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Abstract

Air pollution remains a leading global
health risk, exacerbated by rapid indus-
trialization and urbanization, contribut-
ing significantly to morbidity and mor-
tality rates. In this paper, we introduce
AirCast, a novel multi-variable air pol-
lution forecasting model, by combining
weather and air quality variables. Air-
Cast employs a multi-task head archi-
tecture that simultaneously forecasts at-
mospheric conditions and pollutant con-
centrations, improving its understand-
ing of how weather patterns affect air
quality. Predicting extreme pollution
events is challenging due to their rare
occurrence in historic data, resulting in a
heavy-tailed distribution of pollution lev-
els. To address this, we propose a novel
Frequency-weighted Mean Absolute Er-
ror (fMAE) loss, adapted from the class-
balanced loss for regression tasks. In-
formed from domain knowledge, we in-
vestigate the selection of key variables
known to influence pollution levels. Ad-
ditionally, we align existing weather and
chemical datasets across spatial and tem-
poral dimensions. AirCast ’s integrated
approach, combining multi-task learning,
frequency weighted loss and domain in-
formed variable selection, enables more
accurate pollution forecasts.

1. Introduction

Rapid industrialization, economic growth,
and climate change have significantly wors-
ened air pollution (Nakhjiri and Kakroodi,
2024), raising serious concerns about environ-
mental quality and public health. Among
various pollutants, particulate matter such
as PM1, PM2.5, and PM10 (particles smaller
than 1, 2.5, and 10 micrometers, respectively)
have been directly associated with adverse
health effects. These tiny particles can pene-
trate the respiratory system, possibly leading
to cancer and various respiratory and car-
diovascular diseases. The World Health Or-
ganization (WHO) reports that around 99%
of the global population is exposed to air
that does not meet its 2019 quality guide-
lines. According to recent estimates (WHO,
2024), air pollution is responsible for approxi-
mately 6.7 million premature deaths annually.
This highlights the urgent need for improved
forecasting methods to accurately predict air
quality. These forecasts can advise policy de-
cisions and contribute to reducing emissions
strategies.

Air pollution forecasting for PM primarily
relies on two approaches: physics-based and
data-driven models. Physics-based models
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simulate pollutant dispersion and chemical
transformations using fundamental principles
of atmospheric chemistry and physics. These
models often use non-linear empirical meth-
ods (Cobourn, 2010; Lv et al., 2016) to rep-
resent complex environmental interactions.
Although they offer valuable insight into the
physical and chemical processes that govern
air quality, their accuracy is often constrained
by the dynamic complexity of atmospheric
systems. This makes it difficult to precisely
capture both long and short-term trends. In
contrast, data-driven approaches (Bi et al.,
2023; Nguyen et al., 2023a,b; Bodnar et al.,
2024) utilize machine learning methodologies
to model complex relationships among vari-
ous atmospheric variables, such as tempera-
ture, wind, and PM concentrations. These
models are trained to capture non-linear pat-
terns and dependencies implicitly under di-
verse atmospheric conditions. Moreover, data-
driven models adapt more readily to new
data and evolving environmental conditions
than physics-based models, identifying pat-
terns and relationships that physics-based
models cannot explicitly represent. Exist-
ing data-driven approaches overlook variables
that could potentially influence PM concen-
trations.

In this work, we enhance PM forecast-
ing methods by integrating weather and air
quality variables to improve accuracy. Our
proposed model, AirCast, is a Vision Trans-
former (ViT) (Dosovitskiy et al., 2021), de-
signed for air pollution forecasting by adapt-
ing a weather foundational model Nguyen
et al. (2023a). By utilizing large-scale pre-
trained models, AirCast learns generalizable
representations from diverse datasets, enhanc-
ing its performance in air quality prediction.
An important aspect of this adaptation is
our development of a combined dataset inte-
grating weather and air quality variables for
precise air pollution forecasting. We source
weather variables from WeatherBench (Rasp

et al., 2020) and air quality variables from
the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) EAC4 dataset (ECMWF, 2023).
This multi-variable approach allows AirCast
to capture the complex relationships between
weather conditions and pollutant levels. Sim-
ilar to Nguyen et al. (2023a), the model archi-
tecture incorporates variable tokenization and
variable aggregation modules to efficiently
handle a large number of variables and reduce
the sequence length. To further enhance its
capabilities, a multi-task head architecture en-
ables the model to predict both atmospheric
weather and air pollution variables simulta-
neously. Additionally, a Frequency-weighted
Mean Absolute Error (fMAE) loss function in-
spired by the class balanced loss function (Cui
et al., 2019) addresses the heavy-tailed distri-
butions of pollutants, improving the accuracy
of predictions for extreme cases. Furthermore,
learning from domain knowledge we also in-
vestigate the selection of key variables known
to affect PM concentrations.

