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ABSTRACT

In the burgeoning age of generative Al, watermarks act as identifiers of provenance
and artificial content. We present WAVES (Watermark Analysis via Enhanced
Stress-testing), a benchmark for assessing image watermark robustness, overcoming
the limitations of current evaluation methods. WAVES integrates detection and
identification tasks and establishes a standardized evaluation protocol comprised
of a diverse range of stress tests. The attacks in WAVES range from traditional
image distortions to advanced, novel variations of diffusive, and adversarial attacks.
Our evaluation examines two pivotal dimensions: the degree of image quality
degradation and the efficacy of watermark detection after attacks. Our novel,
comprehensive evaluation reveals previously undetected vulnerabilities of several
modern watermarking algorithms. We envision WAVES as a toolkit for the future
development of robust watermarks.

1 INTRODUCTION

Diffusion models such as the open-source Stable Diffusion and proprietary models such as the Dall-E
family and Midjourney have enabled users to produce artificial images that are of human-produced
quality. Consequently, there has been a strong push in the AI/ML community to develop reliable
algorithms for detecting Al-generated content and determining its source (Executive Office of the
President,2023)). One avenue for maintaining the provenance of generative content is by embedding
watermarks. However, a lack of standardized evaluations in existing literature (i.e., inconsistent image
quality measures, statistical parameters, and types of attacks) has resulted in an incomplete picture
of the vulnerabilities and robustness of these algorithms.

We present WAVES (Watermark Analysis via Enhanced Stress-testing), a benchmark for assessing
watermark robustness, overcoming the limitations of current evaluation methods. WAVES consists of a
comprehensive variety of existing and novel variants of classical image distortions, image regeneration,
and adversarial attacks. WAVES focuses on the sensitivity and robustness of watermark detection,
measured by the true positive rate (TPR) at 0.1% false positive rate (FPR), and in the meantime, studies
the severity of image degradations needed to decrease this sensitivity with multiple quality metrics.
WAVES develops a series of Performance vs. Quality 2D plots varying over several prominent image
similarity metrics, which are then aggregated in a heuristically novel manner to paint an overall picture
of watermark robustness and attack potency.

We extensively evaluate the security of three prominent watermarking algorithms, Stable Signature
(Fernandez et al., 2023)), Tree-Ring (Wen et al., 2023)), and StegaStamp (Tancik et al.| [2020),
respectively representing three major techniques for embedding an invisible signature. WAVES
effectively reveals weaknesses in them and discovers previously undetected vulnerabilities. For
example, watermarking algorithms using publicly available VAEs can have their watermarks
effectively removed with minimal image manipulation. DALL-E3’s usage of an open-source KL-VAE
underscores the need for unique VAEs in such systems. Our contributions are summarized as follows:

(1) In practical scenarios where false alarms incur high costs, our evaluation metric for watermark
detection prioritizes the True Positive Rate (TPR) at a stringent False Positive Rate (FPR) threshold,

*Co-first-authors with equal contribution.
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Table 1. Comparison of robustness evaluations with existing works. For categories of attacks, D, R, and A
denote distortions, image regeneration, and adversarial attacks. Joint test means whether the performance and
quality are jointly tested under a range of attack strengths. Our benchmark is the most comprehensive one, with a
large scale of attacks, data, metrics, and more realistic evaluation setups.

Research Num. of Categories Num. of Sample Size Non-watermarked Performance Num. of Joint

Work Attacks  of Attacks  Datasets  per Dataset Image Source Metric Quality Metrics ~ Test
StegaStamp Watermark! 5 D 1 1000 — bit accuracy 3 X
Stable Signature Watermark” 12 D,R 1 5000 — bit accuracy 3 X
TreeRing Watermark? 6 D 2 1000 generate by same model ~ TPR@1%FPR 2 X
Regeneration Attack* 10 D,R 2 500 — bit accuracy 3 X
Surrogate Model Attack® 2 R, A 1 2500 real images AUROC 0 X
Adaptive Attack® 10 D,A 1 1000 real images TPR@1%FPR 3 X
WAVES (ours) 26 D.R, A 3 5000 real images TPR@0.1%FPR 8 v

Tancik et al.[(2020).  ?|Fernandezetal.|(2023).  3|Wenetal.[(2023).  4[Zhaoetal.(2023a).  5|Saberi etal.|(2023).  ©|Lukas et al.|(2023}.

specifically 0.1%. This focus addresses the inadequacies of alternative metrics such as the p-value
and Area Under the Receiver Operating Characteristic (AUROC).

(2) Additionally, our metric incorporates image quality alongside TPR@0.1% FPR. This integration
acknowledges the necessity of maintaining a balance between reducing the accuracy of watermark
detection and the practical utility of the image in practical scenarios.

(3) We introduce a comprehensive taxonomy of attacks that encompasses classical distortions and
powerful, novel variations of regeneration and adversarial attacks, against watermarks.

(4) We standardize the evaluation of watermark robustness, allowing us to rank attacks. We formalize
the watermark detection and identification problems and evaluate the robustness under both scenarios.
(5) Ourbenchmark uncovers several especially harmful attacks for popular watermarks, some of which
are firstintroduced in this work. WAVES serves as a toolkit for future development of robust watermarks.
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(a) Evaluation of a single attack on a watermarking method. We first attack watermarked images over a variety of
strengths (also labeled ’stg’). Then, we evaluate the detection performance (TPR@0.1%FPR) and a collection
of image quality metrics and plot a set of performance vs. quality plots. By normalizing and aggregating these
quality metrics, we derive a consolidated 2D plot.
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(b) Benchmarking watermarks and attacks. For each watermark, we plot all attacks on a unified performance vs.
quality 2D plot to facilitate a detailed comparison. Based on this, we provide two additional analytical perspectives.
We compare watermarks’ robustness through the averaged performance under different attacks. We evaluate
attacks’ potency by ranking the quality at a specific performance threshold.

Normalized Quality Degradation

Figure 1. Evaluation workflow.

As shown in Tablem our benchmark, WAVES, stands out by considering three diverse datasets, incor-
porating 26 diverse attacks across three categories, and employing 8 quality metrics. These distinguish
our work as the most extensive and realistic setup to date for watermark robustness evaluation. We
summarize the evaluation workflow in Figuremand defer details on evaluation process, setups, metrics,
and design choices to Appendix [B] We evaluate the robustness of watermarks with a wide range
of attacks detailed in this section and summarized in Table[2} We categorize attacks into distortion,
regeneration, and adversarial attacks. Our test bed includes most existing attacks and also proposes new
ones, with Appendix [B]introducing each attack in detail. The three new attack types proposed by this
paper are Rinsing regeneration attacks that noise and denoise images for multiple cycles; adversarial
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Table 2. A taxonomy of all the attacks in our stress-test set. Novel attacks proposed by WAVES are marked with *.

Category Subcategory (prefix) Description Attack Names (suffix)
Distortion Single (Dist-) Single distortion -Rotation, -RCrop, -Erase, -Bright, -Contrast, -Blur, -Noise, -JPEG
i Combination (DistCom-) Combination of a type of distortions -Geo, -Photo, -Deg, -All
Regeneration Single (Regen-) A single VAE or diffusion regeneration -Diff, -DiffP!, -VAE, -KLVAE?
& Rinsing* (Rinse-) A multi-diffusion regeneration -2xDiff, -4xDiff
Embedding (grey-box)* (AdvEmbG-)* Use the same VAE -KLVAES
Adversarial ~ Embedding (black-box)* (AdvEmbB-) Use other encoders -RN18, -CLIP, -KLVAE16, -SdxIVAE
Surrogate detector attack* (AdvCLS-)* Train a watermark detector -UnWM&WM, -Real&kWM, -WM1&WM2

! DiffP requires user prompts. 2 KLVAE with bottleneck size 8 is grey-box. 3 AdvEmbG is grey-box. 4 AdvCLS needs data and training.

embedding attacks which perturb the latent feature of watermarked images; adversarial surrogate
detector attacks which first train a watermark classifier, then optimize adversarial examples on it.

3 BENCHMARKING RESULTS AND ANALYSIS

Performance vs. Quality 2D plots. We evaluate 3 state-of-the-art watermarking methods Stable Sig-
nature, Tree-Ring, and StegaStamp under 26 attacks, and report results across 3 datasets in Figure[24]to
Figure[29] The quality of images post-attack is evaluated using 8 metrics and the detection performance
is measured by TPR@0.1%FPR. We aggregate results across metrics and datasets and derive the unified
Performance vs. Quality degradation 2D plots in Figure[2] visualizing the unified evaluation results
for each watermarking method against each attack. We defer the aggregation details to Appendix[E]
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& Dist-Rotation DistCom-Geo
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Figure 2. Unified performance vs. quality degradation 2D plots under detection setup.
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distribution of quality degradation for
each type of attack to illustrate the po-
tential trade-off between attack effec-
tiveness and image quality. Figure[3]
reveals that StegaStamp occupies the
largest area, signaling its exceptional
robustness. Tree-Ring follows suit with a smaller area, and Stable Signature occupies the least space.
Interestingly, different watermarking methods exhibit vulnerabilities to different types of attacks.
Tree-Ring is particularly vulnerable to adversarial attacks introduced in this paper, with a significant
vulnerability to grey-box embedding and surrogate detector attacks. It is also vulnerable to regeneration
rinsing attacks. Stable Signature is vulnerable to almost all regeneration attacks. All three watermarks
maintain a relative robustness against distortions.

Figure 3. (left) Detection performance of three watermarks after at-
tacks, measured by Average TPR@0.1%FPR with lower values (near
center) indicating higher vulnerabilities. (right) The distribution of
image quality degradation. The lower the better.

