
TimePoint: Accelerated Time Series Alignment via
Self-Supervised Keypoint and Descriptor Learning

Ron Shapira Weber 1 2 Shahar Ben Ishay 1 2 Andrey Lavrinenko 1 2 Shahaf E. Finder 1 2 Oren Freifeld 1 2 3

Abstract
Fast and scalable alignment of time series is a
fundamental challenge in many domains. The
standard solution, Dynamic Time Warping (DTW),
struggles with poor scalability and sensitivity to
noise. We introduce TimePoint, a self-supervised
method that dramatically accelerates DTW-based
alignment while typically improving alignment
accuracy by learning keypoints and descriptors
from synthetic data. Inspired by 2D keypoint
detection but carefully adapted to the unique chal-
lenges of 1D signals, TimePoint leverages ef-
ficient 1D diffeomorphisms—which effectively
model nonlinear time warping—to generate real-
istic training data. This approach, along with fully
convolutional and wavelet convolutional architec-
tures, enables the extraction of informative key-
points and descriptors. Applying DTW to these
sparse representations yields major speedups and
typically higher alignment accuracy than stan-
dard DTW applied to the full signals. TimePoint
demonstrates strong generalization to real-world
time series when trained solely on synthetic data,
and further improves with fine-tuning on real data.
Extensive experiments demonstrate that Time-
Point consistently achieves faster and more ac-
curate alignments than standard DTW, making it
a scalable solution for time-series analysis. Our
code is available at https://github.com/
BGU-CS-VIL/TimePoint.

1. Introduction
Time series data are ubiquitous across finance, healthcare,
environmental monitoring, and engineering. They consist of

*Equal contribution 1Department of Computer Science, Ben-
Gurion University of the Negev (BGU). 2Data Science Research
Center, BGU. 3School of Brain sciences and Cognition, BGU. Cor-
respondence to: Ron Shapira Weber <ronsha@post.bgu.ac.il>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. TimePoint (TP): Keypoint Detection and Descriptors on
real-world, unseen, ECG data of length 2500 (TP was trained on
synthetic data of length 512). Each panel depicts (top-to-bottom)
the original signal and predicted keypoints, keypoint probability
map, and PCA of the learned descriptors (D = 256, using 5
principal components for visualization purposes).

ordered sequences of observations collected over time and
are instrumental in revealing temporal patterns, trends, and
anomalies. A key challenge arises when these sequences
grow in length or vary in sampling rates: not only do com-
putational costs escalate with sequence size, but subtle mis-
alignments can arise due to variable speeds or temporal
distortions in the data. Consequently, developing robust
and efficient approaches for comparing and aligning time
series has become essential for tasks such as classification,
clustering, and anomaly detection.

Dynamic Time Warping (DTW) is one of the most widely
used algorithms for time series alignment due to its ability
to accommodate elastic shifts in the temporal axis (Sakoe,
1971; Sakoe & Chiba, 1978). It has found broad application
in speech recognition, gesture analysis, and signature veri-
fication. Despite its flexibility, DTW suffers from several
practical limitations. First, its computational cost is O(L2)
with respect to the sequence lengths L, which becomes
prohibitive for large-scale or high-throughput applications.

1

https://github.com/BGU-CS-VIL/TimePoint
https://github.com/BGU-CS-VIL/TimePoint

TimePoint

Second, DTW is sensitive to noise or abrupt time distortions,
potentially yielding suboptimal alignments under significant
temporal variations or amplitude noise.

In computer vision, keypoint (KP) detection and descrip-
tion techniques, such as SIFT (Lowe, 1999) and Super-
Point (DeTone et al., 2018), are foundational for tasks
like image registration, object recognition, and 3D recon-
struction. These methods identify KPs and compute corre-
sponding descriptors that facilitate robust matching. Super-
Point (SP), in particular, leverages a self-supervised learning
scheme to jointly detect KPs and generate discriminative
descriptors. Due to a limited large-scale dataset with known
KPs, SP is first pre-trained on a synthetic dataset and later
fine-tuned on real-world data.

However, an equivalent methodology for one-dimensional
(1D) time series data remains largely unexplored. This gap
arises from several unique challenges: time series often ex-
hibit more complex and variable transformations (more than,
e.g., homographies in images), suitable synthetic data with
labeled KPs are not readily available, and existing models
must handle arbitrarily long sequences without exploding
in parameter count or computational cost.

We introduce TimePoint, a self-supervised method for KP
detection and description in time series. Inspired by Su-
perPoint (DeTone et al., 2018), we adapt KP learning to
1D signals by modeling nonlinear temporal misalignments
using Continuous Piecewise Affine Based (CPAB) trans-
formations (Freifeld et al., 2017). To enable training, we
generate synthetic time series with known KPs and apply
CPAB warps to produce paired examples with ground-truth
correspondences. This framework also supports fine-tuning
on real-world data without architectural changes. Once
trained, TimePoint extracts sparse KPs and descriptors that
allow DTW to operate on salient locations only, signif-
icantly reducing runtime while improving robustness to
noise. The model architecture is fully convolutional, com-
bining standard and wavelet-based convolutions (Finder
et al., 2024), and scales efficiently to variable-length inputs,
unlike transformer-based methods, which incur quadratic
cost in sequence length. Figure 1 shows TimePoint applied
to a long ECG signal (L = 2500) (Dau et al., 2019). Despite
being trained solely on synthetic data of length L = 512,
TimePoint accurately detects salient locations and computes
meaningful descriptors. To visualize these 256-dimensional
features, we reduce the dimension via PCA to 5, providing
an interpretable representation of the learned embeddings.

Our contributions are as follows:

• A 1D Keypoint Detection and Description Frame-
work: We introduce TimePoint, a self-supervised KP
detection and description method for time series data.

• a Synthetic Dataset for Time Series Alignment: We

(a) DTW alignment path on dense data

(b) DTW alignment on sparse TP features

Figure 2. Comparison of DTW alignment using the raw sequence
(top) or TimePoint keypoints and descriptors (Bottom). The black
and blue boxes highlight areas where sparse DTW using TP de-
scriptors results in better matching.

design a synthetic time series dataset (SynthAlign)
with known KPs and apply CPAB warps to generate
training pairs with ground-truth correspondences.

• Efficient Multiscale Network Architectures: We
adapt the recently proposed WTConv architecture for
1D signals, maintaining a constant parameter count re-
gardless of the sequence length, enabling fast, scalable
training and inference.

• Fast and Sparse DTW Alignment: We demonstrate
that DTW performed on learned keypoints and descrip-
tors yields more accurate and efficient alignment at a
lower computational cost.

2. Related Work
Dynamic Time Warping (DTW) was introduced by
Sakoe (Sakoe, 1971) and later refined in the seminal work
by Sakoe and Chiba (Sakoe & Chiba, 1978). It is a clas-
sic method for aligning time series that differ in speed or
phase by nonlinearly warping the temporal axis. Despite
its widespread usage, DTW suffers from a quadratic time
and memory complexity, making it challenging to apply at
scale. Moreover, DTW can be overly sensitive to noise, as
it attempts to align every point in both sequences. These
limitations underscore the need for methods that reduce com-
putational complexity without sacrificing accuracy, such as
the sparse KP-based alignment framework we propose in

2

TimePoint

this paper. Figure 2 illustrates the difference between dense
DTW alignment and the sparse KP matching approach in-
troduced by TimePoint.

Several variants aim to mitigate DTW’s limitations. Soft-
DTW (Cuturi & Blondel, 2017) replaces the hard-minimum
operator with a differentiable approximation, facilitat-
ing gradient-based optimization. However, it retains the
core quadratic complexity in both computational time
and memory due to the large cost matrices and gradients.
ShapeDTW (Zhao & Itti, 2018) incorporates local shape
descriptors into the alignment process, yielding better match-
ing of local patterns but introducing additional compu-
tational overhead. DTW with Global Invariances (GI-
DTW) (Vayer et al., 2020) handles global scaling and offset
differences, yet remains bounded by a quadratic cost. Fast-
DTW (Salvador & Chan, 2007) approximates the standard
DTW algorithm in linear time at the cost of some accuracy;
however, it was shown that under some assumptions, the
speed-up could be marginal (Wu & Keogh, 2020). While
we do not explore this in our experiments, it is worth noting
that the use of TimePoint’s KPs and descriptors could poten-
tially accelerate FastDTW further by operating on a sparse
representation of the data, similarly to how TimePoint ac-
celerates DTW by focusing alignment on a sparse subset of
KPs rather than the entire sequence.

In contrast to all these methods, TimePoint explicitly de-
tects KPs and descriptors, enabling reduced dimensionality
for the alignment problem while achieving accurate and
scalable performance.

CPAB Transformations for modeling time warping. Mod-
eling the nonlinear temporal distortions that time series of-
ten exhibit is a non-trivial task. Unlike image pairs, which
can often be modeled via homographies, there is no gold-
standard transformation family for time series. While it is
well understood that diffeomorphisms are a natural choice
to model time warping (Mumford & Desolneux, 2010), the
associated computational difficulties historically hindered
this approach. Fortunately, Continuous Piecewise Affine
Based (CPAB) transformations (Freifeld et al., 2015; 2017)
provide a flexible and efficient way to parameterize diffeo-
morphisms. In 1D, CPAB transformations were used in deep
learning for constructing activation functions (Chelly et al.,
2024; Mantri et al., 2024), multi-task fine-tuning (Mantri
et al., 2025), and, most relevant in our context, modeling
time warping (Weber et al., 2019; Martinez et al., 2022;
Weber & Freifeld, 2023). For example, the Diffeomorphic
Temporal Alignment Network (DTAN) (Weber et al., 2019)
used CPAB for weakly supervised time series averaging.
However, DTAN does not provide descriptors or KP detec-
tion for its inputs and requires class labels during training.

Deep Learning for Time Series Alignment. In the afore-
mentioned DTAN and its variants (Weber et al., 2019; Kauf-

man et al., 2021; Martinez et al., 2022; Weber & Freifeld,
2023; 2025), the goal is to predict CPAB warps for time
series averaging. TAP (Su & Wen, 2022) aims to predict
the optimal alignment between time series pairs in a super-
vised manner but ignores the order-preserving quality of
most alignment algorithms. Deep declarative DTW (Xu
et al., 2023) predicts the alignment in an end-to-end man-
ner but with increased complexity. Warpformer (Zhang
et al., 2023) generates alignment paths between irregularly
sampled time series. In the domain of few-shot action
recognition, key works such as DeepCTW (Trigeorgis et al.,
2016), OTAM (Cao et al., 2020), TTAN (Li et al., 2022),
and TCCL (Dwibedi et al., 2019) focus on learning repre-
sentations from videos using temporal alignment. However,
these methods do not produce descriptors or detect KPs.

Summary. In contrast to existing work, TimePoint ex-
plicitly detects KPs and learns discriminative descriptors
for alignment using only synthetic data (while results even
further improve upon fine tuning on real data). Unlike
traditional methods that are computationally expensive or
deep learning approaches that rely on approximations or
supervision, TimePoint restricts DTW to a small set of KPs
and meaningful descriptors, significantly reducing computa-
tional overhead while often improving alignment accuracy.

