
Repository-Level Prompt Generation for
Large Language Models of Code

Disha Shrivastava 1 2 Hugo Larochelle 1 2 3 Daniel Tarlow 4 2

Abstract
With the success of large language models
(LLMs) of code and their use as code assistants
(e.g. Codex (Chen et al., 2021) used in GitHub
Copilot1), development of techniques where we
can have the capability to introduce domain-
specific knowledge in the prompt design process
becomes important. In this work, we propose a
framework called Repo-Level Prompt Generator
that learns to generate example-specific prompts
using a set of rules. These rules allow us to take
context from the entire repository, thereby incor-
porating both the structure of the repository and
the context from other relevant files (e.g. imports,
parent class files). Our technique doesn’t require
any access to the weights of the LLM, making it
applicable in cases where we only have a black-
box access to the LLM. We conduct experiments
on the task of single-line code-autocompletion us-
ing code repositories taken from Google Code
archives. We demonstrate that an oracle con-
structed from our proposed rules gives up to 36%
relative improvement over Codex, showing the
quality of our proposed rules. Further, we show
that when we train a model to select the best rule,
we can achieve significant performance gains over
Codex.

1. Introduction
Large Language Models (LLMs) have shown promising re-
sults in the area of natural language processing, where mod-
els such as GPT-3 (Brown et al., 2020) and PaLM (Chowd-
hery et al., 2022) demonstrated remarkable performance.
Recently, LLMs have been used for modeling source code

*Equal contribution 1Mila, Université de Montréal 2Google Re-
search 3CIFAR Fellow 4Mila, McGill University. Correspondence
to: Disha Shrivastava <dishu.905@gmail.com>.

ICML workshop on Knowledge Retrieval and Language Mod-
els, Baltimore, Maryland, USA, 2022. Copyright 2022 by the
author(s).

1https://copilot.github.com/

as well (Austin et al., 2021; Fried et al., 2022; Xu et al.,
2022a; Feng et al., 2020). Codex (Chen et al., 2021) is one
of the earliest LLM that contains about 12 billion parame-
ters and was trained on publicly available code from GitHub.
In particular, Codex has been deployed as part of GitHub
Copilot1, which is an in-IDE code assistant.

Despite the success of LLM for code, as illustrated in Fig-
ure 1 of Xu et al. (2022a) and mentioned in their paper "the
strongest models are not publicly available". For instance,
OpenAI provides access only to the generated output from
Codex via an API 2. The model weights and data are un-
available. Under this setting, most of the existing prompt
generation techniques (Li & Liang, 2021; Shin et al., 2020;
Lester et al., 2021) can’t be used because they require access
to some or all of the weights of the LLM.

Automatically generating an example-specific prompt is
challenging and remains an active area of research (Liu et al.,
2021a; Reynolds & McDonell, 2021). With increasing use
of LLMs as assistive agents to humans, it is important to
generate prompts that are easier for humans to understand
and intuitive enough for them to change if desired. In this
work, we propose a framework called Repo-Level Prompt
Generator (RLPG) that enables the capability to incorporate
domain-specific knowledge in the prompt-designing process
via a set of rules. One of the distinguishing features of
RLPG is that it considers the code context not just from the
current file, but from the entire repository, thereby allowing
us to incorporate both the structure of the repository as well
as the context in the other files in the repository. This makes
particular sense for source code where context coming from
outside the current file, such as imports and parent classes,
can be very useful for predicting the hole. The choice of
where from and what to take from the repository is specified
by each rule. For example, we could have a rule that returns
all the identifiers used in the first import file. The prompts
generated by our rules are discrete, similar to suggested in
some previous works in NLP (Shin et al., 2020; Schick &
Schütze, 2021). However, rather than fixing one particular
rule for each example, we propose a Rule Classifier neural
module that learns to come up with the best rule conditioned
on that example, such that the resulting prompt is likely to

2https://openai.com/blog/openai-codex/

Repository-Level Prompt Generation for Large Language Models of Code

Figure 1: Repo-Level Prompt Generator: The prompt is generated by combining the rule context corresponding to r = 14
(method names and bodies from the imported file, MaximizingGibbsSampler.java) with the default Codex context. Codex
then uses this prompt to output its predicted hole.

produce the desired output.

In this work, we focus on the task of single-line code-
autocompletion in a line-level maintenance setting (Shri-
vastava et al., 2020) in an IDE, where the objective is to
predict the blanked-out portion (or target hole) starting from
the position of an imagined cursor to the end of line. There
might also be code that follows below this line. This reflects
the setting where a user is editing an existing file. Figure 1
provides an illustration of our system in progress. The rule
classifier takes in the hole position (position of the cursor)
in the current file, the repository to which the current file is
a part of and a list of rules as input, and chooses a particular
rule to be used for that hole prediction. In the figure, the
chosen rule corresponds to taking the method names and
bodies from the import file (i.e., rule context). The Prompt
Generator uses this rule context and concatenates it with
50% of the default Codex context to get the prompt. The
default Codex context consists of code prior to the position
of the hole in the current file. The generated prompt can
then be given as input to Codex so it can make a prediction
for the hole (shown in the brown box on the top) as output.
Our key contributions can be listed as follows:

• We propose a framework called the Repo-Level Prompt
Generator (RLPG) that learns to generate prompts con-
ditioned on the example, without requiring access to the
weights of the LLM.

• To incorporate domain-knowledge in the prompt design
process, RLPG uses a set of repository-level rules. These
rules are designed to incorporate both the structure of the
repository as well as the relevant context from other files
in the repository.

• On the task of single-line code-autocompletion using code
repositories in Java, we show that an oracle constructed
from our proposed rules gives up to 36% relative improve-
ment over Codex. Further, we show that when we use our
rule classifier to select the best rule, we can achieve up to
17% relative improvement over Codex.

2. Repo-Level Prompt Generator (RLPG)
In this section, we provide details of our framework. We
start by describing our proposed rules and then follow with
a discussion about our rule classifier. Finally, we briefly
describe the Prompt Generator module.

2.1. Repo-Level Rules

The core idea of RLPG consists of substituting part of the
default Codex context with context coming from somewhere
else in the repository. The decision of what to take and from
where in the repository to take from is governed by a set of
rules. These rules were decided based on manual inspection
of our training data and intend to capture common coding

Repository-Level Prompt Generation for Large Language Models of Code

patterns. A rule can be thought of as a function that takes in
a target hole’s position and the repository that the hole is a
part of as input, and returns the rule context (string). A rule
is specified by three quantities: (a) rule context location, (b)
rule context type and (c) rule context fraction. We mention
each of these along with the motivation for them below.

