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ABSTRACT

Traditional supervised learning methods are heavily reliant on human-annotated
datasets. However, obtaining comprehensive human annotations proves challeng-
ing in numerous tasks, especially multi-label tasks. Therefore, we investigate the
understudied problem of partially annotated multi-label classification. This sce-
nario involves learning from a multi-label dataset where only a subset of positive
classes is annotated. , this task en-
counters challenges associated with a scarcity of positive class annotations and
severe label imbalance. To overcome these challenges, we propose Partially An-
notated reinforcement learning with a Policy Gradient algorithm (PAPG), a frame-
work combining the exploration capabilities of reinforcement learning with the
exploitation strengths of supervised learning. By introducing local and global re-
wards to address class imbalance issues and employing an iterative training strat-
egy equipped with data enhancement, our framework showcases its effectiveness
and superiority across diverse classification tasks.

1 INTRODUCTION

Traditional supervised learning methods heavily rely on human-annotated data sets, especially neu-
ral approaches that are data-hungry and susceptible to over-fitting when lacking training data. Nev-
ertheless, in some tasks, human annotations are difficult for the needs of specific domain knowledge
provided by professional experts. For instance, the task of document-level relation extraction (Yao
et al., 2019) seeks to identify meaningful relationships between entity pairs within a document.
However, human annotators find it hard to completely annotate all the relations due to the confusion
of understanding relation definitions and long-context semantics. This phenomenon of incomplete
annotation is likely to exist in many multi-label tasks that generally have dozens, hundreds, or even
thousands sizes of class sets (Cole et al., 2021; Tan et al., 2022; Ben-Baruch et al., 2022).

Based on the above observation, we focus on addressing a noteworthy yet under-studied problem,
partially annotated multi-label classification (PAMLC), which involves learning from a multi-
label dataset in which only a subset of positive classes is annotated, while all the remaining classes
are unknown.

Figure | A exhibits an example from partially annotated relation data, and Figure 1 B illustrates
that the entire dataset contains a limited number of positive annotations, with the majority of labels
remaining unannotated.
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Figure 1: Illustration of PAMLC task. A. Partially annotated data samples in document relation
extraction. B. Severe imbalanced distribution of positive (red scatters) and unannotated classes (blue
scatters). C. Performance comparison of different approaches for document-level relation extraction.
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Su et al.. 2021: Su et al., 2022; Su et al., 2021

There are some simple approaches, i.e., negative mode or re-weight strategies, that could be applied
to our problem settings. Negative mode treats all unknown classes as negatives, which learns a biased
distribution and causes high precision and low recall evaluation scores on the complete test set. Re-
weight strategies based on negative mode generally contain positive up-weight and negative under-
weight or sampling (Li et al., 2020). We attempt these approaches and observe that the performance
of the negative mode drops significantly when the ratio of annotated positive classes decreases. Re-
weight strategies partly improve the model performance but still perform unsatisfactorily when only
a very small set (10%) of positive class annotations is available (shown in Figure 1 C).

Previous works (Silver et al., 2016; Feng et al., 2018; Nooralahzadeh et al., 2019) have demon-
strated the powerful exploration ability of Reinforcement Learning (RL). Furthermore, RL has
been shown great success on distant or even zero annotations. To deal with the partially anno-
tated multi-label classification problem with imbalanced issues, we propose an RL-based frame-
work, namely Partially Annotated Policy Gradient (PAPG), that is devoted to estimating an unbiased
distribution only with the observation of annotated labels.

In addition, inspired by the actor-critic RL algorithm (Bah-
danau et al., 2016), we iteratively train the value network and the policy network, which achieves
dynamic reward estimation and a one-stage training procedure. To gradually enhance the assessment
accuracy of our value network, we carefully select predicted positive classes with high confidence
to enhance the training set of the value network.

Moreover, our RL framework is concise and flexible to guarantee its generalization and adaptation
to many tasks. We conduct sufficient experiments across various complicated domains: synthetic toy
setting (§4.1), multi-label image classification task (§4.2), and multi-relation document extraction
task (§4.3). All experimental results show the effectiveness of our framework and demonstrate a
significant improvement over previous work.

2 RELATED WORK

Problem Settings on Weak Annotation Learning Weakly supervised learning has long attracted
researchers’ interest because large-scale datasets with high-quality human annotations are time-
consuming and difficult. Weakly supervised learning includes different settings according to dif-
ferent assumptions Among them, noisy-label learning (Coscia & Neffke, 2017; Yang et al., 2018;
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Feng et al., 2018; Ren et al., 2020; Cai et al., 2022) typically utilize datasets containing label noise,
encompassing instances of both false positives and false negatives; partial-label learning (Zhang &
Yu, 2015; Xu et al., 2019; Wang et al., 2021; Wu et al., 2022; Tian et al., 2023) refers to the task
where each training instance is annotated with a set of candidate labels in which only one is the tar-
get; semi-supervised learning (Berthelot et al., 2019; Zheng et al., 2022; Yang et al., 2022) typically
leverages a small set of full-labeled data and an amount of unlabeled data; PU learning (Kiryo et al.,
2017; Suet al., 2021; Acharya et al., 2022) typically refers to learning a binary classifier (positive vs.
negative) using an incomplete set of positives and a set of unlabeled samples without any explicitly
labeled negative examples. Our problem setting belongs to the domain of weak-supervised learning
but distinguishes itself from all preceding problem settings.

