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ABSTRACT

The Simplicity Bias (SB) is the observation that the training of most commonly
used neural network architectures with standard training techniques is biased to-
ward learning “simple” functions. This phenomenon can be a benefit or drawback
depending on the relative complexity of the desired function to be learnt. If the
desired function is relatively simple it’s a positive. However, if there are simpler
features that are highly predictive; commonly named “shortcuts” or “spurious fea-
tures”, that are not present in the test environment, the SB can result in poor gen-
eralisation performance. Most existing works on mitigating the SB make various
assumptions, either about the features present in the train and test domains or by
assuming access to information about the test domain at train time. In this paper
we review recent work on the SB and take a critical look at these assumptions.

1 INTRODUCTION

There are many examples of neural networks (NNs) trained with standard training techniquesﬂ using
“shortcuts” (Geirhos et al., 2020) or spurious feature to make predictions instead of some desired
attributes or “labelling function” (Puli et al., 2023} Kirichenko et al.| 2023)). For image classification
tasks background, texture, and secondary objects are often considered spurious features even if
predictive of the label |Ye et al.|(2024). For example|Li et al.|(2023)) observed that many NN trained
on the ImageNet data set (Deng et al.,|2009) use a text watermark, as a shortcut to classify images
of boxes, rather than the pixels representing the boxes themselves.

The “Simplicity Bias” (SB) is normally attributed as the underlying factor causing models to use
spurious features (Shah et al., |2020). The SB is the observation that there seems to be an implicit
ordering over the possible mappings learnt by NNs with standard training techniques. These tech-
niques are more likely to recover parameter settings encoding “simple features”, Moreover, it has
been shown that parameterisation corresponding to “simple functions” occupy the majority of the
volume of the solution spaceE] (Scimeca et al., [2021). However, there are many differing definitions
over what features are “simple”. Due to this implied preference ordering, if a data set contains mul-
tiple predictive features it is likely that the encoded function at test time will make most use of the
“simplest” feature. Thus, any features of interest with high complexity may not be learnt during
training, as simpler features are sufficient to minimise the loss. In this way simple features can be
seen as distractors, that prevent the learning of more complex features. While, the collective under-
standing of this phenomena has steadily been improving, in this manuscript we take a critical look
at existing works investigating the SB, “shortcuts” or “spurious correlation” and highlight some of
the common assumptions often made by these works.

1. Known Test Domain: This is the assumption that one has fairly detailed knowledge of the
test domain at train time, typically captured in the form of a “clean” data set.

2. All Simple Features are Shortcuts This is the assumption that all simple features are short
cuts.

3. Two Features Assumption: This common simplifying assumption is only to consider data
sets with two “features”; a desired feature to be learnt which is assumed to be complex and

!'Such as Empirical risk minimisation (ERM) in combination with first order optimises such as SGD.
Here we use “feature” to mean some characteristic of the input.
3The subset of parameter space which achieves low training loss



Under review as a conference paper at ICLR 2025

a short cut. The commonly used Water Birds data set has this structure. The bird is the
desired feature to be learnt and the background as the short cut.

In this paper we discuss these assumptions and the implications of making them. Specifically we
make the following contributions:

1. We highlight that the notion of “spurious features” relies on knowledge of the test do-
main, and give a characterisation of the different settings where spurious features can be
problematic. We identify an under explored setting where the simplicity bias can cause
poor generalisation performance. Specifically, learning in the presence of unknown do-
main shifts.

2. We show that due to typical data distributions living in an large ambient space the input sen-
sitives of a data set does not necessarily correlate with conversional notation of simplicity
or its difficulty in being learnt.

3. We investigate how SB affects learning on data sets where there are a hierarchy of features
with different predictivities and availabilities. We show in this setting removing a specific
unwanted feature, rarely results in an increase in performance on a different feature.

