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Abstract

Policy optimization methods are popular rein-
forcement learning algorithms in practice. Re-
cent works have built theoretical foundation for
them by proving

√
T regret bounds even when

the losses are adversarial. Such bounds are tight
in the worst case but often overly pessimistic.
In this work, we show that in tabular Markov
decision processes (MDPs), by properly design-
ing the regularizer, the exploration bonus and the
learning rates, one can achieve a more favorable
polylog(T ) regret when the losses are stochastic,
without sacrificing the worst-case guarantee in
the adversarial regime. To our knowledge, this
is also the first time a gap-dependent polylog(T )
regret bound is shown for policy optimization.
Specifically, we achieve this by leveraging a Tsal-
lis entropy or a Shannon entropy regularizer in the
policy update. Then we show that under known
transitions, we can further obtain a first-order re-
gret bound in the adversarial regime by leveraging
the log barrier regularizer.

1. Introduction
Policy optimization methods have seen great empirical suc-
cess in various domains (Schulman et al., 2017; Levine &
Koltun, 2013). An appealing property of policy optimiza-
tion methods is the local-search nature, which lends itself to
an efficient implementation as a search over the whole MDP
is avoided. However, this property also makes it difficult
to obtain global optimality guarantees for these algorithms
and a large portion of the literature postulates strong and
often unrealistic assumptions to ensure global exploration
(see e.g., Abbasi-Yadkori et al., 2019; Agarwal et al., 2020b;
Neu & Olkhovskaya, 2021; Wei et al., 2021). Recently, the
need for extra assumptions has been overcome by adding
exploration bonuses to the update (Cai et al., 2020; Shani
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et al., 2020; Agarwal et al., 2020a; Zanette et al., 2020;
Luo et al., 2021). These works demonstrate an additional
robustness property of policy optimization, which is able to
handle adversarial losses or some level of corruption. Luo
et al. (2021) and Chen et al. (2022) even managed to obtain
the optimal

√
T rate.

However, when the losses are in fact stochastic, the
√
T

minimax regret is often overly pessimistic and log(T ) with
problem-dependent factors is the optimal rate (Lai et al.,
1985). Recently, Jin et al. (2021) obtained a best-of-both-
worlds algorithm that automatically adapts to the nature of
the environment, a method which relies on FTRL with a
global regularizer over the occupancy measure.

In this work, we show that by properly assigning the bonus
and tuning the learning rates, policy optimization can also
achieve the best of both worlds, which gives a more com-
putationally favorable solution than Jin et al. (2021) for the
same setting. Specifically, we show that policy optimization
with Tsallis entropy or Shannon entropy regularizer achieves√
T regret in the adversarial regime and polylog(T ) regret

in the stochastic regime. The
√
T can further be improved to√

L if the transition is known and if a log-barrier regularizer
is used, where L is the cumulative loss of the best policy.
Though corresponding results in multi-armed bandits have
been well-studied, new challenges arise in the MDP setting
which require non-trivial design for the exploration bonus
and the learning rate scheduling. The techniques we develop
to address these issues constitute the main contribution of
this work.

2. Related Work
For multi-armed bandits, the question whether there is a sin-
gle algorithm achieving near-optimal regret bounds in both
the adversarial and the stochastic regimes was first asked
by Bubeck & Slivkins (2012). A series of followup works
refined the bounds through different techniques (Seldin &
Slivkins, 2014; Auer & Chiang, 2016; Seldin & Lugosi,
2017; Wei & Luo, 2018; Zimmert & Seldin, 2019; Ito, 2021).
One of the most successful approaches is developed by Wei
& Luo (2018); Zimmert & Seldin (2019); Ito (2021), who
demonstrated that a simple Online Mirror Descent (OMD)
or Follow the Regularized Leader (FTRL) algorithm, which
was originally designed only for the adversarial case, is able
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to achieve the best of both worlds. This approach has been
adopted to a wide range of problems including semi-bandits
(Zimmert et al., 2019), graph bandits (Erez & Koren, 2021;
Ito et al., 2022), partial monitoring (Tsuchiya et al., 2022),
multi-armed bandits with switching costs (Rouyer et al.,
2021; Amir et al., 2022), tabular MDPs (Jin & Luo, 2020;
Jin et al., 2021), and others. Though under a similar frame-
work, each of them addresses new challenges that arises in
their specific setting.

Previous works that achieve the best of both worlds in tabu-
lar MDPs (Jin & Luo, 2020; Jin et al., 2021) are based on
FTRL over the occupancy measure space. This approach
has several shortcomings, making it less favorable in prac-
tice. First, the feasible set of occupancy measure depends
on the transition kernel, so the extension to a model-free ver-
sion is difficult. Second, since the occupancy measure space
is a general convex set that may change over time as the
learner gains more knowledge about transitions, it requires
solving a different convex programming in each round. In
contrast, policy optimization is easier to extend to settings
where transitions are hard to learn, and it is computationally
simple — in tabular MDPs, it is equivalent to running an
individual multi-armed bandit algorithm on each state.

Due to its local search nature, exploration under policy
optimization is non-trivial, especially when coupled with
bandit feedback and adversarial losses. In a simpler set-
ting where the loss feedback has full information, He et al.
(2022); Cai et al. (2020) showed

√
T regret for linear mix-

ture MDPs using policy optimization. In another simpler
setting where the loss is stochastic, Agarwal et al. (2020a);
Zanette et al. (2021) showed poly(1/ε) sample complexity
for linear MDPs. The work by Shani et al. (2020) first stud-
ied policy optimization with bandit feedback and adversarial
losses, and obtained a T 2/3 regret for tabular MDPs. Luo
et al. (2021) improved it to the optimal

√
T , and provided

extensions to linear-Q and linear MDPs. In this work, we
demonstrate another power of policy optimization by show-
ing a best-of-both-world regret bound in tabular MDPs. To
our knowledge, this is also the first time a gap-dependent
polylog(T ) regret bound is shown for policy optimization.

We also note that a first-order bound has been shown for
adversarial MDPs by Lee et al. (2020). Their algorithm is
based on regularization on the occupancy measure, and does
not rely on knowledge of the transition kernel. On the other
hand, our first-order bound currently relies on the learner
knowing the transitions. Whether it can be achieved under
unknown transitions is an open question.

3. Notation and Setting
Notation For f ∈ R and g ∈ R+, we use f . g or
f ≤ O(g) to mean that f ≤ c · g for some absolute constant

c > 0. [x]+ , max{x, 0}. 4(X ) denotes the probability
simplex over the set X .

3.1. MDP setting

We consider episodic fixed-horizon MDPs. Let T be the
total number of episodes. The MDP is described by a tuple
(S,A, H, P, {`t}Tt=1), where S is the state set, A is the
action set, H is the horizon length, P : S ×A → 4(S) is
the transition kernel so that P (s′|s, a) is the probability of
moving to state s′ after taking action a on state s, and `t :
S ×A → [0, 1] is the loss function in episode t. We define
S = |S| and A = |A|, which are both assumed to be finite.
Without loss of generality, we assume A ≤ T . A policy
π : S → 4(A) describes how the player interacts with the
MDP, with π(·|s) ∈ 4(A) being the action distribution the
player uses to select actions in state s. If for all s, π(·|s)
is only supported on one action, we call π a deterministic
policy, and we abuse the notation π(s) ∈ A to denote the
action π chooses on state s.

Without loss of generality, we assume that the state space
can be partitioned into H + 1 disjoint layers S = S0 ∪
S1 ∪ · · · ∪ SH , and the transition is only possible from one
layer to the next (i.e., P (·|s, a) is only supported on Sh+1

if s ∈ Sh)1. Without loss of generality, we assume that
S0 = {s0} (initial state) and SH = {sH} (terminal state).
Also, since there is at least one state on each layer, it holds
that H ≤ S. Let h(s) denotes the layer where state s lies.

The environment decides P and {`t}Tt=1 ahead of time. In
episode t, the learner decides on a policy πt. Starting from
the initial state st,0 = s0, the learner repeatedly draws
action at,h from πt(·|st,h) and transitions to the next state
st,h+1 ∈ Sh+1 following st,h+1 ∼ P (·|st,h, at,h), until it
reaches the terminal state st,H = sH . The learner receives
{`t(st,h, at,h)}H−1

h=0 at the end of episode t.

For a policy π and a loss function `, we define V π(sH ; `) =
0 and recursively define

Qπ(s, a; `) = `(s, a) + Es′∼P (·|s,a) [V π(s′; `)] ,

V π(s; `) =
∑
a∈A

π(a|s)Qπ(s, a; `), (1)

which are the standard state-action value function and state
value function under policy π and loss function `.

The learner’s regret with respect to a policy π is defined as

Reg(π) = E

[
T∑
t=1

(V πt(s0; `t)− V π(s0; `t))

]
.

1This setting follows previous work on adversarial MDPs (Jin
et al., 2020; Luo et al., 2021).
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3.2. Known and unknown transition

Following Jin & Luo (2020); Jin et al. (2021), we consider
both scenarios where the learner knows the transition kernel
P and where he does not know it.

The empirical transition is defined by the following:

P̂t(s
′|s, a) =

nt(s, a, s
′)

nt(s, a)

where nt(s, a) is the number of visits to (s, a) prior to
episode t, and nt(s, a, s′) is the number of visits to s′ after
visiting (s, a), prior to episode t. If nt(s, a) = 0, we define
P̂t(·|s, a) to be uniform over the states on layer h(s) + 1.

In the unknown transition case, we define the confidence set
of the transition:

Pt =

{
P̃ : ∀h,∀(s, a) ∈ Sh ×A, P̃ (·|s, a) ∈ 4(Sh+1),

∣∣∣P̃ (s′|s, a)− P̂t(s′|s, a)
∣∣∣ ≤ 2

√
P̂t(s′|s, a)]ι

nt(s, a)
+

14ι

3nt(s, a)

}
(2)

where ι = ln(SAT/δ). As shown in (Jin & Luo, 2020),
P ∈

⋂T
t=1 Pt with probability at least 1− 4δ. Through out

the paper, we use δ = 1
T 3 .

For an arbitrary transition kernel P̃ , define

µP̃ ,π(s, a) =

H∑
h=0

Pr(sh = s, ah = a | π, P̃ ),

where Pr(·|π, P̃ ) denotes the probability measure induced
by policy π and transition kernel P̃ . Furthermore, define
µP̃ ,π(s) =

∑
a µ

P̃ ,π(s, a). We write µπ(s) = µP,π(s) and
µπ(s, a) = µP,π(s, a) where P is the true transition. Define
the upper and lower confidence measure as

µπt (s) = max
P̃∈Pt

µP̃ ,π(s), µπ
t
(s) = min

P̃∈Pt
µP̃ ,π(s).

Finally, define V P̃ ,π(s; `) and QP̃ ,π(s, a; `) to be similar to
(1), with the transition kernel replaced by P̃ .

3.3. Adversarial versus stochastic regimes

We analyze our algorithm in two regimes: the adversarial
regime and the stochastic regime. In both regimes, the tran-
sition P is fixed throughout all episodes. In the adversarial
regime, the loss functions {`t}Tt=1 are determined arbitrarily
ahead of time. In the stochastic regime, `t are generated
randomly, and there exists a deterministic policy π?, a gap
function ∆ : S ×A → R≥0, and {λt(π)}t,π ⊂ R such that

for any policy π and any t,

E
[
V π(s0; `t)− V π

?

(s0; `t)
]

=
∑
s

∑
a6=π?(s)

µπ(s, a)∆(s, a)− λt(π).

If λt(π) ≤ 0 for all π, the condition above certifies
that π? is the optimal policy in episode t, and every
time π visits state s and chooses an action a 6= π?(s),
the incurred regret against π? is at least ∆(s, a). The
amount [λt(π)]+ thus quantifies how much the condition
above is violated. The stochastic regime captures the stan-
dard RL setting (i.e., {`t} are i.i.d.) with λt(π) = 0
and ∆(s, a) = E

[
Qπ

?

(s, a; `t)− V π
?

(s; `t)
]
. Define

∆min = mins mina 6=π?(s) ∆(s, a). Also, define C =(
E
[∑T

t=1 λt(πt)
])

+
and C(π) =

(∑T
t=1 λt(π)

)
+
.

4. Main Results and Techniques Overview
Our main results with Tsallis entropy and log barrier regu-
larizers are the following (see Section 6 and Appendix H
for results with Shannon entropy):
Theorem 4.1. Under known transitions, Algorithm 1 with
Tsallis entropy regularizer ensures for any π

Reg(π) .
√
H3SAT ln(T ) + poly(H,S,A) ln(T )

in the adversarial regime, and

Reg(π) . U +
√
UC + poly(H,S,A) ln(T ) (3)

in the stochastic regime, where U =∑
s

∑
a 6=π?(s)

H2 ln(T )
∆(s,a)

2.

Our bounds in both regimes are similar to those of Jin et al.
(2021) up to the definition of U under their parameter γ =
1
H (tuning γ trades their bounds between the two regimes;
see their Appendix A.3). Compared with our definition of
U , theirs involves an additional additive term poly(H)S ln(T )

∆min

even under the assumption that the optimal action is unique
on all states.
Theorem 4.2. Under unknown transitions, Algorithm 1
with Tsallis entropy regularizer ensures for any π

Reg(π) .
√
H4S2AT ln(T )ι+ poly(H,S,A) ln(T )ι

in the adversarial regime, and

Reg(π) . U +
√
U(C + C(π)) + poly(H,S,A) ln(T )ι

(4)

2A lower bound in (Xu et al., 2021) shows that an S/∆min

dependence is inevitable even when the transition is known. How-
ever, this lower bound only holds when there exist multiple optimal
actions on Ω(S) of the states, while our gap bound is finite only
when the optimal action is unique on all states. Therefore, our
upper bound does not violate their lower bound.
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in the stochastic regime, where U = H4S2A ln(T )ι
∆min

and ι =
ln(SAT ).

In Jin et al. (2021), for the stochastic case under unknown
transition, a similar guarantee as (4) is proven only for
π = π?, with the case for general π left open. We gen-
eralize their result by resolving some technical difficulties
in their analysis. Overall, our bound in the stochastic regime
improves that of Jin et al. (2021), and the bound in the adver-
sarial regime matches that of Luo et al. (2021). Notice that
comparing (4) with (3), the bound under unknown transition
involves an additional term C(π). It remains open whether
it can be removed.

Finally, we provide a first-order best-of-both-world result
under known transition.

Theorem 4.3. Under known transitions, Algorithm 1 with
log barrier regularizer ensures for any π,

Reg(π) .√√√√H2SA

T∑
t=1

V π(s0; `t) ln2(T ) + poly(H,S,A) ln2(T )

in the adversarial regime, and

Reg(π) . U +
√
UC + poly(H,S,A) ln2(T )

in the stochastic regime, where U =∑
s

∑
a 6=π?(s)

H2 ln2(T )
∆(s,a) .

In the next two subsections, we overview the techniques we
used and challenges we faced in obtaining our results.

4.1. Exploration bonus for policy optimization

In the tabular case, a policy optimization algorithm can be
viewed as running an individual bandit algorithm on each
state. Our algorithm is built upon the policy optimization
framework developed by Luo et al. (2021), who achieve
near-optimal worst-case regret in adversarial MDPs. Their
key idea is summarized in the next lemma.

