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ABSTRACT

Recent years have witnessed significant advancements in deep multi-view clus-
tering (MVC). However, prevailing methods exhibit three critical limitations: (1)
poor scalability for large-scale datasets, (2) neglect of anchor semantic consis-
tency in feature alignment, and (3) inability to capture high-order feature interac-
tions. To overcome these challenges, we propose a Low-Rank Attention and Con-
trastive Alignment framework (LRACA). Unlike conventional approaches that
align sample-level features in shared subspaces, LRACA employs a category-
aware anchor generation module to directly align high-level semantic prototypes
(i.e., category centers) across views, explicitly enforcing clustering semantic con-
sistency. Furthermore, we devise a dynamic low-rank attention mechanism to en-
hance feature discriminability, where entropy regularization constrains attention
weight distributions to derive clustering pseudo-labels. Finally, a pseudo-label-
guided cluster-level contrastive learning module maximizes cross-view mutual in-
formation through a feed-forward optimization paradigm. Extensive experiments
on six large-scale multi-view datasets demonstrate that LRACA significantly out-
performs state-of-the-art methods.

1 INTRODUCTION

In this era of explosive information growth, it has become increasingly imperative to effectively
harness and synthesize multifaceted data streams, extracting and reconstructing them into action-
able insights that can inform and guide more rational human decision-making and behavioral pat-
terns Qin et al. (2022b); Peng et al. (2022); Jia et al. (2023); Qin et al. (2022a); Huang et al. (2024).
The integration and exploration of multi-view information has garnered more and more attention
in recent years Sun (2013); Hu et al. (2019); Wei et al. (2020). In multi-view learning, clustering
algorithms have emerged as a research focal point due to their performance in unsupervised learn-
ing scenarios with unlabeled samples. However, Current research exhibits notable limitations in
balancing cross-view heterogeneity alignment with computational efficiency. Conventional shallow
models (e.g., subspace learning Shang et al. (2023), multi-kernel fusion Long et al. (2024)) estab-
lish view correlations through linear assumptions or kernel function due to limited representational
capabilities, are difficult to model complex nonlinear relationships. Wang et al. (2021). While
deep learning approaches enhance feature expressiveness via nonlinear mappings—exemplified by
contrastive learning-based MFLVC Xu et al. (2022) that strengthens consistency through cross-view
instance alignment—their rigid similarity constraints suppress view-specific discriminative infor-
mation. Scalable anchor-sampling MVC methods Xia et al. (2022) reduce computation via random
core sample selection, yet distributionally deviant anchors introduce semantic bias, undermining
cross-view alignment. Furthermore, low-rank approximation attention mechanisms (e.g. Linformer
Wang et al. (2020)) achieve linear complexity, but this may lead to a decline in the ability to dis-
tinguish characteristics through dimensionality reduction strategies decoupled from clustering ob-
jectives. These issues collectively highlight the unresolved balance between semantic alignment
precision and computational efficiency in heterogeneous, large-scale MVC scenarios.

To address these challenges, we propose we propose a Low-Rank Attention and Contrastive Align-
ment framework (LRACA). The methodology’s core innovation lies in resolving view heterogeneity
alignment and computational bottlenecks through category-aware anchor sampling and low-rank
adaptive attention modules. Specifically, during pre-training, we employ label-driven K-means al-
gorithms to select category-representative anchors, constructing cross-view consistent anchor graphs
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to avoid semantic drift from random sampling. Subsequently, we design dynamic linear-complexity
self-attention modules enhanced by entropy regularization to constrain attention weight distribu-
tions, simultaneously reducing computational overhead and amplifying feature discriminability. Ul-
timately, a hierarchical contrastive learning framework achieves synergistic enhancement of effi-
ciency and precision through phase-wise optimization of intra-view private information and cross-
view semantic consistency under anchor graph guidance. Our methodology features three key inno-
vations:

• We propose a novel category-aware anchor sampling strategy integrated with a learnable
low-rank projection matrix. Anchor-guided sparsification enhance feature quality and the
projection dimension can be further reduced, providing high-confidence guidance and over-
coming the information loss of traditional approximation methods.