Learning Methods for Partial Supervision Similar to our setting, some previous work addresses
partial supervision problems. There are some methods, such as partial conditional random field, that
deal with single-label multi-class tasks with partial supervision (Mayhew et al., 2019; Effland &
Collins, 2021; Li et al., 2021; Zhou et al., 2022). In the multi-label classification area, Cole et al.
(2021); Kim et al. (2022) assumes a specific setting where only one label for each image is available.
Ben-Baruch et al. (2022) designs a class-selective loss to tackle the partial observation of a small set
of positives and negatives. Durand et al. (2019); Durand et al. (2022

The methods of PU learning contain cost-sensitive ap-
proaches (Christoffel et al., 2016; Su et al., 2021) which assume the data distribution prior to achiev-
ing unbiased risk estimation; representation clustering approaches Acharya et al. (2022) leveraging
contrastive learning to generate pseudo-positive/negative labels; and sample-selection approaches
(Zhang & Zuo, 2009; Luo et al., 2021) which are devoted to finding likely negatives from the un-
labeled data according to the heuristic methods or sample confidence.

We note a
concurrent work (Yuan et al., 2023) extending positive-unlabeled learning into a multi-label classi-
fication task. Nevertheless, their research has primarily concentrated on method development within
the domain of image classification. In contrast, our framework exhibits broader applicability, ex-
tending its utility to various tasks.

Reinforcement Learning under Weak Supervision There are many previous works leveraging
Reinforcement Learning (RL) to solve tasks only with weak supervision (Feng et al., 2018; Zeng
etal., 2018; Luo et al., 2021; Chen et al., 2023). In the NLP field, to precisely leverage distant data,
Qin et al. (2018); Feng et al. (2018) train an agent as a noisy-sentence filter, taking performance
variation on development or probabilities of selected samples as a reward and adopting policy gra-
dient to update. Nooralahzadeh et al. (2019) expand their methods to NER task. Recent work of
Chen et al. (2023) also conducts RL to remove the noisy sentence so as to improve the fault diag-
nosis system. Notably, RL learning on distantly supervised learning aims to filter false positives,
whereas our goal is to identify false negatives. A closer related work to us is Luo et al. (2021), in
which an RL method is designed to solve the PU learning problem. But unlike us, their agent is a
negative sample selector, aiming to find negatives with high confidence and then couple them with
partial positives to train a classifier. Besides, they suppose a fully annotated validation dataset and a
balanced positive-negative distribution prior.

3 REINFORCEMENT LEARNING WITH PARTIAL SUPERVISION

We propose a new RL framework to solve the partially annotated multi-label classification (PAMLC)
task. We formulate the multi-label prediction as the action execution in the Markov Decision Process
(MDP) (Puterman, 1990). We design both local and global rewards for actions to guide the action
decision process. The policy-based RL method is adopted to train our policy network. We introduce
the details of our RL framework in the following subsections.

3.1 PROBLEM SETTING

We first mathematically formulate the PAMLC task. Given a multi-label dataset X = {x;}, each
x; € X is labeled with a partially annotated multi-hot vector y; = [y},-- -, ylc|], where
y$ € {0, 1} denotes whether class ¢ € C is TRUE for instance x; and
. In terms of partial annotation, we assume that {c;yf = 1} is a subset of
. Typically, in the multi-label setting,
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Figure 2: Tllustration of our RL framework. €D represents union operation. We iteratively update the
policy network and value network. The augmented training data are curated for the value network.

the size of the label set is dozens or hundreds; thus |{c; y§ = 1}| << [{¢;y§ = 0}| < |C|. In some
complicated tasks, such as Relation Extraction, we further define a special label <None> to x; if
yvi = [y§ = 0] lccz‘l It should be mentioned that we do not have any fully annotated data, both the

training set and validation set being partially annotated.

As aforementioned, negative mode approach is susceptible to training models that conform to the
imbalanced data distribution, resulting in high precision but low recall on the test set. Based on
the negative mode, we introduce a reinforcement learning (RL) framework designed to mitigate
distribution bias and encourage the multi-label classifier to predict more potential positive classes.

3.2 MODELING

Typically, basic RL is modeled as an MDP (S, A, 7, T, R) which contains a set of environment and
agent states S, a set of actions A of the agent, the transition probabilities 7 from a state to another
state under action a, and the reward R. The goal of an RL agent is to learn a policy 7 that maximizes
the expected cumulative reward. In our problem setting, we do not take state transitions into account
because our action execution does not change the agent and environment. The policy 7y of our RL
framework is a multi-label classifier constructed by a neural network with parameter 6. We following
define the constituents in our RL framework in detail.

