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ABSTRACT

Existing machine learning methods for causal inference usually estimate quanti-
ties expressed via the mean of potential outcomes (e.g., average treatment effect).
However, such quantities do not capture the full information about the distribu-
tion of potential outcomes. In this work, we estimate the density of potential
outcomes after interventions from observational data. For this, we propose a novel,
fully-parametric deep learning method called Interventional Normalizing Flows.
Specifically, we combine two normalizing flows, namely (i) a teacher flow for
estimating nuisance parameters and (ii) a student flow for a parametric estimation
of the density of potential outcomes. We further develop a tractable optimization
objective based on a one-step bias correction for an efficient and doubly robust esti-
mation of the student flow parameters. As a result our Interventional Normalizing
Flows offer a properly normalized density estimator. Across various experiments,
we demonstrate that our Interventional Normalizing Flows are expressive and
highly effective, and scale well with both sample size and high-dimensional con-
founding. To the best of our knowledge, our Interventional Normalizing Flows are
the first fully-parametric, deep learning method for density estimation of potential
outcomes.

1 INTRODUCTION

Causal inference increasingly makes use of machine learning methods to estimate treatment effects
from observational data (e.g., van der Laan et al., 2011; Künzel et al., 2019; Curth & van der Schaar,
2021; Kennedy, 2022). This is relevant for various fields including medicine (e.g., Bica et al., 2021),
marketing (e.g., Yang et al., 2020), and policy-making (e.g., Hünermund et al., 2021). Here, causal
inference from observational data promises great value, especially when experiments for determining
treatment effects are costly or even unethical.

The vast majority of the machine learning methods for causal inference estimate averaged quantities
expressed by the (conditional) mean of potential outcomes. Examples of such quantities are the
average treatment effect (ATE) (e.g., Shi et al., 2019; Hatt & Feuerriegel, 2021), the individual
treatment effect (ITE) (e.g., Shalit et al., 2017; Hassanpour & Greiner, 2019; Zhang et al., 2020), and
treatment-response curves (e.g., Bica et al., 2020; Nie et al., 2021). Importantly, these estimates only
describe averages without distributional properties.

However, making decisions based on averaged causal quantities can be misleading and, in some
applications, even dangerous (Spiegelhalter, 2017; van der Bles et al., 2019). On the one hand, if
potential outcomes have different variances or number of modes, relying on the average quantities
provides incomplete information about potential outcomes, and may inadvertently lead to local – and
not global – optima during decision-making. On the other hand, distributional knowledge is needed
to account for uncertainty in potential outcomes, and thus informs how likely a certain outcome is.
For example, in medicine, knowing the distribution of potential outcomes is highly important (Gische
& Voelkle, 2021): it gives the probability that the potential outcome lies in a desired range, and thus
defines the probability of treatment success or failure. Motivated by this, we aim to estimate the
density of potential outcomes.

An example highlighting the need for estimating the density of potential outcomes is shown in Fig. 1.
Here, we simulated outcomes according to a given structural causal model (SCM). The potential
outcomes Y [a] can be sampled by setting the treatment to specific value in the equation for A (cf.
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)

Figure 1: Motivating example showing the densities of observational, interventional, and counter-
factual distributions of outcome Y . These are simulated via the structural causal model on the right
(here: N(x;µ, σ2) are densities of the normal distribution; and b = 3 is a covariates shift, which
regulates the probability of treatment assignment). Potential outcomes have different distributions but
the same mean E(Y [0]) = E(Y [1]) ≈ 4.77 and the same variance var(Y [0]) = var(Y [1]) ≈ 4.06.
Here, Y [a] is the potential outcome given treatment a. (a) Interventional distributions. (b) and (c) Ob-
servational and counterfactual distributions for the same outcomes. As shown here, the observational,
interventional, and counterfactual distributions can be vastly different.

Appendix B). At the same time, by flipping the treatment assignment in this equation, we obtain
counterfactual outcomes Y [a] | A = a′. We observe that the potential outcomes have the same
mean (i.e., E(Y [0]) = E(Y [1])) and the same variance (i.e., var(Y [0]) = var(Y [1])). Hence, the
ground-truth ATE equals zero. Nevertheless, the distributions of potential outcomes (i. e., P(Y [a]))
are clearly different. Hence, in medical practice, acting upon the ATE without knowledge of the
distributions of potential outcomes could have severe, negative effects. To show this, let us consider
a “do nothing” treatment (a = 0) and some medical treatment (a = 1). Further, let us consider an
outcome to be successful if some risk score Y is below the threshold of five. Then, the probability of
treatment success (i. e., P{Y [1] < 5.0} ≈ 0.63) is much larger than the probability of success after
the “do nothing” treatment (i. e., P{Y [0] < 5.0} ≈ 0.51), highlighting the importance of treatment.

In this paper, we aim to estimate the density of potential outcomes after intervention a, i. e., P(Y [a] =
y). From this point on, we refer to this task as interventional density estimation (IDE). Estimating
the density of interventions has several crucial advantages: it allows to identify multi-modalities
in the distribution of potential outcomes; it allows to estimate quantiles of the distribution; and it
allows to compute the probability with which a potential outcome lies in a certain range. Importantly,
traditional density estimation methods are not applicable for IDE due to the fundamental problem of
causal inference: that is, the counterfactual outcomes are typically never observed, and, hence, the
sample from ground-truth interventional distribution is also inaccessible.

In prior literature, Kennedy et al. (2021) introduced a theory for efficient semi-parametric IDE
estimation, but without a flexible algorithmic instantiation in form of a method. Existing literature
also offers some specific methods for IDE, which are either semi- or non-parametric. 1 Examples
are kernel density estimation (Kim et al., 2018) and kernel mean embeddings of distributions
(Muandet et al., 2021). However, both methods neither scale well with the sample size nor with
the dimensionality of covariates. Furthermore, both methods have an additional, crucial limitation:
estimated densities could be unnormalized or even return negative values (which, by definition, is
not possible). Fully-parametric methods, on the other hand, have several practical advantages: they
automatically provide properly normalized density estimators, they allow one to sample from the
estimated density and typically scale well with large and high-dimensional datasets. However, to the
best of our knowledge, there is no fully-parametric, deep learning method for IDE.

In this paper, we develop a novel, fully-parametric deep learning method: Interventional Normalizing
Flows (INFs). Our INFs build upon normalizing flows (NFs) (Tabak & Vanden-Eijnden, 2010;
Rezende & Mohamed, 2015), but which we carefully adapt for causal inference. This requires several
non-trivial adaptations. Specifically, we combine two NFs: a (i) teacher flow for estimating nuisance
parameters, and a (ii) student flow for a parametric estimation of the density of potential outcomes.
Here, we construct a novel, tractable optimization objective based on a one-step bias correction
to allow for an efficient and doubly robust estimation. At the end, we develop a two-step training
procedure to train both the teacher and the student flows.

Overall, our main contributions are following:2

1We distinguish the interventional distribution (i.e., P(Y [a])) and the counterfactual distribution (i.e.,
P(Y [a] | A = a′)), which are different in general. This can be seen by comparing plots (a) vs. (b) and
(c) in Fig. 1. For further information, we refer to Appendix B.

2Code is available at https://anonymous.4open.science/r/AnonymousInterFlow-E2F3.
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1. We introduce the first fully-parametric, deep learning method for interventional density estimation,
called Interventional Normalizing Flows (INFs). Our INFs provide a properly normalized density
estimator.

2. We derive a tractable optimization problem with a one-step bias correction for efficient and doubly
robust estimation. To solve, we propose a two-step training procedure with our INFs.

3. We demonstrate in various experiments that our INFs are highly expressive and effective. A major
advantage owed to the parametric form of the student flow is that our INFs scale well to both
large and high-dimensional datasets in comparison to other non- and semi-parametric methods.

2 RELATED WORK

Recently, there has been a great interest in using machine learning and, specifically, deep learning for
estimating causal quantities. Examples are machine learning for estimating ATEs (e.g., Shi et al.,
2019; Hatt & Feuerriegel, 2021), ITEs (e.g., Johansson et al., 2016; Alaa & van der Schaar, 2018;
Wager & Athey, 2018; Curth & van der Schaar, 2021), and treatment-response curves (e.g., Bica et al.,
2020; Schwab et al., 2020; Nie et al., 2021). In this regard, some papers proposed uncertainty-aware
methods, e. g., by using the variance of potential outcomes (Alaa & van der Schaar, 2017; Jesson
et al., 2020), or the conditional outcome distribution (Jesson et al., 2021; 2022). However, the
aforementioned works are all concerned with estimating averaged causal quantities expressed via
the mean of potential outcomes. In contrast, there are only a few papers that estimate the density of
outcomes after intervention.

2.1 INTERVENTIONAL DENSITY ESTIMATION

Kennedy et al. (2021) introduced a theory for efficient semi-parametric estimation. The theory also
lends to a hypothetical estimator as a solution to an integral equation, namely a bias-corrected moment
condition. However, the theory comes without an algorithmic instantiation in form of a method. We
later adopt the theoretical framework and convert the bias-corrected moment condition into a tractable
optimization objective, which we can then solve very effectively with deep learning.

Table 1 lists existing methods for IDE. Importantly, these are either non-parametric or semi-parametric.
Kim et al. (2018) developed a doubly robust kernel density estimation (KDE) via an efficient
estimation of density functionals. Muandet et al. (2021) proposed kernel mean embeddings of
distributions (DKME), which provides a non-parametric plug-in estimator. However, both methods
(Kim et al., 2018; Muandet et al., 2021) have limitations. First, they do not provide a properly
normalized density estimator. Hence, the estimated densities can be unnormalized or even negative,
yet which, by definition, is not possible. Second, they do not offer direct sampling, which would
allow one to sample from the estimated density without an additional algorithm. This may complicate
computations of the test log-probability or empirical Wasserstein distance during evaluation. Third,
another limitation of both non-parametric and semi-parametric methods is that they typically scale not
well. This is unlike fully-parametric methods, which scale well to both large and high-dimensional
datasets. However, so far, there is no full-parametric, deep learning method for IDE.

The methods for IDE above (Kim et al., 2018; Muandet et al., 2021; Kennedy et al., 2021) build upon
general assumptions for causal identifiability. We later adopt the same assumptions for IDE (see
Section 3), and we then develop a fully-parametric, deep learning method called INFs. Our method
has three favorable properties: it yields a proper density estimator, it allows for direct sampling, and
it scales well.

Table 1: Overview of methods for interventional density estimation from observational data.