Rule Context Location: For a target hole position, a rule’s
context location determines from where should we take
code that will be part of the rule context. We propose ten
different rule context locations: (a) Current, (b) Parent Class,
(c) Import, (d) Sibling, (e) Similar Name, (f) Child Class,
(g) Import of Parent Class, (h) Import of Sibling, (i) Import
of Similar Name, and (j) Import of Child Class. For each
rule context location, we use a heuristic to get either a single
file or a ranked list of files. In the latter case, we will
take context from these files until we exhaust the maximum
context length allocated to the rule. See Appendix A.1 for
details on the rule context locations and Appendix A.4 for
details of the ranking of files based on their rule context
location.

Rule Context Type: The rule context type determines what
code to take from the rule context location. We propose
seven different rule context types: (a) Post Lines (PL), (b)
Identifiers (I), (c) Type Identifiers (TI), (d) Field Decla-
rations (FD), (e) String Literals (SL), (f) Method Names
(MN), and (g) Method Names and Bodies (MNB). See Ap-
pendix A.2 for more details.

Rule Context Fraction: The rule context fraction deter-
mines the fraction of the final prompt that will be made of
the code coming from the rule context. We use rule context
fraction values of 0.25, 0.5 and 0.75. Appendix A.3 for a
list of our proposed rules. Note that depending on the target
hole, not all rules will be applicable (e.g. if there are no
parent classes in the current file, rules 8-13 and 50-55 won’t
be applicable.

2.2. Rule Classifier

Given a hole position, the purpose of the rule classifier is
to select the best rule r that is likely to produce a prompt
that will lead to success, where success happens when the
target hole h exactly matches the predicted hole ĥ. This task
is formulated as a multi-label binary classification problem
because for a given target hole, more than one rule can lead
to success. In this formulation, we treat using the default
Codex context as complete prompt, as one of the rules. Next,
we describes the training procedure for the rule classifier.

Training: For each target hole h, we generate a ground-
truth vector Y h = {yhr }Mr=1 which is a multi-hot vector of
size M , where M is the total number of rules. This vector
is obtained by feeding the prompt generated by using the
context from rule r into Codex and then seeing whether ĥ =

h. If there is a match, we say that the rule r is successful.
For hole h if a rule r is applicable and leads to success,
yhr = 1 or will be zero otherwise. For each hole h, we
obtain a mask Th where Th

r = 1 when r is applicable or
Th
r = 0 otherwise. The overall training loss, L can be

expressed as follows:

L =
1

N

N∑
h=1

1

Mh

Mh∑
r=1

BCE(ŷhr , y
h
r) ∗ Th

r (1)

In the above equation, N is the total number of holes en-
countered while training, Mh denotes the total number of
applicable rules for h and BCE corresponds to the binary
cross entropy loss. Masking ensures that we consider only
the rules that are applicable. Next, we describe two variants
of our rule classifier that can be used to obtain the prediction
ŷhr .

RLPG-H: Let Hh be the hole window that includes code
present around the hole h excluding the hole itself. In our
work, we take two lines before the hole position, the code up
to the hole position and two lines after the hole position. We
use a pretrained model Fϕ to obtain a context representation
vector of size Z where Z is the dimension of the hidden
state of the model Fϕ. Specifically, we take the hidden state
at the first position, i.e. the representation of the [CLS] to-
ken. To make training of the rule classifier computationally
efficient, the parameters ϕ are frozen during training. The
RLPG-H model takes the context representation of the hole
window and projects it to the rule space of size M via two
dense layers with a non-linearity in between. Taking sig-
moid of this output gives the prediction of the rule. See
Appendix D.1 for more details.

RLPG-R: The motivation behind this variant is to use the
similarity in the hole window and the rule context to deter-
mine which rule can be useful. Given a particular hole h,
let Ch

r denote the rule context from rule r . Intuitively, if
the hole window contains variables, say identifiers that are
similar to the variables in the rule context, then there are
chances that h might occur somewhere in Ch

r . The similar-
ity is modeled using an attention mechanism, by treating the
projected hole window representation Qh as a query and the
projected rule context representation, Kh

r (Equation 3) as a
key. The value V h

r is same as the key. See Appendix D.2
for more details.

2.3. Prompt Generator

The Prompt Generator takes the rule r chosen by the rule
classifier, the repository and the hole position as input and
generates the prompt as output. The rule context is always
added before the default Codex context.

Repository-Level Prompt Generation for Large Language Models of Code

Data
Split

SR
Codex(%)

SR
Oracle(%)

Rel. ↑
over Codex(%)

Train 59.78 80.29 34.31
Val 62.10 79.05 27.28
Test 58.73 79.63 35.58

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -

Oracle 79.63 35.58 80.24 32.31

Fixed Rule (k = 1) 65.78 12.00 68.01 12.15
RLPG-H (k = 1) 68.51 16.65 69.26 14.21
RLPG-R (k = 1) 67.80 15.44 69.28 14.26

Figure 2: (Left) Performance of the oracle relative to Codex; (Right) Success Rate (SR) of different methods on the test data
when averaged across all holes (hole-wise) and across individual repositories (repo-wise)

3. Experiments and Results
Dataset Creation: We scraped Google Code 3 for reposito-
ries in Java. We divided the repositories into train, validation
and test splits where each repository in its entirety is part of
a split. In each file within a repository, we remove lines that
are blanks and comments, and set the hole position to be the
middle character in the line. See Appendix C for complete
details.

Methods: The details of the methods used in our experi-
ments is given below. Foe each method, to measure success,
we used exact match between the predicted hole string gener-
ated by Codex and the target hole string. In our experiments,
we report this fraction, called success rate (SR).

1. Codex: Using the default Codex context as prompt.
2. Oracle: Using the ground-truth vector Y h (mentioned

in Section 2.2). The prompt generated corresponds to
using any of the successful rules with yhr = 1. Since
this information is not available at inference, the oracle
performance represents an upper bound.

3. Fixed Rule (k): Using k prompts generated with top-k
rules. The k rules are fixed for all target holes. The
top-k rules were decided based on decreasing order of
success rate of the individual rules on the validation
dataset. When k = 1, this corresponds to generating a
single prompt using a single rule. In our case, it was
r = 7, which corresponds to taking 0.75 fraction of
post lines from the current file.

4. RLPG-H (k) and RLPG-R (k): Using k prompts
generated by top-k rules. The top-k rules correspond
to the top-k rule predictions given by the RLPG-H and
RLPG-R variants of our rule classifier.