2 PRELIMINARIES

2.1 NOTATION

We use DD to define a data set of N training tuples D £ {(x,,y,)})_,, where x € X € R4,
y € Y € R%. X and Y are the input and label manifolds and is R% and R? the ambient spaces of the
input data and labels. L(w, D) is a loss function that takes as argument a vector of model parameters
w evaluated over a data set ID. Finally, we denote W7, and w;, as the solution set and an element
there of, of the following optimisation procedure.

* * A .
wh,; € Wi, = argmin L(w,Dyy)
w

2.2  WHAT ARE FEATURES?

The description of the simplicity bias normally makes reference to “features”, for clarity in this
paper we use “features” to mean properties of a data set. To formalise this notion of features we find
the definition presented in|Ilyas et al.|(2019)) particularly compelling due to its flexibility. According
to their definition a feature is some function of the input space to a single scalar that represents the
presence or lack of the given attribute or concept. Formally:

Far ={f : X =R}, (D

where F,; is the space of all features. For ease of discussion we will consider the problem of binary
classification, with the label y € {—1, 1}, except if stated otherwise. Thus following|Hermann et al.
(2024) we say a feature f;(x) has a predictivity of ¢; over a data set D if ¢; = Ppgn(y =
sign(f;(«))). In words the predictivity of feature f; over a data set D is a measure the correlated
with the label y € {—1, 1} and sign(f;(x)).

2.2.1 SIMPLE FEATURES

The simplicity bias is the observation that NNs are bias toward learning simple functions or fea-
tures. This observation can be split into to parts, first that there seems to be a preference ordering
over functions that is mostly transferable between models, and second this ordering seems to be
correlated with the “simplicity” of the function. However, there is no consensus on the definition of
“simple”. [Shah et al.| (2020) define the simplicity of a function by the minimum number of linear
pieces in the decision boundary that achieves optimal classification accuracy using that function.
Unfortunately, this definition is not easy to quantify outside of toy data sets. Wang et al.| (2023)
suggest low frequency features are simple and hence learnt first. [Vasudeva et al.| (2024b) define sim-
ple as those that can be learn by models with fewer parameters. Conversely, [Hermann & Lampinen
(2020) look at what features convolutional neural networks (CNN’s) learn first and suggest simple
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features are those that can be most easily decoded by linear probing before training. Morwani et al.
(2023)) provide a precise definition for SB for 1-hidden layer neural networks, and suggest simple
features can be characterised by a low dimensional projection of the inputs. More recently several
works (Scimeca et al.| [2021; Mingard et al. |2023) have suggested NN are biased toward learning
Kolmogorov simple functions. All these metrics correspond the some measure of the information
required in describing the function and thus In practice, outside of carefully constructed functions
they are likely to be highly correlated.

2.3 IS INPUT SENSITIVITY A GOOD WAY TO MEASURE COMPLEXITY?

Recently |Vasudeva et al.| (2024a) investigated the simplicity bias of transformers. As transformers
encode functions over sequences of discrete tokens the authors asked whether input sensitivity might
offer a unified notion of simplicity? Their definition of input sensitivity measures how frequently the
output of a function changes for a single token substitution of a given input, or set of inputs. Unlike
the previously mentioned methods of measuring simplicity, this approach looks at a local property of
the function around a given point or set of points, rather than global property. We note it is possible
to design a data set which encodes a function with high input sensitivity but low complexity, or low
input sensitivity but high complexity. In Section [2.3.1| we empirically back up this claim and show
that input sensitivity does not always align with the preference order over functions. We suggest this
quantity is more aligned with robustness than simplicity due to its obvious parallel to adversarial
robustness defined over sequences of tokens. We note however, if a function has high sensitivity
over the whole ambient space of which it is defined, it does follow that it must be highly complex.
However, when sampling text, images or audio the data manifold only occupy a tiny subset of
the ambient space, so for these data types input sensitivity does not necessary correlate with other
defintion of “simplicity”.