Our study focuses on the Middle East and
North Africa (MENA) region, which consis-
tently experiences some of the highest levels
of PM concentrations globally, often exceed-
ing the recommended air quality standards
of the WHO (Heger et al., 2022). Forecast-
ing air pollution in the MENA region using
data-driven methods is extremely important
due to its distinct environmental challenges.
The challenges include frequent dust storms,
industrial emissions, reliance on fossil fuels,
rapid urbanization, and low rainfall, all of
which combine to significantly degrade air
quality. In this paper, we focus on accurate
and efficient PM forecasting in MENA region,
aiming to support mitigation efforts and re-
duce the harmful effects of air pollution. Our
main contributions are as follows:

1. Integrated Forecasting:: To capture
the interactions between weather and air
quality, we develop a multi-task head
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architecture that simultaneously predicts
atmospheric and pollution variables.

2. Frequency-weighted Loss Function:
To address the heavy-tailed distribu-
tions of pollutants like PM1, PM2.5,
and PM10, we introduce a Frequency-
weighted Mean Absolute Error (fMAE).

3. Regional Adaptation: Recognizing
the MENA region’s high PM concentra-
tions, we enhance the model to improve
the accuracy of forecasts for severe pol-
lution levels in the region.

4. Combined Dataset: To help the model
learn the relationships between atmo-
spheric conditions and pollutant levels,
we create a comprehensive dataset by
aligning existing weather and chemical
datasets across spatial and temporal di-
mensions.

2. Related Work

In recent years, the integration of machine
learning methods into various scientific do-
mains has gained significant attention, with
air pollution forecasting a notable example.
Traditionally, physics-based models like the
WRF-Chem (Ojha et al., 2020) and CMAQ
(Zhang et al., 2012) model have been em-
ployed to predict air pollution levels. These
models are grounded in the fundamental prin-
ciples of atmospheric chemistry and physics
to simulate complex interactions within the
atmosphere. However, the highly nonlinear
and complex nature of air pollution variables
poses substantial challenges for these physics-
based models. Modeling air pollution’s com-
plexity often leads to high uncertainties and
reduced prediction accuracy (Hao et al., 2020;
Li et al., 2019). Additionally, running these
models at high resolutions in complex envi-
ronments demands significant computational
resources, which can be challenging for real-
time forecasting.

In contrast, data-driven machine learning
models (Yu et al., 2022; Cai et al., 2023; Bod-
nar et al., 2024) have emerged as a more effec-
tive alternative for air pollution forecasting.
These models excel at capturing nonlinear re-
lationships and patterns within large datasets,
allowing them to handle the complexities of
air pollution variables more adeptly. Machine
learning approaches can provide more accu-
rate and efficient predictions without requir-
ing detailed physical simulations by learning
directly from the data. In Yu et al. (2022), a
deep ensemble-based approach is introduced
for estimating daily PM2.5 concentrations.
This framework leverages machine learning
base models, such as XGBoost, which are
used to train meta-models in the second stage,
with an optimization algorithm applied in
the third stage. In Cai et al. (2023), authors
proposed a framework to enhance the predic-
tion of hourly PM2.5 concentrations. Their
method involves breaking down complex data
into simpler components, each representing
different frequency levels. These components
are then modeled using a combination of au-
toregressive and CNN-based methods to cap-
ture patterns in data, to improve the accuracy
of the predictions.

Recent advancements in neural network ar-
chitectures have significantly improved the in-
tegration of air quality variables with weather
variables in forecasting models. For instance,
the Aurora model (Bodnar et al., 2024) pri-
marily trains on weather data and then fore-
casts air pollution levels as a downstream task.
Similarly, ClimaX (Nguyen et al., 2023a) is
an open-source weather model that leverages
the vision transformer architecture (Dosovit-
skiy et al., 2021). Trained on large-scale
datasets, it serves as a foundational model
by employing a pretext task focused on pre-
dicting future time steps randomly sampled
within a specified range. In its downstream
applications, ClimaX handles a variety of
tasks across different spatial and temporal
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Table 1: A list of all the weather and air quality variables present in our dataset. Furthermore,
for variables that contain data at different pressure levels, we collect 7 of them.