3. SynthAlign: Synthetic Data Generation for
Keypoints Detection and Matching

In this section we present SynthAlign, a synthetic time
series and KP generator designed with the goal of facilitating
self-supervised KPs detection and descriptors learning (see
also Figure 3, left). This includes the data generation, KP
annotation process, and augmentation strategies.

3.1. Challenges of Keypoint Detection in 1D Signals

While TimePoint draws inspiration from the 2D KP detector
SuperPoint (DeTone et al., 2018), adapting its framework
to 1D signals introduces unique challenges. First, in 2D
images, KP detection and description often leverage well-
defined local patches and a low-dimensional transformation
family (e.g., homographies). Time series, however, fre-
quently exhibit significant nonlinear distortions, including
varying speeds and local stretching or compression, which
cannot be well approximated by a low-dimensional trans-
formation family. Second, amplitude variations, caused
by noise or changes in sampling rates, can obscure salient
events and complicate the task of identifying KPs. Taken to-
gether, these challenges complicate the creation of synthetic
data of 1D signals, for training a model for KP detection
and description (note this is a different task from generating
1D synthetic data for, say, training forecasting models).

3

TimePoint

Synthetic
Data Generator

Data Generation
With known correspondence

Training: Synthetic Data

CPAB
Augmentation

Input A

Encoder

Descriptor
Decoder

Keypoint
Decoder

Keypoints Loss

Input B

Contrastive Loss
(using known correspondence)

Inference: Real-world Data

Input A

TimePoint

Input B

DTW matching using keypoints
and descriptors

TimePoint

Ti
m
eP

oi
nt

In
pu

t A
In

pu
t B

Sy
nt
hA

lig
n

Encoder

Keypoint
Decoder

Descriptor
Decoder

Keypoints Loss

Figure 3. Training and Inference overview. Left: signals and keypoints are synthetically generated and augmented using CPAB warps
(Section 3). Middle: TimePoint predicts KP location and descriptors using the known correspondence (Section 4). Right: real-world,
unseen data pairs are matched using DTW on TimePoint descriptors at keypoint locations.

3.2. Generation of Synthetic Data

We generate synthetic signals with known KPs and aug-
ment them such that the correspondences between original
and augmented signal pairs are known (see subsection 3.3).
These synthetic data pairs provide a controlled environ-
ment for the model to learn fundamental temporal features
(descriptors) and KP detection. We generate a large-scale
synthetic dataset, named SynthAlign, by composing pat-
terns and trends from a pre-defined bank of signal types.
Unlike previous works in time series representation learn-
ing that synthesize signals for data augmentation (Fu et al.,
2024; Ansari et al., 2024), our approach focuses specif-
ically on generating patterns that are useful for time se-
ries alignment and also includes explicit KP generation.
SynthAlign consists of the following pattern types:

• Sine Wave Composition: A combination of sine
waves with varying frequencies and amplitudes to sim-
ulate oscillatory patterns.

• Block, Triangle, and Sawtooth Waves: Signals with
square, triangular, or sawtooth waveforms to represent
abrupt changes or linear ramps.

• Radial Basis Functions (RBF): Mixtures of Gaussian
blobs to model localized smooth events.

KPs for each pattern are derived from salient features, in-
cluding pattern start and end points, peaks, and derivative
zero crossings. We denote X ∈ RL and Y = (yt)

L
t=1, with

yt ∈ {0, 1}, as the synthetic signal and its KPs respectively
(where L = 512). To further diversify the data, we superim-
pose linear trends to emulate non-stationary behavior, ran-
domly flip sections or entire signals, and add Gaussian noise
(jitter) ϵ ∼ N (0, 0.1). This suite of pattern composition and

Figure 4. Samples from the synthetic dataset SynthAlign.

augmentations allows the model to handle real-world varia-
tions effectively. Samples from SynthAlign are shown
in Figure 4 (see more details in Appendix B).

3.3. Generation of Correspondences Using CPAB Warps

As stated in (DeTone et al., 2018), “a homography is a
good model for what happens when the same 3D point
is seen from different viewpoints”. Adopting a similar
approach to time series, requires a family of transforma-
tions, in 1D, that provide a good model for nonlinear time
warping. With this in mind, we use the CPAB transforma-
tions (Freifeld et al., 2017) to simulate nonlinear temporal
distortions and generate correspondences between original
and transformed signals. CPAB transformations are para-
metric, highly-expressive, and computationally-efficient dif-
feomorphisms (a diffeomorphism is an invertible map with a

4

TimePoint

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

T
(x

)
CPA-based Transformation

Identity
CPAB transform

0.0 2.5 5.0 7.5 10.0 12.5
1

0(x
)

Continuous Piecewise Affine Velocity Field

0 20 40 60 80 100 120

x
2.5

2.0

1.5

1.0

0.5

0.0

Signal and Warped Signal
Original signal
Warped signal

Figure 5. Generating signals and keypoints pairs with known corre-
spondences using a CPAB transformation T θ , which was obtained
from a CPA velocity field, vθ , as proposed in (Freifeld et al., 2017)
and briefly explained in our Appendix.

differentiable inverse). Briefly, a CPAB transformation is ob-
tained by integrating a Continuous Piecewise Affine (CPA)
velocity field. The term “Piecewise Affine” is w.r.t. some
partition of the domain (as shown in Figure 5). While the full
details behind CPAB transformations – which are available
in (Freifeld et al., 2017) – are inessential for understanding
our paper, Appendix C contains the key details of how a
CPAB transformation is defined and built.

Given an original signal X , we generate a warped signal
X ′ = X ◦ T θ, where T θ is a CPAB transformation param-
eterized by θ. The known transformation provides ground
truth correspondences between X and X ′, enabling super-
vised learning for KP detection and descriptor matching.

Not all diffeomorphic transformations yield realistic tempo-
ral distortions. To ensure plausible time warping, we sample
θ from N (0,ΣCPA) the zero-mean Gaussian smoothness
prior from (Freifeld et al., 2017). That prior, over CPA
velocity fields, penalizes large or abrupt deformations. Its
covariance matrix, ΣCPA, has two hyper-parameters, σvar

and σsmooth, which govern the variance and smoothness,
respectively, of the CPA velocity field, hence also of the
resulting CPAB transformation. Setting σsmooth = 1 and
σvar = 0.5 imposes mild constraints on the velocity fields,
favoring nearly affine local segments without overly restrict-
ing their overall variability. In our experiments, we partition
the domain into 16 segments (so, due to zero-boundary con-
ditions, dim(θ) = 15; see (Freifeld et al., 2017)) to balance
flexibility and simplicity in warping.

4. TimePoint Architecture
We now describe TimePoint’s overall architecture and its
components, followed by the loss functions. The entire
training and inference pipeline is illustrated in Figure 3. The
architecture, detailed Figure 6, consists of a shared encoder

and two decoders: one specialized for KP detection and
the other for descriptor computation. By leveraging a fully
convolutional network with Wavelet Transform Convolution
(WTConv) layers, TimePoint efficiently captures multiscale
temporal features. This design maintains a fixed number
of parameters, regardless of the input’s length, L, ensuring
scalability to long sequences.

4.1. Shared Encoder

The shared encoder processes the input time series X ∈
RC×L, where C is the number of channels and L is the
signal length. In this work, we focus on the univariate
case (C = 1), with multivariate data left for future ex-
ploration. We employ the recently proposed WTConv
layer (Finder et al., 2024), which operates in the wavelet
domain to capture patterns at multiple scales. Using a 3-
level wavelet decomposition with kernel size 3, the WT-
Conv layers efficiently learn both low-frequency (global)
and high-frequency (local) features. Each WTConv layer is
followed by batch normalization. A stride of 2 is applied be-
tween each of the 3 WTConv blocks, resulting in an overall
downsampling factor of 8.

The encoder produces a feature map F ∈ RDenc×L′
, where

Denc is the feature dimension, and L′ represents the length
after downsampling. This feature map forms the basis for
subsequent KP detection and descriptor generation.

4.2. Keypoint Decoder

The keypoint decoder processes the feature map F ∈ RDenc

(Denc = 256 in our experiments) produced by the shared en-
coder to predict keypoint scores for each temporal location.
It consists of a convolutional layer that refines the features
for KP detection and maps RDenc×L′ 7→ R8×L′

(analogous
to the ‘cell size’ of size 8 in (DeTone et al., 2018)). The
cells are then reshaped from 8× L′ back to L followed by
a sigmoid activation function. The output is a score vector
S = (st)

L
t=1, with st ∈ [0, 1], where each entry represents

the probability of a KP at time step t. Non-Maximum Sup-
pression (NMS) is then applied with a window size of 5
to suppress redundant detections. KPs are selected by ei-
ther applying a pre-defined threshold or choosing the top-K
timesteps with the highest probability.

4.3. Descriptor Decoder

The descriptor decoder also operates on F but is tasked
with generating a descriptor vector for each time step. A
convolutional layer first maps F into a descriptor space
(Ddesc = 256), after which an upsampling operator restores
the temporal dimension from L′ back to L. We then apply
ℓ2 normalization so that each descriptor lies on the unit hy-
persphere. The resulting output, Fdesc ∈ RDdesc×L, serves

5

TimePoint

E
nc

od
er

K
ey

po
in

tD
ec

od
er

D
es

cr
ip

to
rD

ec
od

er

Input
(B,L)

ConvBlock1D
(stride=1)

WTConvBlock1D
×3 (stride=2)

Encoder Output
(B,Denc, L/8)

ConvBlock1D
(B, 8, L/8)

Reshape
(B,L)

Sigmoid
(B,L)

Keypoint Prob. Map

ConvBlock1D
(B, Ddesc, L/8)

Upsample
(factor=8)

ℓ2Normalize
(B, Ddesc, L)

Descriptors

Figure 6. TimePoint model architecture.

as a dense descriptor matrix from which we extract a sparse
set of descriptors at the KP locations identified by the de-
coder above. This results in a compact representation for
alignment tasks.

4.4. Loss Functions

We train TimePoint in a self-supervised manner by sam-
pling synthetic signals and KPs (X,Y) from SynthAlign
(as described in Section 3), where X is a time series and
Y its associated keypoint labels. To simulate realistic tem-
poral distortions, we generate (X ′, Y ′) via a known CPAB
transformation T θ (having sampled θ from the prior), i.e.
X ′ = X ◦ T θ and Y ′ = Y ◦ T θ. This process ensures
we have warped signals pairs with ground-truth correspon-
dences, facilitating KP detection and descriptor learning.

Keypoint Detection Loss. Keypoint detection is formu-
lated as a binary classification task at each time step. Con-
sequently, we use a binary cross-entropy loss between the
predicted scores S = (st)

L
t=1 and the ground-truth labels

Y = (yt)
L
t=1:

Lkp(S, Y) = − 1

L

L∑
t=1

[
yt log(st) + (1− yt) log

(
1− st

)]
.

(1)

Here, yt ∈ {0, 1} indicates whether a keypoint is present at
time t, and st is the predicted probability.