Lemma 4.4 (Lemma B.1 of Luo et al. (2021)). Suppose that
for some {bt}Tt=1 and {Pt}Tt=1, where each bt : S → R≥0

is a non-negative bonus function and each Pt is a set of
transitions, it holds that

Bt(s, a) = bt(s)+(
1 +

1

H

)
max
P̃∈Pt

Es′∼P̃ (·|s,a),a′∼πt(·|s′) [Bt(s
′, a′)]. (5)

Also, suppose that the following holds for a policy π and a

function Xπ : S → R:

E

[
T∑
t=1

∑
a

(πt(a|s)− π(a|s)) (Qπt(s, a; `t)−Bt(s, a))

]

≤ Xπ(s) + E

[
T∑
t=1

bt(s) +
1

H

T∑
t=1

∑
a

πt(a|s)Bt(s, a)

]
(6)

Then Reg(π) is upper bounded by

∑
s

µπ(s)Xπ(s) + 3E

[
T∑
t=1

V P̃t,πt(s0; bt)

]
+ E[F ] (7)

where P̃t is the P̃ that attains the maximum in (5), and
F = HT I{∃t ∈ [T ], P /∈ Pt}.

The intuition about Lemma 4.4 is explained below (the
reader may also refer to Section 3 of Luo et al. (2021) for a
more complete explanation.

We start by analyzing a vanilla policy optimization algo-
rithm without adding bonus (i.e., feeding Q̂t(s, a), an esti-
mator of Qπt(s, a; `t), to the bandit algorithm on state s).
By the value difference lemma (Kakade & Langford, 2002)
and standard analysis for the mirror descent algorithm, we
run into the following form of regret:

Reg(π) = E

[∑
t

(V πt(s0; `t)− V π(s0; `t))

]

= E

[∑
s

µπ(s)
∑
t,a

(πt(a|s)− π(a|s))Qπt(s, a; `t)

]

≤ E

[∑
s

µπ(s)

(
Xπ(s) +

∑
t

bt(s)

)]
(8)

= E

[∑
s

µπ(s)Xπ(s) +
∑
t

V π(s0; bt)

]

whereXπ(s)+
∑
t bt(s) is the regret bound of the bandit al-

gorithm on state s, with Xπ(s) related to the regularization
penalty, and bt(s) related to the stability of the algorithm.
Specifically, in the known transition case, the standard
choice is to use Q̂t(s, a) = Lt(s,a)I{(s,a) is visited in episode t}

µπt (s,a)

as an unbiased loss estimator for Qπt(s, a; `t), where
Lt(s, a) is the cumulative loss starting from state-action
(s, a) in episode t. Using exponential weights with learning
rate η on every state, one can derive a regret bound of (8)
with Xπ(s) = lnA

η and bt(s) = O
(

ηH2

µπt (s)

)
. This makes

the quantity V π(s0; bt) involve the distribution mismatch
coefficient

∑
s
µπ(s)
µπt (s) (Agarwal et al., 2020b; Wei et al.,

2020) that can be prohibitively large.
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On the other hand, an observation is that the problematic
quantity V π(s0; bt) is nicely bounded if π is πt. This mo-
tivates (Luo et al., 2021) to use `t(s, a)− bt(s) as the loss,
where bt(s) can be viewed as a bonus term that encourages
the learner to visit states that have been seldom visited be-
fore. To see why this works, assume for a moment that the
regret bound still roughly holds when we replace the loss `t
by `t − bt. Then similar to (8), we get

E

[
T∑
t=1

(V πt(s0; `t − bt)− V π(s0; `t − bt))

]

. E

[∑
s

µπ(s)Xπ(s) +

T∑
t=1

V π(s0; bt)

]
(9)

which implies

Reg(π) = E

[
T∑
t=1

(V πt(s0; `t)− V π(s0; `t))

]

. E

[∑
s,a

µπ(s)Xπ(s) +

T∑
t=1

V πt(s0; bt)

]
(10)

by rearranging and the linearity of the value function
V π(s0; `t − bt) = V π(s0; `t)− V π(s0; bt) for any π. Now
since the regret only involves V πt(s0; bt), there will be no
distribution mismatch coefficient in the regret bound.

The caveat of the discussion above is the assumption of
(9). After adding the bonus bt, the original regret bound
can be affected, that is, the bt on the right-hand side of (9)
can be something larger, breaking the desired cancellation
effect to achieve (10). To resolve this issue, Luo et al. (2021)
proposed to use the dilated bonus defined in (5) in the policy
optimization update. In (5), the bonus-to-go function is
not constructed through a standard Bellman equation, but
through a dilated version that includes an additional 1 + 1

H
factor for future steps. The additional amount of bonus-to-
go can be used to cancel the additional regret due to the
inclusion of bt.

Lemma 4.4 gives a general recipe to design the exploration
bonus for policy optimization algorithms. Roughly speak-
ing, the bonus function bt(s) is chosen to be the instanta-
neous regret of the bandit algorithm on state s, which scales
inversely with the probability of visiting state s (i.e., 1

µπt (s) ).
Lemma 4.4 suggests that the bandit algorithm on state s
should update itself using Qπt(s, a; `t) − Bt(s, a) as the
loss, where Bt(s, a) is the dilated bonus-to-go.

The bonus function bt(s) we use is slightly different from
that in Luo et al. (2021) though. We notice that the bt(s)
defined in Luo et al. (2021) has two parts: the first part is
FTRL regret overhead, which comes from the regret bound
of the FTRL algorithm under the given loss estimator, and

the second part comes from the estimation error in estimat-
ing the transition kernel. In order to apply the self-bounding
technique to obtain the best-of-both-worlds result, the sec-
ond term in (7) can only involve the the first part (FTRL
regret overhead) but not the second part (estimation error).
Therefore, we split their bonus into two: our bt(s) only
includes the first part, and ct(s) only includes the second
part. This allows us to use self-bounding on the second term
in (7). Our ct(s) goes to the first term in (7) instead and is
handled differently from Luo et al. (2021). More details are
given in Section 5 and Section 6.

4.2. Adaptive learning rate tuning and bonus design

Our algorithm heavily relies on carefully tuning the learning
rates and assigning a proper amount of bonus. These two
tasks are intertwined with each other and introduce new
challenges that are not seen in the global regularization
approach (Jin et al., 2021) or policy optimization approach
that only aims at a worst-case bound (Luo et al., 2021).
Below we give a high-level overview for the challenges.

In the FTRL analysis, a major challenge is to handle losses
that are overly negative3. Typically, if the learning rate
is η and the negative loss of action a has a magnitude of
R, we need ηp(a)βR ≤ 1 in order to keep the algorithm
stable, where p(a) is the probability of choosing action a,
and β ∈ [0, 1] is a parameter related to the choice of the
regularizer ( 1

2 for Tsallis entropy, 0 for Shannon entropy,
and 1 for log barrier). In our case, there are two places we
potentially encounter overly negative losses. One is when
applying the standard loss-shifting technique for best-of-
both-world bounds (see Jin et al. (2021)). The loss-shifting
effectively creates a negative loss in the analysis. The other
overly negative loss is the bonus we use to obtain the first-
order bound.

For the first case, we develop a simple trick that only per-
forms loss-shifting when the introduced negative loss is not
too large, and further show that the extra penalty due to
“not performing loss-shifting” is well-controlled. This is ex-
plained in Section 5.1. For the second case, we develop an
even more general technique (which can also cover the first
case). This technique can be succinctly described as “insert-
ing virtual episodes” when ηp(a)βR is potentially too large.
In virtual episodes, the losses are assumed to be all-zero
(because the learner actually does not interact with the envi-
ronment in these episodes) and the algorithm only updates
over some bonus term. The goal of the virtual episodes is
solely to tune down the learning rate η and prevent ηp(a)βR
from being to large in real episodes. Similarly, we are able
to show that the extra penalty due to virtual episodes is
well-controlled. This is explained in Section 5.3.

3Losses here refer not only to the loss from the environment,
but also loss estimators or bonuses constructed by the algorithm.
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Algorithm 1 Policy Optimization

Define: ψt(π; s), bt(s) are defined according to Figure 1, γt , min
{

106H4A2

t , 1
}

.

for t = 1, 2, . . . do

πt(·|s) = argmin
π∈4(A)

{
t−1∑
τ=1

∑
a

π(a)
(
Q̂τ (s, a)−Bτ (s, a)− Cτ (s, a)

)
+ ψt(π; s)

}
(11)

Add a virtual round if needed (only when aiming to get a first-order bound with log barrier — see Section 5.3 (29)).
Execute πt in episode t, and receive {`t(st,h, at,h)}H−1

h=0 .
Define Pt: Under known transition, define Pt = {P}. Under unknown transition, define Pt by (2).
Define Q̂t: For s ∈ Sh, let It(s, a) = I{(st,h, at,h) = (s, a)}, Lt,h =

∑H−1
h′=h `t(st,h′ , at,h′), and

Q̂t(s, a) =
It(s, a)Lt,h
µt(s)πt(a|s)

, where µt(s) = µπtt (s) + γt. (12)

Define Ct: Let ct(s) =
µt(s)−µπt

t
(s)

µt(s)
H , and compute Ct(s, a) by

Ct(s, a) = max
P̃∈Pt

Es′∼P̃ (·|s,a),a′∼πt(·|s′)

[
ct(s

′) + Ct(s
′, a′)

]
, (13)

Define Bt: Compute Bt(s, a) by (5) using the bt(s) defined in Figure 1.

5. Algorithm
The template of our algorithm is Algorithm 1, in which we
can plug different regularizers. The template applies to both
known transition and unknown transition cases — the only
difference is in the definition of the confidence set Pt.

The policy update (11) is equivalent to running individual
FTRL on each state with an adaptive learning rate. The
loss estimator Q̂t(s, a) defined in (12) is similar to that in
Luo et al. (2021): if (s, a) is visited, it is the cumulative
loss starting from (s, a) divided by the upper occupancy
measure (Jin et al., 2020) of (s, a); otherwise it is zero. One
difference is that the “implicit exploration” factor γt added
to the denominator is of order 1

t in our case, while it is of
order 1√

t
in Luo et al. (2021). This smaller γt allows us to

achieve logarithmic regret in the stochastic regime.

There are two bonus functions ct(s) and bt(s) defined in
(13) and Figure 1, respectively. As discussed in Section 4.1,
the bonus functions are defined to be the instantaneous regret
of the bandit algorithm on state s. The first bonus function
ct(s) comes from the bias of the loss estimator. Our choice
of ct(s) is such that ∀a,Qπt(s, a; `t)−E[Q̂t(s, a)] ≤ ct(s).
The second bonus function bt(s) is related to the regret of
the FTRL algorithm under the given loss estimator, which
is regularizer dependent. We will elaborate how to choose
bt(s) for different regularizers later in this section.

Finally, dynamic programming are used to obtain Ct(s, a)
and Bt(s, a), which are trajectory sums of ct(s) and bt(s),

with an (1 + 1
H ) dilation on Bt(s, a). They are then used

in the policy update (11). In the following subsections, we
discuss how we choose bt(s) and tune the learning rate for
each regularizer.

5.1. Tsallis entropy

bt(s) corresponds to the instantaneous regret of the bandit
algorithm on state s under the given loss estimator. To ob-
tain its form, we first analyze the regret assuming Bt(s, a)

is not included, i.e., only update on Q̂t(s, a) − Ct(s, a)
(Bt(s, a) will be added back for analysis after the form of
bt(s) is decided). Inspired by Zimmert & Seldin (2019) for
multi-armed bandits, our target is to show that the instanta-
neous regret (see Appendix D for details) on state s is upper
bounded by

(
1

ηt(s)
− 1

ηt−1(s)

)
ξt(s)︸ ︷︷ ︸

penalty term

+
H2ηt(s)ξt(s)

µt(s)︸ ︷︷ ︸
stability term

+νt(s) (26)

where ξt(s) =
∑
a

√
πt(a|s)(1 − πt(a|s)) ≤

√
A, and

νt(s) is some overhead due to the inclusion of −Ct(s, a).
The factor ξt(s) allows us to use the self-bounding technique
that leads to best-of-both-worlds bounds, which cannot be
relaxed to

√
A in general. Compared to the bound for multi-

armed bandits in (Zimmert & Seldin, 2019), the extra 1
µt(s)

scaling in the stability term comes from importance weight-
ing because state s is visited with probability roughly µt(s).

6
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Figure 1. Definitions of ψt(π; s) and bt(s) for different regularizers (to be used in Algorithm 1).

Tsallis entropy:

ψt(π; s) = − 2

ηt(s)

∑
a

√
π(a), (14)

bt(s) = 4

(
1

ηt(s)
− 1

ηt−1(s)

)(
ξt(s) +

√
A · I

[
ηt(s)

µt(s)
>

1

8H

])
+ νt(s), (15)

where

ηt(s) =
1

1600H4
√
A+ 4H

√∑t
τ=1

1
µτ (s)

, ξt(s) =
∑
a

√
πt(a|s)(1− πt(a|s)), νt(s) = 8ηt(s)

∑
a

πt(a|s)Ct(s, a)2. (16)

Shannon entropy:

ψt(π; s) =
∑
a

1

ηt(s, a)
π(a) lnπ(a), (17)

bt(s) = 8
∑
a

(
1

ηt(s, a)
− 1

ηt−1(s, a)

)(
ξt(s, a) + 1−

minτ∈[t] µτ (s)

minτ∈[t−1] µτ (s)

)
+ νt(s), (18)

where

1

ηt(s, a)
=

1

ηt−1(s, a)
+ 4

 H

µt(s)
√∑t−1

τ=1
ξτ (s,a)
µτ (s)

+ 1
µt(s)

+
H√
t

√lnT , with
1

η0(s, a)
= 1600H4A

√
lnT , (19)

ξt(s, a) = min{πt(a|s) ln(T ), 1− πt(a|s)}, νt(s) = 8
∑
a

ηt(s, a)πt(a|s)Ct(s, a)2. (20)

Log barrier (for first-order bound under known transition):

ψt(π; s) =
∑
a

1

ηt(s, a)
ln

1

π(a)
, (21)

bt(s) = 8
∑
a

(
1

ηt+1(s, a)
− 1

ηt(s, a)

)
log(T ) + νt(s), (22)

where

(s†t , a
†
t ) = argmax

s,a

ηt(s, a)

µt(s)
(break tie arbitrarily)

1

ηt+1(s, a)
=


1

ηt(s,a)
+ 4ηt(s,a)ζt(s,a)

µt(s)2 log(T )
if t is a real episode

1
ηt(s,a)

(
1 + 1

24H log T

)
if t is a virtual episode and (s†t , a

†
t ) = (s, a)

1
ηt(s,a)

if t is a virtual episode and (s†t , a
†
t ) 6= (s, a)

(23)

1

η1(s, a)
= 4H4, (24)

ζt(s, a) =
(
It(s, a)− πt(a|s)It(s)

)2
L2
t,h where It(s) =

∑
a

It(s, a), (suppose that s ∈ Sh)

νt(s) = 8
∑
a

ηt(s, a)πt(a|s)Ct(s, a)2. (25)

7
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This desired bound suggests a learning rate scheduling of

ηt(s) ≈
1

H
√∑t

τ=1
1

µτ (s)

(27)

to balance the penalty and the stability terms. This is exactly
how we tune ηt(s) in (16). However, to obtain the ξt(s)
factor in the stability term in (26), we need to perform “loss-
shifting” in the analysis, which necessitates the condition
ηt(s)H
µt(s)

. 1 as discussed in Section 4.2. From the choice of
ηt(s) in (27), this condition may not always hold, but every
time it is violated, ηt(s) is decreased by a relatively large
factor in the next episode.

Our strategy is that whenever the condition Hηt(s)
µt(s)

. 1 is
violated, we do not perform loss-shifting. This still allows
us to prove a stability term of H2ηt(s)

√
A

µt(s)
for that episode.