Benchmarking Attacks. Table [3] features a leaderboard ranking attacks based on their im-
pact on detection performance and image quality. We assess attacks using performance thresh-
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Table 3. Comparison of attacks across three watermarking methods in detection setup.

g Tree-Ring Stable Signature StegaStamp

Attack Rank Q@OUU5P Q@U.7P AvgP AvgQ Rank Q@UI95P Q@U7P AvgP AvgQ an A X Vg Vg
Dist-Rotation 11 0.464 0.521 0.375  0.648 12 0.624 0702 0.594  0.650 5 0.423 0.498 0.357  0.616
Dist-RCrop 18 0.592 0592 0.332  0.463 24 inf inf 0.995  0.461 6 0.602 0.602  0.540 0.451
Dist-Erase 26 inf inf 1.000  0.490 25 inf inf 0.998  0.489 25 inf inf 1.000  0.483
Dist-Bright 25 inf inf 0.997  0.304 23 inf inf 0.998  0.305 22 inf inf 0.998 0317
Dist-Contrast 22 inf inf 0.998  0.243 20 inf inf 0.998  0.243 17 inf inf 0.998  0.231
Dist-Blur 20 0.861 112 0563 1221 5 -inf -inf 0.000  1.204 9 0.848 0.962 0414 1198
Dist-Noise 16 0.548 inf 0.980  0.395 8 0.402 0.520  0.870  0.390 24 inf inf 1.000  0.360
Dist-JPEG 12 0.499 0499 0929 0.284 9 0.485 0485  0.793  0.284 21 inf inf 0.998  0.263
DistCom-Geo 13 0.525 0.593 0.277  0.768 13 0.850 inf 0.937  0.767 7 0.663 0.693 0.396  0.733
DistCom-Photo 22 inf inf 0.998  0.242 20 inf inf 0.998  0.243 17 inf inf 0.998  0.239
DistCom-Deg 19 0.620 inf 0.892  0.694 7 0.206 0369 0300 0.679 8 0.826 0.975 0.852  0.664
DistCom-All 14 0.539 0.751 0.403  0.908 11 0.538 0.691 0.334  0.900 10 0.945 1.101 0.795  0.870
Regen-Diff 5 -inf 0.307 0.612  0.323 1 -inf -inf 0.001  0.300 1 0.331 inf 0.943  0.327
Regen-DiffP 4 -inf 0.307 0.601  0.327 1 -inf -inf 0.001  0.303 1 0.333 inf 0.940  0.329
Regen-VAE 17 0.578 0.578 0.832  0.348 10 0.545 0.545 0516 0339 23 inf inf 1.000  0.343
Regen-KLVAE 22 inf inf 0.990 0.233 6 -inf 0.176 0217  0.206 17 inf inf 1.000  0.240
Rinse-2xDiff 6 -inf 0.333 0.510  0.357 3 -inf -inf 0.001  0.332 4 0.391 inf 0.941  0.366
Rinse-4xDiff 7 -inf 0.355 0443 0.466 4 -inf -inf 0.000 0.438 3 0.388 inf 0.909 0477
AdvEmbG-KLVAES 3 -inf 0.164 0448 0253 20 inf inf 0.998  0.249 17 inf inf 1.000  0.232
AdvEmbB-RN18 10 0.241 inf 0.953 0218 17 inf inf 0.999  0.212 14 inf inf 1.000  0.196
AdvEmbB-CLIP 15 0.541 inf 0932 0.549 26 inf inf 0.999  0.541 25 inf inf 1.000  0.488
AdvEmbB-KLVAE16 8 0.195 inf 0.888  0.238 19 inf inf 0.997  0.233 14 inf inf 1.000  0.206
AdvEmbB-SdxIVAE 9 0.222 inf 0.934 0221 17 inf inf 0.998  0.219 14 inf inf 1.000  0.204
AdvCls-UnWM&WM 1 -inf 0.102 0499 0.145 14 inf inf 0.999  0.101 11 inf inf 1.000  0.101
AdvCls-Real & WM 21 inf inf 1.000  0.047 14 inf inf 0.998  0.092 11 inf inf 1.000  0.106
AdvCls-WM1&WM2 1 -inf 0.101 0.492  0.139 14 inf inf 0.999  0.084 13 inf inf 1.000  0.129

olds (TPR@0.1%FPR=0.95 and TPR@0.1%FPR=0.7) and quality degradation at these thresholds
(Q@0.95P and Q@0.7P). Additionally, we evaluate average performance (Avg P) and quality degra-
dation (Avg Q) across all strengths. These metrics are used to rank 26 attacks for each watermarking
method (details in Appendix [E.9). Table[3|shows variability in attack efficiency across watermarking
methods. Metrics like Q@0.95P and Q@0.7P provide nuanced comparisons, while Avg P and Avg
Q offer insights into overall attack potency and image quality impact. Our analysis identifies each
watermark’s specific weaknesses. For instance, AdvCls-UnWM&WM, AdvCls-WM1&WM2, and
AdvEmbG-KLVAES are notably effective against Tree-Ring, whereas Regen-Diff and Regen-DiffP are
more potent against Stable Signature. Regeneration attacks impact StegaStamp but do not greatly affect
its average detection performance; in contrast, certain distortion attacks significantly lower detection
performance, at the cost of quality degradation. No single attack excels across all watermarking meth-
ods, yet regeneration attacks exhibit some level of consistent effectiveness. This significant variation in
attack effectiveness emphasizes the imperative for diverse and watermark-tailored defensive strategies.

Benchmarking Results for User Identification. We detail the user identification results in Ap-
pendix[G.T] Our study includes scenarios with 100, and 1 million users, reflecting a range of real-world
conditions. Utilizing the same evaluation approach, we generate unified Performance vs. Quality
degradation 2D plots (Figure[T7), radar plots for watermark comparison (Figure[I8), and an attack
leaderboard in the identification context (Table[5). Figure[T8|and Table[5|reveal that trends in watermark
robustness and attack potency closely match those in detection, largely because both rely on precise
watermark decoding. Notably, watermarks become more vulnerable as user numbers increase, a trend
particularly evident in attacks that already strongly affect detection. Since identification demands more
accurate decoding, its vulnerability amplifies with user growth.

4 SUMMARY OF TAKEAWAY MESSAGES

WAVES provides a standardized framework for benchmarking watermark robustness and
attack potency. WAVES evaluates both detection and identification tasks. It unifies the quality
metrics and assesses attack potency against both performance degradation and quality degradation.
The Performance vs. Quality 2D plots allow for a comprehensive analysis of various watermarks in one
unified framework. With over twenty attacks tested, WAVES exposes new vulnerabilities in popular
watermarking techniques.

Avoid using publicly available VAEs. WAVES demonstrates the risks of using publicly available
VAE:s in watermarked diffusion models. An adversarial embedding attack using the same VAE easily
compromises Tree-Ring by altering latent features with little visual change. Stable Signature’s design
renders it vulnerable to regeneration attacks that use a VAE with an encoder identical to the victim
model’s VAE encoder, while coupled with a different decoder. Today’s proprietary generators, like
DALL.-3, typically train the latent diffusion model themselves but use a publicly available VAE, pointing
to a critical security concern in such popular Al services.

The robustness of StegaStamp potentially illuminates a path for future robust watermarks. The
StegaStamp watermark Tancik et al.|(2020)) stands out in our evaluation for its robustness. Designed for
physical-world use which requires high robustness, StegaStamp is trained with a series of distortions that
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mimic real-world scenarios, significantly enhancing its robustness. It suggests that future watermarks
could benefit from incorporating augmentation or adversarial training into the training process.
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A A MINI SURVEY OF IMAGE WATERMARKS

In this section, we detail the existing landscape of watermarking approaches in the era of AI-Generated
Content (AIGC) everywhere. Figure[|depicts our scenario of interest. First, an AI company/owner
embeds a watermark into its generated images. Then, if the owner is shown one of their watermarked
images at a later point in time, they can identify ownership of it by recovering the watermark message.
Commonly, users might modify watermarked images for legitimate personal purposes. There are
also instances where users attempt to erase a watermark for malicious reasons, such as disseminating
fake information or infringing upon copyright. For simplicity, we term any image manipulation as an
“attack.”

Watermarking
Post-processing

Watermarked

p— = Detection
Generator . — —».
(CTTT T ‘I Watermarked
g . i g
digital painting of _ P, : ' Detector
a lake at sunset... i 1

In-processing

Watermarked Non-

, watermarked
Generator . - e
K ‘7:“ Orhers

Figure 4. An illustration of a robust watermarking workflow. An Al company provides two services:
(1) generate watermarked images, i.e., embed invisible messages, and (2) detect these messages when shown
any of their watermarked images. There is an attack stage between the watermarking and detection stages.
The watermarked images may experience natural distortions (e.g., compression, re-scaling) or manipulated by
malicious users attempting to remove the watermarks. A robust watermarking method should still be able to detect
the original message after an attack.

Watermarking Al-generated Images. Imprinting invisible watermarks into digital images has a
long and rich history. From conventional steganography to recent generative model-based methods,
we categorize popular watermarking techniques into two categories: post-processing methods and
in-processing methods.

Post-processing approaches embed post-hoc watermarks into images. When watermarking Al-
generated images, we apply such methods affer the generation process. Post-processing watermarks
are model-agnostic and applicable to any image. However, they sometimes introduce human-visible
artifacts, compromising image quality. We review popular post-processing methods.

P1) Frequency-domain methods. These methods manipulate the representation of an image in some
transform domain (6 Ruanaidh et al.,|1996;|Cox et al.,|1996;|0’Ruanaidh & Pun,|1997). The image
transform can be a Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) (Cox et al.,
2007), or SVD decomposition (Chang et al.,2005). These transformations have a range of invariance
properties that make them robust to translation and resizing. The commercial implementation of
Stable Diffusion (Rombach et al.,|2022)) uses DWTDCT (Al-Hajl[2007)) to watermark its generated
images. However, many studies have shown that these watermarks are vulnerable to common image
manipulations (Zhao et al., 2023a)).

P2) Deep encoder-decoder methods. These methods rely on trained networks for embedding and
decoding the watermark (Hayes & Danezis|[2017). Methods such as HiDDeN (Zhu et al.,[2018) and
RivaGAN (Zhang et al.,|2019) learn an encoder to imprint a hidden message inside an image and a
decoder (also called a detector) to extract the message. To train robust watermarks, RedMark (Ahmadi
et al.} 2020) integrates differentiable attack layers between the encoder and decoder in the end-to-
end training process; RivaGAN (Zhang et al., | 2019) employs an adversarial network to remove the
watermark during training; StegaStamp (Tancik et al.,|2020) adds a series of strong image perturbations
between the encoder and decoder during training, resulting in watermarks which are robust to real-world
distortions caused by photographing an image as it appears on a display.

P3) Others. There are other varieties of post-processing methods that do not fall into P1 or P2.
SSL (Fernandez et al.| 2022) embeds watermarks in self-supervised-latent spaces by shifting the
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image’s features into a designated region. DeepSigns (Rouhani et al.,|2018]) and DeepMarks (Chen
et al.||2019) embed target watermarks into the probability density functions of weights and activation
maps. Entangled watermarks (Jia et al.| |2021)) designs a reinforced watermark based on a target
watermark and the task data.

In-processing methods adapt generative models to directly embed watermarks as part of the image
generation process, substantially reducing or eliminating visible artifacts. With diffusion models
presently dominating the field of image generation, a surge of in-processing approaches specific to
these models has recently emerged. We categorize current work into three categories.