Method Density model Parametric Estimator type Proper density Direct sampling

Kim et al. (2018) kernel density estimation (KDE) semi-parametric A-IPTW ✗ ✗
Muandet et al. (2021) distributional kernel mean embeddings (DKME) non-parametric plug-in ✗ ✗

INFs (this paper) normalizing flows (NFs) fully-parametric A-IPTW ✓ ✓

A-IPTW: augmented inverse propensity of treatment weighted

2.2 EFFICIENT ESTIMATION

In the context of treatment effect estimation, so-called augmented inverse propensity of treatment
weighted (A-IPTW) estimators were developed for efficient, semi-parametric estimation of target
estimands (parameters) (Robins, 2000). Formally, A-IPTW estimation performs a first-order bias
correction of plug-in models (Bickel et al., 1993; Chernozhukov et al., 2018). A-IPTW estimation
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also offers the property of being double robust, i. e., fast convergence rates even if one of the nuisance
parameter estimators converges slowly Kennedy (2020). Although Kennedy et al. (2021) formulated
an integral equation for semi- and fully-parametric efficient IDE estimation (see Eq. 19 therein), no
flexible algorithmic instantiations in form of a method have been implemented so far. Later, we
reformulate this equation as a tractable optimization problem, and, thereby, turn our INFs into an
efficient and doubly robust IDE estimator.

2.3 NORMALIZING FLOWS

Normalizing flows were introduced for expressive variational approximations in variational autoen-
coders (Tabak & Vanden-Eijnden, 2010; Rezende & Mohamed, 2015). One practical benefit of
NFs is that they yield universal density approximators (Dinh et al., 2014; 2017; Huang et al., 2018;
Durkan et al., 2019). Furthermore, NFs can be leveraged for conditional density estimation (e. g., via
so-called hypernetworks (Trippe & Turner, 2018)). Normalizing flows were used for causal inference,
but in a different setting from ours (see Appendix A). We provide a background on normalizing flows
in Appendix B.

Research gap: Existing methods for IDE are either non- or semi-parametric. To the best of our
knowledge, our work is the first to propose a fully-parametric, deep learning method for IDE.

3 SETUP: INTERVENTIONAL DENSITY ESTIMATION

Notation. Let P(Z) be a distribution of a random variable Z, and let P(Z = z) be its density or
probability mass function. Let πa(x) = P(A = a | X = x) denote the propensity score. Further,
1(·) is the indicator function; Pn{f(X)} = 1

n

∑n
i=1 f(Xi) is the sample average of a random f(X);

and PB
b {f(X)} is the average evaluated on a minibatch B of size b. For readability, we sometimes

highlight random variables and the corresponding averaging operator in green color. Furthermore,
P(Y | X,A) is the conditional distribution of the outcome Y .

Problem statement. In this work, we aim at estimating the interventional density from observational
data, namely P̂(Y [a] = y). To compare the goodness-of-fit of different estimators, we evaluate the
distributional distance between the ground-truth interventional density and the estimated density.
Such distributional distances include, e.g., the average log-probability and the empirical Wasserstein
distance.

We build upon the standard setting of potential outcomes framework (Rubin, 1974), where Y [a]
stands for the potential outcome after intervening on treatment by setting it to a. That is, we consider
an observational sample D with dX -dimensional covariates X ∈ X ⊆ RdX , a treatment A ∈ {0, 1},
and a dY -dimensional continuous outcome Y ∈ Y ⊆ RdY , drawn i.i.d. We consider dY = 1 if
not stated explicitly. We assume the treatment to be binary, but note that our INFs also work with
categorical treatments. We denote D = {Xi, Ai, Yi}ni=1 ∼ P(X,A, Y ), where n is the sample size,
and i is the index of an observation. For example, in critical care, the patient covariates X are
different risk factors (e.g., age, gender, weight, prior diseases), the treatment is whether a ventilator
is applied, and the outcome is the probability of patient survival. The covariates X are also called
confounders if P(Y [a]) ̸= P(Y | A = a).

Identifiability. To identify the interventional density, we make the following identifiability as-
sumptions with respect to the data-generating mechanism of D: (1) Positivity: For some ϵ > 0,
P{1 − ϵ ≥ πa(X) ≥ ϵ} = 1. (2) Consistency: If A = a for some patient, then Y = Y [a]. (3) Ex-
changeability: A ⊥⊥ Y [a] | X for all a. Note that these assumptions are standard in the literature
(Kim et al., 2018; Kennedy et al., 2021; Muandet et al., 2021). Under assumptions (1)–(3), the density
of interventional distribution P(Y [a]) can be expressed in terms of observational distribution with
back-door adjustment, i.e.,

P(Y [a] = y) =

∫
x∈X
P(Y = y | X = x,A = a)P(X = x) dx = E

X∼P(X)

(
P(Y = y | X,A = a)

)
, (1)

where P(Y = y | X,A) is the conditional density of the outcome. For more details on the potential
outcomes framework and identifiability, we refer to Appendix B.

Plug-in estimator. A straightforward approach for IDE (Robins & Rotnitzky, 2001) is the follow-
ing: first, one estimates the conditional outcome distribution, P̂(Y | X,A) (here, any method for
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Figure 2: Overview of Interventional Normalizing Flows. Our INFs combine two normalizing flows,
which we call “teacher flow” and “student flow”. The teacher flow estimates the nuisance parameters,
i.e., the propensity score π̂a(X) and the conditional outcome distribution P̂(Y | X,A). The student
flow utilizes them to estimate the projection parameters β̂A-IPTW

a . Both teacher and student flows are
fitted via a two-step training procedure.

conditional density estimation could be used). Then, one takes a sample average over covariates X:

P̂PI(Y [a] = y) = Pn{P̂(Y = y | X,A = a)}. (2)

This estimator is an unbiased but inefficient estimator of interventional density, which is known
as semi-parametric plug-in estimator. Semi-parametric IDE, unlike, e. g., semi-parametric ATE
estimation, is highly problematic. For large sample sizes, the semi-parametric estimator requires
averaging over the full sample for each evaluation point. Motivated by this, we aim to develop a
fully-parametric estimator.

4 THEORETICAL BACKGROUND FOR FULLY-PARAMETRIC IDE

In this section, we introduce a theory for fully-parametric estimation of interventional density. First,
we describe a parametric plug-in estimator as a solution to the moment condition (Kennedy et al.,
2021). We call this estimator covariate-adjusted estimator. Second, we develop a one-step bias
correction for efficient estimation.

We start by defining a parametric model,
{
g(y;βa) | βa ∈ Rd

}
, where βa ∈ Rd are parameters

of estimator, and g(·;βa) is a density, i. e.,
∫
y∈Y g(y;βa) dy = 1. For IDE, we approximate the

interventional distribution P(Y [a]) with a distribution from our parametric model. That is, we aim at
minimizing the distributional distance (specifically KL-divergence) between P(Y [a]) and g(·;βa) via

β̂a =argmin
βa

KL
(
P(Y [a])

∥∥∥g(·;βa)
)
= argmin

βa

E
Y a∼P(Y [a])

(
− log g(Y a;βa)

)
, (3)

where β̂a are called projection parameters as they project the true interventional density onto a class
{g(·;βa);βa ∈ Rd}.
4.1 COVARIATE-ADJUSTED ESTIMATOR

Let the d-dimensional random variable T (Y ;βa) = −∇βa log g(Y ;βa) denote the score function.
Following Kennedy et al. (2021), the projection parameters can be equivalently expressed as a solution
to the moment condition m(βa)

!
= 0, where

m(βa) = E
Y a∼P(Y [a])

T (Y a;βa) = E
X∼P(X)

(
E
(
T (Y ;βa) | X,A = a

))
. (4)

Here, the moment condition is the expected score function of the potential outcome. Throughout the
paper, we assume that the moment condition has a unique solution, and, therefore, the minimization
task in Eq. (3) and the root-finding task in Eq. (4) are equivalent.

In practice, we have neither observations from the interventional distribution nor counterfactual
outcomes. Therefore, we cannot use the ground-truth P(Y [a]) but, instead, must use the plug-in
estimator distribution from Eq. (2). Specifically, we can obtain a plug-in estimator of projection
parameters, i. e., β̂PI

a , either by minimizing a cross-entropy loss or by solving the moment condition,
both of which are equivalent:

β̂PI
a = argmin

βa

E
Y a∼Pn{P̂(Y |X,A=a)}

− log g(Y a;βa) ⇐⇒ m̂PI(βa) = E
Y a∼Pn{P̂(Y |X,A=a)}

T (Y a;βa)
!
= 0. (5)
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Then, we can define a parametric covariate-adjusted (CA) estimator as P̂CA(Y [a] = y) = g(y; β̂PI
a ).

By choosing a sufficiently expressive class of densities for both g and the conditional density estimator
P̂(Y | X,A) (e. g., normalizing flows), CA can be shown to consistently estimate the interventional
density (see Appendix B.5 in Kennedy et al. (2021)).

4.2 EFFICIENT ESTIMATION VIA ONE-STEP BIAS CORRECTION

In the following, we aim to develop an efficient estimator of the projection parameter β̂a from Eq. (3)
or, equivalently, the moment condition m̂(βa) at fixed βa from Eq. (4). For this, we make use of
semi-parametric efficiency theory (van der Laan & Robins, 2003; Kennedy et al., 2021). We provide
a background on efficiency theory in Appendix B.

Kennedy (2022) showed that the efficient influence function ϕa(T,P) for the functional E(E(T |
X,A = a)) equals to

ϕa(T ;P) =
1(A = a)

πa(X)

(
T − E(T | X,A = a)

)
+ E(T | X,A = a)− E

X∼P(X)
(E(T | X,A = a)). (6)

Here, we use red color to show the nuisance parameters of P that are influencing the functional.
We emphasize that the nuisance parameters (i. e., the propensity score and conditional expecta-
tions/probabilities) can be either known or estimated.

The efficient influence function in Eq. (6) allows us to construct an efficient estimator of the moment
condition. Following (Kennedy et al., 2021), we transform the plug-in estimator m̂PI(βa) from Eq. (5)
into an efficient estimator with the help of a one-step bias correction. In our case, the bias-corrected
moment condition has the following form:

m̂A-IPTW(βa) = m̂PI(βa) + Pn

{
ϕa(T (Y ;βa); P̂)

} !
= 0, (7)

where P̂ = {π̂a(x), P̂(Y | X,A)} are the estimated nuisance parameters of P. The estimated
nuisance parameters are simultaneously used for plug-in estimation of the moment condition. We
call the solution of the bias-corrected moment equation β̂A-IPTW

a an augmented inverse propensity of
treatment weighted (A-IPTW) estimator of the projection parameters. Unlike CA estimator, A-IPTW
estimator achieves efficiency and possesses a double robustness property.

We now transform the bias-corrected moment condition into the following tractable optimization task
(see Appendix C for details):

β̂A-IPTW
a = argmin

βa

[
E

Y a∼Pn{P̂(Y |X,A=a)}

(
− log g(Y a;βa)

)
︸ ︷︷ ︸

cross-entropy loss

+ Pn

{
1(A = a)

π̂a(X)

(
− log g(Y ;βa) + E

Y ∼P̂(Y |X,A=a)

(
log g(Y ;βa)

))}
︸ ︷︷ ︸

one-step bias correction

]
. (8)

Previously, Kennedy et al. (2021) proposed to directly solve bias-corrected moment condition, i. e., a
system of nonlinear equations, yet which is in general much harder to solve, even computationally. In
contrast, we develop an optimization objective that can be directly incorporated into a loss of a deep
learning density estimator.