The key in the analysis is to show that the extra cost due
to “not performing loss-shifting” is only logarithmic in T
(see the proof of Lemma 6.3). Combining this idea with
the instantaneous regret bound in (26) and the choice of
ηt(s) in (27), we are able to derive the form of bt(s) in (15).
After figuring out the form of bt(s) assuming Bt(s, a) is
not incorporated in the updates, we incorporate it back and
re-analyze the stability term. The extra stability term due to
bt(s) leads to a separate quantity 1

H πt(a|s)Bt(s, a), which
is an overhead allowed by (6).

5.2. Shannon entropy

The design of bt(s) under Shannon entropy follows similar
procedures as in Section 5.1, except that the tuning of the
learning rate is inspired by Ito et al. (2022). One improve-
ment over theirs is that we adopt coordinate-dependent learn-
ing rates that can give us a refined gap-dependent bound in
the stochastic regime (in multi-armed bandits, this improves
their maxa

A
∆(a) dependence to

∑
a

1
∆(a) ). With Shannon

entropy, there is less learning rate tuning issue because its
optimal learning rate decreases faster than other regulariz-
ers, and there is no need to perform loss-shifting (Ito et al.,
2022). The regret bound under Shannon entropy is overall
worse than that of Tsallis entropy by a ln2(T ) factor.

5.3. Log barrier

As shown by Wei & Luo (2018); Ito (2021), FTRL with a
log barrier regularizer is also able to achieve the best of both
worlds, with the additional benefit of having data-dependent
bounds. In this subsection, we demonstrate the possibility of
this by showing that under known transition, Algorithm 1 is
able to achieve a first-order bound in the adversarial regime,
while achieving polylog(T ) regret in the stochastic regime.

To get a first-order best-of-both-world bound with log bar-
rier, inspired by Ito (2021), we need to prove the following

instantaneous regret for the bandit algorithm on s:

∑
a

(
1

ηt(s, a)
− 1

ηt−1(s, a)

)
lnT︸ ︷︷ ︸

penalty term

+
∑
a

ηt(s, a)ζt(s, a)

µt(s)2︸ ︷︷ ︸
stability term

+ νt(s)

(28)

where ζt(s, a) = (It(s, a)− π(a|s)It(s))2
L2
t,h for s ∈ Sh.

This suggests a learning rate scheduling of 1/ηt+1(s, a) =
1/ηt(s, a) + ηt(s, a)ζt(s, a)/µt(s)

2. Similar to the Tsal-
lis entropy case, obtaining the desired stability term in
(28) requires loss-shifting, so we encounter the same is-
sue as before and can resolve it in the same way. With
this choice of ηt(s, a), we can derive the desired form of
bt(s) from (28). However, the magnitude of this bonus is
larger than in the Tsallis entropy case because of the 1

µt(s)2

scaling here. Therefore, an additional problem arises: the
Bt(s, a) derived from this bt(s) can be large that makes
ηt(s, a)πt(a|s)Bt(s, a) > 1

H happen, which violates the
condition under which we can bound the extra stability term
(due to the inclusion of bt(s)) by 1

H πt(a|s)Bt(s, a). Notice
that this was not an issue under Tsallis entropy.

To resolve this, we note that ηt(s, a)πt(a|s)Bt(s, a) can be
as large as poly(H,S) maxs′,a′

ηt(s
′,a′)2

µt(s′)2
(Lemma E.3), so

all we need is to make ηt(s,a)
µt(s)

≤ 1
poly(H,S) for all s, a.

Our solution is to insert virtual episodes when ηt(s,a)
µt(s)

is too
large on some (s, a). In virtual episodes, the learner does
not actually interact with the environment; instead, the goal
is purely to tune down ηt(s, a). To decide whether to insert
a virtual episode, in episode t, after the learner computes
πt(·|s) on all states, he checks if

max
s,a

ηt(s, a)

µt(s)
>

1

60
√
H3S

. (29)

If so, then episode t is made a virtual episode in which
the losses are assumed to be zero everywhere.4 In a vir-
tual episode, let (s†t , a

†
t) = argmaxs,a

ηt(s,a)
µt(s)

, and we tune

down ηt(s
†
t , a
†
t) by a factor of (1+ 1

24H log T ). Also, a bonus

bt(s) is assigned to s†t to reflect the increased penalty term
on state s†t due to the decrease in learning rate (by (28)).
Combinig all the above, we get the bonus and learning rate
specified in (22) and (23). Again, since every time a virtual
episode happens, there exists some ηt(s, a) decreased by a
significant factor, it cannot happen too many times.

4Inserting a virtual episode shifts the index of future real
episodes. Since there are only O(HSA log2 T ) virtual episodes,
we still use T to denote the total number of episodes.
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6. Sketch of Regret Analysis
Our goal is to show (6) and bound the right-hand side of (7)
(for all regularizers and known/unknown transitions). To
show (6), for a fixed π, we do the following decomposition:∑
t,a

(πt(a|s)− π(a|s)) (Qπt(s, a; `t)−Bt(s, a)) (30)

=
∑
t,a

(πt(a|s)− π(a|s))
(
Q̂t(s, a)−Bt(s, a)− Ct(s, a)

)
︸ ︷︷ ︸

ftrl-regπ(s)

+
∑
t,a

(πt(a|s)− π(a|s))
(
Qπt(s, a; `t)− Q̂t(s, a) + Ct(s, a)

)
︸ ︷︷ ︸

biasπ(s)

.

The next lemma bounds the expectation of ftrl-regπ(s).

Lemma 6.1. E [ftrl-regπ(s)] is upper bounded by

O(H4SA ln(T )) + E

[
T∑
t=1

bt(s) +
1

H

T∑
t=1

∑
a

πt(a|s)Bt(s, a)

]
.

The proof of Lemma 6.1 is in Appendix E. Notice that
depending on the regularizers and whether the transition is
known/unknown, the definitions of bt(s) are different, so
we prove it individually for each case.

Combining (30) with Lemma 6.1, we see that the condition
in Lemma 4.4 is satisfied withXπ(s) = O(H4SA ln(T ))+
E[biasπ(s)]. By Lemma 4.4, we can upper bound
E[Reg(π)] by the order of

H5SA ln(T ) + E

[∑
s

µπ(s)biasπ(s) +

T∑
t=1

V P̃t,πt(s0; bt)

]
.

(31)

The next lemma bounds the bias part in (31). See Ap-
pendix F for the proof.

Lemma 6.2. With known transitions,
E [
∑
s µ

π(s)biasπ(s)] . H5SA2 ln(T ), and with
unknown transitions,

E

[∑
s

µπ(s)biasπ(s)

]
. H2S4A2 ln(T )ι+√√√√H3S2AE

[
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+

]
ln(T )ι.

Next, we bound the bonus part in (31) for all regularizers
we consider. The proofs are in Appendix G.

Lemma 6.3. Using Tsallis entropy as the regularizer, with

known transitions,

E

[
T∑
t=1

V P̃t,πt(s0; bt)

]
. H4SA2 ln(T )+

H
∑
s,a

√√√√E

[
T∑
t=1

µt(s)πt(a|s)(1− πt(a|s))

]
ln(T ).

With unknown transitions, the right-hand side above further
has an additional term O(HS4A2 ln(T )ι).

Lemma 6.4. Using Shannon entropy as the regularizer,
With known transitions,

E

[
T∑
t=1

V P̃t,πt(s0; bt)

]
. H4SA2

√
ln3(T )+

H
∑
s,a

√√√√E

[
T∑
t=1

µt(s)πt(a|s)(1− πt(a|s))

]
ln3(T ).

With unknown transitions, the right-hand side above further
has an additional term O(HS4A2 ln(T )ι).

Lemma 6.5. Using log barrier as the regularizer, with
known transitions,

E

[
T∑
t=1

V πt(s0; bt)

]
. H3S2A2 ln(T ) ln(SAT )+

∑
s,a

√√√√E

[
T∑
t=1

(It(s, a)− πt(a|s)It(s))2L2
t,h(s)

]
ln2(T ).

Final regret bounds To obtain the final regret bounds, we
combine Lemma 6.2 with each of Lemma 6.3, Lemma 6.4,
and Lemma 6.5 based on (31). Then we use the stan-
dard self-bounding technique to derive the bounds for each
regime. The details are provided in Appendix H.

7. Conclusion
In this work, we develop policy optimization algorithms for
tabular MDPs that achieves the best of both worlds. Com-
pared to previous solutions with a similar guarantee (Jin
& Luo, 2020; Jin et al., 2021), our algorithm is computa-
tionally much simpler; compared to most existing RL algo-
rithms, our algorithm is more robust (handling adversarial
losses) and more adaptive (achieving fast rate in stochas-
tic environments) simultaneously. Built upon the flexible
policy optimization framework, our work paves a way to-
wards developing more robust and adaptive algorithms for
more general settings. Future directions include obtaining
data-dependent bounds under unknown transitions, and in-
corporating function approximation.
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A. Additional Definitions
Define µP̃ ,π(s′|s, a) as the probability of visiting s′ conditioned on that (s, a) is already visited, under transition kernel P̃
and policy π. In other words, µP̃ ,π(s′|s, a) is defined as

0 if h(s′) < h(s),

0 if h(s) = h(s′), s 6= s′,
1 if s′ = s,

Pr{sh(s′) = s′ | (sh, ah) = (s, a)} if h(s′) > h(s).

Further define µP̃ ,π(s′|s) =
∑
a µ

P̃ ,π(s′|s, a)π(a|s). We write µπ(s′|s, a) = µP,π(s′|s, a) and µπ(s′|s) = µP,π(s′|s)
where P is the true transition.

B. Concentration Bounds
Lemma B.1. If P ∈ Pt, then for all P̃ ∈ Pt,

∣∣∣P̃ (s′|s, a)− P (s′|s, a)
∣∣∣ ≤ min

{
4

√
P (s′|s, a)ι

nt(s, a)
+

40ι

3nt(s, a)
, 1

}
.

Lemma B.2 (Lemma D.3.7 of Jin et al. (2021)). With probability at least 1− δ, for any h,

T∑
t=1

∑
(s,a)∈Sh×A

µπt(s, a)

nt(s, a)
. |Sh|A lnT + ln(1/δ)

Definition B.3. Define E to be the event that P ∈ Pt for all t and the bound in Lemma B.2 holds. By (2) and Lemma B.2,
Pr{E} ≥ 1− 5Hδ.

C. Difference Lemmas
Lemma C.1 (Performance difference). For any policies π1 and π2, and any loss function ` : S ×A → R,

V π1(s0; `)− V π2(s0; `) =
∑
s

µπ2(s)(π1(a|s)− π2(a|s))Qπ1(s, a; `).

Lemma C.2. For any policies π1 and π2 and any function L : S ×A → R,∑
s

µπ2(s)(π1(a|s)− π2(a|s))L(s, a) = V π1(s0; `)− V π2(s0; `)

where

`(s, a) , L(s, a)− Es′∼P (·|s,a),a′∼π1(·|s′)[L(s′, a′)].

Proof. This is simply a different way to write the performance difference lemma (Lemma C.1). One only needs to verify
that Qπ1(s, a; `) = L(s, a). This can be shown straightforwardly by backward induction from s ∈ SH to s ∈ S0 and using
the definition of `(s, a).

Lemma C.3 (Occupancy measure difference, Lemma D.3.1 of (Jin et al., 2021)).

µP1,π(s)− µP2,π(s) =
∑

(u,v,w)∈S×A×S

µP1,π(u, v) [P1(w|u, v)− P2(w|u, v)]µP2,π(s|w)

=
∑

(u,v,w)∈S×A×S

µP2,π(u, v) [P1(w|u, v)− P2(w|u, v)]µP1,π(s|w)

12
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Lemma C.4 (Generalized version of Lemma 4 in (Jin et al., 2020)). Suppose the high probability event E defined in
Definition B.3 holds. Let P̃ st be a transition kernel in Pt which may depend on s, and let gt(s) ∈ [0, G]. Then

T∑
t=1

∑
s

∣∣∣µπt(s)− µP̃ st ,πt(s)∣∣∣ gt(s) .
√√√√HS2A ln(T )ι

T∑
t=1

∑
s

µπt(s)gt(s)2 +HS4AG ln(T )ι.

Proof. We first show that for any t, s,

∣∣∣µπ(s)− µP̃
s
t ,π(s)

∣∣∣ . ∑
(u,v,w)×S×A×S

µπ(u, v)

√
P (w|u, v)ι

nt(u, v)
µπ(s|w) +HS2

∑
(u,v)×S×A

µπ(u, v)ι

nt(u, v)
. (32)

Below, the summation range of (u,w, v) and (x, y, z) are both
⋃H−1
h=0 (Sh ×A× Sh+1) if without specifying.∣∣∣µπ(s)− µP̃

s
t ,π(s)

∣∣∣
≤
∑
u,v,w

µπ(u, v)
∣∣∣P (w|u, v)− P̃ st (w|u, v)

∣∣∣µP̃ st ,π(s|w) (by Lemma C.3)

=
∑
u,v,w

µπ(u, v)
∣∣∣P (w|u, v)− P̃ st (w|u, v)

∣∣∣µπ(s|w)

+
∑
u,v,w

µπ(u, v)
∣∣∣P (w|u, v)− P̃ st (w|u, v)

∣∣∣ (µP̃ st ,π(s|w)− µπ(s|w)
)

≤
∑
u,v,w

µπ(u, v)
∣∣∣P (w|u, v)− P̃ st (w|u, v)

∣∣∣µπ(s|w)

+
∑
u,v,w

µπ(u, v)
∣∣∣P (w|u, v)− P̃ st (w|u, v)

∣∣∣ ∑
x,y,z

µπ(x, y|w)
∣∣∣P̃ st (z|x, y)− P (z|x, y)

∣∣∣µP̃ st ,π(s|z) (by Lemma C.3)

.
∑
u,v,w

µπ(u, v)

(√
P (w|u, v)ι

nt(u, v)
+

ι

nt(u, v)

)
µπ(s|w)

+
∑
u,v,w

∑
x,y,z

µπ(u, v)

(√
P (w|u, v)ι

nt(u, v)
+

ι

nt(u, v)

)
µπ(x, y|w) min

{√
P (z|x, y)ι

nt(x, y)
+

ι

nt(x, y)
, 1

}
(by Lemma B.1 and the assumption that E holds)

≤
∑
u,v,w

µπ(u, v)

√
P (w|u, v)ι

nt(u, v)
µπ(s|w)

+
∑
u,v,w

µπ(u, v)
ι

nt(u, v)
µπ(s|w) (=: term1)

+
∑
u,v,w

∑
x,y,z

µπ(u, v)

√
P (w|u, v)ι

nt(u, v)
µπ(x, y|w)

√
P (z|x, y)ι

nt(x, y)
(=: term2)

+
∑
u,v,w

∑
x,y,z

µπ(u, v)

√
P (w|u, v)ι

nt(u, v)
µπ(x, y|w) min

{
ι

nt(x, y)
, 1

}
(=: term3)

+
∑
u,v,w

∑
x,y,z

µπ(u, v)
ι

nt(u, v)
µπ(x, y|w) (=: term4)

We bound term1 to term4 separately as below:

term1 ≤
∑
u,v,w

µπ(u, v)ι

nt(u, v)
≤ S

∑
u,v

µπ(u, v)ι

nt(u, v)
.