• We develop an efficient contrastive learning framework that replaces instance-wise full-
sample comparisons with cluster-level alignment. Through attention-guided semantic
matching, this approach not only enhances inter-view consistency and complementary in-
formation integration, but also reduces computational redundancy while maintaining fea-
ture discriminability.

• Experimental results on six common large-scale multi-view datasets demonstrate that
LRACA significantly improves clustering performance under mainstream clustering val-
uation metrics compared to current state of-the-art methods.

2 RELATED WORK

2.1 LARGE-SCALE MULTI-VIEW CLUSTERING

Multi-view clustering handles data from diverse perspectives. Conventional methods include graph-
based Tao et al. (2023), subspace Shang et al. (2023), NMF Zhao et al. (2020), and kernel-based
Long et al. (2024) techniques, with deep learning (e.g., autoencoders Zhang et al. (2019), GNNs
Xia et al. (2022); Wang et al. (2019)) gaining traction. To manage large-scale data, anchor-based
MVC methods reduce complexity by selecting anchor points per view to build graphs Li et al. (2019;
2015). Methods like CGMSC Liu et al. (2021b) unify graph fusion and anchor learning. However,
misaligned anchors across views degrade fusion and clustering. While AUP Wang et al. (2022)
addresses alignment, its iterative optimization is costly. Recent works focus on graph refinement
(SURER Wang et al. (2024), BF-CGF Yang et al. (2024)) and efficiency (parameter-free fusion
Duan et al. (2024)). Inspired by these, our LRACA uniquely integrates dynamic low-rank projection
with category-aware anchor sampling to enhance cross-view consistency efficiently.

2.2 CONTRASTIVE LEARNING

Contrastive learning, maximizing similarity for positive pairs and minimizing for negatives Oord
et al. (2018); Tian et al. (2020), has driven progress in multi-view representation learning Lin
et al. (2022); Liu et al. (2023); Yang et al. (2022). However, prevalent approaches often focus on
single views with artificial augmentations, incurring overhead and potential semantic inconsistency.
They also struggle to capture high-order semantic correlations organically integrating reconstruction
and consistency. This work elevates contrastive learning to the cluster level, mitigating inter-view
semantic discrepancies via pseudo-label-guided cross-view mutual information maximization.

3 METHODOLOGY

In this paper, we propose an end-to-end deep multi-view clustering framework to provide robust
network structure and align semantic consistency across views for improving the performance of
clustering. Fig. 1 illustrates the framework of LRACA.

3.1 ANCHOR-GUIDED LOW-RANK ATTENTION MODULE

We combine anchor points with a dynamic low-rank attention mechanism to form an anchor-guided
linear self-attention module. The core function of anchor points is to improve feature quality, thereby

2
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Figure 1: The framework of LRACA. It integrates an anchor-guided linear self-attention module
and a cluster-level contrastive learning module. Specifically, the view-specific encoder synergizes
feature clustering to dynamically generate semantic-aware anchor points and initialize pseudo-labels
for each view. The enhanced feature representation is constructed by concatenating the original in-
put Xv with the generated anchor set Av , which is subsequently fed into the linear self-attention
mechanism to refine discriminative embeddings and iteratively update pseudo-labels. Pseudo-labels
drive the cluster-level contrastive learning module to align semantic consistency across views, ulti-
mately yielding robust multi-view clustering results.

allowing for more aggressive low-rank approximation (reducing rank r) and indirectly reducing
computational complexity. The attention mechanism dynamically allocates weights by calculating
the similarity between samples and anchor points, avoiding fine-grained calculations on the entire
sample.The Anchor-guided View Encoder addresses two pivotal challenges in multi-view cluster-
ing: cross-view semantic discrepancies and the prohibitive computational complexity of full-sample
alignment. Conventional methodologies frequently struggle to preserve view-specific discrimina-
tive features while aligning heterogeneous distributions. Our key innovation lies in the label-driven
alignment mechanism, which enhances semantic coherence through meticulously designed align-
ment loss functions and pseudo-label generation, ensuring congruence among latent cluster centers
across different views for identical categories.