States A state s includes the potential information of an instance to be labeled. In our setting,
this information consists of instance features, which are essentially continuous real-valued vectors
derived from a neural network.

Actions Due to the multi-label setting, our agent is required to determine the label of each class ¢
for one instance. There are two actions for our agent: setting the current class as TRUE (y; = 1) or

(y; = 0). Consequently, it is necessary to execute a sequence of (size of class set) actions
to completely label an instance.

Policy Our policy network outputs the probability 7y (y$|x;) = P(a = yf|s = x;) for each
action condition on the current state. we adopt the model structure commonly utilized in previous
supervised studies as the architecture for our policy network.

Rewards Recall that our primary objective is to acquire a less biased label distribution compared
to the supervised negative mode training approach using the partially annotated training dataset.
We anticipate that our PAPG possesses the capacity for balanced consideration of both exploitation
and exploration. exploitation ensures that our agent avoids straying from local optima direction,
while exploration motivates our agent to adapt its policy, preventing overfitting to partial supervision
within the broader global context. Inspired by the actor-critic RL algorithm (Bahdanau et al., 2016),
we design our rewards function containing two parts: a local reward from a trainable value network,
which provides immediate value estimation of each action and a global reward regarding the overall
performance of the whole actions sequence for each instance.

Specifically, the local reward calculates the reward of each action (for each class) of each instance
according to the value network confidence to an action:

rE(Varxi, o) = R (M
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where p{;, (x;) is the probability of class c being TRUE for instance x;, calculated by a value network
Vi, and C(—1,-, 1) is a clamping function: a) C(—1,z,1) = —1ifx < —1;b) C(—1,2,1) = 1if
x > 1; ¢) otherwise, C(—1,x, 1) = 2. We sum out the local rewards of all classes as part of the final
rewards of an instance.

Intuitively, the local rewards offer a preliminary yet instructive signal to guide the learning process in
our PAPG framework. This signal inherits the exploitation aspect from the supervised loss training
(as the value network is trained through supervised learning). Its purpose is to prevent the PAPG
from engaging in excessively invalid exploratory behavior within the large action space, thereby
enhancing the overall learning efficiency. Nevertheless, relying solely on these local rewards may
potentially lead the PAPG system to converge to a biased “negative mode” solution. To mitigate this
risk, we introduce global rewards to stimulate more comprehensive exploration during the learning
process.

As for the global reward, we employ a straightforward yet highly effective scoring function, which
is computed based on the recall metric. In detail, for the whole classes prediction y; of x; with the
observed ground truth y;, the recall score is:

recall(yn,gy) — W0E=LAGE=1, v € yi,f €93} .
{yf =1, yf € yi}l

The key insight here revolves around the “recall” metric, which serves as an exactly accurate evalua-

tion measure (compared to “precision” and “F1”) because a substantial portion of positive instances

remains unlabeled within the context of partially annotated datasets. Furthermore, to enhance recall

scores, the policy network is encouraged to predict a greater number of classes as TRUE.

The complete reward function for a sampled action sequence of an instance is:

1
R(xi, 9. Va¥1) = 15 > ri(Va,xi,¢) + w x recall(yi, §:), 3)
ceC
where w is a weight controlling the scale balance between local reward and global reward.

3.3 PREDICTION

3.4 LEARNING

We iteratively train our value network and policy network in an end-to-end fashion. Since the value
network plays a critical role in guiding policy network learning, we employ data enhancement tech-
niques during the training of the value network to enhance the precision of value estimations. It is
important to emphasize that we intentionally exclude the enhanced data from participation in the
calculation of the recall reward. This decision is motivated by the desire to maintain the precision
of the global reward and prevent potential noise introduced by the enhanced data. Additionally, it is
noteworthy that the enhanced data could contribute to the benefit of the policy network through the
local reward signal provided by the value network.

It is widely acknowledged that the training process in RL can experience slow convergence when
confronted with a vast exploration space. Inspired by previous RL-related works (Silver et al., 2016;
Qin et al., 2018), we initiate our process by conducting pre-training for both our policy and value
networks before proceeding with the RL phase. Typically, pre-training is executed through a super-
vised method. In our settings, a range of trivial solutions for PAMLC can serve as suitable candidates
for pre-training. We simply utilize the negative mode for pre-training in most cases. However, as pre-
viously mentioned, the negative mode has a tendency to acquire a biased label distribution due to
the presence of severe label imbalance. Thus, we implement an early-stopping strategy during the
pre-training phase to prevent convergence. We following introduce the detailed learning strategies
and objectives.