Variable (short name) Description Pressure Levels

W
ea
th
er

V
ar
ia
b
le
s

geopotential (z) Varies with the height of a pressure level 7 levels
temperature (t) Temperature 7 levels
specific humidity (q) Mixing ratio of water vapor 7 levels
relative humidity (r) Humidity relative to saturation 7 levels
u component of wind (u) Wind in longitude direction 7 levels
v component of wind (v) Wind in latitude direction 7 levels
2m temperature (t2m) Temperature at 2m height above surface Single level
10m u component of wind (u10) Wind in longitude direction at 10m height Single level
10m v component of wind (v10) Wind in latitude direction at 10m height Single level

A
ir

Q
u
al
it
y
V
a
ri
a
b
le
s

carbon monoxide (co) Carbon monoxide concentrations 7 levels
ozone (go3) Ozone concentrations 7 levels
Nitrogen monoxide (no) Nitrogen monoxide concentrations 7 levels
Nitrogen dioxide (no2) Nitrogen dioxide concentrations 7 levels
Sulphur dioxide (so2) Sulphur dioxide concentrations 7 levels
Particulate matter d <1 µm (pm1) Particulate matter with diameter less than 1 µm Single level
Particulate matter d <10 µm (pm10) Particulate matter with diameter less than 10 µm Single level
Particulate matter d <2.5 µm (pm2.5) Particulate matter with diameter less than 2.5 µm Single level
Total column carbon monoxide (tcco) Total amount overall levels Single level
Total column nitrogen monoxide (tc no) Total amount overall levels Single level
Total column nitrogen dioxide (tcno2) Total amount overall levels Single level
Total column ozone (gtco3) Total amount overall levels Single level

scales, including regional weather forecasting.
Due to its adaptable and efficient design, we
have selected ClimaX to demonstrate our pro-
posed approach. A recent study (Munir et al.,
2024), has explored enhancing ClimaX for
MENA weather forecasting using parameter-
efficient fine-tuning like LoRA. This under-
scores the potential of adapting foundational
models to meet the challenges of specific re-
gions. However, it’s important to note that
ClimaX currently operates at a lower spatial
resolution compared to models like Aurora
(Bodnar et al., 2024) and CAMS (ECMWF,
2023). In contrast to large-scale foundational
models, existing work on PM forecasting typ-
ically employs fewer variables, limiting itself
to smaller capacity models or statistical ap-
proaches (Cabello-Torres et al., 2022; Ma-
sood et al., 2023). A notable exception is
the work of Sarafian et al. (2023), which
uses a transformer-based model to forecast
PM10 concentrations using several weather
variables, demonstrating their importance in

the process. However, most studies in this
field, while valuable, often focus on predict-
ing a single PM concentration variable and
utilize only a subset of available predictors.
Our work aims to address these limitations
by adopting a more comprehensive, multi-
variable approach.

In AirCast, we combine air quality and
weather data to better capture complex en-
vironmental dynamics, addressing the limi-
tations of models that rely on one type of
data. This approach is important for regions
like the MENA, where diverse environmental
factors require models capable of handling
intricate interactions effectively.

3. Aligned Dataset

We aim to create an aligned dataset with
multiple weather and air quality variables
(see Table 1) to better capture the complex
factors influencing PM concentrations.
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Figure 1: This illustrates the architecture of the AirCast model, an extension of Nguyen
et al. (2023a). The model integrates weather data from the ERA5 dataset and air quality
data from the CAMS EAC4 dataset. The model is trained using regional data from the
MENA region. The input variables are tokenized and aggregated, with a Vision Transformer
(ViT) encoder, processing the combined weather and air quality inputs. A dual decoder
head is employed, with one predicting weather variables and the other forecasting air quality
variables. The predictions are compared with the ground truth at a certain lead time using
the Frequency-Weighted MAE loss function.

Weather Variables. The weather data is
sourced from the ERA5 archive (Rasp et al.,
2020), providing hourly data from 1979 to
2018. Due to its large size, the dataset has
been regridded to resolutions of 5.625o (32×
64 pixels), and 1.40525o (128 × 256 pixels).
Furthermore, to temporally align with the
chemical pollutant variables described next,
we only choose the years from 2003 to 2018.
For our experiments, we focus on the 5.625o

resolution to balance data granularity and
computational efficiency.