Descriptor Loss. Let N ≪ L be the number of ground-
truth KPs from the original and warped signals, Y and Y ′.
We define a set of matched indices G ⊆ {1, . . . , N} ×
{1, . . . , N} where (i, j) ∈ G if and only if the i-th keypoint
in Y corresponds to the j-th keypoint in Y ′ under the known
transformation T θ. Denoting the descriptors at these KPs
as

(
Di

)N
i=1

and
(
D′

j

)N
j=1

, we compute a margin-based con-
trastive loss only over these KP descriptors. Specifically, for
each pair (i, j), we treat it as a positive (matching) pair if
(i, j) ∈ G, and as a negative pair otherwise. The loss is then

Ldesc(D,D′) =

1

N2

N∑
i=1

N∑
j=1

[
1G((i, j)) max

(
0,mp − cos(Di, D

′
j)
)2

+
(
1− 1G((i, j))

)
max

(
0, cos(Di, D

′
j)−mn

)2]
(2)

where cos(Di, D
′
j) =

D⊤
i D′

j

∥Di∥∥D′
j∥

is the cosine similarity and

1G((i, j)) is the indicator function; namely, 1G((i, j)) = 1
if (i, j) ∈ G and 0 otherwise. We set the positive margin
mp = 1 to push matched pairs toward maximal similarity,
and a negative margin mn = 0.1 to separate non-matching
pairs. Since N ≪ L, computing the descriptor loss solely
at KP locations substantially reduces memory usage and
focuses the training on salient regions of the signal.

Overall Loss. The overall loss combines the detection and
descriptor losses across the original and warped signals:

L(S, S′, Y, Y ′, D,D′) =

Lkp(S, Y)︸ ︷︷ ︸
kp detection in X

+ Lkp(S
′, Y ′)︸ ︷︷ ︸

kp detection in X′

+ Ldesc(D,D′)︸ ︷︷ ︸
descriptor matching

. (3)

4.5. DTW Alignment Using TimePoint

Once TimePoint is trained, its learned KPs and descriptors
can be used to perform alignment more efficiently. At test
time, given two input signals X ∈ RL and X ′ ∈ RL′

, we
apply TimePoint to extract their respective KPs and descrip-
tor sequences, denoted D ∈ RL̃×Ddesc and D′ ∈ RL̃′×Ddesc ,
where L̃ ≪ L, L̃′ ≪ L′ are the numbers of selected KPs.

Instead of aligning the raw signals X and X ′, we perform
DTW directly on the descriptor sequences D and D′. To
account for the vector nature of the descriptors, we replace
the standard scalar-based Euclidean cost in DTW with a
cosine-similarity-based cost:

cost
(
D[t], D′[t′]

)
= 1− cos

(
D[t], D′[t′]

)
, (4)

where t and t′ index the descriptors corresponding to KPs
in X and X ′, respectively.

Critically, by aligning only the sparse set of KP descriptors,
the computational complexity of DTW is reduced from

6

TimePoint

O(L · L′) to O(L̃ · L̃′). For instance, using 10% of the
original signal length yields up to a 100× speedup, while
often improving alignment accuracy due to the robustness
of the learned features.

4.6. Fine-Tuning on Real-World Time Series

While SynthAlign enables TimePoint to learn KP de-
tection and descriptors in a fully synthetic setting, there
may still be a distribution gap when applying the model
to real-world signals. To further improve generalization,
we fine-tune TimePoint directly on real data from the UCR
archive (Dau et al., 2019), using a similar self-supervised
protocol. We simulate temporal distortions by applying
two independently sampled CPAB transformations to each
signal,X , yielding two warped views X1 = X ◦ T θ1 and
X2 = X ◦ T θ2 . Generating two augmented versions also
helps to mitigate overfitting (which is not necessary when
data is generated on-the-fly in SynthAlign). Since both
originate from the same source X , we know the ground-
truth correspondence between any point in X1 and X2.

As no ground-truth KPs are available in real datasets, we
adopt the same heuristic strategy used in SynthAlign:
we mark as KPs locations of local extrema (minima and
maxima), derivative zero-crossings, etc. While it is less
effective on real-world data, we notice that the produced
KPs are akin to training with ‘noisy labels’, contributing to
TP’s generalization and robustness.

5. Limitations
Although our synthetic data generation facilitates KPs and
descriptors learning that can be easily transferred to real-
world data in many scenarios, TP’s performance might be
sub-optimal if signals deviate substantially from the syn-
thetic distribution (however, this can be mitigated by fine-
tuning TP). Moreover, if the underlying temporal distortions
exceed the scope of the predefined CPAB prior, it might
require further adjustments. Finally, our encoder downsam-
ples each time series by a factor of 8 to enhance efficiency.
While beneficial for long signals, this fixed rate might overly
compress shorter sequences.

6. Experiments and Results
We evaluate TimePoint across a range of experiments that
assess the computational efficiency, robustness to noise, and
classification accuracy on real-world data. An ablation study
further analyzes the contribution of each component.

6.1. Implementation Details

Our model, implemented in PyTorch, has a total of
∼200K trainable parameters. We have adopted the 2D WT-

12345678910111213

TP + DTW(1.0)4.706
TP + DTW(0.2)5.652
TP + DTW(0.5)6.128
DTW6.245
DTW-GI6.289
TP + DTW(0.1)6.549
ShapeDTW(raw)6.74

SoftDTW(=1) 6.853
SoftDTW(=10) 6.936
SoftDTW(=0.1) 7.015
ShapeDTW(hog) 7.902
ShapeDTW(dev) 8.471

Euclidean 11.515

Figure 7. Critical Difference Diagram. The scores represent the av-
erage rank (1-NN Acc.) of each method across 102 UCR datasets.
TimePoint (TP) was trained solely on synthetic data.

Conv layer from the official implementation (Finder et al.,
2024) to 1D inputs. SynthAlign synthetic data genera-
tion occurs on-the-fly, such that no example is seen twice.
Training is performed on a single NVIDIA RTX6000 GPU
with 48 GB of memory. The model converges within ap-
proximately 100,000 iterations and 20 hours, with a batch
size of 512, and the AdamW optimizer (Loshchilov, 2017)
with a learning rate of 1 × 10−4 with cosine learning rate
scheduler. The encoder consists of 4 layers with a number
of kernels = [128, 128, 256, 256].

To fine-tune TP, we first train our model as detailed above on
SynthAlign. Next, we train TP on ∼ 100 UCR datasets
for 2000 epochs. We resample each signal to L = 512 and
follow the procedure described in subsection 4.6.

To facilitate fast evaluation of DTW k-Nearest Neighbors
(kNN), we implement DTW using pytorch and perform
batch-wise kNN. For SoftDTW (Cuturi & Blondel, 2017)
we use the CUDA implementation1. Since the CUDA version
of SoftDTW is limited to a maximum length of 1024, using
fewer timesteps not only reduces computation time and
RAM consumption but also allows for processing of much
longer sequences by using only the selected KPs.

6.2. Classification on Real-World Data

TP was trained on synthetic data using the SynthAlign
dataset (i.e., without the fine-tuning step). We evaluate its
generalization to real-world data using the UCR Time Series
Archive (Dau et al., 2019). The archive has 128 datasets with
inter-dataset variability in the number of samples, length,
application domain, and more. We use the original train-test
splits provided by the archive. Thus, the results might differ
from the ones reported by the original SoftDTW (Cuturi &
Blondel, 2017) since they have shuffled the splits and pro-
duced new ones. We use a subset of 102 datasets, omitting
ones that did not produce results for all methods (e.g., when
one or more of our competitors’ runtime exceeded 12 hours
or due to data handling issues).

1github.com/Maghoumi/pytorch-softdtw-cuda

7

https://github.com/Maghoumi/pytorch-softdtw-cuda

TimePoint

Table 1. Comparison of DTW and SoftDTW on 102 UCR datasets
w/o TimePoint at various KP percentages. Top: 1-NN classification
accuracy. Bottom: total runtime in GPU hours.

Method TimePoint 1-NN Accuracy

Baseline 10% 20% 50% 100%

DTW 0.706 0.707 0.721 0.710 0.732
+ fine-tuning 0.706 0.777 0.790 0.769 0.80

SoftDTW(γ = 0.1) 0.677 0.659 0.662 0.689 0.720
+ fine-tuning 0.677 0.724 0.712 0.729 0.752

SoftDTW(γ = 1) 0.671 0.654 0.659 0.687 0.711
+ fine-tuning 0.671 0.72 0.711 0.722 0.749

SoftDTW(γ = 10) 0.670 0.655 0.658 0.680 0.703
+ fine-tuning 0.670 0.724 0.712 0.729 0.752

Method GPU Runtime (hours)

Baseline 10% 20% 50% 100%

DTW 192 0.71 2.88 19.59 193
SoftDTW(γ = 0.1) 2.10 0.65 0.70 1.00 2.17
SoftDTW(γ = 1) 1.98 0.52 0.56 0.86 2.16
SoftDTW(γ = 10) 1.94 0.50 0.55 0.85 2.02

A common approach for time series classification and align-
ment evaluation is kNN with DTW as the distance measure.
As baselines, we include classical DTW, SoftDTW (Cuturi
& Blondel, 2017) with γ ∈ {0.1, 1, 10}, DTW-GI (Vayer
et al., 2020), and ShapeDTW (using ‘raw’, ‘derivative’ and
‘hog1d’ descriptors) (Zhao & Itti, 2018), where we rely
on the official DTW-GI implementation and sktime for
ShapeDTW (Löning et al., 2019). For TP, we evaluate
keypoint ratios w.r.t. the sequence length {0.1, 0.2, 0.5, 1},
observing that selecting fewer KPs accelerates DTW align-
ment while often preserving or improving classification
accuracy. We select KPs by sorting the detection confidence
and retaining the top K%. Each value corresponds to a dif-
ferent threshold. This adaptive strategy avoids using a fixed
threshold across all datasets, which may be sub-optimal.

We summarize performance using a critical difference dia-
gram (Demšar, 2006; Middlehurst et al., 2024), which ranks
each kNN classifier across multiple datasets (the full re-
sults appear in Appendix E). Classifiers are grouped into
“cliques,” connected by a horizontal line, if their average
ranks are not significantly different according to pairwise
one-sided Wilcoxon signed-rank tests with Holm correc-
tion (Middlehurst et al., 2024). As illustrated in Figure 7,
TP+DTW achieves the highest average rank (with statis-
tical significance) at both 100% and 20% keypoint usage,
and remains highly ranked at 10% and 50%. Despite be-
ing trained exclusively on synthetic data, TP demonstrates
strong zero-shot generalization to real-world time series.

6.3. GPU-enabled DTW

We compare TP+DTW and TP+SoftDTW to the correspond-
ing methods using batch-wise kNN on the GPU. Table 1
shows the average accuracy and total runtime across the
datasets. The reported runtime includes TP’s forward pass,
sorting KPs by probability, NMS, and DTW. Here, we also

Table 2. 1-NN classification accuracy under various perturbations.
Results averaged over 30 UCR datasets.