11) Model modification. The entire model. This line of work inherits the encoder-decoder idea and
bakes the encoder into the entire generative model. This is usually accomplished by watermarking
training images with a pre-trained watermark encoder and decoder, then training or fine-tuning the
generative model on these watermarked images (Yu et al.,[2021}Zeng et al.||2023};|Lukas & Kerschbaum)
2023)). This type of method has been shown to work well on small models like guided diffusion, but
suffers from the expensive training of large text-to-image generation models (Zhao et al.,|2023b),
making it inapplicable in practice.

Parts of the model. Stable Signature (Fernandez et al., 2023) follows the above two-stage training
pipeline while only fine-tuning the decoder of the latent-diffusion model (LDM) (Rombach et al.,
2022)), leaving the diffusion component unchanged. This type of watermarker is much more efficient to
train. By fine-tuning multiple latent decoders, the model can embed different messages into images.

The robustness of these two types of model modification critically relies on the robustness of the
pre-trained encoder and decoder.

12) Modification of a random seed. Tree-Ring (Wen et al.,|2023)), different from all the above methods,
embeds a pattern into the initial noise vector used by a diffusion model for sampling. The pattern can
be retrieved at detection time by inverting the diffusion process using DDIM (Song et al.,[2020) as the
sampler. This method does not require any training, can easily embed different watermarks, and is
robust to many simple distortions and attacks. The robustness of Tree-Ring relies on the accuracy of
the DDIM inversion.

Removing Watermarks Robustness is an essential property of watermarks. Evaluations of robust-
ness in existing literature focus on simple image distortions like rotation, Gaussian blur, etc. Recently,
inspired by adversarial purification|Nie et al.|(2022),[Zhao et al.|(2023a) and|Saberi et al.|(2023)) both
find that regenerating images by noising and denoising images through a diffusion model or a VAE can
effectively remove some watermarks. [Saberi et al.[(2023) propose adversarial attacks based on a trained
surrogate watermark detector. |[Lukas et al.|(2023)) also introduces adversarial attacks but requires the
knowledge of the watermarking algorithm and a similar surrogate generative model. Jiang et al.| (2023)
studies white-box attacks and black-box query-based attacks. Some attacks are not possible in realistic
scenarios where the attacker has only API access. Furthermore, existing evaluations use differing
quality/performance metrics, making it difficult to compare the effectiveness between watermarking
methods and between attacks.

Benchmarks for Image Watermarks. Before the advent of AIGC, there were significant bench-
marks introduced that greatly accelerated the progress of watermark standardization|Kutter & Petitcolas
(1999); Tao et al.|(2014); Petitcolas| (2000). However, with the development of AIGC, the need to
watermark images generated by Al has become urgent, as previous methods were weak in robustness
and could not meet current requirements. Nowadays, more and more methods for watermarking
images generated by Al have been proposed, but they all use different methods to evaluate robustness.
Therefore, this paper proposes a benchmark for the AIGC era.

B STANDARDIZED EVALUATION THROUGH WAVES

B.1 STANDARDIZED EVALUATION WORKFLOW AND METRICS

As shown in Tablem our benchmark, WAVES, stands out by considering three diverse datasets, incor-
porating 26 diverse attacks across three categories, and employing 8 quality metrics. These distinguish
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our work as the most extensive and realistic setup to date for watermark robustness evaluation. For
more details on evaluation workflow, setups, metrics, and more analyses, see Appendix@

Applications and formulation of invisible image watermarks. Invisible image watermarks, originally
for protecting creators’ intellectual property, have expanded into broader applications like AI Detection
— identifying Al-generated images (Saberi et al.,2023)), and User Identification — tracking the source
of an image to its creator (Fernandez et al.|[2023)). We are interested in message-based approaches,
where a unique, invisible identifier is embedded into an image. which may be recovered by the content
creator at any time to establish provenance. The choice of message varies across methods, with
Tree-Ring using random complex Gaussians and others like Stable Signature employing binary strings.

Evaluation Workflow. The trade-off between watermark performance and image quality, especially
when watermark attacks lead to image distortions, is critical. We introduce Performance vs. Quality
2D plots for a comprehensive comparison, a novel perspective over the typical performance-centric
analyses. The evaluation process involves comparing watermarked images with a diverse set of real
and Al-generated reference images to produce the performance vs. quality 2D plots, and processing or
aggregating the 2D plots to compare attacks and watermarks, as depicted in Figure/[T]

Performance Metrics in AI Detection and User Identification. WAVES prioritizes fairness and
comprehensiveness by using evaluation metrics that are independent of the choice of statistical tests and
p-value thresholds, in contrast to some prior practices such as (Fernandez et al.,|2023)). AI detection in
WAVES is akin to binary classification, utilizing ROC curve-based metrics. Given the significant impact
of false positives in mislabeling non-watermarked images, strict control over the false positive rate
(FPR) is crucial. Therefore, rather than AUROC (since a high AUROC score does not necessarily imply
a high true positive rate (TPR) at low FPR levels), WAVES focuses on TPR @z %FPR, specifically at
a challenging low FPR threshold of 0.1%, extending recent studies such as (Wen et al., 2023)) with
a larger dataset and a more stringent FPR criterion. User identification is approached as multi-class
classification, and we measure performance by the accuracy of correct image assignments to users.

Implementing Diverse Image Quality Metrics: Recognizing that no single metric can fully capture
the aspects of generated images, we use a range of image quality metrics and propose a normalized,
aggregated metric for evaluating watermark and attack methods. WAVES integrates over 8 metrics
in 4 categories: (/) Image similarities, including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Normalized Mutual Information (NMI), which assess the pixel-wise
accuracy after attacks; (2) Distribution distances such as Frechet Inception Distance (FID) (Heusel
et al.,[2017) and a variant based on CLIP feature space (CLIP-FID) (Kynk&dnniemi et al., 2022); (3)
Perception-based metrics like Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018)); (4) Image quality assessments including aesthetics and artifacts scores (Xu et al.,|2023)), which
quantify the changes in aesthetic and artifact features.

Normalization and Aggregation of Image Quality Metrics: Addressing the distinct characteristics
of various image quality metrics, WAVES proposes a normalized and aggregated quality metric for
a unified measure of image quality degradation and comprehensive scoring of attack or watermark
methods. We define the normalized scale for each metric by assigning the 10% quantile value over all
attacked images (across 26 attack methods, three watermark methods, and three datasets) as the 0.1
point, and the 90% quantile as the 0.9 point. Normalized quality metrics are always ranked in ascending
order of image degradation. This normalization ensures equivalent significance across different metrics,
defined by their quantiles in a large set of attacked watermarked images. Normalized metrics are
aggregated and extensively utilized in Section3|for Performance vs Quality plots, watermark radar
plots, and attack leaderboards.

B.2 STRESS-TESTING WATERMARKS

We evaluate the robustness of watermarks with a wide range of attacks detailed in this section and
summarized in Table[2] Figure[23|demonstrates the visual effects.

Distortion Attacks. Watermarked images often face distortions such as compression and cropping
during internet transmission, necessitating watermarks that can endure common alterations. However,
most studies only test resilience against singular or extreme distortions. In WAVES, we establish the
following distortions within an acceptable quality threshold as our baselines. Geometric distortions:
rotation, resized-crop, and erasing; Photometric distortions: adjustments in brightness and contrast;

11
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Figure 5. Regeneration attacks on Tree-Ringk. Regen-Diff is a single diffusive regeneration and Rinse-[N]xDiff is
arinsing one with N repeated diffusions, with the number of noising steps as attack strength. Regen-VAE uses a
pre-trained VAE with quality factor as strength and Regen-KLVAE uses pre-trained KL-VAEs with bottleneck size
as strength. RinseD-VAE applies a VAE as a denoiser after Rinse-4xDiff.

Degradation distortions: Gaussian blur, Gaussian noise, and JPEG compression; Combo distortions:
combinations of geometric, photometric, and degradation distortions, both individually and collectively.
Detailed setups for each are provided in the Appendix[FI]

Regeneration Attacks, employing diffusion models or VAEs|Saberi et al.|(2023);Zhao et al.|(2023a)),
aim at altering an image’s latent representation by noising and then denoising an image. Different from
existing works that only perform a Single regeneration, we also investigate Rinsing regenerations,
where an image undergoes multiple cycles of noising and denoising through a pre-trained diffusion
model. Furthermore, we introduce two additional variations: prompted regeneration and mixed
regeneration (rinse + VAE denoising). To simulate a realistic attack, we use a lower version diffusion
model than the one used to generate watermarked images. All such attacks are detailed in Appendix[F.2]
As shown in FigureE], in contrast with the conclusions of|Zhao et al.|(2023al), the Tree-Ring watermark
is not robust against regeneration attacks. In particular, a single regeneration such as Regen-Diff
and Regen-VAE can significantly harm the TPR @0.1%FPR while maintaining reasonable CLIP-FID.
Rinsing regenerations significantly lower the TPR@0.1%FPR at the cost of markedly decreased image
quality. A 2x rinsing regeneration (Regen-2xDiff) strikes a balance between both low-TPR @0.1%FPR
and high image quality. In regards to the Stable Signature, Figure[2Jand Table[3|concur with the analysis
of [Zhao et al.[(2023a) — regeneration attacks are completely destructive and rinsing regenerations
reiterate this phenomenon. The StegaStamp is mildly affected by regenerations, and only by diffusive
attacks, including our novel rinsing and prompted regenerations.

Adversarial Attacks. Deep neural networks are vulnerable to adversarial examples, (Ilyas et al.,
2019;|Chakraborty et al.L[2018). In WAVES, we explore watermark robustness against two types of
adversarial attacks.

(A) Embedding Attacks. Watermark detection can be thwarted by perturbations on image embedding.
Such attacks have been used against Multimodal Large Language Models like GPT-4V (Dong et al.,
2023)) and shown good transferability (Inkawhich et al.,2019). We examine if attacks on off-the-shelf
embedding models can transfer to watermark detectors. Given an encoder f : X — Z mapping
images to latent features, we craft an adversarial image x4, to diverge its embedding from the original
watermarked image x, within an [, perturbation ball limit: max,_, || f(Zadv)— f ()2, S-t. || Zadw —
z|| 0o < €. We approximately solve this using the PGD (Madry et al.,[2017) algorithm (see details in
Appendix[F3.1)), and see if the adversarial image transfers to real watermark detectors.