3.1. Results

Performance of Proposed Rules: The left part of Table 2
shows the performance of an oracle constructed from our
proposed rules. We see that across all data splits, the pro-
posed rules contribute to large relative improvements when
compared to Codex. This result was pleasantly surprising to
us as Codex has not been trained on prompts that consist of

3https://code.google.com/archive/

context other than the default Codex context. These results
display that incorporating repo-level knowledge in the form
of rules can be quite effective strategy for generating useful
prompts.

Performance of the Rule Classifier: Having seen promise
in our proposed rules, next we present the results of RLPG,
which for each target hole, predicts a single best rule that
can lead to success. The right part of Table 2 presents
the success rates along with the percentage of relative im-
provements for the test data. The second and third columns
correspond to the averages across all holes in the test data.
The last two columns correspond to the average success rate
of individual repositories. The latter metric doesn’t account
for the size of the repository. As can be seen from the table,
both the RLPG variants as well as fixed rule improve the
performance significantly over Codex, again highlighting
the value of the proposed rules. In addition, both the RLPG
variants show improved performance when compared to
fixed rules highlighting the importance of learning a rule
classifier. See Appendix B.3 for performance of all methods
on individual repositories and Appendix B.1, Appendix B.2
and Appendix B.4 for experiments with scaling behaviour,
rule-wise performance and analysis of sample cases.

4. Related Work
There are two broad categories of prompt generation tech-
niques. The first category corresponds to producing continu-
ous/soft prompts where the prompt is described in the latent
space of a language model (Li & Liang, 2021; Qin & Eis-
ner, 2021; Bragg et al., 2021; Lester et al., 2021; Liu et al.,
2021b). The second category produces discrete prompts
where the prompt is a text string that can be interpreted
by a human (Shin et al., 2020; Gao et al., 2021; Schick &
Schütze, 2021). Our work falls in the category of discrete
prompt generation techniques as we produce a prompt con-
sisting of code tokens that can be easily interpreted by a
human. However, in contrast to prior works that use a set
of fixed templates for all examples, we learn to generate
prompts conditioned on each example. Another important
distinction is that we do not require access to the weights
of the LM. To the best of our knowledge, our work is the

Repository-Level Prompt Generation for Large Language Models of Code

first to explore automatic prompt generation in the domain
of source code. We provide additional related works in
Appendix G.

5. Conclusions and Future Directions
We present RLPG, a framework that learns to automatically
generate prompts conditioned on the example without re-
quiring access to the weights of the LLM. RLPG utilizes
the structure of the repository as well as the context from
other files in the repository using a set of easy to understand
rules. For future work, we want to explore the composition
of contexts coming from two or more rules to generate a
prompt and incorporating user’s feedback in RLPG.

Acknowledgement
Hugo Larochelle would like to acknowledge the support of
Canada Research Chairs and CIFAR for research funding.
The authors would like to thank Google Cloud for providing
compute resources required for this project. We would also
like to extend our thanks to Breandan Considine for help in
crawling the Google Code data archives; Justine Gehring,
Avinash Bhat and Breandan Considine for helping with
resources for running experiments; and David Bieber for
feedback and comments on the draft that helped us improve
writing. Finally, we would like to acknowledge OpenAI for
providing access to the Codex API.

References
Allamanis, M. The adverse effects of code duplication in

machine learning models of code, 2018. URL https:
//arxiv.org/abs/1812.06469.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,
2016.

Black, S., Biderman, S., Andonian, A., Anthony, Q., Gali,
P., Gao, L., Hallahan, E., Levy-Kramer, J., Leahy, C.,
Nestler, L., Parker, K., Phang, J., Pieler, M., Purohit, S.,
Songz, T., Wang, P., and Weinbach, S. GPT-NeoX: Large
scale autoregressive language modeling in pytorch, 2021a.
URL http://github.com/eleutherai/gpt-neox.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman,
S. GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow, March 2021b. URL
https://doi.org/10.5281/zenodo.5297715. If you
use this software, please cite it using these metadata.

Bragg, J., Cohan, A., Lo, K., and Beltagy, I. FLEX:
Unifying evaluation for few-shot NLP. In Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Sys-
tems, 2021. URL https://openreview.net/forum?
id=_WnGcwXLYOE.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33, pp.
1877–1901. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., et al. Code-
bert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, W.-t., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and
synthesis, 2022. URL https://arxiv.org/abs/2204.
05999.

Gao, T., Fisch, A., and Chen, D. Making pre-trained
language models better few-shot learners. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 3816–3830, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.295. URL https:
//aclanthology.org/2021.acl-long.295.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou,
L., Duan, N., Svyatkovskiy, A., Fu, S., et al. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366, 2020.

https://arxiv.org/abs/1812.06469
https://arxiv.org/abs/1812.06469
http://github.com/eleutherai/gpt-neox
https://doi.org/10.5281/zenodo.5297715
https://openreview.net/forum?id=_WnGcwXLYOE
https://openreview.net/forum?id=_WnGcwXLYOE
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://aclanthology.org/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295

Repository-Level Prompt Generation for Large Language Models of Code

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
Learning and evaluating contextual embedding of source
code. In Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020, 12-18 July 2020,
Proceedings of Machine Learning Research. PMLR,
2020.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L.,
and Lewis, M. Generalization through memorization:
Nearest neighbor language models. In International
Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HklBjCEKvH.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Bengio, Y. and LeCun, Y. (eds.), 3rd
International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015.

Lester, B., Al-Rfou, R., and Constant, N. The power
of scale for parameter-efficient prompt tuning. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 3045–3059, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. URL
https://aclanthology.org/2021.emnlp-main.243.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pp. 4582–4597, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.353. URL https://aclanthology.org/2021.
acl-long.353.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Lago, A. D., Hubert, T., Choy, P., d’Autume, C. d. M.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Rob-
son, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K.,
and Vinyals, O. Competition-level code generation with
alphacode, 2022. URL https://arxiv.org/abs/2203.
07814.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing,
2021a. URL https://arxiv.org/abs/2107.13586.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., and
Tang, J. Gpt understands, too. arXiv:2103.10385, 2021b.

Qin, G. and Eisner, J. Learning how to ask: Query-
ing LMs with mixtures of soft prompts. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 5203–5212,
Online, June 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.naacl-main.410. URL
https://aclanthology.org/2021.naacl-main.410.

Reynolds, L. and McDonell, K. Prompt programming for
large language models: Beyond the few-shot paradigm,
2021. URL https://arxiv.org/abs/2102.07350.

