataset. The main reason

could be that the warmup epoch helps extract robust features of

noisy samples.

Similarly, it can be seen from Fig. 4(b) that our method yields

consistently better results within the range of [0.05, 0.1], when 𝜏 is

equal to 15. This Fig. 4(b) also shows that, with 𝜏 = 10, Pseudo-T
correction achieves the overall best performances under a noise

ratio of 0.2. Also, these results imply that the warmup epoch is an

important parameter for maintaining model stability.

We further analyze how the warmup epoch 𝜏 on NIH chest

X-ray dataset. We ranged 𝜏 ∈ [5, 10, 15, 20]. As shown in Fig. 5,

we can observe that the best selection of 𝜏 is set to 15. From 5 to

15, increasing 𝜏 can improve the classification performance. The

performance slightly drops when 𝜏 is set to 20. Thus, we report the

performance of the proposedmethod by setting 𝜏 to 20 on NIH chest

X-ray dataset, unless otherwise specified. We find that increasing

the 𝜏 may not always improve the performance yet brings extra

computational cost. It also demonstrates that increasing 𝜏 is not

always the best choice for architectural design.

6 Conclusion
In this work, we present a simple and provable method by utilizing

noisy labels for medical image analysis. The proposed method does

not rely on relabeling the noisy labeled data and directly uses noisy

labeled data and a lightweight network to promote the learning of

robust representation features. Notably, to tackle the realistic but

ignored issue of incomplete information in noisy labels, we designed

a transition matrix, that corrects model predictions. Furthermore,

to avoid underfitting or overfitting deep neural networks trained

with iterative methods, resulting in inaccurate transition matrix

estimation. Therefore, we employ gradient disparity as a criterion

to decide if fixing the transition matrix in the further model training

steps. Extensive experiments on three challenging medical datasets,

including dermoscopic images, histopathology slide images, X-Ray,

about medical image classification tasks with random noise and

inter-observer variability, demonstrate that our method obtains

state-of-the-art performance. In the future, we will fuse multi-class

classification tasks to address the data heterogeneity issue and apply

our methods to further improve performance on more datasets.
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