Air Quality Variables. The air quality
data is collected from the Copernicus Atmo-
sphere Monitor Service (CAMS) data archive.
We utilize the ECMWF Atmospheric Com-

position Reanalysis 4 (EAC4) data catalog,
which combines an atmospheric model with
real-world observations to create a compre-
hensive global dataset comprising various air
quality variables. The data originally comes
in a 0.75o resolution and three-hourly inter-
vals. For consistency with weather data (Rasp
et al., 2020), we regrid these to 5.625o reso-
lution. Furthermore, to align the air quality
variables temporally with the weather vari-
ables, we interpolate the data to be hourly
instead of three hours. Following WHO guide-
lines (WHO, 2021), we included additional
variables known to affect PM concentrations.
The full list of air quality variables is shown
in Table 1.
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Figure 2: Skewed distribution of PM2.5.
The y-axis corresponds to the frequency
clipped at 200 (the maximum frequency is
shown in each figure).

The combined dataset contains both sur-
face and pressure-level variables. For
pressure-level data, we selected seven pres-
sure levels: 50, 250, 500, 600, 700, 850, and
925 hecto-Pascals (hPa). These levels were
chosen to represent a broad range of atmo-
spheric dynamics, from near-surface to higher
altitudes. The unit hPa is typically used to
represent different vertical levels in the at-
mosphere, with a pressure of approximately
1000 hPa at sea level, decreasing as altitude
increases.
Distribution Skew. Many air quality

variables show heavy-tailed distributions, no-
tably for PM concentrations, as shown in Fig-
ure 2. This phenomenon indicates that while
high pollution levels, including PM1, PM2.5,
and PM10, are rare, they have a significant
impact when they occur. These elevated con-
centrations, though infrequent, are critical
indicators of severe air quality issues.

4. AirCast

In this section, we describe our approach Air-
Cast (Figure 1), for multi-variable air pollu-
tion forecasting. Inspired by ClimaX (Nguyen
et al., 2023a), we use a Vision Transformer
ViT (Dosovitskiy et al., 2021) as the back-
bone. The model was pre-trained using a vari-

ety of climate and weather datasets, each with
a varying number of variables Nguyen et al.
(2023a). Similar to ClimaX, the variable tok-
enization module was utilized to standardize
the input and a variable aggregation module
was employed to handle the large sequence
of input variables during training, thereby
reducing the sequence length and enhancing
computational efficiency.

Variable Tokenization is a process that
converts each input variable separately into
a sequence of patches. Specifically, each in-
put variable V of size H × W is tokenized
in a sequence of size H/p × W/p, where p
denotes the size of the patch. The input
patches are then passed through an embed-
ding layer, resulting in a sequence of dimen-
sions V ×H/p×W/p×D, where D denotes
the embedding dimension.

Variable Aggregation follows the vari-
able tokenization, using a cross-attention
mechanism to aggregate information from
multiple variables at the same spatial location.
This process effectively reduces the sequence
length to (H/p × W/p) while retaining es-
sential information from all input variables.
This aggregation not only optimizes computa-
tional efficiency but also improves the model’s
ability to understand the relations between
weather and air quality variables.

Since we aim to use weather and air qual-
ity variables, an additional prediction head
is added. Both prediction heads output the
same number of variables as the input. The
loss is calculated independently for each set
of variables: weather loss is computed for
the weather variables from the weather head,
and likewise for the air quality head. By de-
coupling the learning processes, the model
alleviates potential negative transfer between
tasks, which is usually a challenge in multi-
task learning frameworks. Experimental evi-
dence shows that this configuration yields the
best performance.
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4.1. Regional Setup

We target a specific region instead of forecast-
ing the entire globe. While our model can
be adapted globally, we focus on the MENA
region to evaluate its forecasting capabilities
due to the region’s high PM concentrations.
The MENA region consistently records some
of the highest PM levels worldwide (Li et al.,
2022; Nissenbaum et al., 2023), frequently
exceeding WHO guidelines. We expect that
by choosing such a region, we can focus our
model capability on forecasting the higher
PM concentrations.

4.2. Normalization

Prior to the model training, weather variables
are normalized, while air quality variables un-
dergo normalization followed by a scaled log
transformation (shown in equation 1). The
log transformation highlights smaller values
often overshadowed by larger ones, stabilizing
training and capturing the variability of low
air quality concentrations more effectively.
This log transformation is inverted during
validation and test time.

x =
log(max(x, 10−4))− log(10−4)

log(10−4)
(1)

4.3. Randomized Lead Time

While our experiments focus on forecasting
the variables, 24 hours from the input time
(lead time), we find that randomizing the lead
time during training results in improving the
model performance. We believe this acts as
an extra augmentation technique that may
serve as a regularization, by exposing the
model to various forecasting horizons. For
each training sample, the lead time is ran-
domly chosen from 6, 12, and 24 hours in-
tervals. For validation and testing, however,
only a 24-hour lead time is used to maintain
consistency.