Schick, T. and Schütze, H. Exploiting cloze-questions
for few-shot text classification and natural language in-
ference. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pp. 255–269, On-
line, April 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.eacl-main.20. URL
https://aclanthology.org/2021.eacl-main.20.

Shin, T., Razeghi, Y., IV, R. L. L., Wallace, E., and Singh, S.
AutoPrompt: Eliciting knowledge from language models
with automatically generated prompts. In Empirical Meth-
ods in Natural Language Processing (EMNLP), 2020.

Shrivastava, D., Larochelle, H., and Tarlow, D. On-the-fly
adaptation of source code models. In NeurIPS 2020 Work-
shop on Computer-Assisted Programming, 2020. URL
https://openreview.net/forum?id=FeVaSthrFst.

Tunstall, L., von Werra, L., and Wolf, T. Natural Language
Processing with Transformers. " O’Reilly Media, Inc.",
2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, u., and Polosukhin, I. Attention
is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6000–6010, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A 6 Billion
Parameter Autoregressive Language Model. https:
//github.com/kingoflolz/mesh-transformer-jax,
May 2021.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C.
Memorizing transformers. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=TrjbxzRcnf-.

Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J. A
systematic evaluation of large language models of code.
arXiv preprint arXiv:2202.13169, 2022a.

https://openreview.net/forum?id=HklBjCEKvH
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2107.13586
https://aclanthology.org/2021.naacl-main.410
https://arxiv.org/abs/2102.07350
https://aclanthology.org/2021.eacl-main.20
https://openreview.net/forum?id=FeVaSthrFst
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-

Repository-Level Prompt Generation for Large Language Models of Code

Xu, F. F., He, J., Neubig, G., and Hellendoorn, V. J. Captur-
ing structural locality in non-parametric language mod-
els. In International Conference on Learning Representa-
tions, 2022b. URL https://openreview.net/forum?
id=nnU3IUMJmN.

Yue Wang, Weishi Wang, S. J. S. C. H. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for
code understanding and generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, 2021.

Zhang, J., Panthaplackel, S., Nie, P., Mooney, R. J., Li, J. J.,
and Gligoric, M. Learning to generate code comments
from class hierarchies, 2021. URL https://arxiv.org/
abs/2103.13426.

https://openreview.net/forum?id=nnU3IUMJmN
https://openreview.net/forum?id=nnU3IUMJmN
https://arxiv.org/abs/2103.13426
https://arxiv.org/abs/2103.13426

Repository-Level Prompt Generation for Large Language Models of Code

A. Repo-Level Rules
A.1. Rule Context Location

1. Current: take code from the current file. The current file is the file that contains the target hole. The code in the current
file (e.g. the lines after the hole position) can be very useful in predicting the target hole.

2. Parent Class: take code from the file that contains the parent class of the target hole. The intuition behind this is to
account for cases where a method present in the parent class is invoked in the current file (i.e. the child class).

3. Import: take code from the import files used in the current file. The intuition here is same as parent class.
4. Sibling: take code from the files that are in the same directory as the current file. Files in the same directory tend to

share code variables (e.g. identifiers).
5. Similar Name: take code from files that have a similar name as the current file. Similar names are determined by doing

a splitting of the file name based on underscore or camel-case formatting and then matching parts of the filename. If
one or more parts matches, two files are considered to have similar names. The intuition behind this is that developers
tend to name files based on the functionality of the code written in that file. Therefore, a similar name file might contain
some portion of the code that is common with the current file and hence might be useful for predicting the target hole.

6. Child Class: take code from files that have the current file as their parent class file.
7. Import of Parent Class: take code from the import files used in the parent class files.
8. Import of Sibling: take code from the import files used in the sibling files.
9. Import of Similar Name: take code from the import files used in the similar name files.

10. Import of Child Class: take code from the import files used in the child class files.

The last four rule context locations are useful when the target hole occurs at the very beginning of the current file where
there might be less rule context coming from the other rule context locations.

A.2. Rule Context Type

1. Post Lines (PL): Take all the lines after the target hole line. This context type is applicable only when the rule
context location is the current file. For the example shown in Figure 1 of the main paper, post lines will take all
the lines after the line mg.InitializeToAssignment(CurrentAssignments()) till we reach the end of the file
(AffinityPropagation.java).

2. Identifiers (I): Take all the identifiers used in the rule context location. Identifiers are the names of variables used in the
code. For example, for the rule context taken from the imported file shown in Figure 1 in the main paper (highlighted
in violet), identifiers are InitializeToAssignment (line 1), a (line 1), currentAssignment_ (line 2), a (line 2),

clone (line 2), alreadyInitialized_ (line 3), justOneRound_ (line 4).
3. Type Identifiers (TI): Take all the type identifiers used in the rule context location. Type Identifiers define the type of

an identifier. For example, in the code snippet class DPAffinityPropagation extends AffinityPropagation
, [AffinityPropagation is labeled as a type identifier. Similarly in the snippet DPAPParameters parameters_;,
DPAPParameters is a type identifier.

4. Field Declarations (FD): Take all the field declarations used in the rule context location. The vari-
ables of a class type are introduced by field declarations. For example, double[][] mHijMujT_; and

MessageValuePair[][] sortedMHijMujTs_; are examples of field declarations.
5. String Literals (SL): Take all the string literals used in the rule context location. A string literal is the sequence of

characters enclosed in double-quotes. For example, in the code snippet, System.err.println("DPAP load Warning:
unknown parameter " + entries[0] + ", value = " + entries[1]);, we have two string literals: (a)
"DPAP load Warning: unknown parameter " ; (b) ", value = " .

6. Method Names (MN): Take all the method names along with their signature used in the rule context location. For the
example shown in Figure 1 of the main paper, public void InitializeToAssignment(int[] a) is the method
name rule context type.

7. Method Names and Bodies (MNB): Take all the method names along with their signatures and corresponding bodies
used in the rule context location. For the example shown in Figure 1 of the main paper, the part highlighted in violet
represents the method names and bodies.