2.3.1 Toy COUNTER EXAMPLE

In this section we construct two families of binary classification data sets. For simplicity the input
data in these data sets is sequences of two tokens “0” and “1”. One data set has low complexity
but high input sensitivity as defined in [Vasudeva et al.| (2024a)) and one high complexity and low
input sensitivity. The first is a linearly separable data set with each point adjacent to the decision
boundary. This data set is very “simple”, but has relatively high sensitivity. In contrast consider the
repeated parity function, with each token repeated 2k + 1 times. This data set has zero sensitivity
for all perturbations of k input tokens. Repeating each token gives a very simple way of reducing
the sensitivity to token substitutions, however there exist far more sophisticated ways of encoding
binary data that reduce its sensitivity to perturbations, as this problem has long been studied in the
fields of error detecting and error correcting codes. Consider the data generating processes (DGP):

yn ~ {0,1}, 2)

wsimple if y, :O,{S € {O’I}I © S 6perm([l,...,l,0,0,...,(),])} (3)
" if y,=1,{s€{0,1}':s¢€pem([l,...,1,1,0,...,0,))} ’
]D)simple £ {(mflimple’ yn)}rjyzl (4)
Where perm(b) is the set of all permutations of a sequence b = [b1, b, . .., b;]. Note how this data

set has two hyper-parameters [ (the length of @) and kg;y,p1 that controls the number of 1’s in each
example. Specifically, z;’s with y; = 0 contain Kg;p,p1e “17 tokens and x;’s with y; = 0 contain
(Ksimpie + 1) “1” tokens. Due to the difference in number of “1” tokens when considering this data
as a point on the [ dimensional unit cube it is linearly separable.

yn ~ {0, 1}, &)

a if y,=0,{s€{0,1}¢:5 1 mod?2 =0} ©)

" if y,=1,{s€{0,1}¢:s"1mod2=1} ’
m;omplea; — [am el an]7 (7)
]D)complem £ {(m;omplex’ yn)}g:1 (8)

Again this data set has two hyper-parameters d the length of a, and k¢ pie Which controls the
number of repeats of a,, in each vector x, (Equation. The length of each azfj’mpl” I = kcomplead,
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but we see the lenght to match the “simple” data set Dy, Note how for k > 1 a k bit substitution
will never swap the class and thus this data set has zero input sensitivity as defined in|Vasudeva et al.
(2024a)).

Finally we introduce a third data set Dyo, where x0th = [geompler gpsimple]  op gboth —
[simple gcomplez] in words the sequences are constructed by concatenating one sequence from
each data set with the corresponding output token. Hence, we have a data set with two predictive
features, that could be used to predict the label. For all data sets we split the examples into test and

train subsets and Train a mini-GPT model for 10,000 iterations for various setting of k£ and [.

Results The simple data set with [ < 1000 and any value of kg, i8 €asy to learn and the model
achieves test error rates 1%. Conversely, the complex data set is already too difficult for the model
to learn with [ = 48, kcompiez = 3, With test error rates 50%. Finally, we assess the performance of
models trained on Dy, on data sets where one of the features has been swapped to be predictive
of the other class, this lets us see which feature is used buy the model for prediction. Here, for
most values of [, kcomplexs Ksimpie the model learns to predict purely based on the wfjmple. In this
controlled experiment we have shown that classic metrics of feature simplicity are more predictive
of ease in learning features when compared to input sensitivity.

3  WHAT ARE SPURIOUS FEATURES?

The consensus is spurious features are those that are predictive of the label in the train set but fail
to be predictive at test time. We claim the concept of a feature being spurious inherently relies on
additional side information of the test domain, whether this be agreement with a human annotator or
access to additional data deemed appropriate by a practitioner. For example, (Geirhos et al.| 2020)
suggest a shortcut performs well on standard benchmarks but fails to transfer to more challenging
testing conditions, such as real-world scenarios. This definition relies on having knowledge of the
more challenging testing condition, which is typically captured in the form of a “clean” data set
or as human knowledge about likely domain shifts. Without extra information at training time it
is impossible to know which features are spurious and which are not. One only has a data set
containing a continuum of different features with different predictive powers.