Objective for Value Model Generally, a well-designed supervised objective urges models to learn
expected outputs by learning from annotated data. This process typically refers to the exploitation,
where the supervised model fits the distribution of label annotations. We denote the supervised
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objective by a general formulation:

Lsup(0) = > p(xi)D(yi, ¥i), 4
x;EX
where D is a task-specific distance metric measuring the distance between annotation y; and predic-
tion y;. Recall that we treat all the unannotated classes as negatives in the partially annotated setting
in order to perform supervised learning.

Objective for Policy Model As stated in previous work (Qin et al., 2018), policy-based RL is more
effective than value-based RL in classification tasks because the stochastic policies of the policy
network are capable of preventing the agent from getting stuck in an intermediate state. We leverage
policy-based optimization for RL training. The objective is to maximize the expected reward:

Tra(0) =Eo[RO) ~ 3 pxi) S molyix)Rix), )
x;Ebatch yi~mo (Yilxi)
The policy network 7y can be optimized w.r.t. the policy gradient REINFORCE algorithm (Williams,
1992), where the gradient is computed by

Vodra(0) = D pxi) Y. Veln(me(3]x:))R(F, %), 6)
x; Ebatch y~mo(Yxi)

where p(x;) is a prior distribution of input data. Specific to uniform distribution, p(x) = Frm—

Overall Training Procedure The overall training process is demonstrated in Algorithm 1,

. It needs to be clarified that our computation of local rewards for actions is based
on the annotated positive classes and a randomly selected subset of unknown classes rather than
considering the entire sequence of actions of an instance, which is intended to emphasize the impact
of positive classes within the computation of local rewards. We empirically prove the effectiveness
of this strategy. Furthermore, we fix the value network once it converges, a strategy employed to
enhance training efficiency.

Algorithm 1: Partially Annotated Policy Gradient Algorithm

Input: Observed data X = {x;}, partial annotations ) = {y; }, pre-trained policy network mgo,
value network Vy, REINFORCE learning rate o, confidence threshold

Output: Optimal parameters 6* -

e+ 0,0 «+ 8°, set )

while e < fotal training epoches do
Training set for value network: (X, ))

Training set for policy network: (X', )
for Xy,ien € X in total batches do
Update A\ by minimizing Equation (4) with for value network

for step t < sample steps T do
For each x; € Xpaich, sample y; w.r.t. §; ~ mo(y:|x;)
Compute R(x;, ¥, Vx,y:) according to Equation (3)

update policy network using § < 0 + oV Tp¢ () according to Equation (6)

if eval(my) > eval(my~) then
| 0* <0
| e<e+1

return 0*

4 EXPERIMENTS

To verify the effectiveness of our proposed RL framework, we experiment with three widely-
concerned tasks. The first one follows the general setting in PU learning, but we consider an im-
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Table 1: F1 scores with varying ratios of positive annotations. We take images of the “Airplane”
category as positives in this table.

Method | 0% 20% 30% 40% 50% 60% 70% 80% 90%

nnPU 448 479 491 504 528 541 561 574 56.7
ImbalancednnPU | 486 53.0 59.1 628 652 646 649 67.7 692

Negative Mode 7.0 171 287 376 569 556 642 712 752
PAPG (Ours) 502 646 666 678 698 708 751 758 769

balanced situation. This experiment aims to prove the adaptation of our framework to binary clas-
sification problems. The second and the third focus on two partially annotated multi-label tasks,
document-level relation extraction and multi-label image classification, selected from classical Nat-
ural Language Processing (NLP) tasks and Computer Vision (CV) tasks, respectively.

4.1 EXP1: SYNTHETIC CLASSIFICATION

We conduct binary image classification experiments with the same setting following Su et al. (2021)
that concentrates on positive/negative imbalanced problems in PU learning. With our formulation, an
instance x; is an image, and the label of an instance in binary classification settings can be denoted
asy; = [y},y2] where y! is the label of positive and 3? is the label of negative. The prediction for
each image is conducted by setting y corresponding to the higher score as 1 and the other as 0.

Dataset The imbalanced datasets are constructed
from CIFAR10' by picking only one category as
positives and treating all other data as negatives. 80-

Hence, there are 50,000 training data and 10,000 test /0/
data as provided by the original CIFAR10. To make %% ¢

the training data into a partially annotated learning ~

. .. v 40-
problem, we randomly sample a ratio of positives as e
. o . egative Mode
annotated data and all the leaving training dataasan nPU
unknown set. —4— ImbalancednnPU

PAPG (Ours)

Conﬁgura_tion and Baselines . Of note, our frgme- 0'10% % 307 40% 50% 60% 0% 6% 90%
work can integrate any supervised model architec- Annotations Ratio

ture. For a fair comparison, we take the same archi-
tecture of Kiryo et al. (2017); Su et al. (2021) as our
value and policy networks, i.e., a 13-layer CNN with
ReLU and Adam as the optimizer. Kiryo et al. (2017)
designed an algorithm nnPU for PU learning with balanced binary classification data, while Su
et al. (2021) proposed ImbalancednnPU considering imbalanced setting. We take these two previ-
ous state-of-the-art models as our compared baselines. We re-run nnPU and ImbalancennPU with
their provided codes and configurations and report the results. We tune the hyper-parameter w in
Eq.3 between {10, 20, 50} with different experiment settings, and w is dynamically adjusted during
training®. The action sampling number 7" is 100, and the negative reward sampling is 20% for all
settings. The threshold  to choose enhancement labels is 0.8. We keep the values of other hyper-
parameters the same as Su et al. (2021). Following previous work, we evaluate all the methods with
F1 scores. Unless stated otherwise, the hyper-parameters specified in our framework remain the
same in the following experiments.