4.4. Frequency-Weighted Mean
Absolute Error

Many air quality variables, including PM1,
PM2.5, and PM10, exhibit a heavy-tailed
distribution (as illustrated in Figure 2 for
PM2.5). To address this skewness, we pro-
pose a Frequency-weighted Mean Absolute
Error (fMAE) function motivated by class-
balancing approaches (Cui et al., 2019). The
frequency of values for each air quality vari-
able in the training data is pre-computed
using optimal bin widths specified by the
Freedman-Diaconis Estimator (Freedman and
Diaconis, 1981). Based on this frequency, a
weight is assigned according to Equation 2,

Wfreq =

{
0 , freq = 0

1−β
1−βfreq , otherwise

(2)

where β is a hyperparameter that is used to
define the frequency weighting term. β → 0
signifies equal weighting while β → 1 signi-
fies inverse frequency weighting. Based on
experimentation, we found that setting β to
0.8 resulted in the best performance. The
core idea behind this weighting scheme is
to provide greater emphasis on rare events
and reduce the impact of frequently occurring
events.

Additionally, following the methodology
used in WeatherBench (Rasp et al., 2020), we
further employ the latitude weight along with
the frequency-weighted loss. The latitude
weight is defined in Equation 3 and is used
to account for the varying sizes of grid cells
due to the Earth’s spherical shape.

W i
lat =

cos(lat(i))
1
H

∑H
i‘=1 cos(lat(i

‘))
, (3)

Where lat(i) is the latitude of the ith row in
the grid, H corresponds to the height of the
image and Wlat is the latitude weight for each
i. The overall loss is described in Equation 4
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Lf = (Wlat ×MAEweather) +

(Wfreq ×Wlat ×MAEchemical)
(4)

This dual-weighting approach helps the
model sufficiently capture the weather and air
quality variables’ spatial and distributional
variations. By including latitude weights, the
model accounts for the variations in grid cell
areas at different latitudes, which is crucial for
global-scale modeling. The frequency weights,
on the other hand, address the imbalance in
the distribution of air quality concentrations,
enhancing the model’s ability to predict rare
events.

With these improvements, AirCast pro-
vides an adaptive framework for multi-
variable air pollution forecasting, leveraging
weather and air quality data to improve ac-
curacy in high-pollution regions.

5. Experimental Setup

5.1. Implementation details

For training AirCast on the new combined
dataset, the network is initialized with pre-
trained weights from Nguyen et al. (2023a).
We use a learning rate of 5 × 10−4, a batch
size of 32 and a seed of 42 when training
the model. The original shape of the input
is 32× 64 at 5.625o resolution and after ap-
plying the regional cropping, the input is
8× 14. The model is trained for 100 epochs
with early stopping criteria to prevent overfit-
ting. The training is conducted on four A100
GPUs, taking approximately four hours for
the model with all variables. The dataset was
temporally partitioned to create train, valida-
tion, and test splits. Specifically, data from
2003 to 2015 was allocated to the training set,
while 2016 data constituted the validation set.
The test set comprised data from 2017 and
2018.

5.2. Baselines

To evaluate AirCast’s performance, we com-
pare it against two established models: a
persistence baseline and the CAMS global
atmospheric composition forecast. Notably,
to the best of our knowledge, only one other
study (Aurora, Bodnar et al. (2024)) has at-
tempted to forecast all three PM variables
using a single model. However, their repos-
itory does not provide access to fine-tuned
models for air pollution forecasting, preclud-
ing a direct comparison.

Persistence Baseline: This baseline
model predicts that the forecast over the next
24 hours will remain unchanged from the cur-
rent input. While simple, it is a valuable
benchmark for evaluating the performance of
more complex forecasting models.

CAMS Global Forecasts: The CAMS
global atmospheric composition forecast is
a comprehensive data catalog that provides
twice-daily forecasts for various lead times.
The forecast is generated by using a physics
based atmospheric model that learns the com-
plex patterns of several concentrations.

We conduct our baseline evaluations ex-
clusively on data from 2017 and 2018. We
standardize the input time to 00:00 and use
a 24-hour lead time for all forecasts.

6. Results

In this section, we analyze the results of the
air pollution forecasting experiments, focus-
ing on PM1, PM2.5, and PM10 concentra-
tions. We systematically examine the effects
of various input variables, data transforma-
tions, and model configurations on forecast-
ing performance. We provide the RMSE and
Anomaly Correlation Coefficient (ACC) met-
rics (see Appendix) for most of our key abla-
tions and just use RMSE for the others.