3.1 Do BLAME DISTRIBUTION SHIFT!

(Puli et al.l |2023) suggested distribution shift should not be blamed for the problems cause by short-
cut learning. To back up this claim they provide theoretical results showing short cut learning for a
linear binary classification problem even when the same data generating process (DGP) is used to
generate both train and test domains. However, their theoretical results rely on the sub-sampling of
the DGP during training, and only hold for bounded data set sizes. Thus in their theoretical results
they actually have test and train data sets with slightly different distributions. Additionally Statistical
Learning Theory (Vapnik, |1999), suggests for convex problems like the one considered Empirical
risk minimisation should return a model that minimises the risk over the training distribution. If one
knows a priori there will be no distribution shift at test time, and if the train set is large enough
to distinguish noise from signal, one can learn any feature as they will still be predictive. Thus,
spurious features are only problematic in combination with domain shift. However, for real world
training sets there is likely to always be a shift in distribution between test and train domains, either
due to sub sampling or differences in how the data were gathered (Ye et al., 2024).

3.2 WHERE ARE SPURIOUS FEATURES ACTUALLY A PROBLEM?

We now discuss a number of settings where spurious features can lead to poor generalisation. We
divide up these settings based on the information present at train time about the test distribution.

A Data Problem This setting is characterised by having limited data of the desired test environ-
ment, commonly caused by a high cost in gathering or approximating representative test data. If
large quantities of appropriate test data were available at train time, one would simply train on this
data instead. Thus, at train time one knows exactly what domain shift is present between the test and
train environments. This setting is also obtained after a model has been deployed, and been found
to be failing on the test data. This problem can be viewed as a data problem and if possible boot
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strapping more appropriate test data can offer a solution. Outside of gathering more data a number
of good general purpose approaches have been proposed. For example last layer training methods
as discussed in Section [3]typically make the assumption of asseess to a small amount of test data.

An Alignment Problem This setting is characterised by one having side information in the form
of a prior belief about the test distribution, or a given feature of interest. One may or may not
have a mathematical understanding on the form of function that is desired to be learnt, such as a
low sensitivity to certain transformations of the data. None the less one is trying to train an NN
to predict in a manner deemed appropriate by one or more humans supervisors (Xiao et al., [2021).
This setting requires a human in the loop determining, and adjusting, the training procedure to try
and promote invariance to certain features if they are being used for prediction. This process is hard
to automate and expensive. In the worst case a spurious feature maybe identified, removed from the
training data, and the model retrained, only for the model to learn to use another undesirable feature
for prediction. This can lead to a metaphorical game of “Whack-A-Mole” as described in |Li et al.
(2023)).

Limited Knowledge of the Test Domain While the above two settings are well studied they both
make a fairly big assumption. That is, they assume detailed knowledge about the test domain at
train time. While this assumption is likely true in the majority of use cases we claim there are
setting where it does not. For concrete example a practitioner would likely not know what types
of shifts to expect in bird or whale song when moving between region or species. One likely has a
poor understanding of which features of these data set are likely to change at test time and which are
not. Other examples indicative of this setting include privatised tabular data where column headings
have been removed.

This setting where one has very limited knowledge of the deployment domain remains under ex-
plored. In order to make learning feasible in this setting one would need to assume some common-
ality between, test and train domains. One way to ensure learning on the train domain translates
to the test domain would be to assume and unknown subset of the features in the training data set
are present at test time. In this setting the best course of action is to learn a model sensitive to a
large number of diverse features (Teney et al., [2022ajb). However, once we have knowledge of a
test domain it is possible to conclude what features were good and thus it is difficult to effectively
simulate this lack of knowledge. To address this difficulty one option would be to evaluate the per-
formance after a variety of domain shifts, and report the average. While the works of [Teney et al.
(2022a3b)) considered training an ensemble of models that are predictive to multiple features for best
result they also assume access to test data for model selection. In the next subsetion we formalise
this under-explored learning problem.