Figure 3: Experimental results of the setting
with “truck” category as positives.

Results We show F1 scores with varying ratios of annotated positives in Table 1 (Precision and
Recall metrics can be found in Appendix B.2). We perform supervised training with Binary Cross-
Entropy (BCE) loss in Negative Mode. Naturally, the supervised training performs worse by worse
as the ratios of annotated positives decrease. It is obvious that Qur PAPG achieves significant
improvements over Negative Mode, especially when the ratio of annotated data becomes lower.
Compared to previous work, our framework still demonstrates its superiority even though Imbal-
ancednnPU is specifically designed for PU learning with imbalanced settings. Note that according

'A multi-class dataset containing ten categories. ht tps://web.cs.toronto.edu/
*Intuitively, the w of recall reward should be dropped along with the training epochs because our value
network provides more and more accurate local rewards beneficial by data enhancement before convergence.
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Table 2: Experimental Results on COCO datasets with varying ratios of positive classes annotations.

10% 30% 50% 70% 90 %
Method F1 mAP | F1 mAP | F1 mAP | FI mAP | F1 mAP
ERP - 63.8 - 71.0 - 73.5 - 73.8 - 74.4
ROLE 58.2 724 76.6 79.5 81.1

P-ASL+Negative | 452 669 | 52.1 746 | 540 769 | 719 81.0 | 80.3 833
P-ASL+Counting | 5.1 464 | 264 634 | 537 76.1 | 71.6 80.1 | 604 80.4

Negative Mode 64 506 | 337 643 | 529 738 | 723 81.2 | 80.1 83.5
PAPG (Ours) 683 666 | 77.0 775 | 79.1 804 | 79.0 814 | 80.5 83.4

to the data construction, any category of data can be chosen as the positive set. To further make our
experiments convincing, we show the results of different data construction in Figure 3.

4.2 EXP2: MULTI-LABEL IMAGE CLASSIFICATION
We demonstrate the effectiveness of our method on the multi-label image classification task.

Dataset Following Ben-Baruch et al. (2022) (P-ASL), which deals with partial annotations con-
taining both positive and negative classes, we utilize MS-COCO dataset (Lin et al., 2014) containing
80 classes. We keep the original split with 82081 training samples, and 40137 test samples. We sim-
ulate the partial annotations following the operations in P-ASL. But different from them, we only
retain the positive classes in their partial annotations and take all the rest of the classes as UNKNOWN.

Configuration and Baselines For a fair comparison, our value and policy networks have the same
architecture as P-ASL. Due to the different partially annotated settings, we re-run P-ASL utilizing
their codebase but with our datasets. P-ASL+Negative means training a model taking all UNKNOWN
as negative classes to predict label distribution as prior. P-ASL+Counting means counting partially
labeled positive classes as distribution prior. Cole
et al. (2021) We tune the hyper-parameter w between
{5,7,12} in this task. Following previous work (Ridnik et al., 2021; Huynh & Elhamifar, 2020),
we use both F1 scores and mAP as evaluation metrics in this task. Detailed methodology of the
re-weight approach and the detailed formula of metric calculations can be found in Appendix A.

Results Experimental results with different annotation ratios are shown in Table 12. We can find
that without annotated negative classes to estimate a relatively accurate distribution prior, P-ASL
performs unsatisfactorily, especially in F1 scores when the annotation ratios decrease. Our PAPG
model outperforms all baselines in all settings.

Standard deviations of three runs and more experimental results can be
found in Appendix B.2.

4.3 EXP3: DOCUMENT-LEVEL RELATION EXTRACTION

Document-level Relation Extraction (DocRE) is a task that focuses on extracting fine-grained rela-
tions between entity pairs within a lengthy context. Align to our formulation, an input x; is an entity
pair, and y; represents relation types between the entity pair. An entity pair may have multiple rela-
tions or have no relation in DocRE. Thus, we conduct this experiment to study how our framework
performs when <None> label exists in a multi-label classification task.

Dataset We chose the Re-DocRED which is the most complete annotated dataset in DocRE. The
size of label set C is 97 (contains <None>) in Re-DocRED. To simulate partial annotation, we
randomly kept a ratio of annotated relations as the above experiments do.