5 INTERVENTIONAL NORMALIZING FLOWS

In the following, we describe our Interventional Normalizing Flows: a fully-parametric method for
interventional density estimation via deep learning. First, we describe all the components of our
architecture and, then, introduce an efficient estimation using one-step bias correction.

5.1 COMPONENTS

In our INFs, we combine two normalizing flows, which we refer to as (i) teacher flow and (ii) student
flow (see Fig. 2). The rationale for this is based on our derivations in Section 4, according to which a
fully-parametric IDE requires two models: (i) one for the estimation of nuisance parameters, and
(ii) one for the subsequent optimization of the learning objective with respect to projection parameters.
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Accordingly, both NFs in our INFs have thus different objectives: (i) the teacher flow estimates the
nuisance parameters (i.e., the propensity score and the conditional outcome distribution); and (ii) the
student flow uses the estimated nuisance parameters to estimate the projection parameters.

(i) Teacher flow. The teacher flow has three components: two fully-connected (FC) subnetworks
and a conditional normalizing flow parameterized by θ. The first FC subnetwork (FC1) takes the
covariates X as input and, then, outputs a representation R ∈ Rr together with a propensity score
π̂a(X). The second FC subnetwork (FC2) takes the representation R and the observed treatment Ai

as input and, then, outputs the parameters of flow, conditioned on X and A, i. e., θ(X,A). Together,
FC1 and FC2 form a so-called hypernetwork (Ha et al., 2017) for the conditional normalizing flow,
which allows us to learn the conditional outcome distribution via back-propagation.3.

Let Lt be the loss of the teacher flow. Here, we combine a conditional negative log-likelihood
(LNLL) and binary cross-entropy loss for the propensity score (Lπ), i.e., Lt(P̂, π̂a) = Pn{LNLL +

αLπ} with LNLL = − log P̂(Y = Y | X,A); Lπ = BCE(π̂A(X), A), where α > 0 is a hyper-
parameter. In general, conditional normalizing flows are prone to overfitting when trained via a
conditional negative log-likelihood. To address this, we later employ noise regularization (Rothfuss
et al., 2019) in the conditional density estimation.

(ii) Student flow. The student flow uses the outputs of the teacher flow and then learns the inter-
ventional distribution. We first describe the naı̈ve variant of the student flow without one-step bias
correction (we introduce this later in Section 5.2). Different from the conditional normalizing flow
in the teacher flow, the student flow is a non-conditional normalizing flow, parameterized by βa.
Specifically, we consider two separate normalizing flows, that is, one for each potential outcome (i.e.,
a = 0 and a = 1, respectively).4

To fit the student flow, we must solve the moment condition from Eq. (5) or, equivalently, minimize a
cross-entropy loss (LCE). Here, we use a tractable approximation via numeric integration:

LCE(βa) = E
Y a∼Pn{P̂(Y |X,A=a)}

− log g(Y a;βa) = −
∫
y∈Y

log g(y;βa)Pn{P̂(Y = y | X,A = a)}dy

≈

{
−h

∑K
j=1 log g(yj ;βa)Pn{P̂(Y = yj | X,A = a)}, if dY = 1,

−PK{log g(Y a;βa)}, if dY > 1,
(9)

where ymin ≤ y1 < · · · < yK ≤ ymax is an equidistant grid of points on Y with step size h, and
{Y a

j }Kj=1 is an i.i.d. sample drawn from Pn{P̂(Y | X,A = a)}.
Training. To train both components in our INFs, we make use of a two-step training procedure.
Specifically, we first fit the nuisance parameters with the teacher flow. Then, we freeze the parameters
of the teacher flow and fit the student flow. We additionally employ exponential moving average
(EMA) of the student parameters with a smoothing hyperparameter γ to stabilize the training for
small minibatch sizes (Polyak & Juditsky, 1992). We show the full algorithm in Appendix D and
further implementation details in Appendix E.

Inference time. One main advantage of our teacher-student model is that the student flow has constant
inference time (e.g., during the evaluation phase). Hence, contrary to state-of-the-art baselines, the
inference of our INFs do not depend on the dimensionality of covariates and the size of the training
data. This is a major advantage over semi-parametric plug-in estimators. For a detailed runtime
comparison, we refer to Appendix K. As such, the student flow allows our method to scale well to
large datasets as in medicine (Johnson et al., 2016).

5.2 ONE-STEP BIAS CORRECTION

To provide an efficient estimation for the parameters of the student flow, we augment the cross-entropy
loss (Eq. (9)) with a one-step bias correction. To evaluate the bias correction term, we need to compute
an approximation of the conditional cross-entropy loss (LCCE(X;βa)) as in Eq. (9). We thus compute

LCCE(X;βa) = E
Y ∼P̂(Y |X,A=a)

−log g(Y ;βa) ≈

{
−h

∑K
j=1 log g(yj ;βa) P̂(Y = yj | X,A = a), if dY = 1,

−PK{log g(Y X,a;βa)}, if dY > 1,

where ymin ≤ y1 < · · · < yK ≤ ymax is an equidistant grid of points on Y with step size h, and
{Y X,a

j }Kj=1 is an i.i.d. sample drawn from P̂(Y | X,A = a). Finally, we obtain the loss of the

3This is standard approach in neural conditional density estimation (Bishop, 1994; Kingma & Welling, 2013).
4One can use a single normalizing flow with a hypernetwork for categorical treatments.
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Figure 3: Results for synthetic data based on the SCM from Figure 1. Reported: mean over ten-fold
train-test splits. Some runs for MDNs resulted with the log-probout = −∞ and, thus, are not shown.

student flow (Ls), which is now suitable for our A-IPTW estimation from Eq. (9). We thus yield

Ls(βa) = LCE(βa) + Pn

{
1(A = a)

π̂a(X)

(
− log g(Y ;βa)− LCCE(X;βa)

)}
. (10)

6 EXPERIMENTS

6.1 OVERVIEW

To show the effectiveness of our INFs, we use established (semi-)synthetic datasets that have been
previously used for treatment effect estimation (Shi et al., 2019; Curth & van der Schaar, 2021). The
benefit of (semi-)synthetic datasets is that both factual and counterfactual outcomes are available (i.e.,
Y f
i and Y cf

i ). Therefore, we can obtain a sample from the ground-truth interventional distribution,
i. e., Y [a]i = 1(Ai = a)Y f

i + 1(Ai ̸= a)Y cf
i , which we can then use for IDE benchmarking.

Evaluation metric. We use the average log-probability as our standard metric for comparing density
estimators. It is given by log-probD = 1

n

∑n
i=1 log P̂(Y [a] = Y [a]i), where higher values indicate a

better fit. The maximum value of the average log-probability is upper-bounded by the entropy, which,
in general, is different for each potential outcome. Therefore, we separately report the results for each
potential outcome. Of note, the log-probability is equivalent to the empirical KL-divergence.

Baselines. We use state-of-the-art IDE baselines (see Sec. 2.1): (1) an extended TARNet (TARNet∗)
(Shalit et al., 2017) estimating the mean of a conditional homoscedastic normal distribution; (2) mix-
ture density networks (MDNs) (Bishop, 1994)5; (3) conditional normalizing flow (CNF) (Trippe &
Turner, 2018); (4) kernel density estimation (KDE) (Kim et al., 2018); and (5) distributional kernel
mean embeddings (DKME) (Muandet et al., 2021). TARNet∗, MDNs, and CNF are semi-parametric
plug-in estimators (see Eq. (2)). Importantly, KDE and DKME do not guarantee a proper density
estimation (unlike our INFs). We thus performed an additional re-normalization and negative values
clipping, so that we can use the average log-probability as an evaluation metric. Details on the
baselines are in Appendix F, and hyperparameter tuning is reported in Appendix G.

Ablation studies. We compare three variants of our INFs: (1) INFs (main): Our INFs as introduced
above using A-IPTW estimation. (2) INFs w/o stud flow: A simplified variant which uses only the
conditional density estimation from the teacher flow as a semi-parametric plug-in estimator, and thus
without student flow. This variant is identical to the CNF baseline. (3) INFs w/o bias corr: We use
the covariate-adjusted fully-parametric estimator, where the student flow only uses the cross-entropy
loss from Eq. (9) but without one-step bias correction. The ablations have the same hyperparameters
as our main method for better comparability.

6.2 RESULTS

Synthetic data. We generate synthetic data using the SCM (dX = 1) from Fig. 1. Here, we vary
the covariate shift b, which controls the overlap between the treated and non-treated population.
Notably, low values of b correspond to the case, where both populations are similar or the same, while
high values of b result in the violation of the positivity assumption. Further details on the synthetic
dataset are provided in Appendix H. Fig. 3 shows the results. Our INFs achieve clear performance
improvements over the baselines, especially for larger b. Moreover, the ablation studies confirm that
our proposed deep learning architecture with one-step bias correction is superior. In Appendix I, we
additionally provide a two-dimensional benchmark, where our INFs prove their effectiveness.

IHDP dataset. The Infant Health and Development Program (IHDP) (Hill, 2011) is a
semi-synthetic dataset with two synthetic potential outcomes generated from real-world med-

5MDNs were previously used to estimate the conditional distribution of outcome for quantifying the ignorance
regions of ITE estimation (Jesson et al., 2021; 2022). However, this is different from our IDE task.
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ical covariates (n = 747, dX = 25, see details in Appendix H). Here, we used ten-
fold train/test splits (90%/10%) and perform hyperparameter tuning based on the first split.

Table 2: Results for IHDP dataset.Reported: mean ± sd.
a = 0 a = 1

log-probin log-probout log-probin log-probout

TARNet∗ [=∧ ground-truth for IHDP] −0.919 ± 0.011 −0.928 ± 0.088 −0.635 ± 0.010 −0.634 ± 0.075
MDNs −0.927 ± 0.024 −0.942 ± 0.080 −0.679 ± 0.048 −0.684 ± 0.077
CNF [=∧ INFs w/o stud flow] −0.943 ± 0.032 −0.970 ± 0.072 −0.679 ± 0.061 −0.674 ± 0.091
KDE (Kim et al., 2018) −0.942 ± 0.010 −0.948 ± 0.069 −0.700 ± 0.044 −0.708 ± 0.098
DKME (Muandet et al., 2021) −0.940 ± 0.010 −0.952 ± 0.082 −0.665 ± 0.015 −0.670 ± 0.063
INFs w/o bias corr −0.932 ± 0.013 −0.936 ± 0.112 −0.667 ± 0.028 −0.670 ± 0.067
INFs (main) −0.912 ± 0.010 −0.929 ± 0.099 −0.658 ± 0.020 −0.659 ± 0.090
Higher = better (best in bold, second best underlined)

Results are in Table 2. TARNet∗ is
known to entail a ground-truth condi-
tional distribution model and should
thus not be interpreted as a baseline
but as an upper performance bound.
Our INFs reach an equally good per-
formance and, importantly, outper-
form all the other baselines for both
potential outcomes. The ablation
study again confirms that our main INFs are superior over the other variants without the student flow
and without bias correction. In Appendix J, we repeat the evaluation using the empirical Wasserstein
distance with similar findings.