Impact of fMAE Loss on PM Fore-
casting: Considering the heavy-tailed dis-
tribution of several air quality variables, an
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Table 2: AirCast Ablations: Various ablations that result in the best performing setting.
The reported metrics are Root Mean Squared Error (RMSE, lower is better) and Anomaly
Correlation Coefficient (ACC, higher is better). The RMSE unit for all PM concentration
variables is µgm−3. (3 PM correspond to PM2.5, PM10, PM1. The ablations in all tables
use a lead time of 24 hrs during testing. Air Quality (AQ) corresponds to the full list of
air quality variables as shown in Table 1, which includes the 3 PM variables. Surface (S.)
corresponds to the near-surface pressure level of multi-level variables (high pressure). ¬ is
used when we consider the low pressure levels of multi-level variable. For each table, the
initial setting (to compare against) is defined in gray . The best setting is defined in yellow .
Abbreviations: W = Weather, S.W. = Surface Weather, AQ = Air Quality, S.AQ = Surface
Air Quality.

Impact of the fMAE loss

Method
PM2.5 PM10 PM1

RMSE ACC RMSE ACC RMSE ACC

w/o fMAE 10.05 76.4 15.34 73.8 7.38 81.1

with fMAE 9.63 78.2 14.78 75.5 7.17 82.4

Adding additional variables

Variables
PM2.5 PM10 PM1

RMSE ACC RMSE ACC RMSE ACC

3 PM 9.63 78.2 14.78 75.5 7.17 82.4
W +
3 PM

9.94 77.1 14.72 76.3 7.69 79.7

AQ 9.80 78.1 14.96 75.8 7.41 81.7
W +
AQ

9.45 79.8 14.15 78.6 7.24 82.8

Considering near surface variables.

Variables
PM2.5 PM10 PM1

RMSE ACC RMSE ACC RMSE ACC

W +
AQ

9.45 79.8 14.15 78.6 7.24 82.8

S.W. +
AQ

9.24 80.5 13.81 79.3 7.14 82.7

W +
S.AQ

9.65 79.7 14.08 79.4 7.60 82.0

S.W. +
S.AQ

8.82 82.7 13.27 79.7 6.65 85.3

¬S.W. +
¬S.AQ

9.40 79.7 14.09 78.4 7.19 82.3

Baseline comparison

Method
PM2.5 PM10 PM1

RMSE ACC RMSE ACC RMSE ACC

Persistence 12.08 69.0 18.86 64.4 8.61 76.3
CAMS 20.33 60.0 31.07 55.0 16.21 65.0

S.W. +
S.AQ

8.82 82.7 13.27 79.7 6.65 85.3

experiment was conducted with and without
the proposed fMAE loss. Results from Table
?? indicate that using fMAE loss led to an
improvement of forecasting RMSE of 4.18%,
3.65% and 2.85% for PM2.5, PM10, PM1 re-
spectively. For this particular experiment, we
report numbers using only the three PM con-
centration variables as both input and output.
Furthermore, visualizations using the fMAE
loss (Figure 3) indicate a slightly better fore-
casting model for higher PM concentrations,

as denoted by the lighter blue areas in the
second plot.

Impact of Weather and Air Quality
Inputs on PM Forecasting: Table ??
presents results from an experiment analyz-
ing the impact of incorporating additional
weather and air quality variables. Notably,
air quality variables (in Table 1) include
these PM concentrations as well, and we de-
note them as AQ. Incorporating all variables
improved the forecasting RMSE by 1.87%
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(a) Without fMAE loss
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(b) With fMAE loss

Figure 3: Sample error plots for PM2.5 forecasting (prediction - ground truth). The unit is
kgm−3. The first and second plots are without and with the proposed fMAE loss function
respectively.

for PM2.5 and 4.26% for PM10 but slightly
degraded performance for PM1. While an
improvement in PM1 forecasting was an-
ticipated, the results for PM2.5 and PM10
align with existing literature, highlighting the
strong correlation between weather variables
and PM concentrations (Cabello-Torres et al.,
2022; Yang et al., 2017). Additionally, WHO
guidelines (WHO, 2021) underscore the links
between various air quality variables and PM
concentrations.