Method No
Noise

Blur
σ = 0.1

Blur
σ = 1.0

Jitter
σ = 0.1

Jitter
σ = 0.5

DTW (raw) 0.844 0.843 0.838 0.801 0.744
TP (10%) 0.867 0.866 0.853 0.804 0.760
TP (20%) 0.881 0.873 0.873 0.828 0.791

report the results for fine-tuning TP. The results show that
both methods enjoy significant improvement in both met-
rics. Comparing DTW with TP+DTW, using 20% of the
KPs yields 2% accuracy gain with a ×65 speedup (192 vs. 3
hours respectively). For SoftDTW, using 10% or 20% of
the KPs is not necessarily better, since SoftDTW(γ) encour-
ages the solution to be smooth across adjacent time steps.
However, using 50% of the KPs yields better accuracy (1-
2%) at less than half the running time, and the full length
gives a significant accuracy boost across various γ values
(4-5%) with almost identical runtimes. Finally, we provide
GPU-RAM consumption analysis in subsection A.3.

To further improve performance, we fine-tune TP on real-
world time series using the same self-supervised framework.
Fine-tuning leads to a substantial boost in accuracy: com-
pared to the synthetic-only model, we observe a 7–8% im-
provement in performance across KP ratios. Importantly,
runtime remains unchanged, as the architecture and infer-
ence pipeline are identical, which demonstrates that TP can
be adapted to new domains while preserving its computa-
tional advantages.

6.4. Runtime Analysis

We evaluate the runtime performance of DTW-kNN on both
the raw signal and TimePoint descriptors with varying num-
bers of KPs. We compute kNN between two synthetic
datasets, each of size N = 500, with sequence lengths
L ∈ {50, 100, . . . , 1000}. The results are shown in Fig-
ure 8. When using the full signal (L = 100%), the runtime
for DTW and TP+DTW is almost identical. However, as the
number of KPs in TP decreases, the runtime for TP+DTW
scales significantly better with L, demonstrating near-linear
behavior for long sequences. For instance, when L = 1000,
using 20% of the KPs is almost two orders of magnitude
faster than performing DTW on the entire length. This in-
dicates that TP’s ability to focus on a reduced set of the
KPs leads to substantial efficiency gains, particularly for
large-scale, long sequence datasets.

6.5. Robustness to Noise

To assess TP’s robustness under noisy and distorted condi-
tions, we conducted a controlled evaluation using a subset
of 30 datasets from the UCR archive. We introduced two
common types of perturbations: additive Gaussian noise

8

TimePoint

50 10
0
15

0
20

0
30

0
50

0
75

0
10

00

Signal Length

100

101

102

103

104
Ru

nt
im

e
- l

og
(s

ec
)

Runtime Analysis
DTW
TP(0.1) + DTW
TP(0.2) + DTW
TP(0.5) + DTW
TP(1.0) + DTW

Figure 8. Runtime analysis. DTW KNN runtime between two
synthetic datasets of N = 500 and varying lengths (on GPU).

(jitter) and Gaussian blur, each applied at two intensity lev-
els. For each condition, we repeated the experiment three
times to account for randomness in the perturbations and
report the average 1-NN classification accuracy using DTW
on raw signals and TimePoint descriptors. We evaluate TP
at two keypoint selection ratios: 10% and 20%. The results
are presented at Table 2 and indicate that TP is robust to
varying noise types.

6.6. Ablation Study

Table 3 summarizes an ablation study over 27 datasets using
a 1-NN accuracy metric. With the full sequence, the stan-
dard DTW (baseline) achieves an accuracy of 0.797. Per-
forming DTW with TP features improves performance for
both Dense Conv (∼400K parameters, 0.82) and WTConv
(∼200K parameters, 0.815) encoders when using Euclidean
distance. Switching to cosine similarity further boosts per-
formance to 0.835 for Dense Conv and 0.869 for WTConv,
highlighting the effectiveness of the wavelet-based encoder.
Reducing the signal to just 20% of its length yields com-
parable trends: first, using TP merely as subsampling (i.e.,
ignoring the descriptors and using DTW on the raw signals
restricted to TimePoint’s KPs) gives a 1-NN accuracy of
0.792, while switching to using TP’s descriptors, with ei-
ther the Dense Conv or WTConv encoders, reaches 0.826
or 0.865, respectively. This shows that TimePoint differs
from naive subsampling methods by not only learning an
input-dependent KP detection scheme tailored to alignment
but also providing descriptors that, crucially, capture non-
local context through a large receptive field. This leads
to efficient DTW alignment without sacrificing accuracy.
Note also TP+WTConv nearly matches in accuracy the full-
length setting even though far fewer KPs are used. Lastly,
dropping the NMS decreases TP+WTConv to 0.841.

Table 3. Ablation Study
Encoder Dist. %L NMS 1-NN acc.
DTW (baseline) Euclidean 100% - 0.797
TP + Dense Conv Euclidean 100% - 0.82
TP + WTConv Euclidean 100% - 0.815
TP + Dense Conv Cosine Sim. 100% - 0.835
TP + WTConv Cosine Sim. 100% - 0.869
TP + DTW (no descriptors) Euclidean 20% ✓ 0.792
TP + Dense Conv Cosine Sim. 20% ✓ 0.826
TP + WTConv Cosine Sim. 20% ✗ 0.841
TP + WTConv Cosine Sim. 20% ✓ 0.865

7. Conclusion
We introduced TimePoint (TP), a self-supervised framework
for efficient time-series alignment. By leveraging synthetic
data and employing CPAB transformations, TP learns to
detect KPs and descriptors that enable sparse and accurate
alignments. Our approach addresses the scalability limita-
tion of traditional methods like DTW, achieving significant
computational speedups and improved alignment accuracy.
Extensive experiments demonstrate that TP generalizes well
across diverse real-world datasets, underscoring its effec-
tiveness as a practical solution for time-series analysis.

Acknowledgments
This work was supported by the Lynn and William Frankel
Center at BGU CS, by the Israeli Council for Higher Edu-
cation via the BGU Data Science Research Center, and by
Israel Science Foundation Personal Grant #360/21. S.E.F.’s
work was supported by the BGU’s Hi-Tech Scholarship.
S.E.F.’s and R.S.W.’s work was also supported by the Kreit-
man School of Advanced Graduate Studies.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado,

P., Shen, H., Shchur, O., Rangapuram, S. S., Arango, S. P.,
Kapoor, S., et al. Chronos: Learning the language of time
series. arXiv preprint arXiv:2403.07815, 2024.

Cao, K., Ji, J., Cao, Z., Chang, C.-Y., and Niebles, J. C.
Few-shot video classification via temporal alignment. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10618–10627, 2020.

Chelly, I., Finder, S. E., Ifergane, S., and Freifeld, O. Train-
able highly-expressive activation functions. In European

9

TimePoint

Conference on Computer Vision, pp. 200–217. Springer,
2024.

Cuturi, M. and Blondel, M. Soft-dtw: a differentiable loss
function for time-series. In International conference on
machine learning, pp. 894–903. PMLR, 2017.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. The ucr time series archive. IEEE/CAA Journal of
Automatica Sinica, 6(6):1293–1305, 2019.

Demšar, J. Statistical comparisons of classifiers over multi-
ple data sets. The Journal of Machine learning research,
7:1–30, 2006.

DeTone, D., Malisiewicz, T., and Rabinovich, A. Super-
point: Self-supervised interest point detection and de-
scription. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp.
224–236, 2018.

Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., and
Zisserman, A. Temporal cycle-consistency learning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1801–1810, 2019.

Finder, S. E., Amoyal, R., Treister, E., and Freifeld, O.
Wavelet convolutions for large receptive fields. In Eu-
ropean Conference on Computer Vision, pp. 363–380.
Springer, 2024.

Freifeld, O., Hauberg, S., Batmanghelich, K., and Fisher III,
J. W. Highly-expressive spaces of well-behaved transfor-
mations: Keeping it simple. In ICCV, 2015.

Freifeld, O., Hauberg, S., Batmanghelich, K., and Fisher III,
J. W. Transformations based on continuous piecewise-
affine velocity fields. IEEE TPAMI, 2017.

Fu, F., Chen, J., Zhang, J., Yang, C., Ma, L., and Yang, Y.
Are synthetic time-series data really not as good as real
data? arXiv preprint arXiv:2402.00607, 2024.

Kaufman, I., Weber, R. S., and Freifeld, O. Cyclic dif-
feomorphic transformer nets for contour alignment. In
2021 IEEE International Conference on Image Process-
ing (ICIP), pp. 349–353. IEEE, 2021.

Li, S., Liu, H., Qian, R., Li, Y., See, J., Fei, M., Yu, X.,
and Lin, W. Ta2n: Two-stage action alignment network
for few-shot action recognition. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 1404–1411, 2022.

Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines,
J., and Király, F. J. sktime: A unified interface for
machine learning with time series. arXiv preprint
arXiv:1909.07872, 2019.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Lowe, D. G. Object recognition from local scale-invariant
features. In Proceedings of the seventh IEEE interna-
tional conference on computer vision, volume 2, pp. 1150–
1157. Ieee, 1999.

Mantri, K. S. I., Wang, X., Schönlieb, C.-B., Ribeiro, B.,
Bevilacqua, B., and Eliasof, M. Digraf: Diffeomorphic
graph-adaptive activation function. In Advances in Neural
Information Processing Systems (NeurIPS), 2024.

Mantri, K. S. I., Schönlieb, C.-B., Ribeiro, B., Baskin, C.,
and Eliasof, M. Ditask: Multi-task fine-tuning with
diffeomorphic transformations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2025.

Martinez, I., Viles, E., and Olaizola, I. G. Closed-form
diffeomorphic transformations for time series alignment.
In International Conference on Machine Learning, pp.
15122–15158. PMLR, 2022.

Middlehurst, M., Schäfer, P., and Bagnall, A. Bake off
redux: a review and experimental evaluation of recent
time series classification algorithms. Data Mining and
Knowledge Discovery, pp. 1–74, 2024.

Mumford, D. and Desolneux, A. Pattern theory: the stochas-
tic analysis of real-world signals. AK Peters/CRC Press,
2010.

Sakoe, H. Dynamic-programming approach to continu-
ous speech recognition. 1971 Proc. the International
Congress of Acoustics, Budapest, 1971.

Sakoe, H. and Chiba, S. Dynamic programming algo-
rithm optimization for spoken word recognition. IEEE
Transactions on Acoustics, Speech, and Signal Pro-
cessing, 26(1):43–49, 1978. ISSN 0096-3518. doi:
10.1109/TASSP.1978.1163055.

Salvador, S. and Chan, P. Toward accurate dynamic time
warping in linear time and space. Intelligent Data Analy-
sis, 11(5):561–580, 2007.

Su, B. and Wen, J.-R. Temporal alignment prediction for
supervised representation learning and few-shot sequence
classification. In International Conference on Learning
Representations, 2022.

Trigeorgis, G., Nicolaou, M. A., Zafeiriou, S., and Schuller,
B. W. Deep canonical time warping. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5110–5118, 2016.

10

TimePoint

Vayer, T., Chapel, L., Courty, N., Flamary, R., Soullard,
Y., and Tavenard, R. Time series alignment with global
invariances. arXiv preprint arXiv:2002.03848, 2020.

Weber, R. S. and Freifeld, O. Regularization-free diffeo-
morphic temporal alignment nets. In International Con-
ference on Machine Learning, pp. 30794–30826. PMLR,
2023.

Weber, R. S. and Freifeld, O. Diffeomorphic temporal align-
ment nets for time-series joint alignment and averaging.
arXiv preprint arXiv:2502.06591, 2025.