We evaluate five off-the-shelf encoders. AdvEmbB-RN18 uses a pre-trained ResNet18 (He et al.,
2016)), targeting the pre-logit feature layer. AdvEmbB-CLIP employs CLIP’s (Radford et al., 2021)
image encoder. AdvEmbG-KLVAES utilizes the encoder of KL.-VAE (f8) which is used in the victim
latent diffusion model. This is a grey-box setting but reflects the use of public VAEs in proprietary
models (for example, DALLE-3 uses a public KL-VAE accordingtohttps://cdn.openai.com/
papers/dall-e-3.pdf). Further, we do ablation studies on KL-VAE (f16), which has a different
architecture but is trained on the same data, and on SDXL-VAE (Podell et al.,2023)), an enhanced
version of KL-VAE (f8). They are black-box attacks and are labeled AdvEmbB-KLVAE16 and
AdvEmbB-SdxIVAE.

As shown in Figure[6] Tree-Ring is vulnerable to embedding attacks, particularly under the grey-box
condition where TPR@0.1%FPR can drop to nearly zero, effectively removing most watermarks. This
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Figure 7. Three settings for training the surrogate detector. The Generator is the victim generator under attack. We
externalize the watermarking process for simplicity, but it could be in-processing watermarks. After training the
surrogate detectors, the adversary performs PGD attacks on them to flip the labels.

is because the detection process of Tree-Ring first maps the image to the latent representation through
the encoder of KL-VAE (f8), then conducts inverse DDIM to retrieve the watermark. The embedding
attack changes the latent representation severely; therefore, watermark retrieval becomes very difficult.
Using similar yet distinct VAEs, attack effectiveness diminishes but still manages to remove some
watermarks, with KL-VAE (f16), trained on the same images, demonstrating the highest transferability.
CLIP-based attacks also achieve some success, especially on natural images like MS-COCO, likely
due to CLIP being trained on natural images akin to those in MS-COCO, enhancing the transferability.
Conversely, Stable Signature and StegaStamp demonstrate robustness against embedding attacks
(Figure[2), likely because their detectors are trained independently from generative models, differing
significantly from standard classifiers and VAEs. Hence, our attacks fail to effectively transfer to their
detectors.

(B) Surrogate Detector Attacks. Watermark detection hinges on a detector that decodes and verifies
messages from watermarked images. Adversaries might acquire numerous watermarked and non-
watermarked images to train a surrogate detector, and transfer attacks on it to the actual watermark
detector. Figure[7|explores our various settings.
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AdvCls-UnWM&WM trains a surrogate detector with both watermarked and non-watermarked images
from the victim generative model, as per|Saberi et al.|(2023)). Note that this is an unrealistic setting
for proprietary models since all their outputs are assumed to be watermarked. AdvCls-Real & WM
trains the surrogate watermark detector with watermarked and non-watermarked images, where non-
watermarked images are sampled from the ImageNet dataset (not from the generative model). This
approach is more applicable to proprietary models. AdvCls-WM1&WM2 only uses watermarked
images. It actually trains a surrogate watermark message classifier to distinguish two users. Suppose
the system assigns a particular message to each user for identification purposes, the adversary can
collect the training data from two users’ outputs, with an identical set of prompts. Adversarial attacks on
this surrogate model aim at user misidentification. All surrogate detectors are fine-tuned on ResNet18.
We use ImageNet text prompts “A photo of a {class name}” to generate training images (see details in
Appendix[F3.2).

With the trained surrogate detector f : X — Y, where ) = {0, 1}, adversaries launch targeted
attacks. The goal is to craft an adversarial image x4, from an original image x so that f incorrectly
predicts the target label yq,ge: (i.€., wrong label), minimizing the following with cross-entropy
loss: ming, ,, L(f(Zadv),Ytarget)s S-t. ||Tado — | oo < €. It enables adversaries to erase watermarks
from marked images or implant them into clean images in the first two settings, and to disrupt user
identification as well as watermark detection in the third setting. We solve it with the PGD algorithm.

Figure [§] shows Tree-Ring’s vulnerability to surrogate

detector-based attacks. In AdvCls-UnWM&WM, the Tree-Ring (DiffusionDB)
adversary accessing non-watermarked images has good : %
transferability and removes watermarks effectively. How- JEE

ever, it fails to add watermarks to clean images (spoofing [

attack), as detailed in Figure[I9 The reason behind this &

is explored in Appendix [G.2] where we find the attacker g) '

disrupts the entire latent space, not just the watermark (as « o

shown in Figure20). Conversely, the spoofing attack failsto ~ F k= AdvCls-UnWMEWM
embed the precise watermark. AdvCls-Real & WM attack 04 - AdvCls-RealgWM
fails entirely, likely due to the surrogate model appearing 03 e AdvCls-WM1EWM2

40 45 50 55 60

to differentiate real from generated images, using broader
features than the watermark. The newly proposed AdvCls-
WM1&WM2 successfully attacks Tree-Ring using only
watermarked images. Like the first scenario, the surrogate Figure 8. Adversarial surrogate detector at-
model fails to precisely locate watermarks but learns the tacks on Tree-Ring.

mapping to the latent feature space, allowing a PGD attack

to remove the watermark by disturbing the entire latent space (see Figure[21). In user identification
tasks (Figure [22), the attack doesn’t consistently mislead the detector into misidentifying User1’s
watermarked images as User2’s (targeted misidentification). Instead, imprecise perturbations often
lead to incorrect attribution of User1’s images to others.

PSNR (1)

Figure [2[ shows that Stable Signature and StegaStamp are robust to these attacks. Even with high
surrogate classifier accuracy in AdvCls-UnWM&WM, adversarial examples fail to transfer to the true
detector, possibly due to reliance on different features than those used by the true detector.

C FORMALISM OF WATERMARK DETECTION AND IDENTIFICATION

Invisible image watermarks, which are inspired by classical watermarks to protect the intellectual
properties of creators, are now applied for a wider range of application scenarios. With the vast
development of Al generative models, most current research focuses on applying invisible watermarks
to (1) identify Al-generated images (Al Detection) (Saberi et al.,[2023)), and (2) identify the user who
generated the image for source tracking (User Identification) (Fernandez et al.,[2023).

To fairly evaluate the different watermark methods for different applications, we start from formulating
a general, message-based watermarking protocol, partially adopting the notation of (Lukas et al.,[2023)),
which generalizes most of the existing setups. Let 85 denote an image generator, M the space of
watermark messages, and A’ the domain of images. We assume M is a metric space with distance
function D(-,-). The choice of message space M can be very different depending on the watermarking
algorithm: for Tree-Ring, messages are random complex Gaussians, while for the Stable Signature and
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StegaStamp, each message is a length-d binary string, where d denotes the length of the message. For
watermarking algorithms following the encoder-decoder training approach, like Stable Signature and
StegaStamp, the choice of message length d is fixed after training. Some methods, such as Tree-Ring,
enjoy flexible message length at the time of injecting watermarks.

In addition to classifying images as watermarked or non-watermarked, a good detector will often
provide a p-value for the watermark detection, which measures the probability that the level of
watermark strength observed in an image could occur by random chance. The Tree-Ring watermark
also includes an image location parameter 7 to embed a message m € M, but we subsume this under
the parameters of 6. We now introduce several important watermarking operations:

* EMBED:0; x M — X is the generative procedure that creates a watermarked image given
user-defined parameters of ¢ (such as prompt, guidance scale, etc. for a diffusion model)
and a target message m € M.

« DECODE : X — M is a recovery procedure of a message m embedded within a water-
marked image z =EMBED (6¢,m). In particular, the recovery m’ =DECODE(x) may be
imperfect, i.e., m’ #m.

* VERIFY, : M x M — {0,1} is conducted by the model owner to decide whether = was
watermarked by inspecting m’ = DECODE(x), where x =EMBED(6,m). For a decoded
message m’, we consider the following p-value (further discussed in Section ??) for evaluating
whether the image could have been watermarked using m. which is defined as

p=Ppn (D(wvm/) < D(mam/) |HO)7

where, D(w,m’) is the similarity between an arbitrary message w ~ M (drawn uniformly at
random) and m’, and D(m,m’) is the similarity between the ground truth message m and
the recovered message m’. Hy denotes the null hypothesis that the image was generated
without knowledge of the watermark (and therefore the recovered message is random).
VERIFY, (m',m) returns 1 if p < a, and 0 otherwise. In our experiments, we set o =0.001.

To establish a comprehensive evaluation toolbox, we consider two distinct problems that naturally
arise during watermark analysis: detection and identification. Let A : X — X represent an image
attack function and denote by () a fixed subset of messages independently drawn from M used by 0.
Further, assume that the owner of 6 will only embed messages contained within a finite subset @
drawn randomly from M.

C.1 DETECTION

In the watermark detection problem, given x =EMBED(0,m), and an attack =’ =.4(x), the model
owner is tasked with producing EMBED and DECODE protocols which satisfy the following,

(1) If x =EMBED(0,m) is a watermarked image, then VERIFY,(DECODE(z")) =1.
(2) If x =EMBED(6¢,NULL) is an unwatermarked image, then VERIFY ,(DECODE (z')) =0.

For both conditions, a comparison of the extracted message m’ =DECODE(x) is performed against
all messages in (. Failure of the above conditions is referred to as Type Il and Type I errors, respectively.
Exploration of the tradeoff between minimization of both error types is an interesting research topic in
its own right|Zhao et al.|(2023a); Saberi et al.[(2023).

C.2 IDENTIFICATION

While watermark detection requires only that VERIFY (0g,2’) = 1, the watermark identification
problem further requires that one can accurately determine which message from () is embedded in the
image. Rigorously, given x = EMBED(0,m), an attack «’ = A(z), and m’ =DECODE(¢,2’), the
user requires the EMBED and DECODE to satisfy

argmin P(D(w,m)<D(m’,m)|Hy)=m,
m'eQ

for randomly drawn w ~ M if .
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The identification problem is useful in the scenario where the model owner wishes to identify the user
who created an image (e.g., a user of DALL-E). Note that as |Q)| — oo, the identification problem
becomes difficult as () will resemble M in distribution.

D DESIGN CHOICES OF WAVES

D.1 DATASET PREPARATION

We utilize three datasets for the non-watermarked reference images in our evaluation: DiffusionDB,
MS-COCO, and DALL-E3, each comprising 5000 reference images and prompts. DiffusionDB
represents a diverse collection from the DiffusionDB dataset (Wang et al.,[2022), focusing on images
generated from the Stable Diffusion (Rombach et al.,[2022) models. MS-COCO is derived from
the well-known Microsoft COCO detection challenge (Lin et al., 2014)), featuring a wide range of
everyday scenes and objects. DALL~E includes images from the DALL-E3 model, showcasing
another popular diffusion model trained on substantially different data. These datasets provide a
comprehensive range of image types and contexts, ideal for robust watermark evaluation.