Configuration and Baselines In this experiment, we adopt the state-of-the-art model of
DREEAM (Ma et al., 2023) as the architectures of our value and policy networks. Meanwhile,
we keep the same training method with an Adaptive Thresholding Loss (ATL) of DREEAM for our
value network. To the best of our knowledge, there are currently no existing methods specifically
designed for addressing partially annotated DocRE, so we only take Pos Weight and Neg Weight,
adopting the same methodologies as the image classification experiments, as our compared base-
lines. The threshold ~ of choosing enhancement labels is 0.95, and we find our framework performs
robust to -y varying from 0.5 to 0.95.
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Table 3: Results on Re-DocRED datasets with varying ratios of positive classes annotations

10% 30% 50% 70% 100%
Method P R F1 |P R F1 |P R F1 |P R F1 |P R F1
DREEAM \89.8 3.8 73 \92.0 20.8 33.8\91.8 42.1 57.7\89.6 58.8 70.6\86.0 72.4 78.6
Pos Weight | 84.9 39.8 54.1|85.5 59.3 70.0|85.0 66.8 74.8|83.4 72.5 77.6|829 77.3 80.0
Neg Weight | 86.7 30.7 45.4|85.0 59.3 69.8|84.1 68.2 753|828 72.8 77.5|79.8 78.7 79.3
PAPG (Ours) | 58.5 77.0 66.0|83.5 67.71 74.7|81.4 73.6 77.3|83.3 73.9 78.3|80.9 80.8 80.9
Table 4: Ablation study on our rewards. Table 5: Ablation study on our training strategy.
‘ Re-DocRED ‘ coco Re-DocRED coco
Method P R Fl P R F1 Method ‘ P R F1 ‘ P R Fl1
PAPG (Ours) 645 728 684 | 809 592 683 PAPG (Ours) 645 728 684|809 592 683
w/o. Local reward 122 933 21.6 | 615 655 634 w/o. Iterative training 89.9 346 499 | 764 338 469
w/o. Global reward | 84.5 459 59.5 | 89.7 6.9 12.8 w/o. Label enhancement | 83.6 472 603 | 51.7 548 532
w. Prec 859 440 581 | 962 298 455 w/o. Action sampling 88.2 365 S51.7 | 964 204 337
w. F1 86.0 433 576 | 892 468 614 Supervised self-training | 68.0 29.0 40.7 | 89.7 6.6 12.3

Results Experimental results in Re-DocRED are shown in Table 3.

Similar to Negative Mode,
DREEAM performs supervised training with all unknown classes as negatives in the partially
annotated settings, which is our base model in this task. Similar to the above experiments, Qur
PAPG demonstrates its advantage in all annotation ratios. It is worth noting that our framework
also achieves improved performance with the full annotated dataset because the full annotations of
Re-DocRED still miss some actual relations as aforementioned in the introduction. We also show
precision and recall evaluation metrics in this task. It can be seen that our framework achieves con-
sistent improvement in recall scores, suggesting its ability to deal with imbalanced problems and
predict more positive labels. We provide more detailed experimental results in Appendix B.1.

4.4 ANALYSIS
We conduct ablation studies to analyze our PAPG framework both on modeling and training strategy.

Rewards Design: To show the effectiveness of combining exploitation and exploration and the
benefit of local and global rewards, we train our framework in the 10% annotations setting with-
out local rewards and global rewards, respectively. Additionally, we replace the recall scores with
precision w. Prec or F1 scores w. F1 as our global rewards to show the effects of different global
reward designs. Experimental results are shown in Tabel 4. It can be observed that it is hard for an
RL framework to achieve comparable performance without local rewards to guide exploitation. The
reason is that the action space of multi-label classification is too large to find the global optimal di-
rections. Without our global reward, the recall evaluation score drops a lot (72.78 vs. 45.94), which
demonstrates the big advantage of the global reward in alleviating imbalance distribution. Moreover,
both the two variants of global reward damage the performance, revealing the advance of taking the
exactly accurate evaluation as rewards in the partially annotated setting.

Training Strategy: To verify the effectiveness of our training procedure, we attempt different
training strategies shown in Tabel 5. w/o. Iterative training means that we fix the value network
after pretraining and only train the policy network in the RL training procedure. w/o. Data enhance-
ment means that we still iteratively train our value and policy network but do not enhance pseudo
labels for the value network. w/o. Action sampling means that we leverage the whole action se-
quence to calculate local rewards without sampling operation illustrated in Section 3.4. Supervised
self-training means that we conduct self-training of the value network. It is obvious that our training
method makes remarkable achievements. More analysis experiments are in Appendix B.1.

5 CONCLUSION

In this work, we propose an RL framework to deal with partially annotated multi-label classification
tasks. We design local rewards assessed by a value network and global rewards assessed by recall
functions to guide the learning of our policy network, achieving both exploitation and exploration.
With an iterative training procedure and a cautious data enhancement, our PAPG has demonstrated
its effectiveness and superiority on different tasks in different domains.
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REPRODUCIBILITY STATEMENT

The detailed descriptions of the three experiments covered in this article are described in the con-
figuration of the corresponding subsections in Section 4, and the implementation details of the Pos
Weight and Neg Weight methods are introduced in Appendix A.l. The Dataset module of each
subsection clearly describes the construction of the data set used in the experiment. For experiments
on hyperparameter selection, see Appendix B.1. All dataset we used are publicly accessible. Codes
that can reproduce our results are available at https://anonymous.4open.science/r/
iclr2024-64EB/.