Learning Problem In order to formalise the problem of learning where one has very limited
knowledge of the deployment domain. We consider settings when the sets of features present in the
train and test distributions obey the following hierarchy:

-Ftest g ftrain g -Fall' (9)

In other words we assume that there is a subset of predictive features at train time Fipqin =
{f1,..., fs} and that any distribution shifts between train and test simply remove some of the fea-
tures present at train time, however we do not know which until test time. Thus, we want to ensure
the model has high generalisation performance on any subset of the features. While only accessing
Dy; at train time the learning problem is to find a model that minimises:

w™* = argmin,, Z L(w,D;), (10)
JE€Ftrain

where ID; is a data set that only contains a subset of the features present in the F;,4;y, and all other
features are not presentE]

“The loss described in 1] is a multi-objective optimisation and while we have shown the reduction of the
losses using a sum, a different function to control the trade off between the different objectives could be more
suitable in some scenarios.
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Dataset Task-relevantinvariant feature ~ Surrogate/spurious feature
Waterbirds Bird type (waterbird/landbird)  Background (water/land)
CelebA Hair colour (blonde/other) Gender (female/male)
MultiNLI Reasoning Negation words
CivilComments-WILDS Sentiment (toxic/non-toxic) Race, Gender, Religion)
Colored-MNIST Digit (< 5 or > 5) Color (red/green)
Camelyon,; — WILDS  Diagnoses (tumor/no tumor) Hospital
Adult-Confounded Income (< $50k or > $50k) Race, Gender

Table 1: Summary of the datasets we consider. Spurious features seem simpler than invariant fea-
tures |Vasudeva et al.| (2024b))

3.2.1 Two FEATURES ASSUMPTION

The next prevalent assumption we want to highlight is what we call the “two feature assumption”.
Specifically, that is assuming data sets only contain two features a complex desired feature and
a simple spurious feature. Table (1| is adapted from [Vasudeva et al.| (2024b)) and highlights how
frequent this assumption is in common simplest bias data sets.

We conjecture this assumption is made typically for the following few reasons. As the number
of features increases the number of unique feature combination grows exponentially and hence, to
maintain the same number of training points for each feature combination one requires an exponen-
tial amount of data. Additionally, labelling real world data sets with multiple features is expensive.
Thus, the few data image sets that do come with multiple feature annotations typically make use of
synthetic or composite images (Lynch et al.| [2023} |Li et al.| [2023)). To the best our knowledge all
spurious correlation NLP data sets still make the two feature assumption.

The main issue with the two feature assumption is for data sets which have it by design, promoting
invariance to the simplest feature typically results in learning the other complex feature. However,
for data sets with any more than two features this is no longer true, and not learning the simplest
feature does not ensure the most complex is learnt. This focus on two feature data sets has lead to
methods like those discussed in Section [5| which focus more on not learning simple features, rather
than either learning i) multiple features or ii) the features with highest predictivity.

In the next section we construct data sets with multiple features and show removing or not learning
a feature very rarely results in a specific more predictive feature being learnt.

4 BINARY DATA SET EXPERIMENTS

In this section we introduce a family of toy data sets for exploring the simplicity bias of NNs.
These data sets are chosen so that we have full control over the features present. The data sets
are constructed by concatenating together several binary features with different availabilities and
predictivities (Hermann et al., [2024). We construct a data set that has a hierarchy of features where
each feature has a greater predictivity but lower availability than the previous.

Binary Features. If we denote B, = {—1,1} then we define a binary feature f; as a mapping
fi : Ba — {0,1}. We design these feature or function so the label is the parity bit of the input.
Specifically, when a feature z € B, is predictive of labeﬂy € {0, 1}, the following relation will
hold:

a

Z 1, —ymod2=y

i=1
However, by design only for € of the training examples is the feature predictive of the label
P> ;1g=1ymod 2 = y) = e. This is done by introducing feature noise, swapping the feature
to be predictive of the other class. Binary features of this form are non-linear for all features with
more than two bits @ > 1. A feature of this form with a = 2 encodes a the XNOR relation. For
larger a these features match the parity learning set up of k bits as described in (Razl 2018; Daniely