For the v-th view input Xv ∈ Rdv×N , a view-specific encoder Eθv maps it to latent features Zv =

E
(
θv
Xv) ∈ RN×d, where d is the shared latent dimension. A decoder Dϕv reconstructs the input as

X̂v = Dϕv
(Zv), optimized via the reconstruction loss:

Lrecon =

V∑
v=1

∥Xv −Dϕv (Eθv (X
v))∥2F (1)

The fused latent representation combines multi-view features through concatenation:

Zfusion =
[
Z(1)∥Z(2)∥ · · · ∥Z(v)

]
∈ RN×(v·d) (2)

which preserves view-specific discriminative patterns while enabling cross-view interaction. The
fused features are then clustered to generate pseudo-labels Y, which iteratively guide anchor refine-
ment.

The fused latent representation Zfusion serves as the foundation for generating pseudo-labels that
guide cross-view semantic alignment. A two-stage process ensures robust cluster formation: K-
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means clustering is applied to Zfusion to obtain initial pseudo-labels:

Ypseudo = K-means(Zfusion, C) ∈ {1, . . . , C}N (3)

where C denotes the number of clusters. For each cluster c ∈ {1, . . . , C} and view v, samples
belonging to cluster c are identified in the shared latent space:

S(c)
k =

{
z
(v)
i ypesudo,i = c

}
(4)

where ypesudo,i is the refined pseudo-label. Sub-clustering via K-means on S(v)
c yields m fine-grained

anchors:
A(v)

c = K-means(S(v)
c ,m) ∈ Rm×d (5)

To enforce semantic agreement across views, cluster centroids A
(v)
c are decoded to view-specific

anchors Â(v)
c = gϕv

(A
(v)
c ) and aligned via:

Lalign-anchor =
∑
v ̸=u

K∑
k=1

∥∥∥A(v)
c −A(u)

c

∥∥∥2
F

(6)

where ∥ · ∥2F ensures distributional consistency in the latent space. This alignment guarantees that
anchors representing the same semantic category are invariant to view-specific perturbations.

The total training objective integrates reconstruction fidelity, latent distribution alignment, and an-
chor consistency:

Lpre = Lrecon + Lalign-anchor (7)

This unified framework creates a self-reinforcing cycle: pseudo-labels guide anchor generation,
while aligned anchors refine pseudo-labels through contrastive learning.

Pseudo-labels Ypseudo are iteratively updated using both feature similarity and anchor consistency,
reducing label noise.Sub-clustering within each pseudo-cluster (S(v)

c ) captures intra-class diversity
while maintaining cross-view alignment.

Traditional self-attention mechanisms suffer from quadratic complexity O(N2), which costs large
Computility for multi-view data. We propose a dynamic low-rank decomposed attention mechanism
that achieves linear complexity O(Nk) (k ≪ N ) while enhancing cross-view semantic alignment.
The proposed method introduces three fundamental improvements over baseline approaches: (1)
Dynamic Projection, which employs a learnable projection matrix Θ to dynamically adapt to data
distributions, in contrast to rigid Johnson-Lindenstrauss (JL) projections; (2) Semantic Anchoring,
which explicitly couples cross-view anchors to preserve semantic consistency across views, replac-
ing error-prone random anchor initialization; and (3) Entropy Regularization, where the entropy
constraint prevents degenerate solutions where attention focuses solely on a few dominant anchors.
Given input features Xv ∈ RN×d and anchor prototypes

A =

V⋃
ν=1

C⋃
c=1

Â(ν)
c ∈ RM×d (8)

, where M = V ∗ C ∗ m, we construct dynamic projection parameters through anchor semantic
fusion:

Θ = softmax(AWc) ∈ Rk×d (9)

where Wc ∈ Rd×k is learnable. Specifically, the dynamic low rank projection matrix Θ uses
fused clustering centersA to dynamically project features into the k-dimensional semantic subspace,
replacing JL projection and initializing through C’s SVD principal component. Meanwhile, softmax
normalizes by row to ensure that each row (i.e., each low dimension basic vector) is a weighted
combination of anchor semantics. For each attention head:

Q = XvWQ ∈ RN×d,

4
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K̃ = softmax(XvΘ⊤)⊤Xv ∈ Rk×d, (10)

Ṽ = softmax(XvΘ⊤)⊤Xv ∈ Rk×d.