REFERENCES

Anish Acharya, Sujay Sanghavi, Li Jing, Bhargav Bhushanam, Dhruv Choudhary, Michael Rabbat,
and Inderjit Dhillon. Positive unlabeled contrastive learning. arXiv preprint arXiv:2206.01206,
2022. 3

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016. 2, 4

Emanuel Ben-Baruch, Tal Ridnik, Itamar Friedman, Avi Ben-Cohen, Nadav Zamir, Asaf Noy, and
Lihi Zelnik-Manor. Multi-label classification with partial annotations using class-aware selective
loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4764-4772,2022. 1,3, 8

David Berthelot, Nicholas Carlini, lan Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural informa-
tion processing systems, 32,2019. 3

Homgmin Cai, Wenxiong Liao, Zhengliang Liu, Xiaoke Huang, Yiyang Zhang, Siqi Ding, Sheng Li,
Quanzheng Li, Tianming Liu, and Xiang Li. Coarse-to-fine knowledge graph domain adaptation
based on distantly-supervised iterative training. arXiv preprint arXiv:2211.02849, 2022. 3

Chong Chen, Tao Wang, Yu Zheng, Ying Liu, Haojia Xie, Jianfeng Deng, and Lianglun Cheng. Re-
inforcement learning-based distant supervision relation extraction for fault diagnosis knowledge
graph construction under industry 4.0. Advanced Engineering Informatics, 55:101900, 2023. 3

Marthinus Christoffel, Gang Niu, and Masashi Sugiyama. Class-prior estimation for learning from
positive and unlabeled data. In Asian Conference on Machine Learning, pp. 221-236. PMLR,
2016. 3

Elijah Cole, Oisin Mac Aodha, Titouan Lorieul, Pietro Perona, Dan Morris, and Nebojsa Jojic.
Multi-label learning from single positive labels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 933-942, 2021. 1, 3, 8

Michele Coscia and Frank MH Neffke. Network backboning with noisy data. In 2017 IEEE 33rd
international conference on data engineering (ICDE), pp. 425-436. IEEE, 2017. 2

Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label classi-
fication with partial labels. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 647-657, 2019. 3

Thomas Effland and Michael Collins. Partially supervised named entity recognition via the expected
entity ratio loss. Transactions of the Association for Computational Linguistics, 9:1320-1335,
2021. doi: 10.1162/tacl_.a_00429. URL https://aclanthology.org/2021.tacl-1.
78.3

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xiaoyan Zhu. Reinforcement learning for relation

classification from noisy data. In Proceedings of the aaai conference on artificial intelligence,
volume 32, 2018. 2, 3

10


https://anonymous.4open.science/r/iclr2024-64EB/
https://anonymous.4open.science/r/iclr2024-64EB/
https://aclanthology.org/2021.tacl-1.78
https://aclanthology.org/2021.tacl-1.78

Under review as a conference paper at ICLR 2024

Dat Huynh and Ehsan Elhamifar. Interactive multi-label cnn learning with partial labels. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9423-9432,
2020. 8

Kristen Jaskie and Andreas Spanias. Positive and unlabeled learning algorithms and applications: A
survey. In 2019 10th International Conference on Information, Intelligence, Systems and Appli-
cations (IISA), pp. 1-8. IEEE, 2019. 2

Youngwook Kim, Jae Myung Kim, Zeynep Akata, and Jungwoo Lee. Large loss matters in weakly
supervised multi-label classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14156-14165, 2022. 3

Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and Masashi Sugiyama. Positive-unlabeled
learning with non-negative risk estimator. Advances in neural information processing systems,
30, 2017. 3,7

Yangming Li, Shuming Shi, et al. Empirical analysis of unlabeled entity problem in named entity
recognition. In International Conference on Learning Representations, 2020. 2, 14

Yangming Li, lemao liu, and Shuming Shi. Empirical analysis of unlabeled entity problem in
named entity recognition. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=5jRVag89szk. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pp. 740-755. Springer, 2014. 8

Chuan Luo, Pu Zhao, Chen Chen, Bo Qiao, Chao Du, Hongyu Zhang, Wei Wu, Shaowei Cai, Bing
He, Saravanakumar Rajmohan, et al. Pulns: Positive-unlabeled learning with effective negative
sample selector. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
8784-8792, 2021. 3

Youmi Ma, An Wang, and Naoaki Okazaki. Dreeam: Guiding attention with evidence for improv-
ing document-level relation extraction. In Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 1963—1975, 2023. 8