Repository-Level Prompt Generation for Large Language Models of Code

A.3. List of Repo-Level Rules

Table 1: List of our proposed repo-level rules

Rule ID Rule Context Location Rule Context Type Rule Context Fraction

0, 1, 2, 3, 4 Current MN, I, TI, SL, FD 0.5
5, 6, 7 Current PL 0.5, 0.25, 0.75

8, 9, 10, 11, 12, 13 Parent Class MNB, MN, I, TI, SL, FD 0.5
14, 15, 16, 17, 18, 19 Import MNB, MN, I, TI, SL, FD 0.5
20, 21, 22, 23, 24, 25 Sibling MNB, MN, I, TI, SL, FD 0.5
26, 27, 28, 29, 30, 31 Similar Name MNB, MN, I, TI, SL, FD 0.5
32, 33, 34, 35, 36, 37 Child Class MNB, MN, I, TI, SL, FD 0.5
38, 39, 40, 41, 42, 43 Import of Sibling MNB, MN, I, TI, SL, FD 0.5
44, 45, 46, 47, 48, 49 Import of Similar Name MNB, MN, I, TI, SL, FD 0.5
50, 51, 52, 53, 54, 55 Import of Parent Class MNB, MN, I, TI, SL, FD 0.5
56, 57, 58, 59, 60, 61 Import of Child Class MNB, MN, I, TI, SL, FD 0.5

62 Codex - -

A.4. Ranking of files based on rule context location

In Table 2, we provide details of the heuristics we used for selecting files for a given rule context location. Depending on
the rule, we get either a single file or a list of files ranked based on some criteria. For example, if the rule context location
is Import, we take all the import statements used in the current file and identify the location in the current file where the
corresponding imports have been used. According to our heuristic, the closer is the import usage to the hole position, the
more likely it is for the rule context coming from the corresponding import file to be more relevant (to predict the target
hole). We get a ranked list of import files sorted based on increasing order of distance (i.e., number of lines) between the
import usage and the hole position. We start by taking all of the rule context from the first file in the ranked list and then
keep iterating the ranked list until either the total context length allocated to the rule gets exhausted or we reach the end of
the ranked list.

Table 2: Heuristics for selecting files for a rule context location

Rule Context Location File Ranking Heuristic

Current file with the target hole. Returns a single file.
Parent Class file that contains the parent class that occurs closest to the target hole. Returns a single

file.
Import files with the corresponding import usage ranked based on the proximity to the hole.

Returns a ranked list of files.
Sibling files with import usage common to the current file and the sibling file, ranked based on

the proximity to the hole. The total number of common imports between the current and
the sibling file is used as a tie-breaker. Returns a ranked list of files.

Similar Name files with import usage common to the current file and the similar name file, ranked based
on the proximity to the hole. The total number of common imports between the current
and the similar name file is used as a tie-breaker. Returns a ranked list of files.

Child Class files with import usage common to the current file and the child file, ranked based on the
proximity to the hole. The total number of common imports between the current and the
child class file is used as a tie-breaker. Returns a ranked list of files.

Import of Sibling import files ranked based on the frequency of usage in all the sibling files. Returns a
ranked list of files.

Import of Similar Name import file ranked on the basis of frequency of usage in all the similar name files. Returns
a ranked list of files.

Import of Parent Class import file ranked on the basis of frequency of usage in all the parent class files. Returns
a ranked list of files.

Import of Child Class import file ranked on the basis of frequency of usage in all the child class files. Returns a
ranked list of files.

Repository-Level Prompt Generation for Large Language Models of Code

A.5. Truncation Strategies for Rule Context

If the rule context is greater than the context length allocated to it, i.e., rule context fraction multiplied by total context
length, then we need to truncate the rule context. We followed the below two schemes for truncating context:

• front: We truncate the context from the front. This is used for all rule context locations except Parent Class and when we
take PL from Current.

• back: We truncate the context from the back. This is used when the rule context location is Parent Class and when we
take rule context types other than PL from Current.

The truncation strategies for each case were selected based on results on a small validation set. For Current context location,
except when the rule context type is PL, we always start by taking code of rule context type from after the hole position.
This makes sense as the default Codex context will anyways contain code before the hole. Only if this turns out to be blank,
we will use the code of context type from before the hole.

A.6. Other Rule Variations

We experimented with other variations that include: (a) appending class names at the beginning of the rule context, (b) using
newline or space to join the rule context and the default Codex context, (c) taking all or top-k of the rule context types, (d)
ordering of top-k. See Appendix for more details on these. Table 1 lists our proposed rules. In Figure 1, rule r = 14 is
predicted and corresponds to taking rule context location of Import, Rule Context Type of MNB and Rule Context Fraction
of 0.5.

• Context Separator: This defines how we join the rule context string to the default Codex context string. We experimented
with space and newline as context separators.

• Rule Context Formatting: We can format the rule context before giving it to the prompt generator. We experimented with
the following options:

1. class_name: append [class name of the file] at the beginning of the rule context taken from each file that is part of the
rule context location. For example, if we are taking rule context from two import files f1 and f2, the rule context
will be formatted as: [class name of f1] rule context from f1 + space + [class name of f2] rule context from f2. We
use this when the rule context types are MN, I, TI, FD and SL.

2. class_method_name: we apply this only when the rule context type is MNB. We append method names at the
beginning of each of the corresponding method bodies. We also append the rule context from a file with the name of
the class as described in the previous item.

3. comment: Adding in the rule context as a comment, i.e., formatting it as: /** rule context */. This wasn’t found to be
much useful.

4. none: passing the rule context as it is. We use this when the rule context type is PL.
• Top-k Type: For each of the rule context types, except PL, we experimented with taking the (a) first (b) last and (c) all of

the rule context types, i.e., we can take first-10 identifiers. We found ’all’ to be the best among all.
• Top-k: We experiment with k values of (a) 10 (b) 20 and (c) all. We found ’all’ to work best for all rule context types.

B. Additional Results
B.1. Variation with k

Figure 3 shows the variation of the success rate over the validation data with the value of k. The purpose of this study is to
see how does the performance scale with the number of prompts (or rules). One of the potential real-world usage scenario of
this study can be when there is a human-in-the-loop confirming that the hole-prediction is good or not, with the assumption
that then human is allowed to use multiple prompts for getting prediction for the same target hole. For these experiments, if
any of the k selected rules lead to success, success ratio will be set to one. From the figure, we notice that as we increase
the value of k, the performance increases gradually at first and then saturates towards the oracle performance (79.05% for
val data). This behaviour is observed for both Fixed Rule as well as RLPG. However, we see that for the same value of
k, the success rate for RLPG is higher both when taking the repo-wise as well as the hole-wise averages. This indicates
that sampling k rules using RLPG is better than taking top-k most frequent rules, emphasizing the contribution of our rule
classifier. Moreover, this gap in performance scales with increasing the value of k. This offers an interesting analogy to

Repository-Level Prompt Generation for Large Language Models of Code

some recent works (Li et al., 2022; Chen et al., 2021) that have shown such scaling behaviour but for samples taken from the
output of the LLM as opposed to more samples (i.e. prompts) at the input of the LLM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