>By predictive of the label we mean not subject to feature noise.
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Feature name Dimensional (Bits) Availability Predictivity €

f 1 very high 60%
fa 2 high 70%
f3 4 medium 80%
fa 8 low 90%
fs 16 very low 100%
ny 48 N/A 100%

Table 2: The set of features present in Data Set D,;;. A feature f; is only predictive if all features
f; where j > i are predictive also. Hence for 10% of the data set only f5 is predictive. The noise
feature while randomly sampled can be fully predictive by noise pattern forming a unique identifier
for each sample that the network memorises.

& Malach, |2020). As the demensionality of the feature increases it becomes less available and thus
the difficultly in learning increases.

Data Generating Process We construct a data set DD ;; by first deciding on a set of features
J = {f1, f2, .., f7} and each features corresponding availability and predictive powers e. For
example Table [2| shows the version of this data set we focus on in this paper containing five features
with increasing complexities and predictive power, its also contains a noise feature {n; } which is
randomly sampled from B,. We pick a data set size, n = 2'6 and create an equal number of samples
for each class y,, € {0,1}. Each x,, is constructed by first sampling vectors Znj € Baj. The
features are sampled to ensure that a feature f;(z, ;) # vy if any fr(2n,;) # yn Where fi has
higher predictive power that f; or €, > ¢;. In words, we ensure 10% of the data can only be cor-
rectly classified using fs, there is another non-overlapping 10% that can only be correctly predicted
using f4 or f5 and so on. Thus the features form a hierarchy, and this allows us to have a data set
with many features, but ensure the only way to achieve high performance on all samples is learn the
feature with the highest predictive power, or conversely memorise this 10% of examples. Once the
vectors z,, ; have been sampled so the desired properties of the features in J hold, we then lift each
zn,; feature into an ambient space of zgv ; € {—1,0,1}'% by padding zeros and then concatenating
together @; = {[2{,2],,...,2; ]} € {-1,0, 13128 for each y; € {0,1}. Lastly, we define a
masking function myr(z),V M C J that zeros out all features not in M. This data set then has the
property that P, (fj(m;(2n,;)) = yn) = €;. While this data set is small and synthetic it allows
understanding to be gained about learning in the presence of multiple different features, where we
have price control.

Training Procedure We train an MLP with 165k parameters and 4 layers and a constant width of
256 on D,;;. This experiment is repeated with only a certain subset of the features present throughout
training. Where features are not present they are masked out by a zeros. We additionally include
3 stochastic masking schemes throughout training “rand”,“rand all” and ‘subset”. “rand” randomly
samples one features to use for each iteration. “rand all” also includes all features (or no mask) in
the possible features to sample. “subset” samples are random subset of the features at each iteration.

We run 5 repeats and train with Adam for 200 epochs.

Results The mean performance across runs is detailed in Table |3} From the settings where only
one feature was present we can observe that the model is more than capable of learning any of the
solitary features. Note how the noise feature is the only one which fails to generalise to the test
domain. From the runs where a single feature and the noise features were present we can observe
that even the present of noise can act as a short cut. From the middle block of results in[T]we can see
the model continues to learn the harder but more predictive features as they are added to the training
set up to a point, but it struggles to learn the least available in the presence of the more available less
predictive features. The penultimate set of runs, shows the performance when the simplest feature
is repeatedly removed. We can observe that only when all four simpler features have been removed
from the input does the model learn the most predictive feature f5. This suggest techniques that aim
to remove the more simplistic features will likely struggle to learn more complex features. Finally
for the stochastic masking schemes, particular “rand all”, we can see that the model is actually
capable of learning all the features, individually but also achieve good test when all features are
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Train Features train f fa f3 fa s ny all  Avg
{f1} 60.0 | 59.7 56.0 49.7 493 50.7 50.0 56.0 53.0
{f2} 70.0 | 50.0 69.7 537 48.7 497 493 523 533
{fs} 79.7 | 493 493 80.0 500 49.7 500 553 548
{fs} 90.0 | 50.0 43.0 51.0 90.0 503 500 757 586
{fs} 100.0 | 50.0 50.0 51.7 493 100.0 500 89.0 629
{ni} 99.7 | 493 493 493 493 497 50.7 50.7 498