13
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term2 =
∑
u,v,w

∑
x,y,z

√
µπ(u, v)P (z|x, y)µπ(x, y|w)ι

nt(u, v)

√
µπ(u, v)P (w|u, v)µπ(x, y|w)ι

nt(x, y)

≤

√√√√∑
u,v,w

∑
x,y,z

µπ(u, v)P (z|x, y)µπ(x, y|w)ι

nt(u, v)

√√√√∑
u,v,w

∑
x,y,z

µπ(u, v)P (w|u, v)µπ(x, y|w)ι

nt(x, y)
(AM-GM)

≤

√√√√H
∑
u,v,w

µπ(u, v)ι

nt(u, v)

√√√√H
∑
x,y,z

µπ(x, y)ι

nt(x, y)

≤ HS
∑
u,v

µπ(u, v)ι

nt(u, v)
.

term3 ≤
∑
u,v,w

∑
x,y,z

µπ(u, v)

(
P (w|u, v) +

ι

nt(u, v)

)
µπ(x, y|w) min

{
ι

nt(x, y)
, 1

}
≤
∑
u,v,w

∑
x,y,z

µπ(u, v)P (w|u, v)µπ(x, y|w)
ι

nt(x, y)
+
∑
u,v,w

∑
x,y,z

µπ(u, v)
ι

nt(u, v)
µπ(x, y|w)

≤ H
∑
x,y,z

µπ(x, y)
ι

nt(x, y)
+HS

∑
u,v,w

µπ(u, v)
ι

nt(u, v)

≤ HS
∑
x,y

µπ(x, y)ι

nt(x, y)
+HS2

∑
u,v

µπ(u, v)ι

nt(u, v)
.

Similarly,

term4 ≤ HS
∑
u,v,w

µπ(u, v)
ι

nt(u, v)
≤ HS2

∑
u,v

µπ(u, v)ι

nt(u, v)
.

Collecting all terms we obtain (32). Thus,

T∑
t=1

∑
s

∣∣∣µπt(s)− µP̃ st ,πt(s)∣∣∣ gt(s)
≤

T∑
t=1

∑
s

[∑
u,v,w

µπt(u, v)

√
P (w|u, v)ι

nt(u, v)
µπt(s|w) +HS2

∑
u,v

µπt(u, v)ι

nt(u, v)

]
gt(s)

≤
T∑
t=1

∑
s

[∑
u,v,w

µπt(u, v)

√
P (w|u, v)ι

nt(u, v)
µπt(s|w)

]
gt(s)︸ ︷︷ ︸

(?)

+HS3G

T∑
t=1

∑
u,v

µπt(u, v)ι

nt(u, v)
(33)

Fix an h, we consider the summation (?) restricted to (u, v, w) ∈ Th , Sh ×A× Sh+1. That is,

T∑
t=1

∑
s

 ∑
(u,v,w)∈Th

µπt(u, v)

√
P (w|u, v)ι

nt(u, v)
µπt(s|w)

 gt(s)
≤

T∑
t=1

∑
s

 ∑
(u,v,w)∈Th

µπt(u, v)

(
αP (w|u, v)gt(s)

2 +
ι

αnt(u, v)

)
µπt(s|w)

 (holds for any α > 0 by AM-GM)

≤ α
T∑
t=1

∑
s

∑
(u,v,w)∈Th

µπt(u, v)P (w|u, v)µπt(s|w)gt(s)
2 +

1

α

T∑
t=1

∑
s

∑
(u,v,w)∈Th

µπt(u, v)ι

nt(u, v)
µπt(s|w)

14



Best of Both Worlds Policy Optimization

≤ α
T∑
t=1

∑
s

µπt(s)gt(s)
2 +

H|Sh+1|
α

T∑
t=1

∑
u,v

µπt(u, v)ι

nt(u, v)

. α

T∑
t=1

∑
s

µπt(s)gt(s)
2 +

H|Sh+1||Sh|A ln(T )ι

α
+
H|Sh+1| ln(1/δ)ι

α

(by Lemma B.2 and the assumption that E holds)

=

√√√√H|Sh||Sh+1|A ln(T )ι

T∑
t=1

∑
s

µπt(s)gt(s)2 (picking the optimal α and using our choice of δ = 1
T 3 )

≤ (|Sh|+ |Sh+1)

√√√√HA ln(T )ι

T∑
t=1

∑
s

µπt(s)gt(s)2.

Continue from (33):

T∑
t=1

∑
s

∣∣∣µπt(s)− µP̃ st ,πt(s)∣∣∣ gt(s)
.
∑
h

(|Sh|+ |Sh+1)

√√√√HA ln(T )ι

T∑
t=1

∑
s

µπt(s)gt(s)2 +HS4AG ln(T )ι

(by Lemma B.2 and the assumption that E holds)

. S

√√√√HA ln(T )ι

T∑
t=1

∑
s

µπt(s)gt(s)2 +HS4AG ln(T )ι.

Lemma C.5. For any π1, π2,∑
s,a

|µπ1(s, a)− µπ2(s, a)| ≤ H
∑
s,a

µπ1(s) |π1(a|s)− π2(a|s)|

Proof. For any s, a, we can view µπ(s, a) as V π(s0;1s,a) where 1s,a is the loss function that takes the value of 1 on (s, a)
and 0 on other state-actions. By the performance difference lemma (Lemma C.1),

|µπ1(s, a)− µπ2(s, a)| ≤
∑
s′,a′

µπ1(s′) |π1(a′|s′)− π2(a′|s′)|Qπ2(s′, a′;1s,a).

Therefore, ∑
s,a

|µπ1(s, a)− µπ2(s, a)| ≤
∑
s′,a′

µπ1(s′) |π1(a′|s′)− π2(a′|s′)|
∑
s,a

Qπ2(s′, a′;1s,a)

=
∑
s′,a′

µπ1(s′) |π1(a′|s′)− π2(a′|s′)|Qπ2(s′, a′;1)

(1 is the loss function that takes a constant value 1)

≤ H
∑
s′,a′

µπ1(s′) |π1(a′|s′)− π2(a′|s′)| .

D. FTRL Regret Bounds
The lemmas in this section are standard results for FTRL, which can be found in e.g. Lattimore & Szepesvári (2018);
Zimmert & Seldin (2019); Ito (2021); Luo (2022). We list the results here for completeness.
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Lemma D.1. The FTRL algorithm:

pt = argmin
p∈Ω

{〈
p,

t−1∑
τ=1

`τ

〉
+ ψt(p)

}

guarantees the following:

T∑
t=1

〈pt − u, `t〉 ≤ ψ0(u)−min
p∈Ω

ψ0(p) +

T∑
t=1

(ψt(u)− ψt(pt)− ψt−1(u) + ψt−1(pt))︸ ︷︷ ︸
penalty term

+

T∑
t=1

max
p∈Ω

(〈pt − p, `t〉 −Dψt(p, pt))︸ ︷︷ ︸
stability term

.

Proof. Let Lt ,
∑t
τ=1 `τ . Define Ft(p) = 〈p, Lt−1〉+ψt(p) and Gt(p) = 〈p, Lt〉+ψt(p). Therefore, pt is the minimizer

of Ft. Let p′t+1 be minimizer of Gt. Then by the first-order optimality condition, we have

Ft(pt)−Gt(p′t+1) ≤ Ft(p′t+1)−Gt(p′t+1)−Dψt(p
′
t+1, pt) = −〈p′t+1, `t〉 −Dψt(p

′
t+1, pt). (34)

By definition, we also have

Gt(p
′
t+1)− Ft+1(pt+1) ≤ Gt(pt+1)− Ft+1(pt+1) = ψt(pt+1)− ψt+1(pt+1). (35)

Thus,

T∑
t=1

〈pt, `t〉

≤
T∑
t=1

(
〈pt − p′t+1, `t〉 −Dψt(p

′
t+1, pt) +Gt(p

′
t+1)− Ft(pt)

)
(by (34))

=

T∑
t=1

(
〈pt − p′t+1, `t〉 −Dψt(p

′
t+1, pt) +Gt−1(p′t)− Ft(pt)

)
+GT (p′T+1)−G0(p′1)

≤
T∑
t=1

(
max
p

{
〈pt − p, `t〉 −Dψt(p, pt)

}
− ψt(pt) + ψt−1(pt)

)
+GT (u)−min

p
ψ0(p)

(by (35), using that p′T+1 is the minimizer of GT )

=

T∑
t=1

(
max
p

{
〈pt − p, `t〉 −Dψt(p, pt)

}
− ψt(pt) + ψt−1(pt)

)
+

T∑
t=1

〈u, `t〉+ ψT (u)−min
p
ψ0(p)

=

T∑
t=1

(
max
p

{
〈pt − p, `t〉 −Dψt(p, pt)

}
+ ψt(u)− ψt(pt)− ψt−1(u) + ψt−1(pt)

)
+

T∑
t=1

〈u, `t〉+ ψ0(u)−min
p
ψ0(p).

Re-arranging finishes the proof.

Lemma D.2 (Stability under Tsallis entropy). Let ψt(p) = − 2
ηt

∑
a

√
p(a), and let `t ∈ RA be such that ηt

√
p(a)`t(a) ≥

− 1
2 . Then

max
p∈4(A)

{〈pt − p, `t〉 −Dψt(p, pt)} ≤ 2ηt
∑
a

pt(a)
3
2 `t(a)2.

Proof. The proof can be found in the Problem 1 of Luo (2022).
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Lemma D.3 (Stability under Shannon entropy). Let ψt(p) =
∑
a

1
ηt(a)p(a) ln p(a), and let `t ∈ RA be such that

η(a)`t(a) ≥ −1. Then

max
p∈4(A)

{〈pt − p, `t〉 −Dψt(p, pt)} ≤
∑
a

ηt(a)pt(a)`t(a)2.

Proof. The proof can be found in the Proof of Lemma 1 in Chen et al. (2021).

Lemma D.4 (Stability under log barrier). Let ψt(p) =
∑
a

1
ηt(a) ln 1

p(a) , and let `t ∈ RA be such that ηt(a)p(a)`t(a) ≥ − 1
2 .

Then

max
p∈4(A)

{〈pt − p, `t〉 −Dψt(p, pt)} ≤
∑
a

ηt(a)pt(a)2`t(a)2.

Proof.

max
p∈4(A)

{〈pt − p, `t〉 −Dψt(p, pt)} ≤ max
q∈RA+

{〈pt − q, `t〉 −Dψt(q, pt)}

Define f(q) = 〈pt − q, `t〉 − Dψt(q, pt). Let q? be the solution in the last expression. Next, we verify that under the
specified conditions, we have∇f(q?) = 0. It suffices to show that there exists q ∈ RA+ such that∇f(q) = 0 since if such q
exists, then it must the maximizer of f and thus q? = q.

[∇f(q)]a = −`t(a)− [∇ψt(q)]a + [∇ψt(pt)]a = −`t(a) +
1

ηt(a)q(a)
− 1

ηt(a)pt(a)

By the condition, we have − 1
ηt(a)pt(a) − `t(a) < 0 for all a. and so ∇f(q) = 0 has solution in R+, which is q(a) =(

1
pt(a) + ηt(a)`t(a)

)−1

.

Therefore, ∇f(q?) = −`t −∇ψt(q?) +∇ψt(pt) = 0, and we have

max
q∈RA+

{〈pt − q, `t〉 −Dψt(q, pt)} = 〈pt − q?,∇ψt(pt)−∇ψt(q?)〉 −Dψt(q
?, pt) = Dψt(pt, q

?).

It remains to bound Dψt(pt, q
?), which by definition can be written as

Dψt(pt, q
?) =

∑
a

1

ηt(a)
h

(
pt(a)

q?(a)

)

where h(x) = x − 1 − ln(x). By the relation between q?(a) and pt(a) we just derived, it holds that pt(a)
q?(a) = 1 +

ηt(a)pt(a)`t(a). By the fact that ln(1 + x) ≥ x− x2 for all x ≥ − 1
2 , we have

h

(
pt(a)

q?(a)

)
= ηt(a)pt(a)`t(a)− ln(1 + ηt(a)pt(a)`t(a)) ≤ ηt(a)2pt(a)2`t(a)2

which gives the desired bound.

Lemma D.5 (FTRL with Tsallis entropy). Let ψt(p) = − 2
ηt

∑
a

√
p(a) for non-increasing ηt, and let xt be such that

ηt
√
pt(a)(`t(a) + xt) ≥ − 1

2 for all t, a. Then the FTRL algorithm in Lemma D.1 ensures for any u ∈ 4(A),

T∑
t=1

〈pt − u, `t〉 ≤
2
√
A

η0
+ 2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
ξt + 2

T∑
t=1

ηt
∑
a

pt(a)
3
2 (`t(a) + xt)

2
,

where ξt =
∑
a

√
pt(a)(1− pt(a)).
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Proof. We use Lemma D.1, and bound the penalty term and stability individually.

penalty term =
2

η0
max

p∈4(A)

∑
a

(√
p(a)−

√
u(a)

)
+ 2

T∑
t=1

(
1

ηt
− 1

ηt−1

)∑
a

(√
pt(a)−

√
u(a)

)
≤ 2
√
A

η0
+ 2

T∑
t=1

(
1

ηt
− 1

ηt−1

)(∑
a

√
pt(a)− 1

)

≤ 2
√
A

η0
+ 2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
ξt.

Bounding the stability term:

stability term =

T∑
t=1

max
p∈4(A)

{
〈pt − p, `t + xt1〉 −Dψt(p, pt)

}
≤ 2

T∑
t=1

ηt
∑
a

pt(a)
3
2 (`t(a) + xt)

2

where the first equality is because 〈pt − p,1〉 = 0 for pt, p ∈ 4(A), and the last inequality is by Lemma D.2.

Lemma D.6 (FTRL with Shannon entropy). Let ψt(p) =
∑
a

1
ηt(a)p(a) ln p(a), for non-increasing ηt(a) such that

η0(a) = η0 for all a. Assume that ηt(a)`t(a) ≥ −1 for all t, a, and assume A ≤ T . Then for any u ∈ 4(A),

T∑
t=1

〈pt − u, `t〉 ≤
lnA

η0
+ 6

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ξt(a) +

T∑
t=1

∑
a

ηt(a)pt(a)`t(a)2 +
1

T 2

T∑
t=1

〈
−u+

1

A
1, `t

〉
.

where ξt(a) = min {pt(a) ln(T ), 1− pt(a)}.

Proof. Let u′ =
(
1− 1

T 2

)
u + 1

AT 21. We use Lemma D.1, and bound the penalty term and stability individually (with
respect to u′).

penalty term

=
1

η0
max
p

∑
a

(
p(a) ln

1

p(a)
− u′(a) ln

1

u′(a)

)
+

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)(
pt(a) ln

1

pt(a)
− u′(a) ln

1

u′(a)

)

≤ lnA

η0
+

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)(
pt(a) ln

1

pt(a)
− u′(a) ln

1

u′(a)

)
.

To bound pt(a) ln 1
pt(a) − u

′(a) ln 1
u′(a) , first observe that pt(a) ln 1

pt(a) = pt(a) ln
(

1 + 1−pt(a)
pt(a)

)
≤ pt(a) · 1−pt(a)

pt(a) ≤
1− pt(a) because ln(1 + x) ≤ x. By the definition of u′, we have

u′(a) ln
1

u′(a)
≥ min

{
1

AT 2
ln(AT 2),

(
1− 1

T 2

)
ln

1

1− 1
T 2

}
≥ min

{
1

AT 2
,

(
1− 1

T 2

)
1

T 2

}
=

1

AT 2
.