The three datasets are filtered subsets of the corresponding source dataset using the same filtering
algorithm. The source dataset information is listed below.

* DiffusionDB: the 2m_random_100k split of DiffusionDB dataset (Wang et al.|[2022]), link.

* MS-COCO: the validation split of the 2017 Microsoft COCO detection challenge (Lin et al.,
2014), link.

e DALL-E3: the train split of the dalle-3-dataset repository on HuggingFace, collected from the
LAION share-dalle-3 discord channel, link.

The filtering algorithm considers the following rules to subsample the 5,000 image subset:

* Remove columns: Remove irrelevant columns and only keep the reference images and prompt
strings.

e Filter prompts: Tokenize the prompt strings by the Open Clip’s tokenizer, and filter out
samples with no tokens and more than 75 tokens. This is because Stable Diffusion (Rombach
et al.,|2022)) truncates prompts at 75 tokens (Wang et al.,2022).

* Rank images: Rank the images by their aesthetics score, as defined by Xu et al.| (2023)),
in descending order. We then select the top 5,000 images, along with their corresponding
prompt strings. This approach is adopted because the DiffusionDB and DALL-E3 datasets,
sourced from chat-bots, contain some lower-quality images. We posit that watermarking
holds greater utility for high-quality Al-generated images, as the copyright protection of
low-quality generated images is less meaningful and practical.

In our study, we examined three distinct datasets—DiffusionDB, MS-COCO, and DALL-E3—each
characterized by a unique distribution of prompt words. As illustrated in the word-cloud plots (Figure[9),
we observe notable differences. DiffusionDB predominantly features prompt words that emphasize the
desired quality of the generated images, such as “beautiful” and “highly detailed.” In contrast, MS-
COCQO’s prompts mainly focus on describing the objects within the images. Meanwhile, DALL-E3’s
prompts show a tendency towards describing aspects of fine arts.

Image examples from the three datasets are illustrated in Figure[T0} The reference images for Diffu-
sionDB are produced by Stable Diffusion, MS-COCO includes real-world photographs, and DALL-E3
contains images generated by the DALL-E3 model. This choice of datasets effectively covers two
popular generative models and the real-world scenario, highlighting their relevance in practical water-
marking applications.

D.2 SELECTION OF WATERMARK REPRESENTATIVES

Our WAVES framework can be used to stress-test the robustness of any watermark. In this work,
however, we focus on three methods: the Stable Signature, Tree-Ring, and Stegastamp. This is due

'The DALL-E3 dataset is hosted at https://huggingface.co/datasets/laion/
dalle-3-dataset!
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Figure 9. Word clouds of DiffusionDB, MS-COCO, and DALL-E3 prompts.
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Figure 10. Image examples of DiffusionDB, MS-COCO, and DALL-E3.

Table 4. A list of alternative watermarking algorithms not tested by WAVES in this work.

Known Weakness(es)
Distortion (Wen et al.|2023), Purification (Saberi et al.|[2023

Distortion (Zhao et al.}[2023a] |M P 18 . Regeneration (Zhao et al.| m
egenerauon (Zhao et al | Saberi et al.|2
Dioronziaotal 2077 (

to existing and extensive studies (Zhao et al.,[20234;[Saberi et al.,[2023;[Wen et al.}[2023) indicating

these three methods are far more robust to simple off-the-shelf attacks than alternative watermarking
algorithms listed in Appendix[A] We list these competitors along with their documented vulnerabilities
in Table[l

E EVALUATION DETAILS

In this section, we provide more details on the evaluation scheme of WAVES.

E.1 WATERMARKING PROTOCOL AND EVALUATION WORKFLOW.

In-depth information on the applications of invisible image watermarks is provided, focusing on Al
detection and user identification. We delve into the evolution of watermarks from classical copyright
protection tools to their modern uses in Al scenarios. The appendix discusses the specific roles of Al
detection in distinguishing Al-created images and user identification in tracing image origins, citing
studies like (Saberi et al., 2023} [Fernandez et al | [2023)).

The formulation of our watermarking protocol is detailed, explaining the use of an image generator 6,
a metric space of watermark messages M, and an image domain /X'. We elaborate on the variations
in the choice of message space M across different watermark methods. For example, Tree-Ring
uses random complex Gaussians, whereas Stable Signature and StegaStamp use binary strings. The
implications of these choices on the flexibility and effectiveness of watermark methods are discussed.

An extensive analysis of the trade-off between watermark performance and image quality in the context
of watermark attacks is provided. This includes the rationale for using Performance vs. Quality 2D
plots for attack comparisons, highlighting the comprehensive perspective this offers over traditional
performance-focused analyses. The methodology of our evaluation process is laid out in detail,
describing how we compare watermarked images from model 5 with a mixed set of real and Al-
generated images to achieve a robust and unbiased assessment. This section also covers the specific
metrics used, including TPR@0.1%FPR and various image quality metrics, and how they are integrated
into a consolidated performance vs. quality analysis.
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E.2 PERFORMANCE EVALUATION METRICS

The evaluation approach in WAVES addresses the challenges of using p-values for fair watermark
method comparison. The diversity in message spaces M, distributions P,,,, and hypothesis tests
can lead to biased results when traditional p-value thresholds are used. Our metrics, designed to be
independent of these thresholds and tests, offer a balanced and thorough evaluation of watermark
methods, focusing on their inherent strengths in encoding and recovering messages.

Emphasizing TPR @z %FPR, particularly at the low FPR of 0.1%, sets WAVES apart in evaluating
watermark methods. This novel approach, inspired by studies like|Wen et al.|(2023)); [Fernandez et al.
(2023)), challenges watermark methods beyond typical benchmarks such as TPR@1%FPR. Applied to
a broader image dataset, it provides a more comprehensive evaluation of their effectiveness. In user
identification, WAVES’s multi-class classification approach assesses watermark methods’ efficacy
in correctly attributing users. The appendices detail the methodology’s implementation and present
additional results, demonstrating the effectiveness and accuracy of our approach in various user
identification scenarios.

We treat the user identification problem as a multi-class classification task, as outlined in Section[B.T]
This involves defining a set of ground-truth messages, each corresponding to a unique user. To avoid
the exhaustive evaluation process (watermark encoding, attacking, and decoding) for varying numbers
of users, we consistently watermark images with the same message, the ground-truth message of the
first user, and generate a random set of ground-truth messages for the remaining users at the time of
evaluation. This approach is feasible since the ground-truth messages for users other than the first do
not influence the watermarking or attack phases. We conduct the identification assessment ten times
with ten distinct random sets of ground-truth messages for the other users, and we report the mean
multi-class classification accuracy.

E.3 CLARIFICATIONS ON p-VALUE

Here, we clarify the definition of the p-value as follows.

Watermark injection and evaluation are often done by encoding a message m into the image, and later
recovering the message m’, which may be an imperfect recovery. In addition to classifying images
as watermarked or non-watermarked, a good detector will often provide a p-value for the watermark
detection, which measures the probability that the level of watermark strength observed in an image
could happen by random chance. Rigorously, we have

p=Py, (D(w,m’")<D(m,m’)|Hy),

where D(w,m) is a dissimilarity metric between an arbitrary message w ~ M (selected uniformly at
random) and recovered message m’ from the image by the detector, and D (m,m’) denotes dissimilarity
between the ground truth message m and the recovered message m’. Hj denotes the null hypothesis that
the image was generated without knowledge of the watermark (and therefore, the recovered message is
random). The same hypothesis testing can also be applied to user identification.

As in some prior work (Fernandez et al.,2023)), one may set a threshold on the estimated p-value to
determine the detection result. However, this approach makes it difficult to compare different watermark
methods fairly. Even if we set the same p-value threshold on all watermark methods, the distinct choice
of message space M, message distribution P,,, and hypothesis test may differ. Therefore, we seek
to evaluate watermark methods mainly using metrics that are independent of the choice of p-value
threshold and statistical test.

E.4 PERFORMANCE METRICS FOR USER IDENTIFICATION

For user identification, we also focus on metrics that do not depend on statistical testing and hyperpa-
rameters like p-value thresholds.

The user detection issue involving K users is aptly conceptualized as a K-way classification task.
This can be reframed into a binary classification problem by designating the positive class as the
correct user and the negative class as all other users. From this perspective, the TPR @ x%FPR metric
becomes applicable, defined for a specific FPR threshold and user count. In our study, we focus on
TPR@0.1%FPR for a scenario involving 1,000 users.
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E.5 OTHER PERFORMANCE METRICS

While this paper primarily focuses on the TPR @0.1%FPR metric, it’s important to acknowledge other
common metrics such as p-values, AUROC scores, mean accuracies, and bit accuracies.

However, we do not report p-values since their absolute values depend heavily on the chosen statistical
test, making them less comparable across different watermark methods.

AUROC scores, although independent of the choice of p-value threshold and statistical test, have
limitations used as a metric for evaluating watermark detection. In Al-generated image applications,
labeling non-watermarked images as watermarked (false positive) are particularly detrimental. As a
result, strict control of false positive rate (FPR) is crucial. However, a high AUROC does not guarantee
a high true positive rate (TPR) at low false positive rate (FPR) levels.

Using message distances such as bit accuracy as a metric for evaluating watermarks’ performance has
several limitations:

(1) Insensitivity to error distribution: bit accuracy measures the proportion of correctly identified bits in
the watermark but does not account for the distribution of errors. This means it treats all errors equally,
regardless of their impact or pattern. In watermarking, certain types of errors (like clustered errors)
might be more detrimental than others.

(2) Lack of contextual insight: bit accuracy alone doesn’t provide insights into the types of errors (false
positives or false negatives). In watermark detection, understanding the nature of errors is crucial,
especially in differentiating between missing a watermark and incorrectly identifying one.

(3) Threshold dependency: the effectiveness of bit accuracy is dependent on the threshold chosen for
determining a bit’s value. Different thresholds can yield significantly different bit accuracies, making
the metric somewhat arbitrary and less reliable for comparing different watermarking schemes.

(4) Non-representation of overall system performance: bit accuracy focuses narrowly on the correctness
of individual bits, neglecting the broader context of the watermarking system’s performance, such as
its robustness against attacks, computational efficiency, or impact on image quality.