{fi,na} 99.7 | 50.0 50.0 50.0 50.0 50.0 503 530 505
{f2, n1} 99.3 | 50.0 63.7 50.0 500 500 493 59.0 53.1
{fssm1} 99.7 | 50.0 50.0 513 50.0 50.0 500 70.0 53.0
{fasma} 99.3 | 50.0 500 50.0 51.7 50.0 507 500 503
{fs.n1} 100.0 | 50.0 50.0 50.0 500 500 503 500 500
{f1} 60.0 | 59.7 56.0 49.7 493 50.7 50.0 56.0 53.0
{f1, f2} 70.0 | 59.7 69.7 503 500 500 49.7 48.0 539
{f1, f2, f3} 79.7 | 59.7 473 79.0 503 50.0 49.7 543 558

{f1, fa. f3, fa} 90.0 | 43.0 56.7 5377 560 497 490 873 565
{f1, f2» f3, far f5} 997 | 500 63.0 660 483 50.0 500 70.7 569
5 100.0 | 50.0 50.0 51.7 493 100.0 50.0 89.0 629

{f5s fa} 99.7 | 50.0 50.0 50.0 47.7 453 497 840 538

{f5. f1. f3} 99.0 | 50.0 50.0 56.0 49.7 493 497 68.0 53.2
{f5. f1. f3, fa} 99.3 | 493 533 63.0 490 503 497 69.0 5438
{f5, far f3, fo, f1}  99.0 | 46.7 633 530 49.0 503 500 70.7 547

{rand} 81.3 | 59.7 69.7 80.0 90.0 100.0 50.0 49.7 713
{rand all} 83.3 | 59.7 69.7 80.0 90.0 100.0 49.7 84.0 76.1
{subset} 87.7 | 59.7 69.7 80.0 90.0 49.7 503 76.7 68.0

Table 3: Results for a MLP model trained on different subset of features present in D,;;. The other
feature are excluded via masking. We provide the accuracy of the model evaluated on all features.
Note that “rand”, and “rand all” and “subset” correspond to different stochastic masking schemes of
the features applied during training.

present at once. While this toy setting is contrived and hardly realistic of real world data. It does
highlight the issues with trying to learn a certain feature such as f5, by trying to not learn other
features. Note that f5 is the only feature that outside of the noise feature that leads to 100% training
accuracy.

5 RELATED WORK

Simplicity Bias It’s hard to pin point the exact origin of the concept of the SB, however in their
work Learning Qualitatively Diverse and Interpretable Rules for Classification, [Ross et al.| (2018))
introduced a way to identify a maximal set of distinct but accurate models for a dataset. The authors
demonstrated empirically that, in situations where the data supports multiple accurate classifiers,
SGD tends to recover simpler, more interpretable classifiers rather than more complex ones. [Valle-
Perez et al.| (2019) suggest the good generalisation performance of neural networks was because
the parameter-function map is biased towards simple functions. Nakkiran et al.| (2019) suggested
when using SGD to train a NN, the NN learns functions of increasing complexity. Starting by
first learning a linear model which is retained even to convergence. |Scimeca et al| (2021) show
that solutions corresponding to Kolmogorov-simple cues are abundant in the parameter space and
are thus more likely found by DNNs. More recently, Bell & Sagun| (2022) showed that SB can
lead to larger performance disparities between different groups of training data. Finally, Mingard
et al.|(2023) claim NN have an inbuilt Occam’s razor. Their analysis also suggests a strong bias to
functions with low Kolmogorov complexity. |Shah et al.| (2020) was the first work to focus on the
negative phenomena that can result form the SB. Specifically, they showed that i) SB can be extreme,
causing networks to rely solely on the simplest feature, (ii) extreme SB exacerbates performance
degradation from distribution shifts and adversarial attacks, (iii) SB can hinder generalisation even
when simpler features are less predictive, and (iv) common strategies like ensembles and adversarial
training struggle to mitigate SB’s drawbacks. While the observation that neural networks were
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biased to learning simpler functions was known before this, most works considered it to be a positive
property. A number of papers have studied the SB from a more theoretical perspective. [Soudry et al.
(2018)); Morwani et al.[(2023) have shown that minimising ERM finds a maximum margin model, if
one exists. While this implicit bias may be desirable in some cases it (Puli et al., 2023)) showed that
it prevents linear models learning to use the label when it is part of the input and suggest a number
of losses to mitigate this phenomena.