Table 3: Results for ACIC 2016 and ACIC 2018.
Reported: % of runs with the best performance.

ACIC 2016 (77 datasets) ACIC 2018 (24 datasets)
% bestin % bestout % bestin % bestout

TARNet∗ 4.55% 6.88% 8.33% 10.42%
MDNs 30.26% 31.43% 21.67% 19.17%
CNF [=∧ INFs w/o stud flow] 15.97% 17.14% 15.42% 14.58%
KDE (Kim et al., 2018) 1.04% 1.17% 10.42% 9.58%
DKME (Muandet et al., 2021) 0.39% 0.78% 8.75% 10.83%
INFs w/o bias corr 6.75% 8.57% 5.00% 7.08%
INFs (main) 41.04% 34.03% 30.42% 28.33%
Higher = better (best in bold)

ACIC 2016 & 2018 datasets. ACIC 2016
& 2018 provide a collection of semi-synthetic
datasets with various data-generating mecha-
nisms (Dorie et al., 2019; Shimoni et al., 2018)
(see details in Appendix H). We select 15 random
datasets from ACIC 2016 and 24 random datasets
(4 of each of 6 sizes) from ACIC 2018. We per-
form five random train/test splits (80%/20%) for
each dataset, tune hyperparameters on the first
split and evaluate the average in- and out-sample log-probability on every split. Table 3 provides
the performance comparison. Again, our INFs have a clear performance improvement over both
baselines and other model variants. Compared to MDNs as the second-best method, our INFs scale
much better in terms of runtime, especially for large sample sizes (see Appendix K).

Table 4: Results for HC-MNIST. Reported: mean
± sd. over ten random train-test splits.

a = 0 a = 1
log-probin log-probout log-probin log-probout

INFs w/o bias corr −1.43 ± 0.18 −1.43 ± 0.18 −1.40 ± 0.17 −1.40 ± 0.17
INFs (main) −1.34 ± 0.01 −1.34 ± 0.01 −1.33 ± 0.00 −1.33± 0.01
Higher = better (best in bold)

HC-MNIST dataset. Hidden confounding
MNIST dataset is a semi-synthetic dataset (Jes-
son et al., 2021), constructed on top of the canon-
ical image dataset of handwritten digits (MNIST)
(LeCun, 1998). To satisfy the exchangeability
assumption, we add a hidden confounder to the
set of all covariates, i. e., 28x28 images (dX = 784 + 1). For dataset details, see Appendix H. For
our experiments, we use only the train subset of the original MNIST (n = 42, 000). Here we used
ten random train/test splits (80%/20%) and tune hyperparameters on the first split. Table 4 shows the
results of the experiments. Note that the non- and semi-parametric baselines suffer from scalability
issues and were thus excluded. Further, our INFs outperform the variant without a bias correction,
i. e., the only other available baseline.

Scalability. Experiments with ACIC 2018 and HC-MNIST datasets showed high effectiveness of
our INFs for datasets with large sample sizes (n > 25, 000) and with high-dimensional covariates
(dX > 100). We provide a runtime comparison in Appendix K. For HC-MNIST, non- and semi-
parametric methods even become completely impractical due to memory and time constraints.
Importantly, this is a major advantage of our fully-parametric IDE estimator, INFs, over semi-
paramentric plug-in etimators and other baselines.

Case study. We performed a case study using data from California’s tobacco control program to
estimate its effect on tobacco sales. Previously, the evidence was primarily based on point estimates
without information on the interventional density (Abadie et al., 2010). Our INFs suggest that the
program led to a large reduction in tobacco sales .

Discussion. Interestingly, both components are important for the final performance (see our ablation
studies). First, the teacher flow with the help of noise regularization performs consistent estimation
of the nuisance parameters. Second, the student flow uses estimated nuisance parameters to solve the
optimization objective. The student flow is not redundant but crucial for computational performance.
While simple NFs have a similar estimation performance in terms of goodness-of-fit, only our INFs
have constant inference time (e.g., during the evaluation phase regardless of the data size). This is a
major advantage of parametric treatment effect estimators over semi-paramentric plug-in estimators.
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A RELATED WORK: NORMALIZING FLOWS FOR CAUSAL INFERENCE

NFs have been used in the wider area of causal inference, yet in vastly different tasks than ours.
Examples include, e. g., robust prediction by employing causal mechanisms (Müller et al., 2021);
combining interventional and observational datasets (Ilse et al., 2021); and causal discovery (Brouil-
lard et al., 2020). Further, several works aim to model Bayesian networks or structural causal models
(SCMs) with known or unknown causal diagrams. For example, NFs were used as a probabilistic
model for Bayesian networks aimed at causal discovery, as well as downstream interventional and
counterfactual inference (Khemakhem et al., 2021; Wang et al., 2021; Wehenkel & Louppe, 2021).
Balgi et al. (2022) build upon a temporal SCM with exogenous noise, where NFs are used for inter-
ventional and counterfactual queries. Importantly, all the aforementioned methods assume continuous
variables in SCMs and independence of exogenous noise.6 Hence, these methods are not applicable
in our case, which considers semi-Markovian SCMs and which is thus a different inference task.7 In
sum, NFs have not yet been adapted to IDE, which is our novelty.

6This is commonly known as a causal Markov condition.
7This is stated in our identifiability assumptions: there is no limitation on the exogenous noise independence

between outcome and covariates. Hence, our setting is more general.
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B BACKGROUND MATERIALS

B.1 NORMALIZING FLOWS

Normalizing flows (NFs) (Tabak & Vanden-Eijnden, 2010; Rezende & Mohamed, 2015) are flexible
probabilistic models with a tractable density. A normalizing flow describes the change of the density
of a continuous random variable after applying a sequence of invertible transformations. Given
a random variable Z with some known density P(Z = ·), e. g., normal or uniform, we define a
transformed variable

X = t(Z) Z ∼ P(Z), (11)
where t(·) : Z → X denotes an invertible forward transformation with inverse t−1(·) : X → Z .
Importantly, the transformation is defined between spaces of same dimensionality dZ = dX . To find
a distribution of X , we can apply the multivariate change of variables formula

P(X = x) = P(Z = z)
∣∣∣ det dZ

dX

∣∣∣ = P(Z = t−1(x))
∣∣∣ det dt−1

dX
(x)
∣∣∣, (12)

where det dt−1

dX (x) is the Jacobian determinant of the inverse transformation t−1(·). Then, using the
inverse function theorem, we obtain

dt−1

dX
=
( dt

dZ

)−1

, (13)

so that the Jacobian of the inverse transformation can be substituted with the inverse Jacobian of
forward transformation. Using the properties of the determinant, Eq. (12) can be simplified to

P(X = x) = P(Z = t−1(x))
∣∣∣ det dt

dZ

(
t−1(x)

)∣∣∣∣−1

. (14)

The name normalizing comes from the fact that any regular continuous distribution X can be
transformed to a normal Z with a specific t−1(·).
We can construct arbitrarily complex densities by applying a composition of K transformations
t1, t2, . . . , tK :

X = ZK = tK(ZK−1) = tK(tK−1(ZK−2)) = . . . = tK ◦ . . . ◦ t1(Z0), (15)

where Z0 is called a base distribution. One calls this chain of transformations a flow. Finally, the
density of X can be recursively found as

P(ZK = zK) = P(ZK−1 = zK−1)
∣∣∣det dtK

dZK−1
(zK−1)

∣∣∣−1

= P(Z0 = z0)

K∏
k=1

∣∣∣ det dtk
dZk−1

(zk−1)
∣∣∣−1

,

(16)

where z0, z1, . . . , zK are found via Eq. (15). Consequently, we now can directly evaluate the
log-likehood of an observation Xi = ZKi and, with a proper parametrization of transformations,
back-propagate trough it. Examples of simple transformations include affine, planar, and radial
(Rezende & Mohamed, 2015).

B.2 CAUSAL MODEL AND INDENTIFICATION

In this section, we provide a brief background on the underlying causal model in this paper, using both
the potential outcomes and the structural causal model framework. These frameworks are equivalent
in the sense that they both allow for identification of the interventional density and yield the same
statistical estimand.

Potential outcomes framework. The observed variables in our model are covariates X ∈ X ⊆ RdX ,
a treatment A ∈ {0, 1}, and a dY -dimensional continuous outcome Y ∈ Y ⊆ RdY . In the main
paper, we used the potential outcomes framework (Rubin, 1974) to define the causal estimates. In
particular, we defined Y [a] as the potential outcome after intervening on treatment by setting it to a.
By imposing Assumptions (1)–(3) in Section 3, this allows us to define the interventional density
(our causal estimand) via

P(Y [a] = y) =

∫
x∈X
P(Y = y | X = x,A = a)P(X = x) dx = E

X∼P(X)

(
P(Y = y | X,A = a)

)
. (17)
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SCM framework. Equivalently to the potential outcomes framework, we can also define the
interventional density within the structural causal model (SCM) framework (Pearl, 2009; Bareinboim
et al., 2022). More precisely, we can define a (semi-Markovian) SCM by introducing independent
exogenous latent variables UA ∼ P(UA) and UXY ∼ P(UXY ); and the functional assignments
X := fX(UXY ), A := fA(X,UA), and Y := fY (X,UXY ). Here, X,A and Y are observed
endogenous variables, satisfying Assumptions (1)–(3). We show a corresponding causal graph in
Fig. 4.

Figure 4: Causal graph corresponding to the potential outcome framework assumptions.

Interventions vs. counterfactuals. We follow Pearl’s hierarchy on causal inference (Bareinboim
et al., 2022) and distinguish the interventional and the counterfactual distribution. In SCM language,
we can use Pearl’s do-notation do(A) = a to denote an intervention on the treatment A. This
corresponds to setting A = a in a graph Ga where all arrows from parent nodes of A to A are
removed.

We can then define the potential outcome Y [a] via its interventional density

P(Y [a] = y) = P(Y = y | do(A = a)) (18)

and obtain the identification result from Eq. (17).

In contrast, counterfactual queries aim to answer individualized questions “what would have happened
if we had used a different treatment given already treated or untreated population”. We can then
define the counterfactual density as

P(Y [a′] = y | A = a) (19)

for some different treatment a′ ̸= a. This is the distributional equivalent to the average treatment
effect of the treated (ATT). However, most of the treatment effect estimation literature focuses on
interventional causal estimands (such as the ATE). Our paper is therefore in line with previous
work. We acknowledge that other papers oftentimes call the interventional distribution counterfactual
distributions for simplicity.

Comparison to other identification strategies. For the identification of the interventional density,
we mainly rely on the three main assumptions positivity, consistency, and exchangeability (or,
equivalently, on the back-door adjustment from Eq. (17)). This is a common setup in treatment effect
estimation (van der Laan & Rubin, 2006; Shalit et al., 2017; Wager & Athey, 2018). More complex
adjustment rules (e.g., front-door adjustment, adjustment for napkin graph) have the following
limitations: (1) they require more unusual, complex assumptions which are often violated in practice;
and (2) they require a complex efficient estimation theory Vowels et al. (2022). Nevertheless, this
could be an interesting direction for future research.