70

72

74

76

78

Va
l S

uc
ce

ss
 R

at
e

(%
)

Fixed Rule (repo-wise)
RLPG-R (repo-wise)
Fixed Rule (hole-wise)
RLPG-R (hole-wise)

Figure 3: Variation of RLPG and Fixed Rule with k

B.2. Rule-Wise Performance

Figure 4 shows the plot of the top-20 successful rules. The orange bar indicates the fraction of times (in percentage) when a
particular rule was applicable and the blue bar indicates the fraction of times when that rule was successful. We can see that
the first four rules (i.e. 5, 7, 6, 1) are using context coming from the same file. In particular, using PL can be quite useful.
The next line of successful rules correspond to the sibling files. Note that even though these rules have a overall low success
rate as compared to the current file rules, it is more likely for them to be successful whenever they are applicable. This is in
contrast to r = 1 and r = 62 (Codex) where the rule being applicable doesn’t always lead to success. Note that it is possible
to extend our framework by adding more rules and then retraining the rule classifier.

Repository-Level Prompt Generation for Large Language Models of Code

5 7 6 1 20 22 2 0 25 3 23 24 28 26 4 21 62 31 27 290

20

40

60

80

100 successful
applicable

Figure 4: Plot of top-20 successful rules showing the fraction of their success rate vs the fraction of times they were
applicable.

B.3. Performance on individual repositories

Table 3: Success Rate of different methods on training data

Repo name #Total Holes Oracle Codex Fixed Rule (k=1) RLPG-H (k=1) RLPG-R (k=1)

largemail 1653 75.38 55.11 62.73 63.94 63.28
ftpserverremoteadmin 7323 86.44 66.11 76.09 76.21 76.76

myt5lib 838 91.65 53.58 61.34 73.51 74.46
seamlets 4890 92.74 62.25 62.72 71.55 74.27
gloodb 10000 91.07 57.50 57.50 70.32 72.31
jjskit 9043 80.36 65.61 72.18 72.00 72.44

mobileexpensetracker 2298 75.94 57.88 67.28 66.84 66.97
gfsfa 10000 80.55 57.33 57.33 59.28 65.24

swe574-group3 2029 76.79 54.46 66.19 65.16 64.91
strudem-sicsa 6131 77.83 64.96 72.55 73.25 73.32

soap-dtc 1370 81.24 64.82 70.73 71.61 72.70
openprocesslogger 7191 81.06 62.19 71.77 72.22 72.62

tapestry-sesame 397 72.54 45.84 61.21 60.71 63.98
exogdx 735 84.76 63.81 75.51 75.92 76.60

designpatternjavapedro 1069 78.30 54.82 64.36 63.99 68.57
quidsee 3020 81.66 60.79 69.50 70.36 70.26

healpix-rangeset 4734 63.54 48.71 54.67 54.94 55.07
sol-agent-platform 10000 73.76 58.22 65.72 65.65 65.94
rsbotownversion 10000 75.23 57.89 65.58 66.22 66.31

Repository-Level Prompt Generation for Large Language Models of Code

Table 4: Success Rate of different methods on validation data

Repo name #Total Holes Oracle Codex Fixed Rule (k=1) RLPG-H (k=1) RLPG-R (k=1)

tyrond 721 83.91 60.33 71.15 71.57 72.68
math-mech-eshop 2225 83.46 62.20 72.76 73.53 73.17

infinispan-storage-service 373 82.31 71.85 78.55 76.94 77.75
teammates-shakthi 7665 82.02 63.74 72.38 72.47 72.46

javasummerframework 10000 79.27 55.92 65.30 65.74 65.55
tinwiki 10000 73.67 69.27 69.27 69.12 69.58
jloogle 3145 84.55 73.16 77.87 77.17 77.36

jcontenedor 5464 81.26 58.99 67.77 67.95 68.32
sohocms 772 76.68 57.90 67.10 67.49 67.62

affinity_propagation_java 1466 79.54 59.14 70.33 70.26 70.26
jata4test 1921 71.06 44.09 54.92 55.91 57.47

swinagile 2595 79.69 63.01 72.29 72.49 72.68
navigablep2p 1322 75.72 59.76 65.43 65.13 65.28

springlime 879 83.50 62.34 74.18 74.86 74.40

Table 5: Success Rate of different methods on test data

Repo name #Total Holes Oracle Codex Fixed Rule (k=1) RLPG-H (k=1) RLPG-R (k=1)

dovetaildb 10000 76.89 57.12 66.45 66.06 66.25
project-pt-diaoc 10000 82.01 52.67 52.81 65.08 61.25

realtimegc 2513 77.64 57.58 67.01 67.85 68.48
fswuniceubtemplates 2070 77.44 55.70 58.89 66.81 65.80

qwikioffice-java 1138 76.45 70.21 70.21 69.86 70.56
glperaudsimon 1766 78.65 53.57 62.51 62.40 61.66

xiaonei-java-api 839 73.42 57.57 62.10 62.69 63.29
ircrpgbot 6591 83.67 69.67 77.24 76.71 76.65

robotsimulator2009w 7514 75.63 56.28 67.55 67.53 67.55
gwt-plugindetect 73 84.93 60.27 68.49 65.75 68.49

apiitfriends 1385 85.05 65.05 74.80 75.67 75.31
wicketbits 754 83.02 59.81 72.94 72.81 73.08
hucourses 590 84.41 70.68 77.46 77.63 77.97

xfuze 3055 84.09 62.82 73.62 72.73 73.62

Table 3, Table 4 and Table 5 present the success rates of different methods over individual repositories in the training,
validation and test splits, respectively. The repo-wise averages in Table 2 in the main paper were calculated by taking
the average of numbers corresponding to each column. The hole-wise averages correspond to multiplying the repo-wise
numbers of each method by the total holes in the repo to get the total number of successful holes by that method for that
repo. We then add the total number of successful holes across repos and divide it by the total number of holes in the entire
data split to get the hole-wise averages.

B.4. Analysis of Sample Cases

B.4.1. POSITIVE CASES

In Figure 1, RLPG predicts the rule that corresponds to taking method names and bodies from the imported file (i.e.
MaximizingGibbsSampler.java). Note that mg. before the hole position indicates that a method used in the im-

ported file is likely to be invoked. In this case, the rule context (highlighted in violet) contains the method name
InitializeToAssignment (part of target hole). This in conjunction with the default Codex context which contains

the method CurrentAssignments() (part of target hole) leads to generation of a successful prompt. On the other hand,

Repository-Level Prompt Generation for Large Language Models of Code

the prompt created from the default Codex context fails to predict the target hole in this case. We provide some examples of
cases where RLPG led to the correct prediction and Codex failed.