Mitigating the Simplicity Bias and Spurious Correlations A number of works have presented
algorithms to help overcome the problem of learning, in the presence of spurious correlations. Learn-
ing de-biased representations with biased representations (Bahng et al.| [2020), suggest it is much
easier to define a set of biased representations than to define and quantify bias. Thus they find a de-
biased representation by encouraging it to be different from a set of representations that are biased
by design. Nam et al.[(2020) present a similar method where they also purposely train a network
designed to amplify biases. This network is then used to debias the training of a second network
by focusing on samples that go against the biased network. [Tiwari & Shenoy| (2023) suggest a re-
lated but different approach that they call feature sieve. They show that simple features can often be
found in the earlier layers of a neural network. They use an auxiliary network to alternately identify
predictive features and erase them only at the lower network layers of an unbiased network, thereby
allowing the higher network levels to extract and utilise richer, more meaningful representations.
While these works all report compelling results on data sets that are biased by design, these data
sets are chosen to include simple distractors and make the assumption the features of interest are not
“simple”. Finally, these approaches often have a large number of hyperparameters that are required
to tune for each setting, without access to a unbiased data set to select these on its not clear how well
these methods work in practice.

Last Layer Retraining A number of works Rosenfeld et al. (2022); [Kirichenko et al.| (2023));
Izmailov et al.| (2022) suggest for many large scale real world data sets SGD & ERM already finds
models whose last layer activations encode a broad range of features. They show these features are
sufficient for out-of-distribution (OOD) generalisation by achieving excellent performance when
only retraining the last layer of a model on the new domain. Their results suggest that doing well on
problem corresponds to doing well at the problem of robust classification on top of a sufficiently
powerful feature extraction back bone. [[zmailov et al.| (2022)) assess the relative contributions of 1)
the representation produced by the feature extractor and ii) the final classifier. They show that many
techniques such as early stopping and strong weight decay can improve the worst group accuracy
by learning a better classifier, but do not lead to a consistent improvement in terms of the quality of
the learned feature representations. Conversely, the quality of the feature representations depends
heavily on the base model architecture and pre-training strategy. However, these works all assume
access to a “clean” data set drawn from the test domain which make them best suited to the setting
where gathering data from this domain is possible but expensive while gathering data from a related
simpler domain is cheap. This is not the setting we consider, as we assume no access to the test
domain at train time. |Addepalli et al.|(2023)) suggest that ensuring the last layer activation (or learnt
features) can be reconstructed from the logits is a good approach for learning a robust classifier that
mitigates the simplicity bias. While this approach encourages the logits, and hence the prediction to
encode more of the information from the learnt features, this method seems to unfortunately require
a large number of classes to achieved good results for classification tasks, limiting its applicability.

6 CONCLUSIONS

In this work we have reviewed many of the recent papers discussing the simplicity bias and short
cut learning. We have highlighted a number of common assumption that likely need to be relaxed in
future work in order to ensure our understanding of this phenomena continues to improve. We have
also addressed a few claims about the Simplicity bias made by recent work that we believe are not
accurate. Finally, we have introduced a toy example for studying the behaviour of NN on data sets
that contain a large number of features.
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