B.3 EFFICIENCY THEORY AND INFLUENCE FUNCTIONS

In this section, we give a brief background on semi-parametric efficiency theory and influence
functions. Our background builds upon Kennedy et al. (2021), and we thus refer to it for mathematical
details and further explanations.

Let us consider a semi-parametric statistical model {P ∈ P}, where P is a family of probability
measures. We are interested in estimating a functional ψ : P → R. If ψ is sufficiently smooth, it
admits the so-called von Mises- or distributional Taylor expansion

ψ(P̄)− ψ(P) =
∫
ϕ(t, P̄) d(P̄− P)(t) +R2(P̄,P), (20)
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where R2(P̄,P) is a second-order remainder term and ϕ(t,P) is the so-called efficient influence
function of ψ, satisfying

∫
ϕ(t,P)dP(t) = 0 and

∫
ϕ(t,P)2dP(t) <∞.

The efficient influence function ϕ(·, ·) plays an important role in the theory of efficient semi-parametric
estimation. Under certain assumptions, it can be shown that, for any sequence of estimators ψ̂n, it
holds true that

inf
δ>0

lim inf
n→∞

sup
TV(P,Q)<δ

nEQ

[
(ψ̂n − ψ(Q))2)

]
≥ var (ϕ(T,P)) , (21)

where TV denotes total variation. Hence, ϕ characterizes the best possible variance an estimator can
achieve (in a local min-max sense).

Let now P̂ be an estimator of P and ψ(P̂) the so-called plug-in estimator of ψ(P ). The von Mises
expansion from Eq. (20) implies that ψ(P̂) yields a first-order plug-in bias because

ψ(P̂)− ψ(P) = −
∫
ϕ(t, P̂) dP(t) +R2(P̂,P) (22)

due to that
∫
ϕ(t, P̂) dP̂(t) = 0. A simple way to correct for the plug-in bias is to estimate the bias

term from the right-hand side of Eq. (22) and add it to the plug-in estimator via

ψ̂A-IPTW = ψ(P̂) + Pn(ϕ(T, P̂)). (23)

Under certain assumptions it, can be shown that the bias-corrected estimator ψ̂A-IPTW is asymptotically
normal with mean zero and variance var (ϕ(T,P)). Hence, by Eq. (21), ψ̂A-IPTW is (asymptotically)
efficient in the sense that it is consistent with the best possible variance.

Application to interventional density estimation: We now return to the specific statistical model in
our paper, i.e., we aim at interventional density estimation. In other words, the estimand ψ(P) we are
interested in is the function

P(Y [a] = ·) = E
X∼P(X)

(
P(Y = · | X,A = a)

)
. (24)

Given an initial estimator P̂(Y = · | X,A = a) and the marginal empirical probability measure
Pn{·}, the plug-in estimator becomes

P̂PI(Y [a] = ·) = Pn{P̂(Y = · | X,A = a)}. (25)
As described above, this estimator suffers from plug-in bias and is not efficient. However, a one-step
bias correction for our setting is not as simple due to the fact that the interventional density is a
functional target estimand and, hence, infinite dimensional. As a remedy, Kennedy et al. (2021)
proposes an elegant solution by introducing the finite dimensional projection parameter

β̂a = argmin
βa

KL
(
P(Y [a])

∥∥∥ g(·;βa)), (26)

which is equivalent to solving the moment condition

m(βa) = E
X∼P(X)

(
E
(
T (Y ;βa) | X,A = a

)) !
= 0, (27)

where T = T (Y ;βa) = −∇βa
log g(Y ;βa). The advantage of this approach is that the moment

m(βa) is a finite dimensional quantity, which means efficiency theory can be applied. The plug-in
estimator for the moment is

m̂PI(βa) = E
Y a∼Pn{P̂(Y |X,A=a)}

T (Y a;βa). (28)

Kennedy et al. (2021) also derived the efficient influence function for the moment:

ϕa(T ;P) =
1(A = a)

πa(X)

(
T − E(T | X,A = a)

)
+ E(T | X,A = a)− E

X∼P(X)
(E(T | X,A = a)).

(29)
Hence, a bias-corrected estimator for the projection parameter can be obtained by solving

m̂A-IPTW(βa) = m̂PI(βa) + Pn

{
ϕa(T (Y ;βa); P̂)

} !
= 0. (30)

Estimating the projection parameter via Eq. (30) requires solving a (potentially high-dimension)
system of non-linear equations, which is often infeasible in practice. Hence, as a remedy, we propose
in this paper to reformulate Eq. (30) as an optimization problem which can be incorporated directly
into loss of a neural network (see Appendix C).
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C BIAS-CORRECTED MOMENT CONDITION AS AN OPTIMIZATION TASK

We aim to transform the bias-corrected moment condition into an optimization objective:

m̂A-IPTW(βa) = m̂PI(βa) + Pn

{
ϕa(T (Y ;βa); P̂)

} !
= 0. (31)

We first note that the plug-in estimator of moment condition m̂PI(βa) can be rewritten as

m̂PI(βa) = E
Y a∼Pn{P̂(Y |X,A=a)}

T (Y a;βa) =

∫
Y
T (y;βa)Pn{P̂(Y = y | X,A = a)} dy (32)

= Pn

{∫
Y
T (y;βa) P̂(Y = y | X,A = a) dy

}
= Pn

{
Ê
(
T (Y ;βa) | X,A = a

)}
, (33)

where the last equality follows from the definition of the conditional expectation. Notably, we see
that the moment condition could be equivalently solved with either the conditional distribution,
P(Y | X,A = a), or with the functional regression, E

(
T (Y ;βa) | X,A = a

)
.

Let us unroll the bias correction term of Eq. (7):

Pn{ϕa(T ; P̂)} = Pn

{
1(A = a)

π̂a(X)

(
T − Ê(T | X,A = a)

)
+ Ê(T | X,A = a)− Pn

{
Ê(T | X,A = a))

}}
(34)

= Pn

{
1(A = a)

π̂a(X)

(
T − Ê(T | X,A = a)

)
+ Ê(T | X,A = a)

}
− Pn

{
Ê(T | X,A = a))

}
,

(35)

where nuisance parameters are marked with red color. Here, the last term is in fact the plug-in
estimator of the moment condition, i. e., −m̂PI(βa). Therefore, we can simplify one-step bias
corrected moment condition via

m̂A-IPTW(βa) = Pn

{
1(A = a)

π̂a(X)

(
T − Ê(T | X,A = a)

)
+ Ê(T | X,A = a)

}
(36)

= E
Y a∼Pn{P̂(Y |X,A=a)}

T (Y a;βa) + Pn

{
1(A = a)

π̂a(X)

(
T (Y ;βa)− E

Y∼P̂(Y |X,A=a)
T (Y ;βa)

)}
,

(37)

where we use the conditional density estimator but not an estimator for the functional regression.
This allows us to transform the A-IPTW moment condition into an optimization objective (Eq. (8))
by taking antiderivative with respect to βa.
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D TWO-STEP TRAINING PROCEDURE

Our INFs are trained with a two-step procedure. The procedure is shown in Algorithm 1. Recall that
we use noise regularization as the main regularization technique for the teacher flow, and exponential
moving average (EMA) for the student flow to stabilize training. A-IPTW estimation is also known
to become unstable in a finite sample setting (Shi et al., 2019), so that inverse values of propensity
score become too large. Thus, we manually discard observations with too small propensity score
(π̂a(X) < 0.05) from bias correction.

Algorithm 1 Training procedure of INFs
Input: number of iterations niter,t, niter,s; minibatch sizes bt, bs; learning rates ηt, ηs; intensities of
the noise regularization σ2

x, σ
2
y; EMA smoothing γ; grid size K.

Init: parameters of the teacher flow: FC(0)
1 ,FC(0)

2 ▷ Fitting the teacher flow
for i = 0 to niter, t do
B = {X,A, Y } ← minibatch of size bt
R, π̂a(X)← FC(i)

1 (X)

ξx ∼ N(0, σ2
x); ξy ∼ N(0, σ2

y); R̃← R+ ξx; Ỹ ← Y + ξy ▷ Noise regularization

θ(X,A)← FC(i)
2 (A, R̃)

P̂(Y | X,A)← normalizing flow with parameters θ(X,A)
LNLL ← − log P̂(Y = Ỹ | X,A)
Lπ ← BCE(π̂A(X), A)

Lt(P̂, π̂a)← PB
bt
{LNLL + αLπ}

FC(i+1)
1 ,FC(i+1)

2 ← optimization step wrt. Lt(P̂, π̂a) with learning rate ηt
end for
Output: nuisance parameters: P̂(Y | X,A), π̂a(X)

Init: parameters of the student flows: β(0)
a , β(0)

a,EMA ← β
(0)
a ▷ Fitting the student flows

for i = 0 to niter, s do
B = {X,A, Y } ← minibatch of size bs
for a ∈ {0, 1} do
LCE(β

(i)
a )← −h∑K

j=1 log g(yj ;β
(i)
a )PB

bs
{P̂(Y = yj | X,A = a)}

LCCE(X;β
(i)
a )← −h∑K

j=1 log g(yj ;β
(i)
a )P̂(Y = yj | X,A = a)

bias correction(β(i)
a )← PB

bs

{
1(A=a&π̂a(X)≥0.05)

π̂a(X)

(
− log g(Y ;β

(i)
a )− LCCE(X;β

(i)
a )
)}

Ls(β
(i)
a )← LCE(β

(i)
a )+bias correction(β(i)

a )

β
(i+1)
a ← optimization step wrt. Ls(β

(i)
a ) with learning rate ηs

β
(i+1)
a,EMA ← γβ

(i)
a,EMA + (1− γ)β(i+1)

a ▷ EMA update
end for

end for
Output: β̂a

A-IPTW ← β
(niter, s)
a,EMA
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E INFS IMPLEMENTATION DETAILS

Implementation. We implemented our INFs using PyTorch and Pyro. For both teacher and student
flow, we employ neural spline flows (Durkan et al., 2019) with standard normal (N(0; 1)) as a base
distribution. Neural spline flows construct an invertible transformation of the base distribution with the
help of monotonic rational-quadratic splines. They are characterized by two main hyperparameters:
a number of knots nknots and a span of the transformation interval [−B;B]. nknots controls the
smoothness of estimated density and B affects the support of the transformation. In our experiments,
we heuristically set B = ymax − ymin + 5.

For the teacher flow, we use fully-connected subnetworks each with one hidden layer (with h = 10
hidden units), and the dimensionality of representation is set to r = 10.

Training. During training (see full algorithm in Appendix D), we adopt noise regularization (Roth-
fuss et al., 2019) and add an independent Gaussian noise ξx ∼ N(0, σ2

x), ξy ∼ N(0, σ2
y) to the

representation and output of the teacher flow, i. e., R̃ = R+ ξx; Ỹ = Y + ξy . For faster learning, we
approximate a full-sample average Pn{·} with a minibatch average PB

b {·} for all the losses, where
b is the minibatch size. We use stochastic gradient descent (SGD) for fitting the parameters of the
teacher flow, and Adam optimizer (Kingma & Ba, 2015) for the student flow with learning rates
ηt and ηs, respectively. We fix the weighting hyperparameters of the loss to α = 1 and the EMA
smoothing hyperparameter to γ = 0.995. The grid size for approximating the cross-entropy loss is
set to K = 100. Both ymin and ymax are set to the empirical minimum and maximum of the train
sub-sample.