Effect of Selecting Near-Surface Vari-
ables: As shown by Li et al. (2017); Sarafian
et al. (2023), near-surface-level variables are
crucial for forecasting PM concentrations. To
verify this, we conduct experiments (Table ??)
using only near-surface-level variables from
multi-level data while directly including all
single-level variables. The resulting forecast-
ing RMSE is improved by 6.67%, 6.22%, and
8.15% for PM2.5, PM10, PM1 respectively,
when considering surface-level weather and
air quality variables. We conduct another ex-
periment where we consider the low-pressure
level variables (represented by ¬). The results
confirm that selecting variables strongly cor-
related with PM concentrations significantly
enhances forecasting accuracy.

Baselines Comparison with Our Best
Model: As mentioned earlier, no single
model currently forecasts all PM concentra-

tion variables, and a direct comparison with
Aurora is also not possible due to the unavail-
ability of its fine-tuned model for air quality
forecasting. Therefore, we use the persistence
baseline, a simple yet effective benchmark,
and CAMS global forecasts for comparison
(see Table ??).

Extreme Event Forecasting: To test
our models’ capability in forecasting extreme
events, we selected two dust storm events:
one in Kuwait on October 31, 2017, and an-
other in Saudi Arabia on October 29, 2017.
While there is room for improvement, our
model demonstrated the ability to detect
these events. This can be observed in Figure
4, where light blue or white colors in the af-
fected regions closely correspond to the actual
dust storm occurrences.

Randomized lead time: Following
Nguyen et al. (2023b), we investigate the
benefit of randomizing the lead time during
training and validation. Results from table 3
indicate that randomizing lead time improves
the PM forecasting performance. We believe
this acts as an extra augmentation technique
and allows the model to learn from various
forecasting horizons.

Varying lead times: To test the models
forecasting performance at various temporal
times, we run an additional experiment by
varying the lead time. Results from Table
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Table 3: Randomized lead time. An abla-
tion to test the performance with and without
the randomized lead time (6, 12, 24 hrs) dur-
ing training and validation. At test time, the
lead time is fixed to 24hrs.

Method
RMSE (µgm−3)

PM2.5 / PM10 / PM1

Without 9.04 / 13.61 / 6.80
With 8.82 / 13.27 / 6.65

Table 4: Varying lead time. Considering
only near surface weather and air quality vari-
ables.

Lead time
RMSE (µgm−3)

PM2.5 / PM10 / PM1

6 hrs 6.30 / 9.26 / 5.04
12 hrs 7.60 / 11.2 / 6.03
24 hrs 8.82 / 13.27 / 6.65
48 hrs 11.50 / 18.01 / 7.97

4 indicate that there is an inverse relation
between the lead time and forecasting RMSE.
This suggests that our models forecasting abil-
ity is more robust in near-term.

7. Conclusion

Previous efforts in air pollution forecasting
have primarily relied on statistical models,
traditional machine learning approaches, or
limited variable sets. In this work, we pro-
pose a multi-variable approach with a par-
ticular focus on forecasting PM concentra-
tions. We develop a spatially and temporally
aligned dataset that integrates chemical pol-
lutant and weather data. Building on this,
we introduce AirCast, a Vision Transformer
(ViT)-based forecasting model that leverages
these diverse variables. Our results demon-
strate that incorporating weather and air
quality variables significantly enhances PM
forecasting accuracy. Notably, near surface-

level variables emerge as the most impactful
in driving the synergy between weather and
air quality data. To address the heavy-tailed
distribution of chemical variables, we intro-
duce a Frequency-weighted Mean Absolute
Error (fMAE) loss function.

Impact Statement

Accurate air pollution forecasting is crucial
for protecting public health and informing
environmental policy decisions. From a pub-
lic health perspective, reliable forecasts en-
able individuals with respiratory conditions
or other sensitivities to take precautionary
measures, reducing their exposure to harm-
ful pollutants. This approach can potentially
lead to decreased healthcare costs and an
improved quality of life for vulnerable pop-
ulations. Furthermore, precise forecasting
empowers government and healthcare sys-
tems to better prepare for and respond to
air pollution events. By anticipating periods
of poor air quality, authorities can implement
timely interventions, such as issuing public
health advisories or temporarily restricting
high-emission activities. While the method
described in this paper is only for a relatively
short lead time, this sets the road for future
work that can improve forecasts for longer
periods of time.
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(a) Saudi Arabia – October 29, 2017 (CAMS
Forecasts)
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(b) Saudi Arabia – October 29, 2017 (Aircast)
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(c) Kuwait – October 31, 2017 (CAMS Fore-
casts)
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(d) Kuwait – October 31, 2017 (Aircast)

Figure 4: Extreme case visualizations of PM2.5 concentrations (Predictions - Ground Truth)
for CAMS global forecasts and Aircast.
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Appendix A. Geographic
Generalization:

While we only focus the training on the
MENA region, we test the geographic general-
ization ability of our model in East Asia and
North America. We find that Aircast slightly
over-estimates in some areas (denoted by the
red areas in Figure 5).