(5) Potential misleading results in imbalanced cases: in scenarios where the watermark bits are not
evenly distributed (e.g., more Os than 1s or vice versa), bit accuracy might give a skewed view of
the system’s performance. It could show high accuracy even if the system is only good at detecting
the majority class. For these reasons, it’s often more effective to use a combination of metrics that
can provide a holistic view of the watermarking system’s performance, considering aspects like error
distribution, false positives/negatives, and overall impact on the media.

Although these metrics are not included in the paper, they are incorporated in the benchmark software
and available for future research use.

E.6 PROCESSING RESULTS

A set of Performance vs. Quality 2D plots show the detailed evaluation results. We evaluate
3 watermarking methods under the 26 attacks, and report results across 3 datasets in Figure 24] to
Figure[29] The quality of images post-attack is evaluated using 8 metrics and the detection performance
of 3 methods is measured by TPR@0.1%FPR.

Different quality metrics yield similar ranking of attacks. Despite measuring different aspects of
image quality, we observe that eight quality metrics consistently produce similar rankings for attacks,
as illustrated in Figure[TT] Since a strong attack should remove the watermark without sacrificing
the image quality, we rank attack potency by ranking the post-attack quality, from best to worst, at a
frozen performance threshold (e.g., TPR@0.1%FPR=0.95). Upon comparing the rankings derived
from different quality metrics, we find that the variations in rank order are minimal. Consequently, we
aggregate these metrics into a single, unified quality metric.

Unified Performance vs. Quality degradation 2D plots. We first set the “standardized” 0.1 and
0.9 points for each metric according to the distribution of measured values (as depicted in Figure[I2)).
Subsequently, every metric’s value is normalized to predominantly fall within the [0.1,0.9] range of the
normalized quality metric (the detailed methodology is provided in Appendix[E.7). We average these
normalized quality scores to derive the Normalized Quality Degradation, with lower scores indicating
lesser quality degradation caused by attacks, which is preferred. Furthermore, we aggregate the results
across three distinct datasets. The Performance vs. Quality degradation 2D plots, as shown in Figure[2]
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Figure 11. Ranking attacks with different quality metrics on DiffusionDB images watermarked by Tree-Ring.
Attack potency is ranked by image quality at 0.95 TPR@0.1%FPR. Colors indicate the ranks (1=best, 9=worst),
and values show the measured quality. We use "NA’ to label an attack if its attack curve lies entirely above
TPR=0.95; the attack is automatically ranked last.

visualize the unified evaluation results for each watermarking method. We use unified Performance vs.
Quality degradation 2D plots to benchmark watermarks and attacks in the following sections.

E.7 NORMALIZATION AND AGGREGATION OF QUALITY METRICS

The eight quality metrics in WAVES exhibit unique range characteristics. To synthesize these into a
single metric, we normalize each metric into a common interval, assigning the 10% quantile of all
attacked images as the 0.1 point, and the 90% quantile as the 0.9 point. This normalization is based on a
comprehensive dataset covering 26 attack methods, three watermark methods, and three datasets. Our
focus is on specific applications, particularly attacking invisible image watermarks. The normalization
process is informed by the cumulative distribution functions (CDFs) of these metrics, which exhibit a
roughly linear distribution between the 10% and 90% quantiles, but a non-linear pattern outside this
range. This observation is particularly evident in metrics like PSNR. The normalization method ensures
values carry equivalent significance across different metrics. Figure[T2]in this appendix provides a
visual representation of the CDFs across all metrics. After normalization, metrics are aggregated by
averaging to form the comprehensive quality metric, utilized in Section 3]for Performance vs Quality
plots, watermark radar plots, and attack leaderboards. This section elaborates on the normalization and
aggregation process, providing a foundation for understanding the metric’s application and significance.

In Figure[I2] the cumulative distribution functions (CDFs) for eight image quality metrics over all
attacked watermarked images are presented. This illustration includes the metric values at the 10% and
90% quantiles, which are used as the boundaries for normalizing the metric values within the range
0f [0.1,0.9]. Such normalization ensures that all normalized metrics exhibit a comparable statistical
distribution over attacked watermarked images, facilitating an unbiased aggregated evaluation. To
consolidate these normalized metrics, we first calculate the average within each of the four defined
categories (image similarities, distribution distances, perception-based metrics, and image quahty
assessments) as delineated in Section[B.I} Subsequently, the average of these category averages is
calculated to yield a single, consolidated normalized, and aggregated quality metric.

E.8 DETAILS OF BENCHMARKING WATERMARKS

When benchmarking watermark robustness in Figure 3] and Figure [T8] we consider the following
effective attacks. We select 21 attacks from 26 attacks. We include all distortion attacks. We select
the two most effective single regeneration attacks and two rinsing attacks. For adversarial attacks, we
do not include AdvEmbB-RN18, and AdvCls-Real& WM since they basically do not work. We also
eliminate AdvCls-UnWM&WM and only use AdvCls-WM1&WM?2 to represent surrogate detector
attacks since AdvCls-UnWM&WM is based on an unrealistic assumption. For each type of attack, we
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Figure 12. Cumulative distribution functions (CDFs) for eight image quality metrics across all attacked water-
marked images. The horizontal dashed lines mark the 10% and 90% quantiles, and the intersecting vertical dashed
lines delineate the bounds of the normalization intervals. Values at the lower bound are normalized to 0.1, and
those at the upper bound to 0.9.

compute Average TPR@0.1%FPR across all practical strength levels that cause quality degradation
less than 0.8, and across all attacks in each category.

* Distortion Single: Dist-Rotation, Dist-RCrop, Dist-Erase, Dist-Bright, Dist-Contrast, Dist-
Blur, Dist-Noise, Dist-JPEG.

* Distortions Combination: DistCom-Geo, DistCom-Photo, DistCom-Deg, DistCom-All.

* Regeneration Single: Regen-Diff, Regen-KLVAE.

* Regeneration Rinsing: Regen-2xDiff, Regen-4xDiff.

Adv Embedding Grey-box: AdvEmbG-KLVAES.

Adv Embedding Black-box: AAvEmbB-CLIP, AdvEmbB-SdxIVAE, AdvEmbB-KLVAE16.

* Adv Surrogate Detector: AdvCls-WM1&WM2.

E.9 DETAILS OF BENCHMARKING ATTACKS

In addition to benchmarking watermarks, WAVES also facilitates the analysis from the perspective
of attacks. Table[3|provides a leaderboard of individual attacks. A strong attack should result in low
post-attack detection performance while simultaneously preserving image quality for practical uses.
Therefore, we benchmark attacks according to both performance and quality degradation. Based
on three Performance vs. Quality 2D plots in Figure[2] we first select two performance thresholds,
TPR@0.1%FPR=0.95 and TPR @0.1%FPR=0.7, ensuring intersections with most attack curves. Then,
we calculate the quality degradation for each attack at these two performance thresholds, denoted as
Q@0.95P and Q@0.7P. Given that some attack curves do not intersect with either threshold, we also
compute each attack’s average performance and quality degradation across all strengths, termed as
Avg P and Avg Q. We report these metrics — Q@0.95P, Q@0.7P, Avg P, and Avg Q — for attack
comparison. Based on them, we also provide a ranking of 26 attacks for each watermarking method for
reference. During this ranking process, we incorporate a 0.01 buffer for both P and Q, meaning that if
the difference between any two values is less than 0.01, they are considered a tie in terms of ranking.

F DETAILS OF ATTACKS

F.1 DISTORTION ATTACKS

For single distortions, we consider, as described in Appendix[B.2] eight types: rotation, resized-crop,
random erasing, brightness adjustment, contrast adjustment, Gaussian blur, Gaussian noise, and JPEG
compression. For each distortion, we consider five evenly distributed distortion strengths between
minimum and maximum; the minimums and maximums are listed as follows.

* Rotation: rotate 9° to 45° clock-wise.
* Resized-crop: crop 10% to 50% of the image area.
* Random erasing: erase 5% to 25% of the image area and fill with gray color.
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* Brightness adjustment: increase image brightness by 20% to 100%.
* Contrast adjustment: increase image contrast by 20% to 100%.
* Gaussian blur: blur with kernel size from 4 to 20 pixels.

* Gaussian noise: add Gaussian random noise with standard deviation from 0.02 to 0.1 (when
pixel values normalized to [0, 1]).

* JPEG compression: compress with JPEG quality score from 90 to 10.

It is worth noting that our strength selections are more conservative than most of the watermark papers,
such as (Wen et al.,|2023}; [Fernandez et al.| |2023). This is because we want to keep the image quality
after distortion within a reasonable interval compared to the other attacks. While some watermark
papers intentionally select unreasonably large distortion strength (for example, cropping 90% of
image area in (Fernandez et al.,|2023)), or Gaussian blurring with kernel size 40 (Wen et al.,|2023))
to demonstrate their robustness under some distortions. We implement the distortions following the
standard image augmentations in the torchvision library.

For combinations of distortions (also called combo distortions in paper for short), we apply each single
distortion with the same relative strength, where the relative strength is between 0 and 1, normalized with
respect to the minimum and maximum strengths above. For combinations of geometric, photometric,
and degradation distortions, we consider five evenly distributed normalized strengths from 0.05 to 0.45.
For combinations of all distortions, we consider five evenly distributed normalized strengths from 0.05
to 0.20. The relative strengths are selected for reasonable image qualities after distortions again.
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Figure 13. Distortions and their combinations. We combine three types of distortions: geometric, photometric, and
degradation, both individually and collectively. By comparing quality-performance plots, we see combinations of
distortions do not necessarily lead to better attacks.

F.2 REGENERATION ATTACKS

Following the language of Section[2] regeneration attacks|Zhao et al.|(2023a)) use off-the-shelf VAEs
and diffusion models to transfer a target image = € X to a latent representation followed by a restoration
to 2’ € X that is faithful to its original representation, i.e., ' ~z. Since the chosen VAE or diffusion
model will not be contained by the attacker’s model of interest, the entire regeneration is likely to
disrupt the latent representation of x, thereby damaging an embedded watermark. However, since the
capacity of the attacker’s regenerative model is inferior to the target model, 2’ will likely be of reduced
quality. In this work, the target model is Stable Diffusion v2.1 while the surrogate model used for
regeneration is Stable Diffusion v1.4.

Figure [5] demonstrates that a long diffusion or low-quality VAE attack will significantly reduce
watermark detectability but at the expense of reduced image quality, which is clear by visual inspection
of the sequence of images in Figure[I4] Rising regenerations achieve similar reductions in detection,
although too deep of rinsing regenerations (> 30 noising steps) significantly alter image quality as
evidenced by Figure[I5]

F.2.1 PROMPTED REGENERATION

We propose a simple variation on a regenerative diffusion attack: if an image is produced via a known
prompt, then an attacker uses the prompt to guide the diffusion of their surrogate model. This type of
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Figure 14. Regenerative diffusion with varying depth of noising steps and a VAE regeneration with a low quality
factor.