If pt(a) ≤ 1
A2T 4 , then

pt(a) ln
1

pt(a)
− u′(a) ln

1

u′(a)
≤ 1

A2T 4
ln(A2T 4)− 1

AT 2
=

2 ln(AT 2)−AT 2

A2T 4
≤ 0

where the first inequality is because x ln(x) is increasing for x ≤ e−1, and last inequality is because 2 ln(x)− x < 0 for all
x ∈ R. If pt(a) > 1

A2T 4 , then pt(a) ln 1
pt(a) ≤ pt(a) ln(A2T 4) ≤ 6pt(a) ln(T ) by the assumption A ≤ T . Combining all

arguments above, we get

penalty term ≤ lnA

η0
+ 6

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt(a)

)
min {1− pt(a), pt(a) ln(T )} .
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Bounding the stability term:

stability term =

T∑
t=1

max
p∈4(A)

{
〈pt − p, `t〉 −Dψt(p, pt)

}
≤

T∑
t=1

∑
a

ηt(a)pt(a)`t(a)2

where the last inequality is by Lemma D.3.

Therefore,

T∑
t=1

〈pt − u′, `t〉 ≤
lnA

η0
+ 6

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ξt(a) +

T∑
t=1

∑
a

ηt(a)pt(a)`t(a)2

Then noticing that

T∑
t=1

〈pt − u, `t〉 =

T∑
t=1

〈pt − u′, `t〉+

T∑
t=1

〈u′ − u, `t〉

=

T∑
t=1

〈pt − u′, `t〉+
1

T 2

T∑
t=1

〈
−u+

1

A
1, `t

〉
finishes the proof.

Lemma D.7 (FTRL with log barrier). Let ψt(p) =
∑
a

1
ηt(a) ln 1

p(a) for non-increasing ηt(a) with η0(a) = η0 for all a,
and let xt be such that ηt(a)pt(a)(`t(a) + xt) ≥ − 1

2 for all t, a. Then for any u ∈ 4(A),

T∑
t=1

〈pt − u, `t〉 ≤
3A lnT

η0
+ 4

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ln(T ) +

T∑
t=1

∑
a

ηt(a)pt(a)`t(a)2 +
1

T 3

T∑
t=1

〈
−u+

1

A
1, `t

〉
.

Proof. Let u′ =
(
1− 1

T 3

)
u + 1

AT 31. We use Lemma D.1, and bound the penalty term and stability individually (with
respect to u′).

penalty term ≤ A ln(T 3)

η0
+

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)(
ln

1

u′(a)
− ln

1

pt(a)

)

≤ 3A lnT

η0
+

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ln(AT 3)

≤ 3A lnT

η0
+ 4

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ln(T ) (because A ≤ T )

Bounding the stability term:

stability term =

T∑
t=1

max
p∈4(A)

{
〈pt − p, `t + xt1〉 −Dψt(p, pt)

}
≤

T∑
t=1

∑
a

ηt(a)pt(a)2 (`t(a) + xt)
2

where the first equality is because 〈pt − p,1〉 = 0, and the last inequality is by Lemma D.4. Then noticing that

T∑
t=1

〈pt − u, `t〉 =

T∑
t=1

〈pt − u′, `t〉+

T∑
t=1

〈u′ − u, `t〉

=

T∑
t=1

〈pt − u′, `t〉+
1

T 3

T∑
t=1

〈
−u+

1

A
1, `t

〉
finishes the proof.
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E. Analysis for FTRL Regret Bound (Lemma 6.1)
E.1. Tsallis entropy

Proof of Lemma 6.1 (Tsallis entropy). We focus on a particular s, and use πt(a), Q̂t(a), Bt(a), Ct(a), ηt, µt, ξt, bt to
denote πt(a|s), Q̂t(s, a), Bt(s, a), Ct(s, a), ηt(s), µt(s), ξt(s), bt(s), respectively.

By Lemma D.5, we have for any π

E

[
T∑
t=1

〈πt − π, Q̂t −Bt − Ct〉

]
(36)

≤ 2
√
A

η0
+ E

[
2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
ξt + 2

T∑
t=1

∑
a

ηtπt(a)
3
2

(
Q̂t(a)−Bt(a)− Ct(a) + xt

)2
]

(37)

for arbitrary xt ∈ R such that ηt
√
πt(a|s)(Q̂t(a) − Bt(a) − Ct(a) + xt) ≥ − 1

2 for all t, a. Our choice of xt is the
following:

xt = −
〈
πt, Q̂t

〉
Yt. (38)

with Yt , I
[
ηt
µt
≤ 1

8H

]
. Below, we verify that ηt

√
πt(a)

(
Q̂t(a)−Bt(a)− Ct(a) + xt

)
≥ − 1

2 :

ηt
√
πt(a)

(
Q̂t(a)−Bt(a)− Ct(a) + xt

)
≥ ηt

√
πt(a)

(
−Bt(a)− Ct(a)−

〈
πt, Q̂t

〉
Yt

)
(using (38) and Q̂t(a) ≥ 0)

≥ −ηtBt(a)− ηtCt(a)− ηt
∑
a′

πt(a
′)
HIt(s, a′)
µtπt(a′)

Yt (by the definition of Q̂t(a))

≥ − 1

8H
− 1

4H2
− Hηt

µt
Yt (using Lemma E.1, Ct(a) ≤ H2 and ηt ≤ 1

4H4 )

≥ −1

2
. (by the definition of Yt = I

[
ηt
µt
≤ 1

8H

]
)

Continued from (37) with the choice of xt:

E

[
T∑
t=1

〈πt − π, Q̂t −Bt − Ct〉

]

≤ 2
√
A

η0
+ E

[
2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
ξt + 2

T∑
t=1

∑
a

ηtπt(a)
3
2

(
Q̂t(a)− 〈πt, Q̂t〉Yt −Bt(a)− Ct(a)

)2
]

≤ O(H4A) + E

[
2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
ξt + 8

T∑
t=1

∑
a

ηtπt(a)
3
2

((
Q̂t(a)− 〈πt, Q̂t〉

)2

+ Q̂t(a)2Y ′t +Bt(a)2 + Ct(a)2

)]
(define Y ′t = 1− Yt)

≤ O(H4A) + E

[
2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
ξt + 8

T∑
t=1

∑
a

ηtπt(a)
3
2

((
Q̂t(a)− 〈πt, Q̂t〉

)2

+ Q̂t(a)2Y ′t

)
︸ ︷︷ ︸

term1

]

+ E

[
1

H

T∑
t=1

∑
a

πt(a)Bt(a)

]
+ E

[
8

T∑
t=1

∑
a

ηtπt(a)Ct(a)2

]
. (using Lemma E.1)

(39)

To bound term1, notice that

Et
[(
Q̂t(a)− 〈πt, Q̂t〉

)2
]

= Et

[(
It(s, a)Lt,h
µtπt(a)

− It(s)Lt,h
µt

)2
]

(assume s ∈ Sh)

20



Best of Both Worlds Policy Optimization

≤ µtπt(a)

(
H

µtπt(a)
− H

µt

)2

+ µt(1− πt(a))

(
H

µt

)2

=
1

µtπt(a)
(1− πt(a))2H2 +

1

µt
(1− πt(a))H2

=
1− πt(a)

µtπt(a)
H2

and that

Et
[
Q̂t(a)2Y ′t

]
= Et

[(
It(s, a)Lt,h
µtπt(a)

)2
]
Y ′t ≤

H2

µtπt(a)
Y ′t .

Therefore,

E[term1] ≤ E

[
8H2

T∑
t=1

∑
a

ηtπt(a)
3
2

(
1− πt(a)

µtπt(a)
+

1

µtπt(a)
Y ′t

)]

≤ E

[
8H2

T∑
t=1

ηt
µt

∑
a

(√
πt(a)(1− πt(a)) +

√
πt(a)Y ′t

)]

≤ E

[
8H2

T∑
t=1

ηt
µt

(
ξt +

√
AY ′t

)]
.

Notice that

8H2ηt
µt

≤ 2H

1
µt√∑t
τ=1

1
µτ

≤ 4H


√√√√ t∑
τ=1

1

µτ
−

√√√√t−1∑
τ=1

1

µτ

 ≤ 1

ηt
− 1

ηt−1

Thus

E[term1] ≤ E

[
T∑
t=1

(
1

ηt
− 1

ηt−1

)(
ξt +

√
AY ′t

)]
,

and continuing from (39) we have

E

[
T∑
t=1

〈πt − π, Q̂t −Bt − Ct〉

]

≤ O(H4A) + 3E

[
T∑
t=1

(
1

ηt
− 1

ηt−1

)(
ξt +

√
AY ′t

)]
+ E

[
1

H

T∑
t=1

∑
a

πt(a)Bt(a)

]
+ E

[
8

T∑
t=1

∑
a

ηtπt(a)Ct(a)2

]

≤ O(H4A) + E

[
T∑
t=1

bt

]
+ E

[
1

H

T∑
t=1

∑
a

πt(a)Bt(a)

]

with bt defined in (15). This finishes the proof.

Lemma E.1 (Tsallis entropy). ηt(s)Bt(s, a) ≤ 1
8H .

Proof. By the definition of bt(s) in (15), we have

bt(s) ≤ 8
√
A

(
1

ηt(s)
− 1

ηt−1(s)

)
+ 8ηt(s)H

4 (Ct(s, a) ≤ H2)
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= 32H
√
A


√√√√ t∑
τ=1

1

µτ (s)
−

√√√√t−1∑
τ=1

1

µτ (s)

+ 8ηt(s)H
4

≤ 32H
√
A×

1
µt(s)√∑t
τ=1

1
µτ (s)

+ 8× 1

4H4
×H4

≤ 32H

√
A

µt(s)
+ 2 ≤ 34H

√
A

γt
.

Therefore,

ηt(s)Bt(s, a) ≤ ηt(s)
(

1 +
1

H

)H
H max

s′
bt(s

′)

≤ min

{
1

1600H4
√
A
,

1

4H
√
t

}
× 34eH2

√
A

γt

≤ 100H2 min

{
1

1600H4
√
A
,

1

4H
√
t

}
×max

{√
At

106H4A2
,
√
A

}
(by the definition of γt)

≤ 1

8H
.

E.2. Shannon entropy

Proof of Lemma 6.1 (Shannon entropy). We focus on a particular s, and use πt(a), Q̂t(a), Bt(a), ηt(a), µt, bt to denote
πt(a|s), Q̂t(s, a), Bt(s, a), ηt(s, a), µt(s), bt(s), respectively.

Notice that for any t, a, since Q̂t(a) ≥ 0, ηt(a)Bt(a) ≤ 1
4H (by Lemma E.2), and ηt(a)Ct(a) ≤ 1

4H4 × H2 = 1
4H2

(because ηt(a) ≤ η0(a) = 1
4H4 and Ct(a) ≤ H2), we have

ηt(a)(Q̂t(a)−Bt(a)− Ct(a)) ≥ − 1

4H
− 1

4H2
≥ −1.

Besides, for any a, ∣∣∣∣∣E
[
T∑
t=1

Q̂t(a)

]∣∣∣∣∣ ≤ E

[
T∑
t=1

H

µt

]
≤

T∑
t=1

H

γt
≤ HT 2 (by the definition of γt)

E

[
T∑
t=1

Bt(a)

]
≤ 400T 2

√
log T (by Lemma E.2)

E

[
T∑
t=1

Ct(a)

]
≤ H2T (Ct(a) ≤ H2)

With these inequalities, by Lemma D.6, the following holds for any π:

E

[
T∑
t=1

〈πt − π, Q̂t −Bt − Ct〉

]

≤
∑
a

lnA

η0(a)
+ E

[
6

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ξt(a) +

T∑
t=1

∑
a

ηt(a)πt(a)
(
Q̂t(a)−Bt(a)− Ct(a)

)2
]

(40)

+
2

T 2
max
a

∣∣∣∣∣E
[
T∑
t=1

(
Q̂t(a)−Bt(a)− Ct(a)

)]∣∣∣∣∣
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≤ O(H4A ln(T )) + E

[
6

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ξt(a) + 3

T∑
t=1

∑
a

ηt(a)πt(a)
(
Q̂t(a)2 +Bt(a)2 + Ct(a)2

)]

≤ O(H4A ln(T )) + E

[
6

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ξt(a) + 3

T∑
t=1

∑
a

ηt(a)

(
H2

µt
+ πt(a)Bt(a)2 + πt(a)Ct(a)2

)]

≤ O(H4A ln(T )) + E

[
6

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
ξt(a) + 3

T∑
t=1

∑
a

H2ηt(a)

µt

]

+ E

[
1

H

T∑
t=1

∑
a

πt(a)Bt(a) + 3

T∑
t=1

∑
a

ηt(a)πt(a)Ct(a)2

]
(by Lemma E.2)

(41)

By the update ηt(a),

1

ηt(a)
≥ 4H

√
log T

t∑
τ=1

1

µτ
× 1√∑T

τ=1
ξτ (a)
µτ

+ maxτ∈[T ]
1
µτ

.

Therefore,

3H2
T∑
t=1

∑
a

ηt(a)

µt
≤ H√

log T

∑
a

√√√√ T∑
τ=1

ξτ (a)

µτ
+ max
τ∈[T ]

1

µτ
×

T∑
t=1

1
µt∑t
τ=1

1
µτ

≤ 2H
√

log T
∑
a

√√√√ T∑
τ=1

ξτ (a)

µτ
+ max
τ∈[T ]

1

µτ

= 2H
√

log T
∑
a

T∑
t=1


√√√√ t∑
τ=1

ξτ (a)

µτ
+ max

τ∈[t]

1

µτ
−

√√√√t−1∑
τ=1

ξτ (a)

µτ
+ max
τ∈[t−1]

1

µτ


≤ 2H

√
log T

∑
a

T∑
t=1

ξt(a)
µt

+ maxτ∈[t]
1
µτ
−maxτ∈[t−1]

1
µτ√∑t

τ=1
ξτ (a)
µτ

+ maxτ∈[t]
1
µτ

= 2H
√

log T
∑
a

T∑
t=1

ξt(a)
µt

+ 1
µt

(
1− minτ∈[t] µτ

minτ∈[t−1] µτ

)
√∑t

τ=1
ξτ (a)
µτ

+ maxτ∈[t]
1
µτ

≤
T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)(
ξt(a) + 1−

minτ∈[t] µτ

minτ∈[t−1] µτ

)
where we use (19) in the last inequality. Using this in (41), we get

E

[
T∑
t=1

〈πt − π, Q̂t −Bt − Ct〉

]
≤ O(H4A ln(T )) + E

[
7

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)(
ξt(a) + 1−

minτ∈[t] µτ

minτ∈[t−1] µτ

)]

+ E

[
1

H

T∑
t=1

∑
a

πt(a)Bt(a) + 3

T∑
t=1

∑
a

ηt(a)πt(a)Ct(a)2

]

≤ O(H4A ln(T )) + E

[
T∑
t=1

bt +
1

H

T∑
t=1

∑
a

πt(a)Bt(a)

]
,

where we use the definition of bt in (18). This finishes the proof.
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Lemma E.2 (Shannon entropy). ηt(s, a)Bt(s, a) ≤ 1
4H and Bt(s, a) ≤ 400

√
T log T .

Proof. By the definition of bt(s) in (18), we have

bt(s) ≤ 16
∑
a

(
1

ηt(s, a)
− 1

ηt−1(s, a)

)
+ 8

∑
a

ηt(s, a)πt(a|s)H4 (Ct(s, a) ≤ H2)

≤ 64
∑
a

 H

µt(s)
√∑t−1

τ=1
ξτ (s,a)
µτ (s) + 1

µt(s)

+
H√
t

√log T + 2 (using (19) and ηt(s, a) ≤ 1
4H4 )

≤ 64

(
HA√
µt(s)

+
HA√
t

)√
log T + 2 ≤ 132HA

√
log T

√
γt

.