Weber, R. S., Eyal, M., Skafte Detlefsen, N., Shriki, O.,
and Freifeld, O. Diffeomorphic temporal alignment nets.
In Advances in neural information processing systems,
volume 32, 2019.

Wu, R. and Keogh, E. J. Fastdtw is approximate and gen-
erally slower than the algorithm it approximates. IEEE
Transactions on Knowledge and Data Engineering, 34
(8):3779–3785, 2020.

Xu, M., Garg, S., Milford, M., and Gould, S. Deep declar-
ative dynamic time warping for end-to-end learning of
alignment paths. arXiv preprint arXiv:2303.10778, 2023.

Zhang, J., Zheng, S., Cao, W., Bian, J., and Li, J. Warp-
former: A multi-scale modeling approach for irregular
clinical time series. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 3273–3285, 2023.

Zhao, J. and Itti, L. shapedtw: Shape dynamic time warping.
Pattern Recognition, 74:171–184, 2018.

11

TimePoint: Appendix

Table of Contents
• Appendix A: Additional Results.

Additional figures depicting TimePoint keypoints and descriptors for signals of varying lengths, 1-NN classification
comparisons against other DTW-based methods, and a GPU RAM consumption analysis.

• Appendix B: SynthAlign.
Details on our synthetic dataset generation process, including waveform composition, keypoint extraction, and the
impact of synthetic training on real-world performance.

• Appendix C: CPAB Transformations.
Overview of the continuous piecewise-affine-based (CPAB) transformations used to generate nonlinear time deforma-
tions. Includes 1D-specific formulation and illustrative examples.

• Appendix D: TimePoint Architecture Details.
Description of the TimePoint encoder-decoder architecture, including layer specifications and parameter choices.

• Appendix E: Full UCR Archive Results.
Additional information on the UCR datasets used in our experiments, including train/test splits, signal lengths, and data
types. Complete accuracy tables for our method and competitor methods across the entire UCR dataset collection.

12

TimePoint

A. Additional Results
A.1. TimePoint Keypoints and Descriptors for Time Series of Different Lengths

(a) TimePoint keypoints and descriptors for the Coffee dataset (L = 286)

(b) TimePoint keypoints and descriptors for the BeetleFly dataset (L = 512)

(c) TimePoint keypoints and descriptors for the Phoneme dataset (L = 1024)

13

TimePoint

A.2. 1-NN Classification Comparisons

0.2 0.4 0.6 0.8 1.0

DTW

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.0 0.2 0.4 0.6 0.8 1.0

SoftDTW(0.1)
0.0

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.0 0.2 0.4 0.6 0.8 1.0

SoftDTW(1)
0.0

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.0 0.2 0.4 0.6 0.8 1.0

SoftDTW(10)
0.0

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.4 0.5 0.6 0.7 0.8 0.9 1.0

DTWGI

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

0.4 0.5 0.6 0.7 0.8 0.9 1.0

ShapeDTW(raw)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

0.4 0.6 0.8 1.0

ShapeDTW(hog)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

0.2 0.4 0.6 0.8 1.0

ShapeDTW(dev)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

Figure A.2. TP with 100% of the keypoints vs. several DTW-based methods. Synthetic data training only. Each dot represents a dataset.

0.2 0.4 0.6 0.8 1.0

DTW

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.0 0.2 0.4 0.6 0.8 1.0

SoftDTW(0.1)
0.0

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.0 0.2 0.4 0.6 0.8 1.0

SoftDTW(1)
0.0

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.0 0.2 0.4 0.6 0.8 1.0

SoftDTW(10)
0.0

0.2

0.4

0.6

0.8

1.0

Ou
rs

Equal performance

0.4 0.5 0.6 0.7 0.8 0.9 1.0

DTWGI

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

0.4 0.5 0.6 0.7 0.8 0.9 1.0

ShapeDTW(raw)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

0.4 0.6 0.8 1.0

ShapeDTW(hog)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

0.2 0.4 0.6 0.8 1.0

ShapeDTW(dev)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ou
rs

Equal performance

Figure A.3. TP with 20% of the keypoints vs. several DTW-based methods. Synthetic data training only. Each dot represents a dataset.

14

TimePoint

A.3. GPU RAM Consumption Analysis

Table A.1. Total GPU memory usage comparison. Summary of seven UCR datasets and the corresponding GPU memory usage (in GB,
rounded to integers) for 1-NN DTW. The TP + DTW columns represent the memory footprint at different keypoint ratios, while standard
DTW uses the full signal length.

Dataset DTW TP + DTW

Train Test Length 10% 20% 50% 100%

ChlorineConcentration 467 3840 166 186 2 8 47 186
Crop 7200 16800 46 996 17 46 260 996
ECG5000 500 4500 140 167 2 7 42 167
TwoPatterns 1000 4000 128 248 3 11 63 248
UWaveGestureLibraryX 896 3582 315 1194 13 49 302 1194
Wafer 1000 6164 152 538 6 22 136 538
Yoga 300 3000 426 611 7 25 154 611

Memory Consumption and Channel Independence. As shown in Table A.1, when both DTW and TP+DTW are applied
to the full sequence (keypoint ratio = 100%), the GPU memory consumption remains the same despite the fact that TP
features are 256-dimensional. The key reason lies in the memory structure of our DTW implementation.

Dynamic Programming (DP) Matrix. The largest tensor created during DTW is a 4D DP matrix D of shape[
batch size x, batch size y, length x + 1, length y + 1

]
. Notably, this matrix does not include any

channel dimension. As a result, increasing the feature dimensionality from, say, 1 to 256 does not change the DP matrix size.

Cost Computation Over Channels. At each time step (i, j), we compute a scalar cost by reducing across the channel
dimension, whether using cosine similarity or ℓ2 distance. Consequently, the DP matrix stores only a single cost value for
each pair (i, j), independent of the descriptor dimensionality.

Equal Memory Footprint at Full Length. When keypoint ratio = 100%, TP+DTW and plain DTW both operate on the
entire time series. Although TimePoint descriptors have a higher channel count (e.g., 256), that extra dimensionality is
collapsed into a single scalar during the pairwise cost computation, leading to an identical memory footprint for the DP
matrix. Hence, the total GPU RAM consumption scales only with the product of the sequence lengths and batch sizes, rather
than the descriptor dimensionality or number of channels.

15

TimePoint

B. SynthAlign

Figure B.1. Left: Training losses on SynthAlign data. Right: DTW-KNN accuracy on unseen datasets. As the training losses decrease
the accuracy increases, indicating the loss functions, along with the synthetic training framework (SynthAlign) generalize well to
real-world data for the task of identifying keypoints and learning descriptors. Epochs are trimmed to 25K for visibility purposes.

Does synthetic training generalize to real-world data? A notable finding is that jointly minimizing the keypoint detection
and descriptor losses on the synthetic dataset leads to improved k-NN accuracy on unseen real-world data, as evident
from Figure B.1. This suggests that learning to detect salient points and produce consistent descriptors under controlled, yet
varied, synthetic data and distortions allows for alignment capabilities that transfer beyond the training distribution.

Data generation To train and evaluate our method under diverse temporal patterns and keypoint structures, we introduce
the SynthAlign dataset. Each sample comprises a univariate time series of length L and an associated keypoint (KP)
mask that marks salient events (e.g., peaks, start/end points). We generate data on-the-fly using a composition of procedurally
defined waveforms and optional augmentations.

SynthAlign randomly draws from four principal waveform generators with specified probabilities:

1. Sine Wave Composition: Superposes multiple sine waves (random frequency, amplitude, and phase), with derivative-
based KPs for local maxima or minima.

2. Block Wave: Creates square-wave-like segments with variable block sizes and amplitude, marking boundaries as KPs.

3. Sawtooth Wave: Forms a sawtooth signal of random frequency, designating signal resets as KPs.

4. Radial Basis Function (RBF): Summation of Gaussian “blobs,” entered at a random position; KPs appear at blob peaks.

Each generated signal has length L = 512 by default, though the code supports arbitrary lengths.

Composition and Augmentations. After selecting one or more waveform generators (drawn with probabilities
[0.6, 0.15, 0.05, 0.2] from the waveforms mentioned in the list above), the resulting signals are summed to form a fi-
nal sample. We also introduce:

• Linear Trends: Randomly superimposed slopes and intercepts to simulate mild non-stationarity.

• Flips: Inverts a random subsection of the signal.

• Noise: Adds Gaussian noise sampled from N (0, 0.1) to further diversify training samples.

16

TimePoint

Keypoint Extraction. Keypoints originate from local maxima/minima (sine and sawtooth), block boundaries, Gaussian
centers (RBF), and explicit markings for flips and linear boundaries. We ensure start/end points are included only when
warranted by the signal design. This strategy provides a rich variety of salient events, allowing models to learn robust
keypoint detection across diverse waveform shapes. Overall, SynthAlign delivers a flexible pipeline for generating
synthetic time series with automatically labeled keypoints, serving as a valuable testbed for alignment, detection, and
descriptor-learning techniques. Figure B.2 shows additional sample drawn from SynthAlign

Figure B.2. More samples from SynthAlign.

17

TimePoint

C. CPAB Transformations
Let T θ be a diffeomorphism parameterized by θ. The main reason we chose CPAB transformations (Freifeld et al., 2017)
as the parametric diffeomorphism family to be used within our method is that they are both expressive and efficient. Our
presentation of CPAB transformations below closely follows (Freifeld et al., 2017), though we restrict the discussion to the
1D case (for the more general case, see (Freifeld et al., 2017)).

Let Ω = [a, b] ⊂ R be a finite interval and let V be a space of continuous functions, from Ω to R, that are also piecewise-
affine w.r.t. some fixed partition of Ω into sub-intervals. Note that V is a finite-dimensional linear space. Let d = dim(V),
let θ ∈ Rd, and let vθ ∈ V denote the generic element of V , parameterized by θ. The space of CPAB transformations
obtained via the integration of elements of V , is defined as

T ≜
{
T θ : x 7→ ϕθ(x; 1) s.t. ϕθ(x; t) solves the integral equation ϕθ(x; t) = x+

∫ t

0

vθ(ϕθ(x; τ)) dτ where vθ ∈ V
}
.