The attention weights are computed as:

Attention(Q, K̃, Ṽ) = softmax

(
QK̃⊤
√
d

)
Ṽ ∈ RN×k (11)

Among them WQis the query matrix after linear transformation. The query only comes from the
original input features; Keys and values come from the enhanced feature matrix, introducing anchor
information. Each attention head has an independent weight matrix for learning multiple relation-
ships, where d is the dimension of the key and serves as a hyperparameter. By matrix multiplication,
the original high-dimensional feature X is projected onto a low dimensional space to probabilisti-
cally represent the semantic association strength between the i-th sample and the j-th anchor point.
Then, the original feature Xv is weighted and summed using weight matrix to obtain a compressed
low rank matrix, which serves as the basis for subsequent attention calculations. The attention
weight summarizes the semantics of N samples using k, thereby reducing the cost.

3.1.1 ENTROPY REGULARIZATION

The entropy constraint prevents degenerate solutions where attention focuses solely on a few domi-
nant anchors.

Lent = − 1

N

N∑
i=1

N+M∑
j=1

aij log aij (12)

where aij denotes the attention weight between query i and key j. This encourages sparsity for
discriminative features while maintaining diversity.

The final output combines multi-head results with parametric skip-connection:

Zo = LayerNorm(X+ Concat(head1, ...,headh)Wo) (13)

where the X ∈ RN×dis the input sequence (sequence length N , feature dimension d), the headi ∈
RN×d/h is the output of the i-th attention head (h = number of heads)and the Wo ∈ Rd×dindicates
the output projection matrix for multi-head concatenation.

3.2 CLUSTER-LEVEL CONTRASTIVE LEARNING WITH PSEUDO-LABEL GUIDANCE

Traditional contrastive learning in multi-view clustering often suffers from sample-level noise due
to inconsistent pseudo-labels across views. To address this, we propose a cluster-level contrastive
learning paradigm that operates on cluster probability vectors instead of raw features. Cluster cen-
troids provide stabilized representations of semantic categories. The key innovation lies in lever-
aging cluster with pseudo-labels to define view-invariant positive/negative pairs, thereby aligning
semantic structures across heterogeneous views while suppressing label noise. For each sample
i across V views, let pv

i ∈ RK denote its cluster probability vector in the v-th view, derived
from pseudo-labels Ypseudo. Positive pairs are defined as probability vectors of the same sample
across different views (pv1

i ,pv2
i ), while negative pairs include different samples regardless of views

(pv1
i ,pv2

j ), j ̸= i. This strategy enhances intra-cluster compactness and inter-cluster separability.
The similarity between two probability vectors is measured via cosine similarity Chen et al. (2020):

s(pv1
i ,pv2

j ) =
(pv1

i )⊤pv2
j

∥pv1
i ∥∥pv2

j ∥
(14)
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Algorithm 1 LRACA Algorithm

Require: Multi-view dataset X = {Xv}Vv=1, cluster number K, rank r, temperature τ , hyperpa-
rameters λc, λent

Ensure: Clustering labels Y
1: Initialization:
2: Initialize encoder weights θv , decoder weights ϕv via Xavier initialization
3: Initialize anchor set A with K-means on concatenated features
4: Initialize low-rank projection Θ via anchor cluster centers
5: Pretraining Phase:
6: for epoch = 1 to Epre do
7: update anchor alignment loss Lalign-anchor via Eq.equation 6
8: Calculate entropy regularization Lent via Eq.equation 12
9: end for

10: Contrastive Fine-tuning:
11: for epoch = 1 to Ec do
12: Calculate contrastive loss Lc via Eq.equation 15
13: end for
14: return Y

The cluster-level contrastive loss for view pair (v1, v2) is formulated as:

Lc(v1,v2) = − 1

N

N∑
i=1

log
exp (s(pv1

i ,pv2
i )/τ)

Ai +Bi
,

where Ai =

N∑
j=1

exp (s(pv1
i ,pv2

i )/τ) ,

Bi =

N∑
j=1
j ̸=i

exp
(
s(pv1

j ,pv2
j )/τ

)
.