1. Cases where part of the target hole is found exactly in the rule context.

• RLPG = Propagation(int numVars) vs Codex = Propagation()

• RLPG = tersFromFile(String filename) { vs Codex = ters(String filename) {

• RLPG = als("dampingFactor")) { vs Codex = als("numVars")) {

• RLPG =] + ", value = " + entries[1]); vs Codex =]);

• RLPG = stem.exit(1); vs Codex = stem.err.println("DPAP load error: " + ex.get

2. Cases where Codex takes strong hint from the preceding natural language comment, e.g. naming the method based on
the comment. thereby producing incorrect predictions.

• RLPG = d PassMessages() vs Codex = d DoOneRoundOfMessagePassing()

• RLPG = teger> CurrentExemplars() { vs Codex = teger> ChooseExemplars() {

• RLPG = ring FileName() { vs Codex = ring GetAlgorithmFilename() {

B.4.2. NEGATIVE CASES

In certain cases, extra information from rule-context might lead to confusion and produce incorrect predictions.

• RLPG = an hasConverged_; vs Codex = an converged_;

• RLPG = _[i][j] = -Double.MAX_VALUE; vs Codex = _[i][j] = 0;

C. Details of Dataset Creation
C.1. Creation of Hole Completion Data

To mitigate the effects caused by potential memorization of the code present in the dataset used for training Codex, we
tried to use repositories that Codex might not have been trained on and avoided code repositories from GitHub (Chen
et al., 2021)). Instead, we scraped Google Code 4 for repositories tagged with the language “Java”. Then we deduplicated
repositories by searching for a matching repository with the same name on GitHub. For those repositories with zero matching
names on GitHub, we downloaded the archive and extracted the source code (preserving the directory structure). Next,
we tried to determine the licenses of all repositories by either looking for a LICENSE file or matching with keywords
"license", "copyright", "mit", etc. For repos for which our process was able to come up with a known license, we selected
the ones having a permissive license, i.e., MIT, ApacheV2 and BSD. Since code duplication has been shown to have adverse
effects (Allamanis, 2018), we removed files that are exact duplicates of each other within a repo. One of the reasons
we found this inter-repository duplication may be because sometimes developers adopt lousy practises where instead of
declaring a package and importing functions, they simply copy-paste the desired file in the current folder. The target holes
coming from any of the duplicate files do not form part of the hole completion dataset. However, these files might be used to
contribute to rule context for completing a target hole in a non-duplicate file (e.g. in a sibling file). For the remaining files,
we took each line that is not a blanked line or a comment, and chose the middle character as the hole position, i.e., all the
characters from the middle of the line to the end of the line form target hole. To avoid large repos having strong bias on our
rule classifier, we capped the contribution from each repo to be a maximum of 10000 holes. If the number of holes in the
repo exceeds 10000, we randomly select 10000 holes. Please see Table 6 for statistics of our dataset. The #Holes represent
the holes after deduplication and capping.

C.2. Creation of Data for Repo-Level Rules

We used the tree-sitter API for Java 5 to get the parse-tree of an individual file in a repo. To get information at a repo-level,
for each file in the repo, we stored the following information:

4https://code.google.com/archive/
5https://github.com/tree-sitter/tree-sitter-java

Repository-Level Prompt Generation for Large Language Models of Code

Table 6: Corpus Statistics

Feature Train Val Test Total

Repositories 19 14 14 47
Files 2655 1060 1308 4757
Holes 92721 48548 48288 189557

1. list of all class names in the file. This helped us to get the parent or child class file corresponding to a given parent or
child class.

2. the file corresponding to each import statement.
3. for each import statement in the file, the position in the file where the import is used. This is used for ranking the files

based on the heuristics mentioned in Table 2.
4. list of sibling files
5. list of similar name files. This was done by splitting the filenames based on either camel-case or underscore. If the

sub-parts of two files match, then they are said to have similar name.

The above meta-data was calculated only once for each repo. The subsequent hole completions can use the same cached
information. In practise, we can use a hash to store and retrieve this info efficiently. For a rule, given the rule context
location, we first obtain a single file or ranked list of files (see Table 2) using the info in the parse tree in conjugation with
the above repo-level meta-data. All the rule context type information (MN, MNB, SL, I, TI, FD) can then be obtained by
querying the parse tree of the selected file.

D. Details of the Rule Classifier
D.1. RLPG-H

Equation 2 shows the prediction of the rule label conditioned on the hole window representation.

ŷhr = P (yhr = 1|Hh) = sigmoid(W 2(relu(W 1(Fϕ(H
h)) + b1)) + b2) (2)

We used Adam (Kingma & Ba, 2015) optimizer with a learning rate of 3e-4 and batch size of 64. We used CodeBERT (Feng
et al., 2020) as our pretrained model Fϕ to obtain the representation of hole window. The size of the representation
(corresponding to the hidden dimension of the [CLS] token) is 768. W 1 ∈ R512×768, b1 = 512,W 2 ∈ R63×512, b2 = 63.

D.2. RLPG-R

We have a multiheaded attention mechanism between our keys, values and query as described in Equation 5. For each head,
we perform a scaled dot-product attention (Vaswani et al., 2017)(Equation 4).

Qh = Fϕ(H
h), Kh

r = Fϕ(C
h
r), V h

r = Fϕ(C
h
r) (3)

Att(Qh,Kh
r , V

h
r) = V h

r softmax
(Qh⊤Kh

r√
dk

)
(4)

MultiHead(Qh,Kh
r , V

h
r) = WOconcat(headi, head2, . . . headτ) (5)

where headi = Att(WQ
i Qh,WK

i Kh
r ,W

V
i V h

r)

ŷhr = P (yhr = 1|Hh, Ch
r) = sigmoid

(
WrG(MultiHead(Qh,Kh

r , V
h
r)) + br

)
(6)

In the equations above, dk is the dimension of the key, WQ
i ,WK

i ,WV
i are the query, key and value projection matrices, τ

is the number of heads and WO is the linear projection that combines the heads. The output from Equation 5 is fed to a
positionwise fully-connected feedforward network (Vaswani et al., 2017). We employ a residual connection (He et al., 2016)
followed by layer normalization (Ba et al., 2016) before and after the feedforward network. In the above equation these
transformations are represented by the module G. The resulting output is then linearly projected and sigmoid is applied to
get the prediction of the rule.