Note that we would need sample splitting for training both flows to guarantee the asymptotic
properties, i. e., efficiency and double robustness (see Kennedy et al., 2021, Remark 5). Nevertheless,
we used all data for the both components and trained our INFs with an auxiliary regularization
because sample splitting can affect the performance in settings with limited data. This is consistent
with previous work on deep learning for efficient treatment effect estimation (Curth & van der Schaar,
2021).

Hyperparameter tuning. We perform extensive hyperparameter tuning only for the teacher flow. Hy-
perparameters for tuning include, e. g., number of knots of neural spline flows nknots,t, the minibatch
size bt, the learning rate ηt, and the intensities of the noise regularization σ2

x, σ
2
y . On the other hand,

we discovered, that the student flow works well with the same plain set of hyperparameters in almost
all the experiments. Those include the minibatch size bs = 64 and the learning rate ηt = 0.005. The
number of knots nknots,s is chosen at hand for each dataset. Further details on hyperparameter tuning
are provided in Appendix G.
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F BASELINES

In the following, we describe the baseline methods in detail. These are two naı̈ve semi-parametric
plug-in estimators: mixture density networks (MDNs) (Bishop, 1994) and conditional normalizing
flow (CNF) (Trippe & Turner, 2018). Further, we use two state-of-the-art IDE baselines: kernel
density estimation (KDE) (Kim et al., 2018) and distributional kernel mean embeddings (DKME)
(Muandet et al., 2021).

F.1 NAÏVE SEMI-PARAMETRIC PLUG-IN ESTIMATORS

Semi-parametric plug-in estimators estimate the conditional outcome distribution and perform aver-
aging over covariates during evaluation, as introduced in Eq. (2).

TARNet∗, MDNs, and CNF make use of hypernetworks (Ha et al., 2017), which take covariates
X and treatment A as an input and output parameters, i. e., θ(X,A) of the estimated conditional
distribution P̂(Y | X,A). Hypernetwork architectures are considered to be state-of-the-art for
neural conditional density estimation and can be found in, e. g., Gaussian mixtures (Bishop, 1994),
variational autoencoders (Kingma & Welling, 2013), and normalizing flows (Trippe & Turner,
2018). For comparability, we use the same network structure of the teacher flow in our INFs as the
hypernetwork for the conditional distribution parameters. This gives two fully-connected subnetworks
stacked on each other, i. e. FC1 and FC2, as introduced in Section 5.1. To regularize both conditional
distribution estimators, we use noise regularization (Rothfuss et al., 2019).

TARNet∗. The treatment-agnostic representation network (TARNet) (Shalit et al., 2017) was proposed
to estimate nuisance parameters for ITE, i. e., conditional means of outcomes. To obtain density
estimates as outputs, we report results from an extended variant which we refer to as to TARNet∗.
Specifically, we extended the original TARNet by modeling conditional outcome distribution as
a homoscedastic normal distribution. For this, we add one unconditional parameter of standard
deviation, σ, so that the conditional density equals to

P̂(Y = y | X,A) = N(y;µ(X,A), σ2), (38)

where N(y;µ, σ2) is a density of the normal distribution, and µ(X,A) is conditional mean of
outcome. Notably, we do not use the two separate outcome heads (as in original TARNet) but only
one, i. e., FC2. This is crucial to ensure a fair comparison with other plug-in estimators. We estimate
the standard deviation σ using maximum-likelihood. Note also that TARNet∗ is restricted to normal
conditional outcome distributions and thus is not a universal density estimator. In contrast to our
INFs, TARNet∗ is unable to capture heavy-tailed, multi-modal, and skewed distributions.

MDNs. Mixture density networks (Bishop, 1994) are built on top of mixture of normal distributions,
and can approximate any density arbitrarily well (Titterington et al., 1985), i.e.,

P̂(Y = y | X,A) =
nC∑
j=1

wj(X,A)N(y;µj(X,A), σ
2
j (X,A)) (39)

where nC is a number of mixture components, wj ≥ 0,
∑nC

j=1 wj = 1 are mixture weights, and
N(y;µj , σ

2
j ) is a density of the normal distribution. In the case of MDNs, the hypernetwork outputs

logits of mixture weights and parameters of the normal distribution (i.e., mean and logarithm of the
standard deviation), i. e., θ = {logits(wj), µj , log σj}. Here, the number of mixture components nC
controls the smoothness of the estimator and represents the main hyperparameter for tuning.

CNF. We implement conditional normalizing flow (Trippe & Turner, 2018) with the help of neural
spline flows (Durkan et al., 2019). Neural spline flows construct an invertible function parameterized
by θ, i. e., f(·; θ) : R → R, which is a monotonic rational-quadratic spline with nknots knots. This
spline transforms the density of a base distribution on the interval [−B;B]. Outside of the interval,
f(·) equals to the identity function. This allows us to perform flexible parametric density estimation
with the help of the change of variables formula, i.e.,

P̂(Y = y | X,A) = N
(
f−1

(
y; θ(X,A)

)
; 0, 1

) ∣∣∣∣ dfdY (f−1(y; θ(X,A))
)∣∣∣∣−1

(40)
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where f−1(·; θ) is the inverse transformation, and the density of standard normal distribution
N(y; 0, 1) serves as a base distribution. As already discussed in Appendix E, B affects the support of
transformation, and the number of knots nknots controls the smoothness of the estimator and represents
the main hyperparameter for tuning.

F.2 KERNEL DENSITY ESTIMATION (KDE)

Kernel density estimation (KDE) is a semi-parametric method for IDE (Kim et al., 2018). It builds
upon the idea of a density functional, namely Ty(Y ;ha), to transform a random variable Y into a
proper density via

Ty(Y ;ha) =
1

ha
K

(∥Y − y∥2
ha

)
=

1

ha
√
2π

exp

(
−∥Y − y∥

2
2

2h2a

)
, (41)

whereK(x) = 1√
2π

exp(−x2/2) is a radial basis function (RBF) with a treatment-specific smoothing
parameter ha called bandwidth, and ∥·∥2 is the L2-norm.

Robins & Rotnitzky (2001) proposed a semi-parametric plug-in estimator of interventional density

P̂PI(Y [a] = y) = Pn

{
Ê
(
Ty(Y ;ha) | X,A = a

)}
, (42)

where µ̂a,y(X) = Ê
(
Ty(Y ;ha) | X,A = a

)
is a functional regression of X and A on Ty(Y ;ha).

Kim et al. (2018) further extended this estimator to an efficient, A-IPTW-style semi-parametric
estimator

P̂A-IPTW(Y [a] = y) = Pn

{
1(A = a)

π̂a(X)

(
Ty(Y ;ha)− µ̂a,y(X)

)
+ µ̂a,y(X)

}
, (43)

where π̂a(X) is an estimator of the propensity score.

The main challenge here is building a functional regression µ̂a,y(X). Unfortunately, the work by
Kim et al. (2018) does not provide effective, practical solutions. Even more so, Eq. (43) does not
guarantee that the estimated density is proper, i. e., integrates to 1 and is positive, especially in a small
sample regime or when the propensity score has extremely low values.

To estimate the nuisance parameters, namely, the propensity score and the functional regression, we
use the same network structure as for the teacher flow of our INFs (see Section 5.1). In this way, we
estimate the propensity score and perform a functional regression with two joined, fully-connected
subnetworks (i.e., FC1 and FC2). The first subnetwork, FC1, outputs a representation R and estimates
the propensity score. The second subnetwork, FC2, then takes the representation R and the treatment
A, and performs an outcome regression: Ŷ = Ê(Y | X,A). The functional expression, i. e., Eq. (41),
is predicted via µ̂a,y(X) = Ty(Ê(Y | X,A);ha). Although, this is a biased estimator of µa,y(X), it
ensures a proper normalization, i.e.,

∫
Y µ̂a,y(X) dy = 1.

To fit FC1 and FC2, we use the sum of mean-squared error (LMSE) and binary cross-entropy (Lπ)
losses via

LKDE(Ê, π̂a) = Pn{LMSE + αLπ} with LMSE = (Ŷ − Y )2; Lπ = BCE(π̂A(X), A), (44)

where α is a hyperparameter. In our experiments, we set α = 1 and fit the nuisance parameters (i.e.,
π̂a and Ê(Y | X,A)) using the Adam optimizer with niter = 10000 iterations. Both learning rate η
and minibatch size b are subject to hyperparameter tuning.

We employ a median heuristic (Garreau et al., 2017) for choosing the bandwidth ha, i.e.,

hmed
a =

√
1

2
Median

(
∥Yi − Yj∥22 | A = a

)
, 1 ≤ i < j ≤ n, (45)

where ∥·∥2 is the L2-norm, and where Yi, Yj are observations from the train subset, conditioned on
A = a. To address the numeric instability of the A-IPTW estimator, we discard observations with
too small propensity scores (π̂a(X) < 0.05) from averaging in Eq. (43), similarly to our INFs.
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F.3 DKME

Distributional kernel mean embeddings (DKME) (Muandet et al., 2021) is a non-parametric plug-in
estimator of interventional densities. This methods builds a kernel mean embedding (KME), namely,
µY |X,A=a, for the conditional distribution P(Y | X,A = a) via

µY |X,A=a(y) := E
Y∼P(Y |X,A=a)

la(y, Y ), (46)

where la(·, ·) is a measurable positive definite kernel associated with a reproducing kernel Hilbert
space H, so that µY |X,A=a provides a mapping from the space of conditional distributions to the
space of functions H. If la(·, ·) is properly normalized, then µY |X,A=a(y) is in fact a conditional
density estimator.

To estimate the KME of the conditional outcome distribution (conditional mean embedding), we
use the i.i.d. sample D = {Xi, Ai, Yi}ni=1, and split it into control and treated subsamples: D =
{X0

i , Y
0
i }n0

i=1 ∪ {X1
i , Y

1
i }n1

i=1. Then, µY |X,A=a can be estimated via

µ̂Y |X,A=a(y) =

na∑
i=1

wa
i (X) la(y, Y

a
i ), (47)(

wa
1(X), . . . , wa

na
(X))⊺ = (Ka + naεI)

−1 ka(X) ∈ Rna , (48)

ka(X) =
(
k(X,Xa

1 ), . . . , k(X,X
a
na
)
)⊺ ∈ Rna , (49)

where I ∈ Rna×na is an identity matrix, ε > 0 is a regularization hyperparameter, Ka ∈ Rna×na

is a kernel matrix with elements Ka
ij = k(Xa

i , X
a
j ), and k(·, ·) is a second kernel representing

conditional dependencies between X and Y (Grünewälder et al., 2012).