(15)

where τ > 0 is a temperature hyperparameter. The denominator contrasts positive pairs against all
negatives, explicitly maximizing mutual information for consistent clusters.

The total loss integrates reconstruction, attention regularization, and contrastive objectives:

L = Lrec + λentLent + λcLc (16)

where λent, λc balance cross-view alignment and cluster discrimination.

3.3 COMPLEXITY ANALYSIS

Let m, nv , dv , K, r, Tkmeans, and h denote the batch size, number of views, feature dimension
per view, cluster count, low-rank projection dimension, K-means iterations, and attention heads
respectively.

The dynamic low-rank attention mechanism achieves linear complexity through three key phases:via
(Eq. 9) construct dynamic projection matrix Θ ∈ Rk×d with O(dk) complexity, via (Eq. 10)
compute K̃ = softmax(XΘ⊤)⊤X with O(mdk) complexity and via (Eq. 11) compute A =

softmax(QK̃⊤/
√
d) with O(mk) complexity. The overall complexity after t iterations becomes:

O(nvmdvr + n2
vm

2K + TkmeansmKr + nvKm2r + hmdk)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics The proposed method was comprehensively evaluated on six widely used
multi-view datasets, with detailed specifications in Table 1. Six datasets, including , Fashion Xiao

6
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Table 1: Dataset Specifications

Dataset Samples Classes Views
Fashion 10,000 10 5

NUSWIDEOBJ 30,000 31 5
CIFAR-10 50,000 10 3

YouTubeFaceSel 101,499 31 5
TinyImageNet 100,000 200 4

YouTubeFace50 126,054 50 4

Table 2: Performance Comparison (%)

Dataset YouTubeFaceSel NUSWIDEOBJ CIFAR-10
ACC NMI PUR ACC NMI PUR ACC NMI PUR

k-means 11.71 10.25 27.23 12.27 10.50 23.87 89.35 78.49 89.35
BMVC 28.15 28.18 26.91 15.73 13.51 24.67 99.14 98.46 99.14
DCCA 27.50 27.10 27.40 17.00 14.25 23.50 98.50 97.00 98.00

CoMVC - - - 14.50 13.00 22.00 93.00 91.00 94.00
OPMC 22.55 21.38 29.09 14.55 14.38 22.09 94.55 92.38 94.55
FSMSC 23.98 23.32 26.89 19.03 13.24 22.63 99.54 97.01 96.63

DCP 29.45 27.72 36.20 18.51 14.55 24.00 89.42 95.41 94.22
MFLVC - - - 17.24 15.36 20.30 97.55 94.15 95.45

GC-CMVC 34.10 28.75 41.00 17.85 14.36 25.30 98.55 97.15 99.45
LRACA 33.75 29.35 41.30 17.64 14.73 26.14 99.24 97.88 99.24

Dataset Fashion TinyImageNet YouTubeFace50
ACC NMI PUR ACC NMI PUR ACC NMI PUR

k-means 82.27 70.50 83.87 2.35 8.50 1.00 60.30 72.50 55.30
BMVC 95.73 93.51 94.76 4.00 13.70 1.55 66.00 82.20 57.00
DCCA 94.80 93.05 94.21 4.20 12.00 1.40 62.00 70.35 64.20

CoMVC 90.20 88.00 91.00 - - - - - -
OPMC 90.55 86.38 90.09 5.10 12.10 1.32 69.35 82.30 62.00
FSMSC 99.20 98.00 99.20 4.90 12.20 1.30 72.50 81.20 69.50