Repository-Level Prompt Generation for Large Language Models of Code

We used Adam (Kingma & Ba, 2015) optimizer with a learning rate of 3e-4 and batch size of 64. We used CodeBERT (Feng
et al., 2020) as our pretrained model Fϕ to obtain the representation of hole window and rule context. The size of the
representation (corresponding to the hidden dimension of the [CLS] token) is 768. In equations 1, 2 and 3 in Section 3.2, the
projection matrices WQ

i ∈ Rdq×dmodel , WK
i ∈ Rdk×dmodel , WV

i ∈ Rdv×dmodel , WO ∈ Rdmodel×τdv . For the multihead
attention, we used dk = dq = dv = 32, τ = 4 and dmodel = 768, Wr ∈ R63×768 and br = 63. G module consists of a
dropout layer, a residual connection, a layernorm, followed by a positionwise-feedforward network, i.e., A sequence of (a)
dense layer of weights=2048× 768, bias=768, (b) relu activation, (c) dense layer of weights=768× 2048, bias=2048, (d)
dropout layer, (e) residual connection, (f) layernorm. A dropout value of 0.25 was used while training.

E. Experimental Details on Prompt Generation
We used the OpenAI Codex Completions API for generating the predicted hole from the Codex model. In particular, we
used the code-davinci-001 engine with temperature set to 1.0 and stop criteria as newline. The completion length was kept
to be 24 and the maximum prompt length was 4072. Tokenization was done using the suggested tokenizer 6. To allow for
fast computation, we used simple models like CodeBERT (Feng et al., 2020) and GraphCodeBERT (Guo et al., 2020) as
our pretrained models. One of the limitations of these pretrained models is that the maximum context length that can be
taken as input by these models is much smaller than the maximum context length allowed by Codex. Therefore, we need to
truncate the rule context which means that some important parts of the rule context might be omitted while getting the rule
context representation. Using pretrained models that allow larger context length or models that augment the context (Wu
et al., 2022) offer avenues for future work.

F. Computational Complexity of RLPG
To collect the ground-truth data for training our rule classifier we queried the Codex API for each applicable rule per
hole (maximum rate limit of 400 holes per minute). The computational complexity of training our larger RLPG-R variant
(parameters=3.6M, data=141269 holes and compute=9.19 min per epoch on a single Tesla V100 GPU) is much smaller than
finetuning all or some part of Codex, thereby ensuring low latency when deployed in an IDE. During inference, we need to
calculate the repo-level rules statistics just once and all the subsequent hole completions in the repo can utilize this cached
information. So, there is no additional computational complexity in creating the prompt during inference.

G. Related Work
LLMs for Code: Recently, there has been a lot of work around large language models of code. One class of models are the
decoder-only models that correspond to generating code from left-to-right. Codex (Chen et al., 2021) is an example of a
decoder-only model. Other models include Google’s model (Austin et al., 2021), GPT-J-6B (Wang & Komatsuzaki, 2021),
GPT-Neo (Black et al., 2021b), GPT-Neo-X (Black et al., 2021a), CodeParrot (Tunstall et al., 2022) and PolyCoder (Xu
et al., 2022a). We also have some encoder-only models that use a masked language modelling objective. CodeBERT (Feng
et al., 2020), GraphcodeBERT (Guo et al., 2020) and CuBERT (Kanade et al., 2020) are example of such models. Lastly,
we have the class of encoder-decoder models that generally use a bidirectional encoding of a context to decode a series of
masked tokens. Code-T5 (Yue Wang, 2021), AlphaCode (Li et al., 2022) and recently released InCoder (Fried et al., 2022)
are examples of such models. We refer the reader to Xu et al. (2022a) for details about the size of each model and the data
that was used for training these models.

Repo-Level Info: Few works use information from outside the current file. Zhang et al. (2021) uses the parent class to
generate the comments for the child class. Xu et al. (2022b) incorporate three types of structural locality features while
training the kNN-LM (Khandelwal et al., 2020). These features are binary variables that correspond to the presence or
absence of similar hierarchy. The three levels of hierarchy are (a) sibling file, (b) file in the same repo (c) no hierarchy. In
contrast we have a much richer set of rules incorporating the semantics and structure of the repository. Also, we assume
black-box access to the actual LM and restrict ourselves to generating prompt(input) for the LLM.

Prompt Generation: There have been promising works around prompt generation techniques in the area of natural language
processing. Broadly, there are two categories of automatic prompt generation techniques. The first category corresponds
to producing continuous/soft prompts where the prompt is described in the latent space of a language model (Li & Liang,

6https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast

Repository-Level Prompt Generation for Large Language Models of Code

2021; Qin & Eisner, 2021; Bragg et al., 2021; Lester et al., 2021; Liu et al., 2021b). For example, Prefix-Tuning (Li &
Liang, 2021) adds a prefix to the LM that can be learned by finetuning on examples from the downstream task. The second
category produces discrete prompts where the prompt is a text string that can be interpreted by a human (Shin et al., 2020;
Gao et al., 2021; Schick & Schütze, 2021). For example, Autoprompt (Shin et al., 2020) generates prompt using a fixed
template consisting of trigger tokens. The trigger tokens are shared across all inputs and determined by a gradient-guided
search involving the LM. Our work falls in the category of discrete prompt generation techniques as we produce a prompt
consisting of code tokens that can be easily interpreted by a human. However, in contrast to prior works that use a set of
fixed templates for all examples, we learn to generate prompts conditioned on each example. Another important distinction
is that we do not require access to the weights of the LM. To the best of our knowledge, our work is the first to explore
automatic prompt generation in the domain of source code.

	Introduction
	Repo-Level Prompt Generator (RLPG)
	Repo-Level Rules
	Rule Classifier
	Prompt Generator

	Experiments and Results
	Results

	Related Work
	Conclusions and Future Directions
	Repo-Level Rules
	Rule Context Location
	Rule Context Type
	List of Repo-Level Rules
	Ranking of files based on rule context location
	Truncation Strategies for Rule Context
	Other Rule Variations

	Additional Results
	Variation with k
	Rule-Wise Performance
	Performance on individual repositories
	Analysis of Sample Cases
	Positive Cases
	Negative Cases

	Details of Dataset Creation
	Creation of Hole Completion Data
	Creation of Data for Repo-Level Rules

	Details of the Rule Classifier
	RLPG-H
	RLPG-R

	Experimental Details on Prompt Generation
	Computational Complexity of RLPG
	Related Work