(5)

Every T θ ∈ T is an order-preserving transformation (i.e., it is monotonically increasing) and a diffeomorphism (Freifeld
et al., 2017). Note that while vθ ∈ V is CPA, the CPAB T θ ∈ T is not (e.g., T θ is differentiable, unlike any non-trivial
CPA function). Equation 5 also implies that the elements of V are viewed as velocity fields. Particularly useful for us
are the following facts: 1) The finer the partition of Ω is, the more expressive the CPAB family becomes (which also
means that d increases). 2) CPAB transformations lend themselves to a fast and accurate computation in closed form of
x 7→ T θ(x) (Freifeld et al., 2017). Together, these facts mean that CPAB transformations provide us with a convenient
and an efficient way to parameterize nonlinear monotonically-increasing functions. Figure C.1 show random CPAB
transformation applied to synthetic data sampled from SynthAlign, while Figure C.2 shows the effect of increasing the
standard deviation (σvar) when sampling θ from the CPA smoothness prior.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

T
(x

)

CPA-based Transformation
Identity
CPAB transform

0.0 2.5 5.0 7.5 10.0 12.5

0.00

0.25

0.50

(x
)

Continuous Piecewise Affine Velocity Field

0 20 40 60 80 100 120

x

3

2

1

0

1

2

3
Signal and Warped Signal

Original signal
Warped signal

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

T
(x

)

CPA-based Transformation
Identity
CPAB transform

0.0 2.5 5.0 7.5 10.0 12.5
1

0(x
)

Continuous Piecewise Affine Velocity Field

0 20 40 60 80 100 120

x

5

4

3

2

1

0

1

2

Signal and Warped Signal
Original signal
Warped signal

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

T
(x

)

CPA-based Transformation
Identity
CPAB transform

0.0 2.5 5.0 7.5 10.0 12.5

0.5

0.0(x
)

Continuous Piecewise Affine Velocity Field

0 20 40 60 80 100 120

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Signal and Warped Signal
Original signal
Warped signal

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

T
(x

)

CPA-based Transformation
Identity
CPAB transform

0.0 2.5 5.0 7.5 10.0 12.5
0.0

0.2

0.4

(x
)

Continuous Piecewise Affine Velocity Field

0 20 40 60 80 100 120

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Signal and Warped Signal
Original signal
Warped signal

Figure C.1. Additional examples of the CPAB transformation.

18

TimePoint

0 100 200 300 400 500
Time

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Am

pl
itu

de
CPAB warps at var = 0.1

Original Time Series
Augmented Time Series

0 100 200 300 400 500
Time

1

0

1

2

3

4

Am
pl

itu
de

CPAB warps at var = 0.1
Original Time Series
Augmented Time Series

0 100 200 300 400 500
Time

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

CPAB warps at var = 0.2
Original Time Series
Augmented Time Series

0 100 200 300 400 500
Time

1

0

1

2

3

4

Am
pl

itu
de

CPAB warps at var = 0.2
Original Time Series
Augmented Time Series

0 100 200 300 400 500
Time

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

CPAB warps at var = 0.5
Original Time Series
Augmented Time Series

0 100 200 300 400 500
Time

1

0

1

2

3

4

Am
pl

itu
de

CPAB warps at var = 0.5
Original Time Series
Augmented Time Series

Figure C.2. SynthAlign synthetic data augmented with CPAB warps at increasing magnitude (top-to-bottom). Each panel shows the
original signal in blue and 3 random augmentations in gray.

19

TimePoint

D. TimePoint Architecture Details

Table D.1. SuperPoint1D model architecture. Conv(Cin → Cout, k) denotes a 1D convolution from Cin to Cout channels with kernel
size k, followed by BatchNorm and ReLU. WTConv denotes the wavelet-based convolution with group splitting and scale modules.

Stage Layer Details

Encoder (WTConvEncoder1D)

layer1 ConvBlock1D • Conv(1 → 128, k = 3, stride=1, padding=same)
• BatchNorm(128), ReLU

layer2 WTConvBlock1D • WTConv1d(128 → 128, kernel=3, groups=128) + scale modules
• Conv(128 → 128, k = 1), BatchNorm(128), ReLU

layer3 WTConvBlock1D • WTConv1d(128 → 128, kernel=3, groups=128) + scale modules
• Conv(128 → 256, k = 1), BatchNorm(256), ReLU

layer4 WTConvBlock1D • WTConv1d(256 → 256, kernel=3, groups=256) + scale modules
• Conv(256 → 256, k = 1), BatchNorm(256), ReLU

Detector Head (DetectorHead1D)

Conv(256 → 8, k = 1) Outputs detector logits for keypoint heatmap.
Sigmoid Normalize the logits to probabilities

Descriptor Head (DescriptorHead1D)

Conv(256 → 256, k = 1) Descriptor feature map.
Upsample Upsample with scale factor = 8, mode=linear.

20

TimePoint

E. Full UCR Archive Results
E.1. UCR Archive Details

ID Type Name Train Test Class Length

1 Image Adiac 390 391 37 176
2 Image ArrowHead 36 175 3 251
3 Spectro Beef 30 30 5 470
4 Image BeetleFly 20 20 2 512
5 Image BirdChicken 20 20 2 512
6 Sensor Car 60 60 4 577
7 Simulated CBF 30 900 3 128
8 Sensor ChlorineConcentration 467 3840 3 166
9 Sensor CinCECGTorso 40 1380 4 1639
10 Spectro Coffee 28 28 2 286
11 Device Computers 250 250 2 720
12 Motion CricketX 390 390 12 300
13 Motion CricketY 390 390 12 300
14 Motion CricketZ 390 390 12 300
15 Image DiatomSizeReduction 16 306 4 345
16 Image DistalPhalanxOutlineAgeGroup 400 139 3 80
17 Image DistalPhalanxOutlineCorrect 600 276 2 80
18 Image DistalPhalanxTW 400 139 6 80
19 Sensor Earthquakes 322 139 2 512
20 ECG ECG200 100 100 2 96
21 ECG ECG5000 500 4500 5 140
22 ECG ECGFiveDays 23 861 2 136
23 Device ElectricDevices 8926 7711 7 96
24 Image FaceAll 560 1690 14 131
25 Image FaceFour 24 88 4 350
26 Image FacesUCR 200 2050 14 131
27 Image FiftyWords 450 455 50 270
28 Image Fish 175 175 7 463
29 Sensor FordA 3601 1320 2 500
30 Sensor FordB 3636 810 2 500
31 Motion GunPoint 50 150 2 150
32 Spectro Ham 109 105 2 431
33 Image HandOutlines 1000 370 2 2709
34 Motion Haptics 155 308 5 1092
35 Image Herring 64 64 2 512
36 Motion InlineSkate 100 550 7 1882
37 Sensor InsectWingbeatSound 220 1980 11 256
38 Sensor ItalyPowerDemand 67 1029 2 24
39 Device LargeKitchenAppliances 375 375 3 720
40 Sensor Lightning2 60 61 2 637
41 Sensor Lightning7 70 73 7 319
42 Simulated Mallat 55 2345 8 1024
43 Spectro Meat 60 60 3 448
44 Image MedicalImages 381 760 10 99
45 Image MiddlePhalanxOutlineAgeGroup 400 154 3 80
46 Image MiddlePhalanxOutlineCorrect 600 291 2 80
47 Image MiddlePhalanxTW 399 154 6 80
48 Sensor MoteStrain 20 1252 2 84
49 ECG NonInvasiveFetalECGThorax1 1800 1965 42 750
50 ECG NonInvasiveFetalECGThorax2 1800 1965 42 750
51 Spectro OliveOil 30 30 4 570
52 Image OSULeaf 200 242 6 427
53 Image PhalangesOutlinesCorrect 1800 858 2 80
54 Sensor Phoneme 214 1896 39 1024
55 Sensor Plane 105 105 7 144
56 Image ProximalPhalanxOutlineAgeGroup 400 205 3 80
57 Image ProximalPhalanxOutlineCorrect 600 291 2 80
58 Image ProximalPhalanxTW 400 205 6 80
59 Device RefrigerationDevices 375 375 3 720
60 Device ScreenType 375 375 3 720
61 Simulated ShapeletSim 20 180 2 500
62 Image ShapesAll 600 600 60 512
63 Device SmallKitchenAppliances 375 375 3 720
64 Sensor SonyAIBORobotSurface1 20 601 2 70
65 Sensor SonyAIBORobotSurface2 27 953 2 65
66 Sensor StarLightCurves 1000 8236 3 1024
67 Spectro Strawberry 613 370 2 235
68 Image SwedishLeaf 500 625 15 128
69 Image Symbols 25 995 6 398
70 Simulated SyntheticControl 300 300 6 60
71 Motion ToeSegmentation1 40 228 2 277
72 Motion ToeSegmentation2 36 130 2 343
73 Sensor Trace 100 100 4 275
74 ECG TwoLeadECG 23 1139 2 82

21

TimePoint

ID Type Name Train Test Class Length

75 Simulated TwoPatterns 1000 4000 4 128
76 Motion UWaveGestureLibraryAll 896 3582 8 945
77 Motion UWaveGestureLibraryX 896 3582 8 315
78 Motion UWaveGestureLibraryY 896 3582 8 315
79 Motion UWaveGestureLibraryZ 896 3582 8 315
80 Sensor Wafer 1000 6164 2 152
81 Spectro Wine 57 54 2 234
82 Image WordSynonyms 267 638 25 270
83 Motion Worms 181 77 5 900
84 Motion WormsTwoClass 181 77 2 900
85 Image Yoga 300 3000 2 426
86 Device ACSF1 100 100 10 1460
87 Sensor AllGestureWiimoteX 300 700 10 Vary
88 Sensor AllGestureWiimoteY 300 700 10 Vary
89 Sensor AllGestureWiimoteZ 300 700 10 Vary
90 Simulated BME 30 150 3 128
91 Traffic Chinatown 20 343 2 24
92 Image Crop 7200 16800 24 46
93 Sensor DodgerLoopDay 78 80 7 288
94 Sensor DodgerLoopGame 20 138 2 288
95 Sensor DodgerLoopWeekend 20 138 2 288
96 EOG EOGHorizontalSignal 362 362 12 1250
97 EOG EOGVerticalSignal 362 362 12 1250
98 Spectro EthanolLevel 504 500 4 1751
99 Sensor FreezerRegularTrain 150 2850 2 301
100 Sensor FreezerSmallTrain 28 2850 2 301
101 HRM Fungi 18 186 18 201
102 Trajectory GestureMidAirD1 208 130 26 Vary
103 Trajectory GestureMidAirD2 208 130 26 Vary
104 Trajectory GestureMidAirD3 208 130 26 Vary
105 Sensor GesturePebbleZ1 132 172 6 Vary
106 Sensor GesturePebbleZ2 146 158 6 Vary
107 Motion GunPointAgeSpan 135 316 2 150
108 Motion GunPointMaleVersusFemale 135 316 2 150
109 Motion GunPointOldVersusYoung 136 315 2 150
110 Device HouseTwenty 40 119 2 2000
111 EPG InsectEPGRegularTrain 62 249 3 601
112 EPG InsectEPGSmallTrain 17 249 3 601
113 Traffic MelbournePedestrian 1194 2439 10 24
114 Image MixedShapesRegularTrain 500 2425 5 1024
115 Image MixedShapesSmallTrain 100 2425 5 1024
116 Sensor PickupGestureWiimoteZ 50 50 10 Vary
117 Hemodynamics PigAirwayPressure 104 208 52 2000
118 Hemodynamics PigArtPressure 104 208 52 2000
119 Hemodynamics PigCVP 104 208 52 2000
120 Device PLAID 537 537 11 Vary
121 Power PowerCons 180 180 2 144
122 Spectrum Rock 20 50 4 2844
123 Spectrum SemgHandGenderCh2 300 600 2 1500
124 Spectrum SemgHandMovementCh2 450 450 6 1500
125 Spectrum SemgHandSubjectCh2 450 450 5 1500
126 Sensor ShakeGestureWiimoteZ 50 50 10 Vary
127 Simulated SmoothSubspace 150 150 3 15
128 Simulated UMD 36 144 3 150

E.2. UCR Archive Details

22

TimePoint

Table E.2: Accuracy Comparison Between TimePoint Configurations (SynthAlign training only.)