Further notice that

1

ηt(s, a)
≥ 4

t∑
τ=1

H
√

log T√
τ

≥ 4H
√
t log T .

Therefore,

Bt(s, a) ≤ H
(

1 +
1

H

)H
max
s
bt(s) ≤

396H2A
√

log T
√
γt

≤ 400H2A
√
T log T

ηt(s, a)Bt(s, a) ≤ min

{
1

1600H4A
√

log T
,

1

4H
√
t log T

}
× 396H2A

√
log T

√
γt

≤ min

{
1

1600H4A
√

log T
,

1

4H
√
t log T

}
×max

{
396H2A

√
t log T√

106H4A2
, 396H2A

√
log T

}
(by the definition of γt)

≤ 1

4H

by the definition of γt.

E.3. Log barrier

Proof of Lemma 6.1 (log barrier). We focus on a particular s, and use πt(a), Q̂t(a), Bt(a), Ct(a), ηt, µt, ζt(a), to denote
πt(a|s), Q̂t(s, a), Bt(s, a), Ct(s, a), ηt(s), µt(s), ζt(s, a), respectively.

By Lemma D.7,

E

[
T∑
t=1

〈πt − π, Q̂t −Bt − Ct〉

]

≤ O(H4A ln(T )) + E

[
4

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
log(T ) +

T∑
t=1

∑
a

ηt(a)πt(a)2
(
Q̂t(a)−Bt(a)− Ct(a) + xt

)2
]

+
2

T 3
max
a

∣∣∣∣∣E
[
T∑
t=1

Q̂t(a)−Bt(a)− Ct(a)

]∣∣∣∣∣ (42)

for arbitrary xt ∈ R such that ηt(a)πt(a)(Q̂t(a)−Bt(a)− Ct(a) + xt) ≥ −1. Recall that with log barrier, there are real
episodes and virtual episodes in which `t(s, a) = 0 for all (s, a). Let Yt = 0 if t is a virtual episode, and Yt = 1 otherwise.

We define

xt = −
〈
πt, Q̂t

〉
. (43)
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Below, we verify that ηt(a)πt(a)
(
Q̂t(a)−Bt(a)− Ct(a) + xt

)
≥ − 1

2 :

ηt(a)πt(a)
(
Q̂t(a)−Bt(a)− Ct(a) + xt

)
≥ ηt(a)πt(a)

(
−Bt(a)− Ct(a)−

〈
πt, Q̂t

〉)
(using (43) and Q̂t(a) ≥ 0)

≥ −ηt(a)πt(a|s)Bt(a)− ηt(a)Ct(a)− ηt(a)
∑
a′

πt(a
′)
HIt(s, a′)
µtπt(a′)

Yt (when Yt = 0, Q̂t(a) = 0)

≥ − 1

8H
− 1

4H2
− Hηt

µt
Yt (by Lemma E.3 and that Ct(a) ≤ H2 and ηt(a) ≤ 1

4H4 )

≥ −1

2
. (when Yt = 1 (real episode), ηt(a)

µt
≤ 1

8H )

Besides, for any a, ∣∣∣∣∣E
[
T∑
t=1

Q̂t(a)

]∣∣∣∣∣ ≤ E

[
T∑
t=1

H

µt

]
≤

T∑
t=1

H

γt
≤ HT 2 (by the definition of γt)

E

[
T∑
t=1

Bt(a)

]
≤ 15ST 2 (by Lemma E.3)

E

[
T∑
t=1

Ct(a)

]
≤ H2T (Ct(a) ≤ H2)

Below, we continue from (42) with our choice of xt:

E

[
T∑
t=1

〈πt − π, Q̂t −Bt − Ct〉

]

≤ O(H4SA ln(T )) + E

[
4

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
log(T )

+ 3

T∑
t=1

∑
a

ηt(a)πt(a)2

((
Q̂t(a)− 〈πt, Q̂t〉

)2

+Bt(a)2 + Ct(a)2

)]

≤ O(H4SA ln(T )) + E

[
4

T∑
t=1

∑
a

(
1

ηt(a)
− 1

ηt−1(a)

)
log(T )︸ ︷︷ ︸

term1

+ 3

T∑
t=1

∑
a

ηt(a)πt(a)2
(
Q̂t(a)− 〈πt, Q̂t〉

)2

︸ ︷︷ ︸
term2

]

+ E

[
1

H

T∑
t=1

∑
a

πt(a)Bt(a)

]
+ E

[
3

T∑
t=1

∑
a

ηt(a)πt(a)Ct(a)2

︸ ︷︷ ︸
term3

]
. (by Lemma E.3)

We further manipulate term2 (suppose that s ∈ Sh). In virtual episodes, term2 = 0, and in real episodes,

ηt(a)πt(a)2
(
Q̂t(a)− 〈πt, Q̂t〉

)2

= ηt(a)πt(a|s)2

(
It(s, a)Lt,h
µtπt(a)

− It(s)Lt,h
µt

)2

= ηt(a)

(
It(s, a)Lt,h

µt
− πt(a|s)It(s)Lt,h

µt

)2

=
ηt(a)

µ2
t

(It(s, a)− πt(a|s)It(s))L2
t,h

=
ηt(a)ζt(a)

µ2
t
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≤ log T

4

(
1

ηt+1(a)
− 1

ηt(a)

)
(by Eq. (23))

By the definition of bt in (22), we have E[term1 + term2 + term3] ≤ E
[∑T

t=1 bt

]
, which finishes the proof.

Lemma E.3 (log barrier). ηt(s, a)πt(a|s)Bt(s, a) ≤ 1
8H and Bt(s, a) ≤ 15ST .

Proof. If t is a real episode,

bt(s) = 8
∑
a

(
1

ηt+1(s, a)
− 1

ηt(s, a)

)
= 32

∑
a

ηt(s, a)It(s, a)Lt(s, a)2

µt(s)2
≤ 32H2 ×max

a

ηt(s, a)

µt(s)
× 1

µt(s)
≤ 1

µt(s)
× 32H2 max

s′,a′

(
ηt(s

′, a′)

µt(s′)

)
. (44)

Therefore,

Bt(s, a) ≤ bt(s) + 3
∑

s′:h(s′)>h(s)

µP̃t,πt(s′|s, a)bt(s
′)

≤

 1

µt(s)
+ 3

∑
s′:h(s′)>h(s)

µP̃t,πt(s′|s, a)
1

µt(s′)

× 32H2 max
s′,a′

(
ηt(s

′, a′)

µt(s′)

)

≤

 1

µt(s)
+ 3

∑
s′:h(s′)>h(s)

µP̃t,πt(s′|s, a)× 1

µπtt (s)πt(a|s)µP̃t,πt(s′|s, a) + γt

× 32H2 max
s′,a′

(
ηt(s

′, a′)

µt(s′)

)

≤ 3
∑
s′

1

µπt(s)πt(a|s) + γt
× 32H2 max

s′,a′

(
ηt(s

′, a′)

µt(s′)

)
≤ S

µt(s)πt(a|s)
× 96H2 max

s′,a′

(
ηt(s

′, a′)

µt(s′)

)
(45)

and thus

ηt(s, a)πt(a|s)Bt(s, a) ≤ 96H2Smax
s′,a′

(
ηt(s

′, a′)

µt(s′)

)2

≤ 1

8H
(46)

where the last inequality is because ηt(s
′,a′)

µt(s′)
≤ 1

60
√
H3S

in real episodes.

From the second-to-last step in (45), we also have

Bt(s, a) ≤ 3S

γt
× 32H2 max

s′,a′

(
ηt(s

′, a′)

µt(s′)

)
≤ 2
√
HS

γt
≤ 2ST.

In virtual episodes,

bt(s) ≤
∑
a

(
1

ηt+1(s, a)
− 1

ηt(s, a)

)
log(T )

≤
∑
a

I{(s†t , a
†
t) = (s, a)}

24ηt(s, a)H log T
× log T

=
∑
a

I{(s†t , a
†
t) = (s, a)}

24µt(s)H
× 1

maxs′,a′
(
ηt(s′,a′)
µt(s′)

) (by the definition of (s†t , a
†
t))
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≤ I{s†t = s}
24µt(s)H

× 1

maxs′,a′
(
ηt(s′,a′)
µt(s′)

)
≤ I{s†t = s}

µt(s)
× 1

24HMt

where we define Mt = maxs′,a′
ηt(s

′,a′)
µt(s′)

. Similar to (45):

Bt(s, a) ≤ bt(s) + 3
∑

s′:h(s′)>h(s)

µP̃t,πt(s′|s, a)bt(s
′)

≤

(
I{s†t = s}
µt(s)

+ 3
∑
s′

µP̃t,πt(s′|s, a)
I{s†t = s′}
µt(s′)

)
× 1

24HMt

≤

 I{s†t = s}
µt(s)

+ 3
∑

s′:h(s′)>h(s)

µP̃t,πt(s′|s, a)× I{s†t = s′}
µπtt (s)πt(a|s)µP̃t,πt(s′|s, a) + γt

× 1

24HMt

≤ 3
∑
s′

I{s†t = s′}
µπt(s)πt(a|s) + γt

× 1

24HMt

≤ 1

µt(s)πt(a|s)
× 1

8HMt
(47)

and thus

ηt(s, a)πt(a|s)Bt(s, a) ≤ ηt(s, a)

µt(s)
× 1

8HMt
≤ 1

8H

where the last step uses the definition of Mt.

From the second-to-last step in (47) , we also have

Bt(s, a) ≤ 1

8γtHMt
≤ 15

√
HS

γt
≤ 15ST

where we use that Mt ≥ 1

60
√
H3S

in vitrual episodes.

F. Analysis for the Bias (Lemma 6.2)
Proof of Lemma 6.2.

E

[∑
s

µπ(s)biasπ(s)

]

≤ E

[
T∑
t=1

∑
s,a

µπ(s) (πt(a|s)− π(a|s))
(
Qπt(s, a; `t)− Q̂t(s, a) + Ct(s, a)

)]
(48)

= E

[
T∑
t=1

∑
s,a

µπ(s) (πt(a|s)− π(a|s))
(
Qπt(s, a; `t)−

µπt(s)

µt(s)
Qπt(s, a; `t) + Ct(s, a)

)]

= E

[
T∑
t=1

∑
s,a

µπ(s) (πt(a|s)− π(a|s))
(
µt(s)− µπt(s)

µt(s)
Qπt(s, a; `t) + Ct(s, a)

)]

= E

[
T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a))zt(s, a)

]
(49)
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with zt(s, a) defined as the following based on Lemma C.2:

zt(s, a) ,
µt(s)− µπt(s)

µt(s)
Qπt(s, a; `t) + Ct(s, a)− Es′∼P (·|s,a),a′∼πt(·|s′)

[
µt(s

′)− µπt(s′)
µt(s′)

Qπt(s′, a′; `t) + Ct(s
′, a′)

]
Recall the high probability event E defined in Definition B.3. Notice that

E

[
T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a))zt(s, a)

]

= Pr(E)E

[
T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a))zt(s, a)

∣∣∣∣ E
]

+ Pr(E)E

[
T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a))zt(s, a)

∣∣∣∣ E
]

≤ Pr(E)E

[
T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a))zt(s, a)

∣∣∣∣ E
]

+O(Hδ)×O(TH × TH2)

(because |zt(s, a)| ≤ O(TH2) almost surely)

≤ Pr(E)E

[
T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a))zt(s, a)

∣∣∣∣ E
]

+O

(
H4

T

)
. (δ = 1

T 3 )

(50)

From now on, it suffices to bound
∑T
t=1

∑
s,a(µπt(s, a)− µπ(s, a))zt(s, a) assuming E holds (i.e., P ∈ Pt for all t).

By the definition of Ct(s, a), we have

zt(s, a) =
µt(s)− µπt(s)

µt(s)
Qπt(s, a; `t) + max

P̃∈Pt
Es′∼P̃ (·|s,a),a′∼πt(·|s′)

[
µt(s

′)− µπt
t

(s′)

µt(s′)
H + Ct(s

′, a′)

]

− Es′∼P (·|s,a),a′∼πt(·|s′)

[
µt(s

′)− µπt(s′)
µt(s′)

Qπt(s′, a′; `t) + Ct(s
′, a′)

]
≥ µt(s)− µπt(s)

µt(s)
Qπt(s, a; `t) ≥ 0. (51)

On the other hand,

zt(s, a) ≤ µt(s)− µπt(s)
µt(s)

H + Ct(s, a)− Es′∼P (·|s,a),a′∼πt(·|s′) [Ct(s
′, a′)]

≤ ct(s) + Es′∼P t(·|s,a),a′∼πt(·|s′) [ct(s
′) + Ct(s

′, a′)]− Es′∼P (·|s,a),a′∼πt(·|s′) [Ct(s
′, a′)]

(let P t be the transition that attains the maximum in (13))

≤ ct(s) + Es′∼P (·|s,a)[ct(s
′)] +

∑
s′,a′

∣∣P t(s′|s, a)− P (s′|s, a)
∣∣πt(a′|s′) (ct(s

′) + Ct(s
′, a′))

≤ ct(s) + Es′∼P (·|s,a)[ct(s
′)] +

∑
s′,a′

et(s
′|s, a)πt(a

′|s′)(ct(s′) + Ct(s
′, a′)) (52)

where we define et(s′|s, a) =
∣∣P t(s′|s, a)− P (s′|s, a)

∣∣.
Observe that by the definition of Ct(s, a), it holds that

Ct(s, a) =
∑

s′:h(s′)>h(s)

µP t,πt(s′|s, a)ct(s
′),

and therefore,

ct(s) + Ct(s, a) =
∑
s′

µP t,πt(s′|s, a)ct(s
′)
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and ∑
a

πt(a|s) (ct(s) + Ct(s, a)) =
∑
s′

µP t,πt(s′|s)ct(s′).

Thus we can thus rewrite (52) as

zt(s, a) ≤ ct(s) + Es′∼P (·|s,a)[ct(s
′)] +

∑
s′

et(s
′|s, a)

∑
s′′

µP t,πt(s′′|s′)ct(s′′). (53)

Continue from the previous calculation in (50):

T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a)) zt(s, a)

≤
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ zt(s, a) (by (51))

≤
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ ct(s)︸ ︷︷ ︸
term1

+

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ Es′∼P (·|s,a)[ct(s
′)]︸ ︷︷ ︸

term2

+

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+

∑
s′

et(s
′|s, a)

∑
s′′

µP t,πt(s′′|s′)ct(s′′)︸ ︷︷ ︸
term3

. (by (53))

Known transition case
For the known transition case, we have

ct(s) ≤
µπt(s) + γt − µπt(s)

µt(s)
H =

γt
µt(s)

H

and et(s′|s, a) = 0. Thus,

E

[∑
s

µπ(s)biasπ(s)

]
.

T∑
t=1

∑
s

µπt(s)× γt
µt(s)

H ≤ HS
T∑
t=1

γt = O
(
H5SA2 ln(T )

)
.

Unknown transition case
Upper bounding term1. By the definition of ct(s),

term1 ≤ H
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+

(
µπtt (s)− µπt

t
(s) + γt

µt(s)

)

≤ H
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+

(
µπtt (s)− µπt(s)

µt(s)

)
︸ ︷︷ ︸

term1a

+H

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+

(
µπt(s)− µπt

t
(s)

µt(s)

)
︸ ︷︷ ︸

term1b

+

T∑
t=1

∑
s,a

µπt(s, a)

(
Hγt
µt(s)

)
︸ ︷︷ ︸

term1c

.