Stephen Mayhew, Snigdha Chaturvedi, Chen-Tse Tsai, and Dan Roth. Named entity recognition
with partially annotated training data. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pp. 645-655, 2019. 3

Farhad Nooralahzadeh, Jan Tore Lgnning, and Lilja @vrelid. Reinforcement-based denoising of
distantly supervised ner with partial annotation. Association for Computational Linguistics, 2019.
2,3

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331-434, 1990. 3

Pengda Qin, Weiran Xu, and William Yang Wang. Robust distant supervision relation extraction via
deep reinforcement learning. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2137-2147, 2018. 3,5, 6

Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, and Maarten de Rijke. Thinking globally,
acting locally: Distantly supervised global-to-local knowledge selection for background based
conversation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
8697-8704, 2020. 3

Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy, [tamar Friedman, Matan Protter, and Lihi

Zelnik-Manor. Asymmetric loss for multi-label classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 82-91, 2021. 8

11


https://openreview.net/forum?id=5jRVa89sZk

Under review as a conference paper at ICLR 2024

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016. 2,
5

Guangxin Su, Weitong Chen, and Miao Xu. Positive-unlabeled learning from imbalanced data. In
IJCAL pp. 2995-3001, 2021. 2, 3,7

Qingyu Tan, Lu Xu, Lidong Bing, Hwee Tou Ng, and Sharifah Mahani Aljunied. Revisiting docred
— addressing the false negative problem in relation extraction. 2022. URL https://arxiv.
org/abs/2205.12696. 1

Yingjie Tian, Xiaotong Yu, and Saiji Fu. Partial label learning: Taxonomy, analysis and outlook.
Neural Networks, 2023. 3

Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. Pico:
Contrastive label disambiguation for partial label learning. In International Conference on Learn-
ing Representations, 2021. 3

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992. 6

Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Revisiting consistency regularization for
deep partial label learning. In International Conference on Machine Learning, pp. 24212-24225.
PMLR, 2022. 3

Ning Xu, Jiaqi Lv, and Xin Geng. Partial label learning via label enhancement. In Proceedings of
the AAAI Conference on artificial intelligence, volume 33, pp. 5557-5564, 2019. 3

Fan Yang, Kai Wu, Shuyi Zhang, Guannan Jiang, Yong Liu, Feng Zheng, Wei Zhang, Chengjie
Wang, and Long Zeng. Class-aware contrastive semi-supervised learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14421-14430, 2022. 3

Yaosheng Yang, Wenliang Chen, Zhenghua Li, Zhengqiu He, and Min Zhang. Distantly super-
vised ner with partial annotation learning and reinforcement learning. In Proceedings of the 27th
International Conference on Computational Linguistics, pp. 2159-2169, 2018. 2

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang,
Jie Zhou, and Maosong Sun. DocRED: A large-scale document-level relation extraction dataset.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
764777, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1074. URL https://aclanthology.org/P19-1074. 1

Zhixiang Yuan, Kaixin Zhang, and Tao Huang. Positive label is all you need for multi-label classi-
fication. arXiv preprint arXiv:2306.16016, 2023. 3

Xiangrong Zeng, Shizhu He, Kang Liu, and Jun Zhao. Large scaled relation extraction with rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018. 3

Bangzuo Zhang and Wanli Zuo. Reliable negative extracting based on knn for learning from positive
and unlabeled examples. J. Comput., 4(1):94-101, 2009. 3

Min-Ling Zhang and Fei Yu. Solving the partial label learning problem: An instance-based ap-
proach. In IJCAI pp. 4048-4054, 2015. 3

Xin Zhang, Rabab Abdelfattah, Yuqi Song, and Xiaofeng Wang. An effective approach for multi-
label classification with missing labels. In 2022 IEEE 24th Int Conf on High Performance Com-
puting & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart
City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPC-
C/DSS/SmartCity/DependSys), pp. 1713-1720. IEEE, 2022.

12


https://arxiv.org/abs/2205.12696
https://arxiv.org/abs/2205.12696
https://aclanthology.org/P19-1074

Under review as a conference paper at ICLR 2024

Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen Qian, and Chang Xu. Simmatch: Semi-

supervised learning with similarity matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14471-14481, 2022. 3

Kang Zhou, Yuepei Li, and Qi Li. Distantly supervised named entity recognition via confidence-
based multi-class positive and unlabeled learning. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7198-7211, Dublin,

Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
498. URL https://aclanthology.org/2022.acl-1long.498. 3

13


https://aclanthology.org/2022.acl-long.498

	Introduction
	Related Work
	Reinforcement Learning with Partial Supervision
	Problem Setting
	Modeling
	Prediction
	Learning

	Experiments
	Exp1: Synthetic Classification
	Exp2: Multi-Label Image Classification
	Exp3: Document-level Relation Extraction
	Analysis

	Conclusion
	More technology details
	Pos Weight and Neg Weight
	Evaluation Metrics

	More experiments
	Document-level Relation Extraction
	Multi-label Image Classification