Table 5: Geographic Generalization: Testing
our best model in East Asia and North Amer-
ica with a lead time of 24hrs.

Region
RMSE (µgm−3)

PM2.5 PM10 PM1

East Asia 10.89 20.61 3.74
North America 9.26 18.22 1.89
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(a) East Asia
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(b) North America

Figure 5: Extreme case visualizations of
PM2.5 concentrations (Predictions - Ground
Truth) for Aircast and the CAMS global fore-
casts.

Appendix B. Varying Seeds

All the ablations in the paper were performed
when considering a seed of 42. We addition-
ally test our best setting by varying between
5 different seeds, and report the mean and
std. This is a common practice in machine
learning research to ensure reproducibility.

Table 6: Varying Seeds for our Best Model.
We report the mean, and the standard devia-
tion is reported in the brackets.

Variables
RMSE (µgm−3)

PM2.5 PM10 PM1

Best Setting 9.00 (0.11) 13.61 (0.20) 6.78 (0.11)

Appendix C. Distribution plots of
the PM
concentrations

We further show the distribution plots of
PM2.5, PM10 and PM1 in Figure 6. Similar
to PM2.5, the other 2 concentrations vari-
ables PM10 and PM1 also show a long tailed
distribution.

Appendix D. Metrics

The Root Mean Square Error (RMSE)
calculates latitude-weighted (L(i)) prediction
errors by averaging squared differences be-
tween predictions (X̃k,i,j) and ground truth
(Xk,i,j) across spatial (H ×W ) and temporal
(N) dimensions. The RMSE is calculated as
follows,

√√√√ 1

N

N∑
k=1

(
1

H ×W

H∑
i=1

W∑
j=1

L(i)
(
X̃k,i,j −Xk,i,j

)2)
(5)

The Anomaly Correlation Coefficient
(ACC) measures the latitude-weighted (L(i))
spatial correlation between predicted (X̃ ′)
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Figure 6: Skewed distribution of the PM
variables. The x-axis corresponds to the PM
variable, and the y-axis corresponds to the
frequency clipped at 200 (the maximum fre-
quency is shown in each figure). The clipping
is done to visualize the distribution among
the low-frequency bins. All the concentration
values are in the order of 10−5.

and true (X ′) anomalies (deviations from cli-
matology C). ACC focuses on pattern simi-
larity rather than absolute values. The ACC
is calculated as follows,

∑
k,i,j L(i)X̃

′
k,i,jX

′
k,i,j√(∑

k,i,j L(i)X̃
′2
k,i,j

)(∑
k,i,j L(i)X

′2
k,i,j

)
(6)

where anomalies are defined as,

X̃ ′ = X̃ − C and X ′ = X − C, (7)

and the climatology is

C =
1

N

N∑
k=1

Xk,i,j . (8)

Appendix E. Full Results

While the main section of the paper presents
metrics only for the three PM variables, we
also provide results for all variables using the
best-performing configuration in Table 7.
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Table 7: Model performance for all vari-
ables using the best setting i.e using Surface
Weather and Surface Air Quality variables
as input to the model. Metrics are RMSE
(lower is better) and ACC (higher is better).
Lead time is 24hrs.

Variable (unit) RMSE ACC

10m U wind (m/s) 2.044 82.7
10m V wind (m/s) 2.248 81.2
2m Temperature (°C) 1.023 92.4
CO (925 hPa) (µg/m3) 19.4 99.3
Geopotential (925 hPa) (m) 167.121 87.7
O3 (925 hPa) (µg/m3) 1.65 97.8
NO2 (925 hPa) (µg/m3) 1.75 96.9
NO (925 hPa) (µg/m3) 1.20 94.9
PM10 (µg/m3) 13.3 81.4
PM1 (µg/m3) 6.65 85.3
PM2.5 (µg/m3) 8.82 82.7
SO2 (925 hPa) (µg/m3) 3.41 93.6
Specific humidity (925 hPa) (g/kg) 1.00 79.2
TCNO (mg/m2) 0.028 100.0
TCCO (mg/m2) 94.2 71.5
TCNO2 (mg/m2) 0.384 85.5
TCSO2 (mg/m2) 0.486 68.0
Temperature (925 hPa) (°C) 1.299 89.5
U wind (925 hPa) (m/s) 2.788 82.4
V wind (925 hPa) (m/s) 2.955 80.3
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