To bound term1a, we apply Lemma C.4 with

gt(s) =
∑
a

[µπt(s, a)− µπ(s, a)]+
µt(s)

≤ 1,
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which gives

term1a ≤

√√√√H3S2A

T∑
t=1

∑
s,a

µπt(s)
[µπt(s, a)− µπ(s, a)]+

µt(s)
ln(T )ι+H2S4A ln(T )ι

≤

√√√√H3S2A

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ ln(T )ι+H2S4A ln(T )ι.

term1b can be bound in the same way and admits the same upper bound. term1c ≤ HS
∑T
t=1 γt = O

(
H5SA2 ln(T )

)
.

Combining term1, term2, term3, we get

term1 .

√√√√H3S2A

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ ln(T )ι+H2S4A2 ln(T )ι.

Upper bounding term2. This is very similar to the procedure of bounding term1. We perform a similar decomposition:

term2 ≤ H
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ Es′∼P (·|s,a)

[
µπtt (s′)− µπt(s′)

µt(s′)

]
︸ ︷︷ ︸

term2a

+H

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ Es′∼P (·|s,a)

[
µπt(s′)− µπt

t
(s′)

µt(s′)

]
︸ ︷︷ ︸

term2b

+

T∑
t=1

∑
s,a

µπt(s, a)Es′∼P (·|s,a)

[
Hγt
µt(s′)

]
︸ ︷︷ ︸

term2c

.

To bound term2a, we apply Lemma C.4 with

gt(s
′) =

∑
s,a

[µπt(s, a)− µπ(s, a)]+
µt(s′)

P (s′|s, a) ≤
∑
s,a µ

πt(s, a)P (s′|s, a)

µt(s′)
≤ µπt(s′)

µt(s′)
≤ 1,

which gives

term2a ≤

√√√√H3S2A

T∑
t=1

∑
s′

µπt(s′)
∑
s,a

[µπt(s, a)− µπ(s, a)]+
µt(s′)

P (s′|s, a) ln(T )ι+H2S4A ln(T )ι

≤

√√√√H3S2A

T∑
t=1

∑
s′

∑
s,a

[µπt(s, a)− µπ(s, a)]+ P (s′|s, a) ln(T )ι+H2S4A ln(T )ι

=

√√√√H3S2A

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ ln(T )ι+H2S4A ln(T )ι.

which is same as the bound for term1a. Also, term2b can be handled in the same way as term2a, and term2c ≤∑T
t=1

∑
s′ µ

πt(s′)× Hγt
µt(s′)

≤ HS
∑T
t=1 γt. Overall, term2 can be bounded by the same order as term1.

Upper bounding term3.

term3 ≤
T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+

√P t(s′|s, a)ι

nt(s, a)
+

ι

nt(s, a)

∑
s′′

µP t,πt(s′′|s′)ct(s′′)

.
T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+

(
P t(s

′|s, a)α+
ι

nt(s, a)α

)∑
s′′

µP t,πt(s′′|s′)ct(s′′) (for any α ∈ (0, 1])
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= α

T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+ P t(s
′|s, a)

∑
s′′

µP t,πt(s′′|s′)ct(s′′)

+
1

α

T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+
ι

nt(s, a)

∑
s′′

µP t,πt(s′′|s′)ct(s′′)

≤ α
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+

∑
s′

µP t,πt(s′|s, a)ct(s
′) +

H2

α

T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a))]+
ι

nt(s, a)

= αH

T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+ µ
P t,πt(s′|s, a)

µt(s
′)− µ

t
(s′)

µt(s′)
+
H2S

α

T∑
t=1

∑
s,a

µπt(s, a)ι

nt(s, a)

≤ αH
T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+ µ
P t,πt(s′|s, a)

µπtt (s′)− µπt(s′)
µt(s′)︸ ︷︷ ︸

term3a

+ αH

T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+ µ
P t,πt(s′|s, a)

µπt(s′)− µπt
t

(s′)

µt(s′)︸ ︷︷ ︸
term3b

+ αH

T∑
t=1

∑
s,a,s′

[µπt(s, a)− µπ(s, a)]+ µ
P t,πt(s′|s, a)

γt
µt(s′)︸ ︷︷ ︸

term3c

+
H2S2A ln(T )ι

α

(by Lemma B.2 and the assumption that E holds.)

For term3a we apply Lemma C.4 with

gt(s
′) =

∑
s,a[µπt(s, a)− µπ(s, a)]+µ

P t,πt(s′|s, a)

µt(s′)
≤
∑
s,a µ

πt(s, a)µP t,πt(s′|s, a)

µt(s′)
≤ H,

and we get

term3a ≤ αH

√√√√H2S2A ln(T )ι

T∑
t=1

∑
s′

µπt(s′)

∑
s,a[µπt(s, a)− µπ(s, a)]+µP t,πt(s′|s, a)

µt(s′)
+ αH ·H2S4A ln(T )ι

≤ αH

√√√√H3S2A ln(T )ι

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ + αH3S4A ln(T )ι

The same bound applies to term3b, too.

term3c ≤ αH
T∑
t=1

∑
s,a,s′

µπt(s, a)µP t,πt(s′|s, a)
γt

µt(s′)
≤ αH2

∑
s′

γt . αH6SA2.

Picking α = 1
H , combining term3a and term3b, and using H ≤ S, we get

term3 ≤

√√√√H3S2A ln(T )ι

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+ +H2S4A2 ln(T )ι

which is also of the same order as term1.

Combining term1, term2, term3, we get that if E holds, then

T∑
t=1

∑
s,a

(µπt(s, a)− µπ(s, a)) zt(s, a) .

√√√√H3S2A

T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a))]+ ln(T )ι+H2S4A2 ln(T )ι
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Using this in (50) finishes the proof.

G. Bounding
∑

s V
πt(s0; bt) (Lemma 6.3, Lemma 6.4, Lemma 6.5)

We first show Lemma G.1 and Lemma G.2 which are common among different regularizers.
Lemma G.1.

E

∑
s,a

√√√√ T∑
t=1

µt(s)πt(a|s)(1− πt(a|s))


. E

∑
s,a

√√√√ T∑
t=1

µπt(s)πt(s)(1− πt(a|s))

+
√
H4S2A3 ln(T ) + I{unknown transition}

√
HS5A3 ln(T )ι.

Proof. Define φ(s, a) = πt(a|s)(1− πt(a|s)).

∑
s,a

√√√√ T∑
t=1

µt(s)φ(s, a) ≤
∑
s,a

√√√√ T∑
t=1

µπt(s)φ(s, a) +
∑
s,a

√√√√ T∑
t=1

γtφt(s, a)︸ ︷︷ ︸
term1

+
∑
s,a

√√√√ T∑
t=1

|µπtt (s)− µπt(s)|φt(s, a)︸ ︷︷ ︸
term2

term1 ≤
∑
s,a

√√√√ T∑
t=1

γtφt(s, a) ≤

√√√√SA

T∑
t=1

γt
∑
s,a

φt(s, a) ≤ S

√√√√A

T∑
t=1

γt ≤
√
H4S2A3 ln(T ).

term2 is zero in the known transition case, and in the unknown transition case, if E defined in Definition B.3 holds, then

term2 ≤
∑
s,a

(
α

T∑
t=1

(µπtt (s)− µπt(s))φt(s, a) +
1

α

)
(for any α > 0)

≤ α


√√√√HS2A ln(T )ι

T∑
t=1

∑
s

µπt(s)

(∑
a

φt(s, a)

)2

+HS4A ln(T )ι

+
SA

α

(by Lemma C.4 with gt(s) =
∑
a φt(s, a))

≤ α

√√√√HS2A ln(T )ι

T∑
t=1

∑
s,a

µπt(s)φt(s, a) +HS4A ln(T )ι

+
SA

α

.

√√√√ T∑
t=1

∑
s,a

µπt(s)φt(s, a) +
√
HS5A3 ln(T )ι (choosing α = 1√

HS3A ln(T )ι
)

≤
∑
s,a

√√√√ T∑
t=1

µπt(s)φt(s, a) +
√
HS5A3 ln(T )ι.

If E does not hold (which happens with probability ≤ O(H/T 3)), then term2 ≤ O(SA
√
T ). Overall,

E[term2] . E

∑
s,a

√√√√ T∑
t=1

µπt(s)φt(s, a)

+
√
HS5A3 ln(T )ι+

HSA

T 2.5
.

Collecting terms and using H ≤ S finishes the proof.
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Lemma G.2. With known transition,

T∑
t=1

∑
s

µπt(s)νt(s) . H4SA2 ln(T ).

For Tsallis entropy or Shannon entropy with unknown transition,

E

[
T∑
t=1

∑
s

µP̃t,πt(s)νt(s)

]
≤ HS4A2 ln(T )ι.

Proof. With known transition, we have

T∑
t=1

∑
s

µπt(s)νt(s)

≤ 1

H4

T∑
t=1

∑
s,a

µπt(s)πt(a|s)Ct(s, a)2 (ηt(s, a) ≤ 1
H4 or ηt(s) ≤ 1

H4 )

≤ 1

H2

T∑
t=1

∑
s,a

µπt(s)πt(a|s)Ct(s, a) (Ct(s, a) ≤ H2)

≤ 1

H

T∑
t=1

∑
s,a

µπt(s)πt(a|s)
∑
s′

µπt(s′|s, a)
µt(s

′)− µπt(s′)
µt(s′)

(by the definition of Ct(s, a))

≤
T∑
t=1

∑
s′

µπt(s′)× µt(s
′)− µπt(s′)
µt(s′)

≤
T∑
t=1

Sγt

. H4SA2 ln(T ).

With unknown transitions, notice that for Tsallis entropy we have ηt(s) ≤ min
{

1
H4 ,

1
H
√
t

}
and for Shannon entropy we

have ηt(s, a) ≤ min
{

1
H4 ,

1
H
√
t

}
. Therefore, in both cases, suppose that E holds,

T∑
t=1

∑
s

µP̃t,πt(s)νt(s)

≤
T∑
t=1

min

{
1

H4
,

1

H
√
t

}∑
s,a

µP̃t,πt(s)πt(a|s)Ct(s, a)2

≤
T∑
t=1

min

{
1

H2
,
H√
t

}∑
s,a

µP̃t,πt(s)πt(a|s)Ct(s, a)

≤
T∑
t=1

min

{
1

H
,
H2

√
t

}∑
s,a

µP̃t,πt(s)πt(a|s)
∑
s′

µP t,πt(s′|s, a)
µt(s

′)− µπt
t

(s′)

µt(s′)

(let P t be the P̃ attaining maximum in (13))

≤
T∑
t=1

min

{
1,
H3

√
t

}∑
s′

µπtt (s′)×
µt(s

′)− µπt
t

(s′)

µt(s′)

≤
T∑
t=1

min

{
1,
H3

√
t

}∑
s′

(
µπtt (s′)− µπt

t
(s′)
)

+

T∑
t=1

Sγt
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≤
T∑
t=1

min

{
1,
H3

√
t

}∑
s′

(
µπtt (s′)− µπt

t
(s′)
)

+H4SA2 ln(T )

By Lemma C.4, the first part above can be upper bounded by√√√√HS2A ln(T )ι

T∑
t=1

∑
s

µπt(s)×min

{
1,
H6

t

}
+HS4A ln(T )ι

.
√
H8S2Aι ln(T ) +HS4A ln(T )ι . HS4A ln(T )ι

where we use H ≤ S.

Suppose that E does not hold (happens with probability O(H/T 3)), we still have

T∑
t=1

∑
s

µP̃t,πt(s)νt(s) ≤
T∑
t=1

min

{
1

H4
,

1

H
√
t

}∑
s,a

µP̃t,πt(s)πt(a|s)Ct(s, a)2

≤ O
(
T × 1

H4
×H

(
H2
)2) ≤ O(HT )

because |Ct(s, a)| ≤ H2 with probability 1.

Combining all terms and taking expectation, we conclude that

E

[
T∑
t=1

∑
s

µP̃t,πt(s)νt(s)

]
. HS4A2 ln(T )ι.

G.1. Tsallis entropy

Proof of Lemma 6.3.

T∑
t=1

V πt,P̃t(s0; bt)

=

T∑
t=1

∑
s

µP̃t,πt(s)bt(s)

≤
T∑
t=1

∑
s

µP̃t,πt(s)

[
νt(s) +

(
1

ηt(s)
− 1

ηt−1(s)

)(
ξt(s) +

√
A · I

[
ηt(s)

µt(s)
>

1

8H

])]
(by (15))

.
T∑
t=1

∑
s

µP̃t,πt(s)νt(s) +H

T∑
t=1

∑
s

µP̃t,πt(s)

1
µt(s)√∑t
τ=1

1
µτ (s)

(
ξt(s) +

√
A · 8Hηt(s)

µt(s)

)
(by (16))

.
T∑
t=1

∑
s

µP̃t,πt(s)νt(s)︸ ︷︷ ︸
term1

+H

T∑
t=1

∑
s

ξt(s)√∑t
τ=1

1
µτ (s)︸ ︷︷ ︸

term2

+H2
√
A

T∑
t=1

∑
s

1
µt(s)

· ηt(s)√∑t
τ=1

1
µτ (s)︸ ︷︷ ︸

term3

Bounding term1. term1 can be bounded using Lemma G.2, which gives

E[term1] . H4SA2 ln(T ) + I{unknown transition}HS4A2 ln(T )ι.
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Bounding term2.

term2 ≤ H
T∑
t=1

∑
s

√
µt(s)ξt(s)

√√√√ 1
µt(s)∑t
τ=1

1
µτ (s)

≤ H
T∑
t=1

∑
s,a

√
µt(s)πt(a|s)(1− πt(a|s))

√√√√ 1
µt(s)∑t
τ=1

1
µτ (s)

≤ H
∑
s,a

√√√√ T∑
t=1

µt(s)πt(s, a)(1− πt(a|s))

√√√√ T∑
t=1

1
µt(s)∑t
τ=1

1
µτ (s)

. H
√

lnT
∑
s,a

√√√√ T∑
t=1

µt(s)πt(a|s)(1− πt(a|s)).

By Lemma G.1, we can bound the last expression by

E

H∑
s,a

√√√√ln(T )

T∑
t=1

µπt(s)πt(s, a)(1− πt(s, a))

+
√
H6S2A3 ln(T ) + I{unknown transition}

√
H3S5A3 ln(T )ι.

Bounding term3. By (16),

term3 ≤ H
√
A

T∑
t=1

∑
s

1
µt(s)∑t
τ=1

1
µτ (s)

≤ HS
√
A ln(T ).

Combining term1, term2, term3 finishes the proof.

G.2. Shannon entropy

Proof of Lemma 6.4.