(@) Rinse-4xDiff-10  (b) Regen-4xDiff-30  (c) Regen-4xDiff-50

Figure 15. 4x rinsing regeneration with varying depth of noising steps per diffusion.

attack is reasonable and realistic for users of online generative models such as DALL-E or Midjourney.
Figure[5]and Tables[5| & [3indicate that this type of attack, labeled Regen-DiffP is slightly stronger than
conventional Regen-Diff.

F.2.2 MIXED REGENERATION

Mixed regeneration refers to any style of attack that uses a regenerative diffusion on an image followed
by VAE-style regeneration for the purposes of denoising. In Figure[5] we label examples of such
attacks as RinseD-VAE and RegenD-KLVAE, which respectively denote VAE and KLVAE denoising
following a 4x rinsing regeneration with 50 steps (Rinse-4xDiff-50). According to Figure[5} such a
combination improves PSNR and CLIP-FID, as opposed to a Rinse-4xDiff alone. The restorative
effects of mixed regeneration are visually observable for shallower (i.e., 2x or 3xX) rinsing regenerations,
as depicted in Figure[I6] We do not extensively study or rank such attacks in this work, but include
them as a future topic of research.

N

(a) Unattacked (b) Rinse-3xDiff (c) Rinse-3xDiff+VAE

Figure 16. An image of a dragon attacked using a 3x rinsing regeneration. Pushing the image through a
VAE restores image quality, noticeable in the eye color of the dragon (indicated by the green box). Image is
drawn from the Gustavosta Stable Diffusion dataset available @ https://huggingface.co/datasets/
Gustavosta/Stable-Diffusion-Prompts,
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All tested regeneration attacks are summarized as follows, with five evenly divided strengths between
the listed minimum and maximum unless specified otherwise:

* Regeneration via diffusion: passes an image through Stable Diffusion v1.4 with strength as
the number of noise/de-noising steps timesteps, 40 to 200.

* Regeneration via prompted diffusion: passes an image through Stable Diffusion v1.4 con-
ditioned on its generative prompt with strength as the number of noise/de-noising steps
timesteps, 40 to 200.

* Regeneration via VAE: Image is encoded then decoded by a pre-trained VAE (bmshj2018)
Ballé et al.| (2018)) with strength as quality level from 1 to 7.

* Regeneration via KL-VAE: Image is encoded and then decoded by a pre-trained KL-regularized
autoencoder with strength as bottleneck sizes 4, 8, 16, or 32.

* Rinsing generation 2x: an image is noised then de-noised by Stable Diffusion v1.4 two times
with strength as number of timesteps, 20-100 (per diffusion).

* Rinsing generation 4x: an image is noised then de-noised by Stable Diffusion v1.4 two times
with strength as number of timesteps, 10-50 (per diffusion).

* Mixed Regeneration via VAE: an image passed through a rinsing regeneration 4x (for 50
timesteps each) and then a VAE with strength as quality level from 1-7.

* Mixed Regeneration via KL-VAE: an image passed through a rinsing regeneration 4x (for 50
timesteps each) and then a KL-VAE with strength as bottleneck sizes 4, 8, 16, or 32.

F.3 ADVERSARIAL ATTACKS
F.3.1 EMBEDDING ATTACK

The embedding attacks use off-the-shelf encoders and perform untargeted attacks. We use the Projected
Gradient Descent (PGD) algorithm (Madry et al.,[2017) to optimize the adversarial examples. We
conduct the attack using a range of perturbation budgets €, specifically {2/255, 4/255, 6/255, 8/255}.
All the attacks are configured with a step size of & =0.05+¢ and the number of total iterations of 200.
The attacks are on the watermarked images, aiming to remove the watermarks by perturbing their latent
representations.

F.3.2 SURROGATE DETECTOR ATTACK

Figure[7]illustrates the three settings of training the surrogate detectors. In all three settings, we train
the surrogate detectors by fine-tuning the ResNetl SEIfor 10 epochs with a learning rate of 0.001 and a
batch size of 128. The training images are either generated by the victim generator with the ImageNet
text prompts "A photo of a {ImageNet class name}," or real ImageNet images. We randomly shuffle
those images and build the binary training set according to each setting. In the AdvCls-UnWM&WM
setting, we train the surrogate detector with 3000 images (1500 images per class) since we find a larger
training set might have the overfitting problem. In the AdvCls-Real& WM and AdvCls-WM1&WM2
settings, we train the surrogate detector with 15000 images (7500 images per class). The watermarked
images in AdvCls-WM1&WM?2 are embedded with two distinct messages. One message is the one
used in the test watermarked images. The other one is randomly generated. In all three settings, we use
5000 images (2500 images per class) for validation (derived from the same source as the training set),
and the training yields nearly 100% validation accuracy in all cases.

After completing the training phase, the adversary executes a Projected Gradient Descent (PGD) attack
on the surrogate detector using the testing data (DiffusionDB, MS-COCO, DALL-E3). In all three
settings, we conduct the attack using a range of perturbation budgets ¢, specifically {2/255, 4/255, 6/255,
8/255}. The attack is configured with a step size of v =0.01x*¢ and the number of total iterations of 50.
By flipping the label, the adversary can either try to remove the watermarks or add the watermarks. The
analyses of results appear in Appendix[G.2}

“https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
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G ADDITIONAL RESULTS

G.1 MORE RESULTS FOR IDENTIFICATION

Figure[T7]shows the Performance vs. Quality degradation plots under the user identification setting. Ta-
ble[5|presents the ranking of attacks in the identification setup. Figure[I8]is a radar plot of identification
accuracy.

Tree-Ring Stable Signature StegaStamp

& 1

S S 3

Identification Accuracy (1M Users)

Identification Accuracy (1M Users)
Identification Accuracy (1M Users)

°
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Figure 17. Aggregated performance vs. quality degradation 2D plots under identification setup (one million
users). We evaluate each watermarking method under various attacks. Two dashed lines show to thresholds used
for ranking attacks.

Table 5. Comparison of attacks across three watermarking methods under the identification setup (one
million users). Q denotes the normalized quality degradation and P denotes the performance as derived from
aggregated 2D plots. Q@0.7P measures quality degradation at a 0.7 performance threshold where "inf" denotes
cases where all tested attack strengths yield performance above 0.7, and "-inf" where all are below. Q@0.4P is
defined analogously. Avg P and Avg Q are the average performance and quality over all the attack strengths. The
lower the performance and the smaller the quality degradation, the stronger the attack. For each watermarking
method, we rank attacks by Q@0.7P, Q@0.4P, Avg P, Avg Q, in that order, with lower values (| ) indicating stronger
attacks. The top 5 attack of each watermarking method are highlighted in red.

Tree-Ring Stable Signature

Attack Rank Q@0.7P Q@0.4P AvgP AvgQ Rank Q@0.7P Q@0.4P AvgP AvgQ Rank Q@0.7P Q@0.4P AvgP AvgQ
Dist-Rotation 8 -inf 0.434 0.131  0.648 12 0.613 0.642 0.400  0.650 4 0.454 0.500 0.288 0.616
Dist-RCrop 11 -inf 0.592 0.094  0.463 24 inf inf 0972 0.461 6 0.602 0.602 0.494 0451
Dist-Erase 26 inf inf 0.986  0.490 25 inf inf 0.988  0.489 25 inf inf 1.000  0.483
Dist-Bright 22 inf inf 0913 0.304 23 inf inf 0982 0.305 22 inf inf 0.995 0317
Dist-Contrast 23 inf inf 0.949  0.243 20 inf inf 0.979  0.243 17 inf inf 0.994  0.231
Dist-Blur 21 1.105 1437 0551 1221 5 -inf -inf 0.000  1.204 9 0.897 0970  0.280 1.198
Dist-Noise 16 0.427 inf 0.728  0.395 8 0.415 0480  0.633  0.390 24 inf inf 1.000  0.360
Dist-JPEG 17 0.499 0499 0700 0.284 9 0.485 0485  0.540 0.284 21 inf inf 0.995  0.263
DistCom-Geo 9 -inf 0.559  0.105 0.768 13 0.788 0.835  0.519 0.767 7 0.676 0717 0359 0.733
DistCom-Photo 23 inf inf 0.947  0.242 20 inf inf 0.981 0.243 17 inf inf 0.994 0.239
DistCom-Deg 18 0.556 0.864 0570  0.694 7 0.216 0.281 0.183  0.679 8 0.870 0957  0.737  0.664
DistCom-All 10 -inf 0.575  0.123  0.908 11 0.550 0.623  0.176  0.900 10 0.995 1.096  0.682 0.870
Regen-Diff 6 -inf 0307 0258 0323 1 -inf -inf 0.000  0.300 2 0.333 inf 0.766  0.327
Regen-DiffP 6 -inf 0.308  0.256  0.327 1 -inf -inf 0.000  0.303 1 0.336 0356 0.763  0.329
Regen-VAE 19 0.578 0.578 0701  0.348 10 0.545 0.545  0.340  0.339 23 inf inf 1.000  0.343
Regen-KLVAE 14 0.257 inf 0.810 0.233 6 -inf -inf 0.047  0.206 17 inf inf 0.999  0.240
Rinse-2xDiff 5 -inf 0270 0220 0.357 3 -inf -inf 0.000  0.332 3 0.390 0402  0.778  0.366
Rinse-4xDiff 1 -inf -inf 0.110  0.466 4 -inf -inf 0.000 0.438 5 0.488 0.676 0.687 0477
AdvEmbG-KLVAES 4 -inf 0.168 0259 0.253 20 inf inf 0.985  0.249 17 inf inf 1.000  0.232
AdvEmbB-RN18 15 0.288 inf 0.811 0218 17 inf inf 0.990 0.212 14 inf inf 1.000  0.196
AdvEmbB-CLIP 20 0.697 inf 0.798  0.549 26 inf inf 0.991  0.541 25 inf inf 1.000  0.488
AdvEmbB-KLVAE16 12 0.158 0.309 0.540 0.238 19 inf inf 0.983 0.233 14 inf inf 1.000  0.206
AdvEmbB-SdxIVAE 13 0.214 inf 0.692  0.221 17 inf inf 0.986 0.219 14 inf inf 1.000  0.204
AdvCls-UnWM&WM 2 -inf 0.123 0352 0.145 14 inf inf 0.991  0.101 11 inf inf 1.000  0.101
AdvCls-Real &k WM 25 inf inf 0.986  0.047 14 inf inf 0.990  0.092 11 inf inf 1.000  0.106
AdvCls-WMI1&WM2 2 -inf 0.118 0.343  0.139 14 inf inf 0.991  0.084 13 inf inf 1.000  0.129

G.2 MORE ANALYSES ON SURROGATE DETECTOR ATTACKS
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Figure 18. Comparing the identification performance (i.e., accuracy) of Stable Signature, StegaStamp, and
Tree-Ring watermarks via WAVES. We simulate identification tasks with total user counts of 100, 1,000, and
1000000.