Dataset/Method TP+DTW TP+SoftDTW (γ = 1)

(0.1) (0.2) (0.5) (1) (0.1) (0.2) (0.5) (1)

Adiac 0.645 0.678 0.734 0.742 0.519 0.445 0.598 0.737
AllGestureWiimoteX 0.55 0.454 0.552 0.542 0.461 0.421 0.454 0.437
ArrowHead 0.869 0.851 0.874 0.857 0.669 0.657 0.806 0.840
BME 0.960 0.940 0.893 0.953 0.953 0.893 0.860 0.947
Beef 0.733 0.767 0.700 0.800 0.600 0.500 0.700 0.833
BeetleFly 0.950 0.850 0.900 0.900 0.850 0.950 0.850 0.950
BirdChicken 0.900 0.750 0.800 0.850 0.900 0.750 0.950 0.750
CBF 0.940 0.990 0.940 0.993 0.930 0.970 0.988 0.996
Car 0.850 0.850 0.767 0.867 0.633 0.733 0.783 0.817
Chinatown 0.831 0.924 0.915 0.945 0.828 0.901 0.974 0.942
ChlorineConcentration 0.574 0.624 0.648 0.632 0.527 0.538 0.574 0.635
Coffee 1.000 1.000 1.000 1.000 0.750 0.714 0.893 1.000
Computers 0.668 0.676 0.664 0.676 0.628 0.664 0.620 0.552
CricketX 0.715 0.703 0.551 0.754 0.610 0.585 0.685 0.685
CricketY 0.664 0.731 0.582 0.759 0.590 0.628 0.705 0.715
CricketZ 0.726 0.723 0.590 0.756 0.654 0.592 0.713 0.708
Crop 0.665 0.693 0.682 0.705 0.658 0.670 0.693 0.705
DiatomSizeReduction 0.967 0.958 0.967 0.958 0.850 0.794 0.905 0.958
DistalPhalanxOutlineAgeGroup 0.583 0.619 0.633 0.583 0.583 0.604 0.612 0.547
DistalPhalanxOutlineCorrect 0.652 0.692 0.699 0.717 0.616 0.685 0.678 0.714
DistalPhalanxTW 0.511 0.590 0.583 0.590 0.554 0.532 0.540 0.576
ECG200 0.850 0.820 0.820 0.820 0.820 0.820 0.900 0.800
ECG5000 0.921 0.924 0.921 0.924 0.922 0.916 0.922 0.924
ECGFiveDays 0.812 0.897 0.942 0.897 0.659 0.683 0.676 0.895
Earthquakes 0.669 0.662 0.691 0.691 0.676 0.662 0.619 0.676
ElectricDevices 0.593 0.607 0.616 0.613 0.588 0.592 0.602 0.615
FaceAll 0.676 0.717 0.720 0.734 0.634 0.667 0.691 0.730
FaceFour 0.807 0.932 0.886 0.932 0.693 0.727 0.932 0.943
FacesUCR 0.735 0.840 0.802 0.859 0.682 0.762 0.831 0.852
FiftyWords 0.745 0.760 0.736 0.802 0.684 0.668 0.677 0.754
Fish 0.874 0.903 0.880 0.914 0.731 0.709 0.834 0.891
FordA 0.780 0.775 0.768 0.791 0.717 0.729 0.754 0.782
FordB 0.641 0.640 0.647 0.662 0.586 0.633 0.640 0.623
FreezerRegularTrain 0.913 0.927 0.876 0.924 0.891 0.876 0.981 0.920
FreezerSmallTrain 0.780 0.793 0.760 0.798 0.758 0.783 0.862 0.771
Fungi 0.957 0.995 0.925 0.995 0.839 0.731 0.957 0.984
GestureMidAirD1 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
GestureMidAirD2 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
GestureMidAirD3 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
GesturePebbleZ1 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163
GesturePebbleZ2 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152
GunPoint 0.973 0.993 0.973 0.993 0.913 0.860 0.980 0.993
GunPointAgeSpan 0.981 0.975 0.972 0.978 0.953 0.924 0.972 0.965
GunPointMaleVersusFemale 0.994 1.000 0.997 1.000 0.978 0.994 1.000 1.000
GunPointOldVersusYoung 0.968 0.971 0.959 0.981 0.895 0.940 0.971 0.971
Ham 0.514 0.533 0.457 0.552 0.562 0.524 0.600 0.533
Herring 0.469 0.547 0.531 0.531 0.594 0.625 0.453 0.516
InsectEPGRegularTrain 0.964 0.932 0.876 0.928 0.855 0.827 0.807 0.819
AllGestureWiimoteY 0.558 0.564 0.578 0.558 0.492 0.47 0.47 0.457
AllGestureWiimoteZ 0.282 0.237 0.287 0.28 0.212 0.227 0.177 0.172
InsectEPGSmallTrain 0.815 0.795 0.703 0.803 0.622 0.755 0.711 0.747
InsectWingbeatSound 0.468 0.534 0.504 0.534 0.427 0.487 0.554 0.563
ItalyPowerDemand 0.941 0.934 0.957 0.945 0.943 0.939 0.944 0.949
LargeKitchenAppliances 0.757 0.744 0.709 0.755 0.640 0.613 0.589 0.560
Lightning2 0.836 0.869 0.852 0.820 0.738 0.803 0.820 0.852
Lightning7 0.671 0.740 0.808 0.767 0.616 0.658 0.658 0.740
Mallat 0.912 0.865 0.807 0.897 0.664 0.630 0.782 0.900
Meat 0.900 0.900 0.883 0.917 0.783 0.800 0.800 0.883
MedicalImages 0.687 0.714 0.729 0.728 0.674 0.672 0.722 0.714
MiddlePhalanxOutlineAgeGroup 0.422 0.390 0.461 0.396 0.364 0.429 0.396 0.442
MiddlePhalanxOutlineCorrect 0.663 0.729 0.694 0.722 0.625 0.601 0.622 0.722
MiddlePhalanxTW 0.442 0.474 0.539 0.539 0.422 0.487 0.526 0.578
MixedShapesSmallTrain 0.884 0.912 0.889 0.914 0.798 0.874 0.831 0.836
MoteStrain 0.826 0.861 0.852 0.862 0.807 0.863 0.865 0.856
NonInvasiveFetalECGThorax1 0.814 0.798 0.769 0.823 0.583 0.593 0.751 0.814
NonInvasiveFetalECGThorax2 0.847 0.867 0.846 0.872 0.693 0.677 0.825 0.860
OSULeaf 0.789 0.793 0.769 0.810 0.657 0.686 0.661 0.715
OliveOil 0.567 0.700 0.900 0.933 0.633 0.400 0.600 0.633
PhalangesOutlinesCorrect 0.690 0.727 0.748 0.741 0.671 0.697 0.681 0.754
Phoneme 0.267 0.268 0.261 0.284 0.212 0.203 0.166 0.165
PickupGestureWiimoteZ 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
Plane 1.000 0.990 1.000 1.000 1.000 0.981 1.000 0.990
PowerCons 0.856 0.906 0.878 0.894 0.811 0.867 0.911 0.861
ProximalPhalanxOutlineAgeGroup 0.790 0.805 0.805 0.795 0.810 0.780 0.800 0.800
ProximalPhalanxOutlineCorrect 0.818 0.821 0.825 0.852 0.832 0.821 0.818 0.845
ProximalPhalanxTW 0.673 0.693 0.712 0.727 0.683 0.727 0.751 0.712
RefrigerationDevices 0.525 0.491 0.504 0.483 0.461 0.451 0.429 0.483
ScreenType 0.413 0.419 0.411 0.416 0.376 0.397 0.387 0.384
ShakeGestureWiimoteZ 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
ShapeletSim 0.600 0.644 0.617 0.711 0.533 0.578 0.550 0.644
ShapesAll 0.860 0.873 0.862 0.878 0.728 0.782 0.777 0.803
SmallKitchenAppliances 0.555 0.579 0.600 0.552 0.557 0.576 0.507 0.475
SmoothSubspace 0.800 0.793 0.807 0.813 0.793 0.807 0.807 0.793
SonyAIBORobotSurface1 0.839 0.764 0.760 0.745 0.844 0.800 0.785 0.737
SonyAIBORobotSurface2 0.860 0.886 0.890 0.866 0.848 0.871 0.855 0.860
Strawberry 0.932 0.951 0.943 0.949 0.870 0.889 0.927 0.951

23

TimePoint

Dataset/Method TP+DTW TP+SoftDTW (γ = 1)

(0.1) (0.2) (0.5) (1) (0.1) (0.2) (0.5) (1)

SwedishLeaf 0.875 0.904 0.888 0.899 0.790 0.811 0.866 0.904
Symbols 0.949 0.955 0.939 0.965 0.897 0.912 0.860 0.930
SyntheticControl 0.957 0.977 0.967 0.983 0.967 0.967 0.970 0.980
ToeSegmentation1 0.846 0.838 0.855 0.882 0.789 0.785 0.789 0.829
ToeSegmentation2 0.823 0.885 0.831 0.900 0.777 0.800 0.862 0.869
Trace 0.990 0.990 0.990 0.990 1.000 0.980 0.920 0.990
TwoLeadECG 0.830 0.816 0.801 0.834 0.789 0.695 0.785 0.837
TwoPatterns 0.729 0.771 0.687 0.778 0.681 0.676 0.602 0.756
UMD 0.910 0.889 0.840 0.889 0.854 0.819 0.812 0.854
UWaveGestureLibraryAll 0.917 0.956 0.927 0.968 0.784 0.913 0.910 0.905
UWaveGestureLibraryX 0.758 0.791 0.786 0.797 0.715 0.753 0.740 0.788
UWaveGestureLibraryY 0.703 0.730 0.716 0.743 0.643 0.682 0.660 0.711
UWaveGestureLibraryZ 0.689 0.728 0.701 0.738 0.652 0.693 0.688 0.714
Wafer 0.994 0.993 0.989 0.994 0.990 0.990 0.995 0.994
Wine 0.611 0.722 0.741 0.593 0.481 0.611 0.574 0.630
WordSynonyms 0.688 0.721 0.694 0.737 0.594 0.605 0.589 0.694
Worms 0.662 0.584 0.610 0.584 0.649 0.519 0.558 0.597
WormsTwoClass 0.727 0.636 0.649 0.675 0.688 0.649 0.623 0.688
Yoga 0.858 0.866 0.853 0.871 0.768 0.760 0.832 0.856

Table E.3: Accuracy Comparison Between Competitors.