DCP 99.00 97.80 99.00 4.55 11.30 1.20 65.20 78.30 67.00
MFLVC 95.82 96.25 95.50 - - - - - -

GC-CMVC 99.00 98.50 99.50 5.25 14.70 1.45 74.50 85.90 73.25
LRACA 99.35 98.29 99.35 5.30 15.50 1.50 75.60 85.37 72.00

et al. (2017), NUSWIDEOBJ Chua et al. (2009), Cifar-10 Krizhevsky et al. (2009), YoutubeFace
sel Wolf et al. (2011), TinyImageNet Yang et al. (2016) and YoutubeFace50, evaluated the effec-
tiveness of LRACA. We evaluate clustering performance using three metrics: Accuracy (ACC):
Percentage of correctly clustered samples. Normalized Mutual Information (NMI): Information-
theoretic measure of cluster similarity.Purity (PUR): Proportion of dominant class in each cluster
Chen et al. (2021).

Comparison Methods. We compare LRACA with eight representative multi-view clustering ap-
proaches: k-means: Classic centroid-based clustering applied independently to each view. Serves as
the naive baseline. BMVC Zhang et al. (2018): Bipartite Multi-View Clustering constructs binary
encoding matrices to maximize inter-view synergy while minimizing redundancy. FSMSC Chen
et al. (2023): Fast Self-guided Multi-view Subspace Clustering integrates view-specific subspaces
through efficient graph fusion. DCCA Andrew et al. (2013): Deep Canonical Correlation Anal-
ysis learns shared representations by maximizing cross-view correlations. DCP Lin et al. (2022):
Dual Contrastive Prediction employs bidirectional contrastive learning between views and predic-
tions. CoMVC Trosten et al. (2021): Contrastive Multi-View Clustering aligns positive pairs (same
sample across views) while repelling negatives. OPMC Liu et al. (2021a): One-Pass Multi-view
Clustering achieves efficient clustering through single-pass view integration. MFLVC Xu et al.
(2022): Mutual-Feature Learning resolves conflicts between reconstruction and contrastive objec-

7
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Table 3: Ablation results (%) of the proposed strategies. “(w/o Lalign-anchor)” and “(w/o Lent)” repre-
sentanchor alignment reconstruction and low-rank projections in the model, respectively. The best
results are bolded.

Datasets Fashion NUSWIDEOBJ CIFAR-10

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR

LC+AAC 88.75 85.54 89.90 14.23 11.50 22.46 97.61 96.27 97.61
LC+LRP 90.22 87.36 90.54 15.45 12.80 23.00 92.25 90.99 92.25
LC+AAC+LRP 99.35 98.29 99.35 17.64 14.73 26.14 99.24 97.88 99.24

Datasets YouTubeFaceSel TinyImageNet YouTubeFace50

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR

LC+AAC 31.23 28.87 38.36 5.15 15.10 1.44 75.10 84.26 71.18
LC+LRP 29.51 27.28 36.25 4.20 13.80 1.16 63.23 72.66 60.50
LC+AAC+LRP 31.75 29.35 39.00 5.30 15.50 1.50 75.60 85.37 72.00

tives. GC-CMVC Xu et al. (2024): utilizing multi-level contrastive learning and structural consis-
tency constraints.

Implementation Details. Experiments were conducted on NVIDIA RTX 3060Ti GPU (12GB
VRAM), Intel i5-12490KF CPU, and 32GB RAM. We used View-specific fully-connected autoen-
coders with symmetrical encoder-decoder structures. The encoder comprises 4 hidden layers with
dimensions [2048, 1024, 512, 256], using ReLU activation. We initialize Θ via anchor cluster cen-
ters and use k = 16 for all experiments. Loss weights α, β ∈ {0.001, 0.005, 0.01} are selected via
grid search . All baseline methods were retrained under identical conditions using official imple-
mentations with optimal hyperparameters reported in their original papers.
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Figure 2: Parameter investigation of k on cifar10 and youTubeFace50 in terms of ACC and NMI.
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Figure 3: Parameter investigation of λc and λent on cifar10 and youTubeFace50 in terms of ACC
and NMI