The AdvCls-UnWM&WM attack leverages a surrogate model to
distinguish between images that are watermarked and those that are
not. As demonstrated in Figure [8| the PGD attack is effective in
removing watermarks by flipping the label of watermarked images.
This raises a question: Is it possible to similarly ‘add’ watermarks
to clean images by flipping their labels? This process, commonly
referred to as a spoofing attack, which demonstrates a false detection
of watermarks in clean images, is explored in our study.

Tree-Ring (DiffusionDB)

k- AdvCls-UnWM-WM

TPR@0.1%FPR

44 6
PSNR

However, as illustrated in Figure[I9] our attempts to add watermarks

tolclean images by sirpply ﬂipping the labels were unsugcessful. In Figure 19. The spoofing attack
this experiment, detailed in Figure[T9] we focus exclusively on un- g, for AdvCls-UnWM&WM.
watermarked images, aiming to introduce watermarks, while leaving

already watermarked images untouched. Despite employing the most intensive perturbations, we were
unable to artificially add watermarks to these images. This outcome leads to an intriguing inquiry:
Why is the technique effective in removing watermarks but not in adding them? We delve into the
underlying reasons for this asymmetry in Figure[20]

The insights from Figure 20reveal that the surrogate model does not exactly remove the watermark.
Instead, it perturbs the watermark along with other features within the latent space. The disturbance
alone is sufficient to confuse the detector, making it challenging to recognize the watermark. In contrast,
successfully adding watermarks requires precise modifications in the latent space, rather than mere
perturbations, which proves to be a more challenging task. The relative imprecision of this attack may
stem from the ‘transferable gap’ between the surrogate model and the ground-truth detector. Notably,
for the purpose of watermark removal, perturbing the latent space proves to be adequately effective.

These findings have led to the development of our proposed AdvCls-WM1&WM?2 attack, which utilizes
images watermarked with different messages (e.g., collected from two users, Userl and User2). The
essential requirement for this approach is the surrogate model’s ability to map images to the generator’s
latent space. This mapping allows the attacker to perturb the latent space, removing the watermark. In
contrast to the AdvCls-UnWM&WM approach, which uses both watermarked and non-watermarked
images for training (differing only in the latent space), AdvCls-WM1&WM?2 uses two sets of images,
each embedded with a distinct watermark message (differing only in the latent space as well). Figure[2]
shows that AdvCls-WM1&WM2 attack effectively disrupts the latent features of the images, including
the watermarks. However, it lacks the precision to interchange the embedded watermark message.
Consequently, while this attack can remove watermarks and mislead user identification—mistaking an
image originally generated by User1 as belonging to another user—it cannot accurately manipulate
the identification to frame User2 as desired by the attacker. The identification results in Figure
also support this finding. Although AdvCls-WM1&WM2 aims to misidentify images as belonging to
User2, it often leads to misidentification as users other than User2. However, in a system with fewer
users, like 100 users, and under intense attack conditions (e.g., strength=8), AdvCls-WM1&WM2
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Channel 1 Channel 2 Channel 3 Channel 4

(a) The watermarking mask in latent space

before
attack

after
attack

(d) The difference before and after attack

Figure 20. Visualization of AdvCls-UnWM&WM attack. (a) shows the watermarking mask of Tree-Ring where
there are four channels, and we only watermark the last channel. The watermark message is the rings, which
contain ten complex numbers that are not shown in the figure. (b) and (c) show the inversed latent before and after
the attack in the Fourier space. We only show the real part of the latent. Clearly, the rings exist before the attack
and vanish after the attack. (d) shows the magnitude of the element-wise difference before and after the attack.
The attack not only perturbs the watermark part but also other features. The average magnitude change of the
watermark-part and non-watermark-part is around 2:1. The attack successfully disturbs the watermark, albeit in an
imprecise manner.

demonstrates a targeted identification success rate of 0.7%, showing a potential direction for attacks
aimed at targeted user identification.

G.3 VISUALIZATION OF ATTACKS

In Figure[23] we present visualizations of several attacks included in the WAVES benchmark. Prefix
indicates the attack strategy, while suffix indicates the strength.

G.4 FULL RESULTS ON DIFFUSIONDB, MS-COCO AND DALL-E3

Figure[24]to Figure[29demonstrate the evaluation results of three watermarks on each individual attack
across three datasets and evaluated with eight image quality metrics.

H LIMITATIONS

We only stress-test the Tree-Ring, Stable Signature, and Stegastamp watermarking algorithms. We cu-
rated these watermarks for WAVES after an extensive literature review indicated these three techniques
to be the most powerful and practical candidates for deployment in the wild. However, we emphasize
our framework is extensible to any watermarking method. Additionally, our attack ranking method
relies on author-selected TPR thresholds and image quality metrics that we believe will fairly capture
attack potency based on existing literature and experimental studies. The use of other quality metrics
(MSE, Watson-DFT, etc.) and differing TPR thresholds may affect attack rankings.
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Channel 1 Channel 2 Channel 3 Channel 4

(a) The watermarking mask in latent space

before
attack

after
attack

(c) The inversed latent of watermarked images after attack

(d) The difference before and after attack

Figure 21. Visualization of AdvCls-WM1&WM2 attack. (a) and (b) are the same as that in Figure (c) shows
the inversed latent after the attack, where the watermark vanishes instead of changing to another watermark. (d)
shows the magnitude of the element-wise difference before and after the attack. The attack not only perturbs the
watermark part but also other features. The average magnitude change of the watermark-part and non-watermark-
part is also around 2:1. Although the surrogate detector is trained to classify two different watermark messages.
The attack based on it cannot change the watermark message from one to another but can effectively disturb the
watermark.

—@~— Identified as User 1 (100 Users)
—@— Identified as User 2 (100 Users)
~— Identified as User 1 (1K Users)
0.8 0.006 ~<— Identified as User 2 (1K Users)

0.6

0.4

Identified as User 2

Identified as User 1

0.2

0 2 4 6 8
Attack Strength

Figure 22. The user identification results for Tree-Ring under AdvCls-WM1&WM?2 attacks. The original
watermarked images are embedded with User1’s message. AdvCls-WM1&WM2 tries to disrupt the latent feature
of those images so that they can be misidentified as User2 generated. We simulate two settings: 100 users and
1000 users in total. The blue curves represent the proportion of images correctly identified as belonging to Userl,
while the orange curves show those misidentified as User2’s. Note that, the axes for blue and orange curves have
different ranges in the figure. With increasing attack strengths, the likelihood of correctly identifying them as
Userl1’s decreases significantly under both 100 and 1K user scenarios. However, misidentification as User2’s
images occurs notably only when the total number of users is small (e.g., 100 users).
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(b) AdvEmbG-KLVAES- (c) AdvEmbG-KLVAES- &
2/255 8/255 (d) AdvEmbB-CLIP-2/255

) AdvCIsWMIWM2- (g)
2/255 ClsWM1WM28/255

#

|

(n) DistCom-Photo-0.15 (o) DistCom-Geo-0.15 (p) DistCom-Deg-0.15

Figure 23. A visual demonstration of various adversarial, regeneration, and distortion attacks on a Tree-Ring
watermarked image. Figure (a) is the base unattacked image. The base prompt, drawn from DiffusionDB, is
“digital painting of a lake at sunset surrounded by forests and mountains,” along with further styling details.

29



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

- Dist-Rotation Dist-Contrast DistCom-Geo % Regen-Diff - Rinse-2xDiff ~#AdvEmbB-CLIP ~*- AdvCls-Real&WM
- Dist-RCrop - Dist-Blur DistCom-Photo -#Regen-DiffP % Rinse-4xDiff k- AdVEmbB-KLVAE16 -*AdvCls-WM1&WM2
& Dist-Erase -#- Dist-Noise - DistCom-Deg  -# Regen-VAE -, AdvVEmbG-KLVAE8 -*AdvEmbB-SdxIVAE
-# Dist-Bright Dist-JPEG % DistCom-All % Regen-KLVAE -*AdvEmbB-RN18 % AdvCls-UnWM&WM

Tree-Ring Stable Signature StegaStamp

o o
& &
& os 06
e bl
) )
® o4 @ o4
o o
a a
[ [
0.2 0.2
0 0o =
10 20 30 40 50 60 0 15 20 25 30 35 40 45 S50 10 w0 a5 50
PSNR (1) PSNR (1)
1 1 ez w gmmaz 1
s
08 08 ! / 08
o« o« /] o«
g & / g
06 06 L 06
S * / £
= = =
o o ‘ o
® os ® os ®os |
o o« o« .
a a a [
[ = = |
0.2 0.2 L
02 ’
.
o o 0 mmt
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1
SSIM (1) SSIM (1) SSIM (1)
. 1 -—
0.8
o
&
&
X 06
el
)
E’ 0.4
a
= |
02 rw‘
.
0
1 1.2 1.4 1.6 1.8 1 11 1.2 1.3 1.4 1.5 1.6 17 1.8 1.9 1 1.2 1.4 1.6 18
Normalized Mutual-Info (1) Normalized Mutual-Info (1) Normalized Mutual-Info (1)
1 1 1
0.8 0.8 0.8
o -4 o
& & &
X 06 N 06 x 0.6
b bl bl
® ® 8
—a
® 04 ® 04 o4
& & a
S S = .
0.2 0.2 0.2 \\‘
- .
0 o - - 0
0 50 100 150 200 o 50 100 150 200 o 50 100 150 200
FID (V) FID () FID (4)

Figure 24. Evaluation on DiffusionDB dataset under the detection setup (part 1).
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Figure 25. Evaluation on DiffusionDB dataset under the detection setup (part 2).
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Figure 26. Evaluation on MS-COCO dataset under the detection setup (part 1).
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Figure 27. Evaluation on MS-COCO dataset under the detection setup (part 2).
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Figure 28. Evaluation on DALL-E3 dataset under the detection setup (part 1).
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Figure 29. Evaluation on DALL-E3 dataset under the detection setup (part 2).
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