Dataset/Method DTW DTW-GI Euc. ShapeDTW SoftDTW

(dev) (hog) (raw) (γ = 0.1) (γ = 1) (γ = 10)

Adiac 0.588 0.604 0.066 0.652 0.251 0.637 1.000 0.513 0.750
AllGestureWiimoteX 0.135 0.611 0.101 0.327 0.377 0.613 0.662 0.833 0.576
ArrowHead 0.680 0.703 0.229 0.674 0.800 0.817 0.712 0.550 0.761
BME 0.900 0.900 0.493 0.760 0.707 0.860 0.783 0.800 0.696
Beef 0.567 0.633 0.267 0.700 0.733 0.667 0.935 0.714 0.341
BeetleFly 0.700 0.700 0.450 0.650 0.750 0.750 0.880 0.784 0.769
BirdChicken 0.750 0.750 0.800 0.700 0.550 0.550 0.797 0.880 0.784
CBF 1.000 0.997 0.658 0.360 0.434 0.906 0.626 0.783 0.800
Car 0.750 0.733 0.600 0.717 0.717 0.817 0.610 0.046 0.925
Chinatown 0.965 0.956 0.805 0.933 0.948 0.962 0.764 0.907 0.120
ChlorineConcentration 0.627 0.648 0.231 0.709 0.668 0.628 0.513 0.750 0.680
Coffee 0.964 1.000 0.536 0.964 1.000 1.000 0.752 0.913 0.808
Computers 0.668 0.696 0.672 0.528 0.624 0.556 0.933 0.948 0.046
CricketX 0.772 0.754 0.097 0.282 0.400 0.669 0.747 0.867 0.577
CricketY 0.749 0.744 0.074 0.226 0.431 0.651 0.567 0.747 0.867
CricketZ 0.787 0.754 0.092 0.297 0.387 0.682 0.733 0.567 0.747
Crop 0.676 0.664 0.052 0.719 0.524 0.716 0.995 0.953 0.899
DiatomSizeReduction 0.961 0.967 0.431 0.922 0.958 0.889 0.676 0.551 0.663
DistalPhalanxOutlineAgeGroup 0.748 0.770 0.604 0.597 0.633 0.576 0.521 0.650 0.955
DistalPhalanxOutlineCorrect 0.725 0.717 0.478 0.757 0.721 0.659 0.809 0.521 0.650
DistalPhalanxTW 0.640 0.590 0.468 0.590 0.612 0.511 0.611 0.809 0.521
ECG200 0.800 0.770 0.350 0.880 0.870 0.840 0.152 0.946 0.859
ECG5000 0.930 0.925 0.137 0.921 0.928 0.926 0.633 0.665 0.631
ECGFiveDays 0.775 0.768 0.551 0.747 0.920 0.830 0.665 0.631 0.717
Earthquakes 0.669 0.719 0.698 0.259 0.734 0.662 0.046 0.797 0.880
ElectricDevices 0.653 0.592 0.232 0.495 0.519 0.574 0.696 0.152 0.946
FaceAll 0.772 0.808 0.019 0.762 0.630 0.809 0.717 0.667 0.562
FaceFour 0.841 0.830 0.364 0.534 0.852 0.864 0.754 0.676 0.551
FacesUCR 0.934 0.905 0.143 0.778 0.639 0.885 0.631 0.717 0.667
FiftyWords 0.716 0.690 0.022 0.556 0.484 0.692 0.819 0.785 0.712
Fish 0.863 0.823 0.257 0.874 0.829 0.840 0.714 0.341 0.808
FordA 0.571 0.555 0.484 0.696 0.699 0.661 0.829 0.935 0.714
FordB 0.606 0.620 0.505 0.615 0.619 0.562 0.769 0.829 0.935
FreezerRegularTrain 0.917 0.899 0.546 0.692 0.801 0.804 0.879 0.733 0.567
FreezerSmallTrain 0.720 0.759 0.703 0.605 0.742 0.676 0.587 0.879 0.733
Fungi 0.909 0.839 0.038 0.860 0.973 0.941 0.550 1.000 0.513
GestureMidAirD1 0.046 0.538 0.046 0.485 0.400 0.508 0.684 0.754 0.676
GestureMidAirD2 0.046 0.438 0.046 0.338 0.431 0.454 0.739 0.684 0.754
GestureMidAirD3 0.046 0.169 0.046 0.346 0.300 0.292 0.576 0.739 0.684
GesturePebbleZ1 0.174 0.616 0.174 0.174 0.581 0.750 0.808 0.907 0.360
GesturePebbleZ2 0.152 0.563 0.152 0.203 0.563 0.722 0.341 0.808 0.907
GunPoint 0.880 0.907 0.513 0.960 0.913 0.960 0.519 0.606 0.618
GunPointAgeSpan 0.915 0.918 0.690 0.956 0.953 0.984 0.760 0.519 0.606
GunPointMaleVersusFemale 0.997 0.997 0.867 0.997 0.991 1.000 0.539 0.760 0.519
GunPointOldVersusYoung 0.841 0.838 0.514 0.997 0.984 1.000 0.766 0.539 0.760
Ham 0.562 0.467 0.486 0.543 0.533 0.600 0.360 0.575 0.789
Herring 0.547 0.531 0.406 0.531 0.594 0.531 0.455 0.046 0.797
InsectEPGRegularTrain 0.867 0.871 0.703 0.530 0.743 1.000 0.962 0.610 0.046
AllGestureWiimoteY 0.154 0.558 0.1 Nan Nan Nan 0.493 0.661 0.833
AllGestureWiimoteZ 0.094 0.288 0.11 Nan Nan Nan 0.493 0.661 0.852
InsectEPGSmallTrain 0.719 0.735 0.691 0.546 0.679 1.000 0.046 0.962 0.610
InsectWingbeatSound 0.431 0.355 0.091 0.523 0.552 0.567 0.785 0.712 0.550
ItalyPowerDemand 0.946 0.950 0.532 0.954 0.881 0.965 0.899 0.764 0.907
LargeKitchenAppliances 0.837 0.795 0.355 0.480 0.475 0.565 0.120 0.933 0.948
Lightning2 0.803 0.869 0.541 0.475 0.574 0.803 0.948 0.046 0.962
Lightning7 0.767 0.726 0.151 0.356 0.260 0.589 0.663 0.805 0.880
Mallat 0.914 0.934 0.244 0.857 0.589 0.914 0.100 0.975 0.109
Meat 0.933 0.933 0.333 0.733 0.733 0.933 0.907 0.360 0.575
MedicalImages 0.754 0.737 0.478 0.604 0.536 0.716 0.800 0.696 0.152
MiddlePhalanxOutlineAgeGroup 0.506 0.500 0.208 0.552 0.448 0.513 0.600 0.611 0.809

24

TimePoint

Dataset/Method DTW DTW-GI Euc. ShapeDTW SoftDTW

(dev) (hog) (raw) (γ = 0.1) (γ = 1) (γ = 10)

MiddlePhalanxOutlineCorrect 0.704 0.698 0.584 0.766 0.643 0.766 0.712 0.600 0.611
MiddlePhalanxTW 0.494 0.506 0.448 0.487 0.494 0.487 0.823 0.712 0.600
MixedShapesSmallTrain 0.779 0.780 0.223 0.619 0.808 0.836 0.849 0.100 0.975
MoteStrain 0.891 0.835 0.570 0.761 0.892 0.879 0.946 0.859 0.174
NonInvasiveFetalECGThorax1 0.772 0.790 0.024 0.550 0.833 0.532 0.835 0.101 0.913
NonInvasiveFetalECGThorax2 0.851 0.864 0.032 0.787 0.891 0.689 0.899 0.835 0.101
OSULeaf 0.636 0.591 0.198 0.417 0.512 0.566 0.575 0.789 0.395
OliveOil 0.833 0.833 0.133 0.833 0.667 0.867 0.046 0.925 0.455
PhalangesOutlinesCorrect 0.719 0.728 0.503 0.790 0.760 0.669 0.933 0.823 0.712
Phoneme 0.272 0.228 0.011 0.082 0.047 0.117 0.952 0.849 0.100
PickupGestureWiimoteZ 0.120 0.220 0.120 0.280 0.480 0.700 0.833 0.576 0.739
Plane 1.000 1.000 0.095 0.971 0.952 0.971 0.618 0.633 0.665
PowerCons 0.872 0.878 0.506 0.728 0.806 0.972 0.606 0.618 0.633
ProximalPhalanxOutlineAgeGroup 0.776 0.805 0.820 0.829 0.780 0.780 0.880 0.933 0.823
ProximalPhalanxOutlineCorrect 0.763 0.784 0.550 0.849 0.742 0.790 0.611 0.880 0.933
ProximalPhalanxTW 0.751 0.756 0.737 0.737 0.668 0.702 0.174 0.611 0.880
RefrigerationDevices 0.480 0.461 0.384 0.341 0.485 0.424 0.914 0.120 0.933
ScreenType 0.416 0.395 0.400 0.333 0.320 0.373 0.913 0.914 0.120
ShakeGestureWiimoteZ 0.120 0.400 0.120 0.500 0.680 0.700 0.650 0.852 0.493
ShapeletSim 0.756 0.650 0.506 0.494 0.650 0.522 0.784 0.769 0.829
ShapesAll 0.773 0.768 0.058 0.615 0.720 0.778 0.925 0.455 0.046
SmallKitchenAppliances 0.707 0.643 0.336 0.357 0.480 0.405 0.101 0.913 0.914
SmoothSubspace 0.893 0.827 0.740 0.680 0.820 0.667 0.907 0.120 0.952
SonyAIBORobotSurface1 0.712 0.725 0.696 0.704 0.622 0.729 0.650 0.955 0.830
SonyAIBORobotSurface2 0.843 0.831 0.643 0.837 0.728 0.885 0.955 0.830 0.995
Strawberry 0.943 0.941 0.643 0.959 0.935 0.941 0.550 0.761 0.550
SwedishLeaf 0.790 0.792 0.088 0.701 0.706 0.830 0.562 0.626 0.783
Symbols 0.953 0.950 0.370 0.822 0.907 0.918 0.395 0.650 0.852
SyntheticControl 0.987 0.867 0.203 0.440 0.380 0.907 0.830 0.995 0.953
ToeSegmentation1 0.798 0.772 0.649 0.645 0.610 0.737 0.913 0.808 0.516
ToeSegmentation2 0.846 0.838 0.838 0.423 0.723 0.862 0.551 0.663 0.805
Trace 0.990 1.000 0.190 0.880 0.570 0.900 0.808 0.516 0.819
TwoLeadECG 0.931 0.904 0.500 0.969 0.651 0.848 0.859 0.174 0.611
TwoPatterns 1.000 1.000 0.255 0.496 0.964 0.562 0.667 0.562 0.626
UMD 0.972 0.993 0.792 0.806 0.701 0.854 0.680 0.766 0.539
UWaveGestureLibraryAll 0.916 0.891 0.138 0.529 0.948 0.845 0.974 0.780 0.928
UWaveGestureLibraryX 0.731 0.671 0.162 0.625 0.749 0.574 0.679 0.587 0.879
UWaveGestureLibraryY 0.645 0.606 0.149 0.439 0.671 0.523 0.880 0.679 0.587
UWaveGestureLibraryZ 0.659 0.615 0.129 0.566 0.658 0.523 0.805 0.880 0.679
Wafer 0.984 0.980 0.834 0.996 0.996 0.999 0.750 0.680 0.766
Wine 0.593 0.574 0.500 0.519 0.611 0.593 0.761 0.550 1.000
WordSynonyms 0.676 0.649 0.045 0.522 0.491 0.639 0.516 0.819 0.785
Worms 0.519 0.584 0.416 0.377 0.494 0.455 0.101 0.899 0.835
WormsTwoClass 0.636 0.623 0.429 0.571 0.597 0.610 0.109 0.101 0.899
Yoga 0.839 0.836 0.455 0.780 0.797 0.852 0.789 0.395 0.650

25