Muandet et al. (2021) further developed a KME for interventional distribution, i. e., µY [a], and its
empirical estimate, µ̂Y [a]:

µY [a](y) = E
X∼P(X)

µY |X,A=a(y) (50)

µ̂Y [a](y) = Pn{µ̂Y |X,A=a(y)} =
na∑
i=1

βa
i la(y, Y

a
i ), (51)

(βa
1 , . . . , β

a
na
)⊺ = (Ka + naεI)

−1 K̃a 1m ∈ Rna , (52)

where K̃a ∈ Rna×n is a kernel matrix with elements K̃a
ij = k(Xa

i , Xj), and 1m = (1/n, . . . , 1/n)⊺.

For our experiments, we choose both kernels, i. e., outcome kernel, la(·, ·), and conditional kernel,
k(·, ·), to be RBF kernels with bandwidth parameters ha,l and hk, respectively. Therefore, µ̂Y [a](y)
represents a valid interventional density estimator. Nevertheless, due to small sample sizes, some βa

i
could be negative and the estimated density ends up having negative values.

We set the bandwidth of the outcome kernel, ha,l according to the median heuristic from Eq. (45).
The bandwidth of the conditional kernel hk and the regularization hyperparameter ε are subjects to
the hyperparameter tuning. Motivated by the interpretation of conditional mean embedding as kernel
ridge regression (Grünewälder et al., 2012), we use out-sample MSE of the ridge regression with
parameters hk and ε as a tuning criterion.
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G HYPERPARAMETER TUNING

We performed hyperparameters tuning for all the baselines based on five-fold cross-validation using
the train subset. For each baseline, we performed a grid search with respect to different tuning
criteria, evaluated on the validation subsets. Table 5 shows grids for hyperparameter tuning and other
parameters, such as tuning criteria, number of training iterations, and optimizers. We aimed for a fair
comparison and thus kept the number of parameters, network structures, and grid size similar across
models. For the sake of reproducibility, we make the chosen hyperparameters for all the experiments
public (see YAML files in our GitHub8).

Importantly, to facilitate the convergence of baseline methods, we additionally perform a standard
normalization of both factual and counterfactual outcomes for all the datasets.

Table 5: Hyperparameter tuning for baselines.

Model Sub-model Hyperparameter Range / Value

TARNet∗ —

Intensity of noise regularization (σ2
x) 0.0, 0.01, 0.05, 0.1

Intensity of noise regularization (σ2
y) 0.0, 0.01, 0.05, 0.1

Learning rate (η) 0.001, 0.005
Minibatch size (b) 32, 64
Tuning strategy random grid search with 50 runs
Tuning criterion LNLL
Number of train iterations (niter) 5000
Optimizer SGD (momentum = 0.9)

MDNs —

Number of mixture components (nC) 5, 10, 20
Intensity of noise regularization (σ2

x) 0.0, 0.01, 0.05, 0.1
Intensity of noise regularization (σ2

y) 0.0, 0.01, 0.05, 0.1
Learning rate (η) 0.001, 0.005
Minibatch size (b) 32, 64
Tuning strategy random grid search with 50 runs
Tuning criterion LNLL
Number of train iterations (niter) 5000
Optimizer SGD (momentum = 0.9)

KDE —

Learning rate (η) 0.001, 0.005, 0.1
Minibatch size (b) 32, 64, 128
Tuning strategy full grid search
Tuning criterion LMSE + αLπ

Number of train iterations (niter) 10000
Optimizer Adam (betas=(0.9, 0.999))

DKME —

Kernel smoothness (σk = 2h2k) 0.0001, 0.001, 0.01, 0.1, 1, 10, 20
Regularization parameter (ε) 0.0001, 0.001, 0.01, 0.1, 1, 10
Tuning strategy full grid search
Tuning criterion MSE of ridge regression

INFs

Teacher flow

Number of knots (nknots,t) 5, 10, 20
Intensity of noise regularization (σ2

x) 0.0, 0.01, 0.05, 0.1
Intensity of noise regularization (σ2

y) 0.0, 0.01, 0.05, 0.1
Learning rate (ηt) 0.001, 0.005
Minibatch size (bt) 32, 64
Tuning strategy random grid search with 50 runs
Tuning criterion LNLL
Number of train iterations (niter,t) 5000
Optimizer SGD (momentum = 0.9)

Student flow

Number of knots (nknots,s) dataset specific∗
Learning rate (ηs) 0.005
Minibatch size (bs) 64
Tuning strategy w/o tuning
Number of train iterations (niter,s) 4000
Optimizer Adam (betas=(0.9, 0.999))

∗ nknots,s = 5 (synthetic data), = 10 (IHDP, HC-MNIST datasets), = nknots,t (ACIC 2016 & 2018 datasets)

8https://anonymous.4open.science/r/AnonymousInterFlow-E2F3
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H DATASET DETAILS

H.1 SYNTHETIC DATASET

We sample n = 1000 observations from the SCM (Fig. 1) and use a ten-fold split for train/test
samples (90%/10%). We separately perform hyperparameter tuning based on the first split for each
baseline and each level b. We then report an average out-sample log-likelihood over ten folds.

H.2 IHDP DATASET

The IHDP dataset (Hill, 2011) uses a real-world dataset with 25 covariates (6 continuous, 19 binary)
and one binary treatment, capturing aspects related to children and their mothers. Both treated and
untreated, synthetic outcomes of IHDP are sampled from different conditional normal distributions.
These distributions are homoscedastic (σ2 = 1) but have substantially different conditional means.
We used the setting “B” in (Hill, 2011) with a following SCM:

X ∼ Real-World(·),
A ∼ Real-World(X),

Y ∼ N
(
A (Xβ − ω) + (1−A) (exp((X +W )β)); 1

)
,

(53)

where β, W , ω are constant parameters of the simulation. For the further details, we refer to (Hill,
2011).

H.3 ACIC 2016 & 2018 DATASETS

Covariates of ACIC 2016 are taken from a large study of developmental disorders (Niswander, 1972),
and covariates of ACIC 2018 are derived from the linked birth and infant death data (MacDorman &
Atkinson, 1998). ACIC 2016 and ACIC 2018 differ in the number of true confounders, the varying
level of overlap, and the form of conditional outcome distributions. ACIC 2016 has 77 different data-
generating mechanisms with 100 equal-sized samples for each mechanism (n = 4802, dX = 82).9
ACIC 2018 provides 63 distinct data-generating mechanisms with around 40 non-equal-sized samples
for each mechanism (n ranges from 1, 000 to 50, 000, dX = 177). Notably, ACIC 2018 has a constant
ITE for most of the datasets, but heterogeneous propensity scores.

H.4 HC-MNIST

Jesson et al. (2021) introduced a complex high-dimensional, semi-synthetic dataset based on the
MNIST image dataset LeCun (1998), namely HC-MNIST. This dataset maps high-dimensional
images onto a one-dimensional manifold, where potential outcomes depend in a complex way on the
average intensity of light and the label of an image. The treatment also uses this one-dimensional
summary, ϕ, together with an additional (hidden) synthetic confounder, U . This is described by the
following SCM:

U ∼ Bern(0.5),
X ∼ MNIST-image(·),
ϕ :=

(
clip

(
µNx−µc

σc
;−1.4, 1.4

)
−Minc

)
Maxc−Minc
1.4−(−1.4) ,

α(ϕ; Γ∗) := 1
Γ∗ sigmoid(0.75ϕ+0.5) + 1− 1

Γ∗ ,

β(ϕ; Γ∗) := Γ∗

sigmoid(0.75ϕ+0.5) + 1− Γ∗,

A ∼ Bern
(

u
α(ϕ;Γ∗) +

1−u
β(ϕ;Γ∗)

)
,

Y ∼ N
(
(2A− 1)ϕ+ (2A− 1)− 2 sin(2(2A− 1)ϕ)− 2(2u− 1)(1 + 0.5ϕ); 1

)
,

(54)

where c is a label of the digit from the sampled image X; µNx is the average intensity of the sampled
image; µc and σc are the mean and standard deviation of the average intensities of the images with
the label c; and Minc = −2 + 4

10c,Maxc = −2 + 4
10 (c + 1). The parameter Γ∗ defines what

factor influences the treatment assignment to a larger extent, i.e., the additional confounder or the
one-dimensional summary. We set Γ∗ = exp(1). For further details, we refer to (Jesson et al., 2021).

9After one-hot-encoding of categorical covariates.
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For the experiments with HC-MNIST, we use a larger network size for our INFs (compared to other
benchmarking experiments) to allow for more flexibility. We set the number of hidden units in
fully-connected subnetworks to h = 30, and the dimensionality of representation r = 30. We also
increase the number of training iterations to niter,t = 15, 000 and niter,s = 5000.

Fig. 5 shows both ground-truth interventional (P(Y [a])) and observational (P(Y | A = a)) distri-
butions together with our INFs A-IPTW estimator (P̂A-IPTW(Y [a])). Remarkably, the interventional
distributions in HC-MNIST are multi-modal and differ a lot from observational distributions.

−3 −2 −1 0 1 2 3 4

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(Y [0] = y)

P(Y = y | A = 0)

P̂A−IPTW (Y [0] = y)

−3 −2 −1 0 1 2 3 4

y

P(Y [1] = y)

P(Y = y | A = 1)

P̂A−IPTW (Y [1] = y)

Figure 5: Empirical ground-truth interventional and conditional distributions of the HC-MNIST
synthetic outcome. We also plot our INFs density estimator, i. e., P̂A-IPTW(Y [a]).
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I SYNTHETIC TWO-DIMENSIONAL DATA

In the following, we benchmark our INFs for estimating an interventional density of the multidimen-
sional outcome, dY = 2.

Noisy moons synthetic data. We used a standard two-dimensional toy data generator, namely moons
data.10 It draws samples from two interleaving half-circles with different noise levels ε. The noise
level controls the level of the overlap between two half-circles (a higher σ corresponds to a better
overlap, and, thus, a satisfaction of the positivity assumption). We drawing n = 1000 observations
of two-dimensional covariates, i. e., dX = 2, and use an inclusion to the top or bottom semi-circle
as a treatment. Finally, we generate the synthetic outcome by rotating the covariates by a random
treatment-specific angle, i. e., α0 and α1:

X,A ∼ Make-Moons(·, σ),
ε ∼ N(0;

√
0.1

2
),

α0 = π
4 + ε, α0 = −π

4 + ε,

Y := R(α1A+ α0 (1−A))X + ε12,

(55)

where 12 = (1, 1)T , and R(α) =
(
cosα − sinα
sinα cosα

)
is an α-angle rotation matrix. We set σ = 0.75.

For the benchmarking with the noisy moons data, we increased the number of the training iterations
for all the plug-in methods (niter = 10000) and for our INFs, (niter,t = 10000, niter,s = 5000). To
model two-dimensional (conditional) density, we employed an auto-regressive extension of neural
spline flows (Dolatabadi et al., 2020). We decreased the number of sampled points for approximating
the cross-entropy, K = 70, to speed up the training, and set the number of knots for the student flow
to nknots,s = 5.