T∑
t=1

V P̃t,πt(s0; bt)

. H
√

lnT
∑
t,s,a

µP̃t,πt(s)

 1

µt(s)
√∑t−1

τ=1
ξτ (s,a)
µτ (s) + 1

µt(s)

+
1√
t

(ξt(s, a) + 1−
minτ∈[t] µτ (s)

minτ∈[t−1] µτ (s)

)
+
∑
t,s

µP̃t,πt(s)νt(s)

≤
∑
t,s,a

H
√

lnT√∑t−1
τ=1

ξτ (s,a)
µτ (s) + 1

µt(s)

ξt(s, a) +
∑
t,s,a

H
√

lnT√∑t−1
τ=1

ξτ (s,a)
µτ (s) + 1

µt(s)

(
1−

minτ∈[t] µτ (s)

minτ∈[t−1] µτ (s)

)

+
∑
t,s,a

H
√

lnTµt(s)√
t

ξt(s, a) +H
√

lnT

√∑
t,s,a

µP̃t,πt(s)
1

t

√√√√∑
t,s,a

µP̃t,πt(s)

(
1−

minτ∈[t] µτ (s)

minτ∈[t−1] µτ (s)

)2

+
∑
t,s

µP̃t,πt(s)νt(s)

≤ H
√

lnT
∑
s,a

√√√√∑
t

ξt(s,a)
µt(s)∑t−1

τ=1
ξτ (s,a)
µτ (s) + 1

µt(s)

√∑
t

µt(s)ξt(s, a) +H
√

lnT
∑
t,s,a

ln

(
minτ∈[t−1] µτ (s)

minτ∈[t] µτ (s)

)
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+H
√

lnT
∑
s,a

√∑
t

µt(s)ξt(s, a)

t

√∑
t

µt(s)ξt(s, a)

+H
√

lnT
√
HA ln(T )

√√√√A
∑
t,s

ln

(
minτ∈[t−1] µτ (s)

minτ∈[t] µτ (s)

)
+
∑
t,s

µP̃t,πt(s)νt(s)

. H
√

lnT
∑
s,a

√
ln(T )

∑
t

µt(s)ξt(s, a) +
∑
t,s

µP̃t,πt(s)νt(s) +H2SA ln
3
2 (T )

. H
∑
s,a

√√√√ln3(T )

T∑
t=1

µt(s)πt(a|s)(1− πt(a|s)) +
∑
s,t

µP̃t,πt(s)νt(s) +H2SA ln
3
2 (T )

By Lemma G.1 and Lemma G.2, the expectation of this can be upper bounded by

E

H∑
s,a

√√√√ln3(T )

T∑
t=1

µπt(s)πt(a|s)(1− πt(a|s))


+

√
H6S2A3 ln3(T ) + I{unknown transition}

√
H3S5A3 ln3(T )ι

+H4SA2 ln
3
2 (T ) + I{unknown transition}HS4A2 ln(T )ι

. E

H∑
s,a

√√√√ln3(T )

T∑
t=1

µπt(s)πt(a|s)(1− πt(a|s))


+H4SA2

√
ln3(T ) + I{unknown transition}HS4A2 ln(T )ι. (using H ≤ S and log(T ) . ι)

G.3. Log barrier

Lemma G.3. Let η1 > 0, η2, η3, . . . be updated by

1

ηt+1
=

1

ηt
+ ηtφt ∀t ≥ 1

with 0 ≤ φt ≤ η−2
t . Then

1

ηt+1
≥ 1

2

√√√√t+1∑
τ=1

φτ .

Proof. By the update rule,

1

η2
t+1

− 1

η2
t

=

(
1

ηt+1
+

1

ηt

)(
1

ηt+1
− 1

ηt

)
=

(
1

ηt+1
+

1

ηt

)
ηtφt ≥ φt,

which implies

1

ηt+1
≥

√√√√ 1

η2
1

+

t∑
τ=1

φτ ≥

√√√√ t∑
τ=1

φτ .

By the condition on φt, we also have

1

ηt+1
≥
√
φt+1.

Combining the two inequalities finishes the proof.
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Proof of Lemma 6.5. In this proof we only focus on the know transition case. We use Tr and Tv to denote the set of real and
virtual episodes, respectively.

Let φt(s, a) = 4ζt(s,a)
µt(s)2 log(T ) in real episodes and φt(s, a) =

I{(s†t ,a
†
t )=(s,a)}

24ηt(s,a)2H log T in virtual episodes. We first show that
φt(s, a) ≤ 1

ηt(s,a)2 , which allows us to apply Lemma G.3 because 1
ηt+1(s,a) = 1

ηt(s,a) + ηt(s, a)φt(s, a) by our update rule.
This is clear for virtual episodes. For real episodes,

φt(s, a)ηt(s, a)2 =
4ηt(s, a)2ζt(s, a)

µt(s)2 log T
≤ H2

log T
× 1

H3S
≤ 1

because ηt(s,a)
µt(s)

≤ 1

60
√
H3S

in real episodes.

T∑
t=1

V πt(s0; bt)

.
∑
t∈Tr

∑
s

µπt(s)
∑
a

(
ηt(s, a)ζt(s, a)

µt(s)2 log(T )
log(T )

)
+
∑
t∈Tv

µπt(s†t)
1

ηt(s
†
t , a
†
t)H log T

log T +

T∑
t=1

∑
s

µπt(s)νt(s)

.
∑
t∈Tr

∑
s,a

ηt(s, a)
ζt(s, a)

µt(s)
+

√
H3S

H
|Tv|+H4SA ln(T )

(in virtual episodes, ηt(s
†
t ,a
†
t )

µt(s
†
t )
≥ 1√

H3S
, and we use Lemma G.2 to bound the last term)

≤
√

log(T )
∑
t∈Tr

∑
s,a

ζt(s,a)
µt(s)√∑

τ≤t:τ∈Tr
ζτ (s,a)
µτ (s)2

+
√
HS|Tv|+ +H4SA2 ln(T )

(by Lemma G.3 and the condition verified at the beginning of the proof)

≤
√

log T
∑
s,a

√√√√∑
t∈Tr

ζt(s,a)
µt(s)2∑

τ≤t:τ∈Tr
ζτ (s,a)
µτ (s)2

√∑
t∈Tr

ζt(s, a) +
√
HS|Tv|+ +H4SA2 ln(T )

≤ log(T )
∑
s,a

√∑
t∈Tr

ζt(s, a) +
√
HS|Tv|+H4SA2 ln(T ).

Now we bound the number of virtual episodes. Notice that each time a virtual episode happens, there exist s, a such that
ηt(s,a)
µt(s)

≥ 1

60
√
H3S

, and ηt(s, a) will shrink by a factor of (1 + 1
24H log T ) after the virtual episode. Since µt(s) ≥ γt, this

event cannot happen if ηt(s, a) ≤ γt
60
√
H3S

. Thus, the number of virtual episodes is upper bounded by

|Tv| . SA×
log 60

√
H3S
γt

log
(

1 + 1
24H log T

) . HSA ln(T ) ln(SAT ).

Applying this bound in the last expression and using H ≤ S finishes the proof.

H. Final Regret Bounds through Self-Bounding (Theorem 4.1, Theorem 4.2, Theorem 4.3)
Proof of Theorem 4.1. Let π̊ = argmaxπ Reg(π). By (31), Lemma 6.2, and Lemma 6.3, under known transition and Tsallis
entropy, we have

Reg(̊π) . H
∑
s,a

√√√√E

[
T∑
t=1

µπt(s)πt(a|s)(1− πt(a|s))

]
ln(T ) +H5SA2 ln(T )
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For the adversarial regime, we bound the above by

H

√√√√SAE

[
T∑
t=1

∑
s,a

µπt(s)πt(a|s))

]
ln(T ) +H5SA ln(T ) =

√
H3SAT +H5SA2 ln(T ).

For the stochastic regime, notice that Reg(̊π) ≥ Reg(π?) ≥ E
[∑T

t=1 µ
πt(s)πt(a|s)∆(s, a)

]
− C, and we have

Reg(̊π) ≤ c1H
∑
s

∑
a6=π?(s)

√√√√E

[
T∑
t=1

µπt(s)πt(a|s)

]
ln(T ) + c2H

5SA2 ln(T ) (for some universal constants c1, c2)

≤ H
∑
s

∑
a 6=π?(s)

(
α

H
E

[
T∑
t=1

µπt(s)πt(a|s)∆(s, a)

]
+
c21H ln(T )

α∆(s, a)

)
+ c2H

5SA2 ln(T ) (for arbitrary α > 0)

≤ αE

[
T∑
t=1

µπt(s)πt(a|s)∆(s, a)

]
+O

∑
s

∑
a6=π?(s)

H2 ln(T )

α∆(s, a)
+H5SA2 ln(T )


≤ α(Reg(̊π) + C) +O

∑
s

∑
a6=π?(s)

H2 ln(T )

α∆(s, a)
+H5SA2 ln(T )


Picking α = min

{
1
2 , C
− 1

2

(
H2 ln(T )
∆(s,a)

) 1
2

}
leads to the bound

Reg(̊π) . U +
√
UC +H5SA2 ln(T )

where U =
∑
s

∑
a6=π?(s)

H2 ln(T )
∆(s,a) . Finally, using that Reg(π) ≤ Reg(̊π) for all π finishes the proof.

Proof of Theorem 4.2. By (31), Lemma 6.2, and Lemma 6.3, under unknown transition and Tsallis entropy, we have

Reg(π) ≤ c1

√√√√H3S2AE

[
T∑
t=1

∑
s,a

[µπt(s, a)− µπ(s, a)]+

]
ln(T )ι

︸ ︷︷ ︸
term1

+ c2H
∑
s,a

√√√√E

[
T∑
t=1

µπt(s)πt(a|s)(1− πt(a|s))

]
ln(T )ι︸ ︷︷ ︸

term2

+c3H
2S4A2 ln(T )ι

(for universal constants c1, c2, c3)

In the adversarial regime, we can bound it by the order of√
H4S2AT ln(T )ι+H2S4A2 ln(T )ι

To get a bound in the stochastic regime, we first argue that it suffices to show the desired bound for all π that satisfies
Reg(π) ≥ Reg(π?). This is because we can then bound Reg(π) for π such that Reg(π) < Reg(π?) by

Reg(π) < Reg(π?) . U +
√
U(C + C(π?)) + poly(H,S,A) ln(T )ι = U +

√
UC + poly(H,S,A) ln(T )ι

because C(π?) = 0 by definition.

Below we assume that Reg(π) ≥ Reg(π?). Note that by Lemma C.5, for any π,∑
s,a

∣∣∣µπ(s, a)− µπ
?

(s, a)
∣∣∣ ≤ H∑

s,a

µπ(s) |π(a|s)− π?(a|s)|
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= H
∑
s

∑
a 6=π?(s)

µπ(s)π(a|s) +H
∑
s

µπ(s)(1− π( π?(s) |s))

= 2H
∑
s

∑
a6=π?(s)

µπ(s)π(a|s).

Hence,

term1 ≤ c1

√√√√H3S2AE

[
T∑
t=1

∑
s,a

|µπt(s, a)− µπ(s, a)|

]
ln(T )ι

≤ c1

√√√√H3S2AE

[
T∑
t=1

∑
s,a

|µπt(s, a)− µπ?(s, a)|

]
ln(T )ι+ c1

√√√√H3S2A

T∑
t=1

∑
s,a

|µπ(s, a)− µπ?(s, a)| ln(T )ι

≤ c1

√√√√√2H4S2AE

 T∑
t=1

∑
s

∑
a6=π?(s)

µπt(s, a)

 ln(T )ι+ c1

√√√√2H4S2A

T∑
t=1

∑
s

∑
a6=π?(s)

µπ(s, a) ln(T )ιι

≤ αE

 T∑
t=1

∑
s

∑
a 6=π?(s)

µπt(s, a)∆min

+ α

T∑
t=1

∑
s

∑
a 6=π?(s)

µπ(s, a)∆min +O

(
H4S2A ln(T )ι

α∆min

)
(by AM-GM)

≤ α(Reg(π?) + C) + α(Reg(π?)− Reg(π) + C(π)) +O

(
H4S2A ln(T )ι

α∆min

)
(see explanation below)

≤ αReg(π) + α(C + C(π)) +O

(
H4S2A ln(T )ι

α∆min

)
(by the assumption Reg(π?) ≤ Reg(π))

where in the second-to-last inequality we use the property:

Reg(π?)− Reg(π) = E

[
T∑
t=1

V π(s0; `t)− V π
?

(s0; `t)

]

=

T∑
t=1

∑
s

∑
a6=π?(s)

µπ(s, a)∆(s, a)−
T∑
t=1

λt(π)

≥
T∑
t=1

∑
s

∑
a6=π?(s)

µπ(s, a)∆min − C(π)

For term2, similar to before,

term2 ≤ c2H
∑
s,a

√√√√E

[
T∑
t=1

µπt(s)πt(a|s)(1− πt(a|s))

]
ln(T )

≤ α(Reg(π) + C) +O

∑
s

∑
a 6=π?(s)

H2 ln(T )

α∆(s, a)
+H5SA2 ln(T )


≤ α(Reg(π) + C) +O

∑
s

∑
a 6=π?(s)

H2 ln(T )

α∆(s, a)
+H5SA2 ln(T )


≤ α(Reg(π) + C) +O

(
H4S2A ln(T )

α∆min
+H2S4A2 ln(T )

)
Combining term1 and term2, we get

Reg(π) ≤ 2αReg(π) + 2α(C + C(π)) +O

(
H4S2A ln(T )ι

α∆min
+H2S4A2 ln(T )ι

)
39



Best of Both Worlds Policy Optimization

Picking α = min

{
1
4 , (C + C(π))−

1
2

(
H4S2A ln(T )ι

∆min

) 1
2

}
leads to the desired bound.

Proof of Theorem 4.3.

Reg(π) .
∑
s,a

√√√√ln2(T )E

[
T∑
t=1

(It(s, a)− πt(a|s)It(s))2L2
t,h(s)

]
+H3S2A2 ln(T ) ln(SAT )

In the adversarial regime,

Reg(π) ≤

√√√√HSA ln2(T )E

[
T∑
t=1

∑
s,a

(It(s, a)− πt(a|s)It(s))2Lt,h(s)

]
+H3S2A2 ln(T ) ln(SAT )

≤

√√√√HSA ln2(T )E

[
T∑
t=1

∑
s,a

It(s, a)Lt,h(s)

]
+H3S2A2 ln(T ) ln(SAT )

≤

√√√√H2SA ln2(T )E

[
T∑
t=1

V πt(s0; `t)

]
+H3S2A2 ln(T ) ln(SAT )

On the other hand, Reg(π) = E
[∑T

t=1 V
πt(s0; `t)−

∑T
t=1 V

π(s0; `t)
]
. Solving the inequality, we get

Reg(π) .

√√√√H2SA ln2(T )

T∑
t=1

V π(s0; `t) +H3S2A2 ln(T ) ln(SAT ).

In the stochastic regime,

Reg(π) .
∑
s,a

√√√√ln2(T )E

[
T∑
t=1

(It(s, a)− πt(a|s)It(s))2L2
t,h(s)

]
+H3S2A2 ln(T ) ln(SAT )

≤
∑
s,a

√√√√H2 ln2(T )E

[
T∑
t=1

µπt(s)πt(a|s)(1− πt(a|s))

]
+H3S2A2 ln(T ) ln(SAT ),

which is similar to the stochastic bound in Theorem 4.1. Following the same self-bounding analysis in the proof of
Theorem 4.1 we can get the desired bound.

To get regret bounds for the Shannon entropy version under known and unknown transitions, we use Lemma 6.2 and
Lemma 6.4 and follow exactly the same procedure as in the proofs of Theorem 4.1 and Theorem 4.2. This leads to the
following guarantees:

Theorem H.1. Under known transitions, Algorithm 1 with Shannon entropy regularizer ensures for any π

Reg(π) .
√
H3SAT ln3(T ) + poly(H,S,A) ln2(T )

in the adversarial case, and

Reg(π) . U +
√
UC + poly(H,S,A) ln2(T )

in the stochastic case, where U =
∑
s

∑
a 6=π?(s)

H2 ln3(T )
∆(s,a) .
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Theorem H.2. Under unknown transitions, Algorithm 1 with Shannon entropy regularizer ensures for any π

Reg(π) .
√
H4S2AT ln2(T )ι+ poly(H,S,A) ln(T )ι

in the adversarial case, and

Reg(π) . U +
√
U(C + C(π)) + poly(H,S,A) ln(T )ι

in the stochastic case, where U = H4S2A ln2(T )ι
∆min

.
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