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Comprehensive benchmarking on six standard multi-view datasets (Table 2) shows that our proposed
LRACA framework outperforms nine state-of-the-art methods across most evaluation metrics. On
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TinyImageNet, which contains fine-grained features, LRACA leads second-best approaches by over
1 percentage point on three core metrics. It also sets a new state-of-the-art ACC of 75.60% on
YouTubeFace50—a 2% absolute gain over GC-CMVC—and remains stable even at the scale of
101k samples, demonstrating the effectiveness of our cluster-level contrastive learning mechanism.
Further analysis reveals two key insights: (1) LRACA achieves an average ACC/PUR advantage of
3.8% on noisy datasets such as NUSWIDEOBJ and YoutubeFace sel, confirming that its low-rank
attention mechanism captures high-order intra-view interactions; (2) Our co-training framework out-
performs the contrastive-based MFLVC by 2.1% on average, owing to the synergy between feature
reconstruction and self-attention. Notably, where conventional contrastive methods fail with out-
of-memory errors under large-scale settings, LRACA completes training successfully via dynamic
sampling. These results collectively validate LRACA’s advantages in representation learning, effi-
ciency, and robustness for multi-view data.

4.3 ABLATION STUDY

The ablation studies across six benchmark datasets systematically evaluate the contributions of three
core modules: Anchor Alignment Constraint (AAC) for cross-view semantic consistency, Low-
Rank Projection (LRP) for feature space optimization, and cluster-level contrastive loss (CL) as the
base clustering objective (see Table 3). Experimental results demonstrate that removing AAC leads
to marginal performance degradation, particularly in smaller-scale scenarios (e.g., YouTubeFace50
ACC drops from 75.60% to 75.10%, NUSWIDEOBJ ACC decreases by 3.41%), validating its role
in constructing view-invariant latent spaces. In contrast, eliminating LRP causes substantial dete-
rioration in high-dimensional environments, with CIFAR-10 ACC plummeting 7.0% (from 99.24%
to 92.25%) and NMI decreasing 2.07%, confirming LRP’s criticality in balancing feature expres-
siveness and computational complexity. Notably, the joint retention of AAC and LRP yields an
average 4.2% performance improvement across all datasets, demonstrating their synergistic effects
in ensuring both cross-view consistency and compact feature representation.

4.4 PARAMETER SENSITIVITY ANALYSIS

This section conducts a sensitivity analysis on the hyperparameters of the model, focusing on the
impact of the latent projection factor k, as well as the parameters λc and λent, on clustering perfor-
mance. Experiments are performed on two representative datasets, YouTubeFace50 and Cifar-10,
by varying combinations of these parameters to evaluate clustering accuracy (ACC) and NMI. Fig. 2
illustrates the influence of different k values on clustering ACC and NMI. The experimental results
demonstrate that the model achieves relatively optimal performance when k = 16.

Fig. 3 present the clustering performance under varying combinations of λc and λent (0.001, 0.05,
0.01). The results reveal significant fluctuations in ACC on the YouTubeFace50 dataset depending
on the parameter combinations. However, the method exhibits stable clustering performance across
large-scale datasets under different λc and λent settings. The parameter sensitivity analysis validates
the robustness of the proposed method, particularly in large-scale data scenarios, highlighting its
adaptability to diverse parameter configurations.

5 CONCLUSION

This paper presents LRACA, a novel multi-view clustering framework that effectively addresses
critical challenges in feature extraction efficiency, training scalability, and cross-view consistency
through three key innovations: label-driven anchor sampling dynamically generates cross-view con-
sistent prototypes to enhance view alignment, low-rank attention mechanisms significantly reduce
computational complexity while preserving discriminative patterns, and cluster-level contrastive
learning systematically minimizes inter-view discrepancies by leveraging semantic relationships.
Experimental validation across six large-scale benchmarks demonstrates the framework’s superior
clustering performance and robustness. Future research directions include developing adaptive view
alignment strategies for heterogeneous data integration and extending the framework’s capabilities
to semi-supervised and incremental learning scenarios, thereby broadening its applicability to evolv-
ing real-world data environments.

APPENDIX
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A THE USE OF LLM

Large Language Models(LLMs) were used to aid in the writing and polishing of the manuscript.
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