Results. Table 6 shows the results. Here, our INFs (main) scores second best in terms of in-sample
performance, but, more importantly, best in out-sample performance. MDNs, although scoring the
best with in-samnple average log-probability, do not generalize well. Finally, we again confirmed,
that our INFs are superior over their ablations and other existing methods, e.g., KDE and DKME.

Table 6: Results for synthetic experiments using the noisy moons synthetic data. The performance is
benchmarked using the empirical in-sample / out-sample average log-probability for the two potential
outcomes (i.e., a = 0 and a = 1). Reported: mean ± standard deviation over ten-fold train-test splits.

a = 0 a = 1
log-probin log-probout log-probin log-probout

TARNet∗ −2.907 ± 0.121 −3.005 ± 0.263 −2.781 ± 0.092 −2.955 ± 0.222
MDNs −2.698 ± 0.050 −2.887 ± 0.173 −2.683 ± 0.051 −2.827 ± 0.165
CNF [=∧ INFs w/o stud flow] −2.767 ± 0.087 −2.935 ± 0.239 −2.807 ± 0.162 −2.900 ± 0.183

KDE (Kim et al., 2018) −2.913 ± 0.015 −2.916 ± 0.052 −2.898 ± 0.013 −2.901 ± 0.049
DKME (Muandet et al., 2021) −2.872 ± 0.016 −2.875 ± 0.056 −2.847 ± 0.012 −2.849 ± 0.067

INFs w/o bias corr −2.787 ± 0.057 −2.794 ± 0.130 −2.785 ± 0.048 −2.788 ± 0.135
INFs (main) −2.764 ± 0.030 −2.766 ± 0.102 −2.780 ± 0.022 −2.785 ± 0.134
Higher = better (best in bold, second best underlined)

10https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_moons.html
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J ADDITIONAL RESULTS

J.1 IHDP DATASET

Here, we provide additional results for the IHDP dataset with an alternative evaluation metric, that is,
the empirical Wasserstein distance.

Evaluation metric. For one-dimensional outcomes, the Wasserstein distance between two distribu-
tions can be simply expressed via quantile functions

W p(P1,P2) =

(∫ 1

0

|F−1
1 (q)− F−1

2 (q)|p dq
)1/p

, (56)

where F−1
1 (q) and F−1

2 (q) are quantile functions of P1 and P2, respectively. The Wasserstein distance
is not upper-bounded and equals zero if and only if both distributions are the same. Here, we compute
the empirical Wasserstein distance, i. e., Ŵ 1, based on empirical quantile functions. This requires
two samples: one from the ground-truth interventional distribution and another from the estimated
density. Therefore, methods which do not provide direct sampling (e. g., KDE and DKME) cannot be
used for evaluation.

Table 7 shows the results. Note that TARNet∗, i. e., the plug-in with the ground-truth conditional
density estimator for this specific dataset due to the fact how the data was constructed. Hence, we
do not interpret TARNet∗ as a baseline but rather interpret it as a bound for the best performance.
We see that all baselines (MDNs, CNF, INFs w/o bias correction) are inferior by a large margin.
In contrast, our INFs achieve a performance similar to the bound. In particular, our INFs perform
overall best: our INFs are superior over the two other naı̈ve plug-in estimators and the variant of INFs
without bias correction. In sum, the results corroborate our findings from the main paper and add to
the effectiveness of our INFs.

Table 7: Additional results for semi-synthetic experiments using the IHDP dataset. The performance
is benchmarked using the empirical in-sample / out-sample Wasserstein distance (i.e., Ŵ 1

in and Ŵ 1
out)

for the two potential outcomes (i.e., a = 0 and a = 1). Reported: mean ± standard deviation over
ten-fold train-test splits.

a = 0 a = 1

Ŵ 1
in Ŵ 1

out Ŵ 1
in Ŵ 1

out

TARNet∗ [=∧ ground-truth for IHDP] 0.048 ± 0.014 0.131 ± 0.040 0.046 ± 0.024 0.126 ± 0.065
MDNs 0.067 ± 0.053 0.156 ± 0.054 0.121 ± 0.076 0.183 ± 0.071
CNF [=∧ INFs w/o stud flow] 0.118 ± 0.048 0.192 ± 0.069 0.111 ± 0.087 0.146 ± 0.082

INFs w/o bias corr 0.075 ± 0.030 0.137 ± 0.051 0.107 ± 0.060 0.128 ± 0.057
INFs (main) 0.040 ± 0.009 0.132 ± 0.051 0.100 ± 0.037 0.117 ± 0.055
Higher = better (best in bold, second best underlined)

J.2 ACIC 2016 & 2018 DATASETS

In the following, we present detailed results of the experiments with ACIC 2016 and ACIC 2018
datasets. Fig. 6 reports the median performance for the individual datasets in ACIC 2016, and Fig. 7
for ACIC 2018. In the latter, datasets are grouped by sample size. We also show the performance
gain of our INFs (when INFs score better than the baselines). The percentage of the datasets with the
positive performance gain for our INFs roughly correspond to the percentage reported in the Table 3.
For ACIC 2016, our INFs are the best method for 33 + 21 = 54 out of 2 * 77 = 154 potential outcomes
of individual datasets (35%) with respect to out-of-sample average log-probability. For comparison,
the second-best baseline (MDNs) are only best for 23 + 25 = 48 out of 2 * 77 potential outcomes of
individual datasets (31%), and thus inferior. For ACIC 2018, our INFs are the best method for 8 +
9 out of 2 * 24 potential outcomes of individual datasets (35%). For comparison, the second-best
baseline (also MDNs) are only best for 5 + 4 out of 2 * 24 potential outcomes of individual datasets
(19%), and thus again inferior. This thus provides consistent performance that our INFs are highly
effective.
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Figure 6: Detailed results for ACIC 2016. For each dataset, we perform five random train-test splits,
tune the baselines on the first split, and evaluate the average in-sample / out-sample log-probability
for each of the two potential outcomes separately. Shown: median over five runs and improvement of
our INFs (main), when they score better than other baselines.
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Figure 7: Detailed results for ACIC 2018, sorted with respect to sample sizes. For each dataset, we
perform five random train-test splits, tune the baselines on the first split, and evaluate the average
in-sample / out-sample log-probability for each of the two potential outcomes separately. Shown:
median over five runs and improvement of our INFs (main), when they score better than other
baselines.
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K RUNTIME COMPARISON

INFs are a fully-parametric model and, therefore, provide a decent speed up at the inference time.
This is particularly important for scalability, that is, for datasets with large sample size and high-
dimensional covariates. In Table 8, we report the total runtime of the baselines and the different
variants of our INFs. We see that the runtime of both full INFs and INFs (CA) stay relatively constant,
but for the other baselines, it grows polynomially. This demonstrates the benefits of our INFs for
scalability.

Table 8: Total runtime (in minutes) of the experiments using ACIC 2018 datasets with different
sample sizes. Reported: mean ± standard deviation over four datasets and five runs for each size
(lower is better). Experiments are carried out on Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz.

Sample size 1000 2500 5000 10000 25000 50000

TARNet∗ 0.30 ± 0.01 0.33 ± 0.01 0.43 ± 0.01 0.64 ± 0.03 2.24 ± 0.12 8.16 ± 0.22
MDNs 0.29 ± 0.05 0.34 ± 0.03 0.54 ± 0.05 1.02 ± 0.05 5.06 ± 0.71 16.24 ± 1.83
CNF [=∧ INFs w/o stud flow] 0.58 ± 0.07 0.82 ± 0.11 1.14 ± 0.17 2.33 ± 0.23 8.95 ± 1.71 29.38 ± 5.55

KDE (Kim et al., 2018) 0.52 ± 0.09 0.54 ± 0.12 0.55 ± 0.07 0.88 ± 0.22 1.70 ± 0.22 8.06 ± 1.48
DKME (Muandet et al., 2021) 0.03 ± 0.01 0.07 ± 0.04 0.13 ± 0.05 0.29 ± 0.09 2.28 ± 0.35 11.51 ± 0.80

INFs w/o bias corr 1.52 ± 0.09 1.48 ± 0.08 1.52 ± 0.07 1.55 ± 0.08 1.73 ± 0.11 1.73 ± 0.08
INFs (main) 2.47 ± 0.07 2.47 ± 0.09 2.48 ± 0.08 2.52 ± 0.07 2.59 ± 0.09 2.70 ± 0.12
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L CASE STUDY: CALIFORNIA’S TOBACCO CONTROL PROGRAM

Overview. To show a real-world application of our INFs, we provide additional results using a case
study where we evaluate the effect of California’s tobacco control program (Abadie et al., 2010). This
refers to the effect of Proposition 99, a large-scale tobacco control program introduced in California
after 1988. Proposition 99 increased California’s cigarette tax by 25 cents per pack, and earmarked
the tax revenues to health and anti-smoking education. The main conclusion of Abadie et al. (2010) is
that the effects of the tobacco control program are much larger than previously reported. The dataset
has also found widespread use in causal inference ever since (e.g., Bellot & van der Schaar, 2021).
In the original paper (Abadie et al., 2010), the results were based on a synthetic control method but
without providing density estimates.

Dataset. After an initial pre-processing, the dataset consists of the 39 states, including California.
For each state, we observe several covariates (e. g., beer consumption per capita, GDP per capita,
retail price, and percent of people aged 15–24) and the outcome, i. e., cigarette sales per capita. These
are recorded annually for each year from 1970 to 2001. Further details on the datasets are in (Abadie
et al., 2010).

To apply our INFs, we make several gross assumptions. First, as there is only one treated state, it
is impossible to satisfy the positivity assumption. Therefore, we consider a tuple (state, year) as an
independent unit of measurement, thus obtaining n = 1209 observations with 12 treated observations
(i. e., those of the state of California after 1989). We also add year as a covariate, which gives
dX = 4 + 1. We acknowledge that, even after the previous pre-processing, we still cannot formally
guarantee the independence between units of measurement, as the observations of one state over
time are not independent. Second, we assume the consistency holds, and there is no spillover effect
between neighboring states, so that the potential outcome of one state is independent of the others.

Results. We plot the empirical conditional and the estimated interventional distributions in Fig. 8.
The results go in line with the conclusion in (Abadie et al., 2010). Our main finding is that the
introduction of the Proposition 99 (a = 1) to all the states from 1970 would substantially reduce
tobacco sales. In particular, the mass of the interventional density is shifted to the left which accounts
for the reduction of the consumption.

As a robustness check, we analyze the role of the smoothness hyperparameter. Our conclusion
remains consistent if one specifies different smoothness hyperparameter for the student flow, i. e.
nknots,s = 5 and 10. The specification of this hyperparameter is based on the prior knowledge of a
researcher and cannot be chosen via observational data. However, we find consistent evidence of a
positive effect.
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Figure 8: Empirical ground-truth conditional and estimated interventional distributions of cigarette
sales per capita from 1970 to 2001. Treatment a = 1 corresponds to the introduction of the Proposition
99, that is, a comprehensive tobacco tax along with educational programs. We plot our INFs density
estimator, P̂A-IPTW(Y [a]) with different smoothness hyperparameter values nknots,s of the student
flow.
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