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ABSTRACT

In reinforcement learning (RL), the graph Laplacian has proved to be a valuable
tool in the task-agnostic setting, with applications ranging from option discovery
to dynamics-aware metric learning. Conveniently, learning the Laplacian repre-
sentation has recently been framed as the optimization of a temporally-contrastive
objective to overcome its computational limitations in large or even continuous
state spaces (Wu et al., 2019). However, this approach relies on a uniform access
to the state space S, and overlooks the exploration problem that emerges during
the representation learning process. In this work, we reconcile such representa-
tion learning with exploration in a non-uniform prior setting, while recovering
the expressive potential afforded by a uniform prior. Our approach leverages the
learned representation to build a skill-based covering policy which in turn pro-
vides a better training distribution to extend and refine the representation. We also
propose to integrate temporal abstractions captured by the learned skills into the
representation, which encourages exploration and improves the representation’s
dynamics-awareness. We find that our method scales better to challenging en-
vironments, and that the learned skills can solve difficult continuous navigation
tasks with sparse rewards, where standard skill discovery methods are limited.

1 INTRODUCTION

Representation learning has been at the core of many recent machine learning advances (c.f. Bengio
et al., 2013). With the advent of deep reinforcement learning (Mnih et al., 2015), representation
learning has also become one of the main topics of interest in reinforcement learning (RL). For
example, in the goal-conditioned hierarchical setting (Vezhnevets et al., 2017; Nachum et al., 2019a),
one learns a representation that maps observations to an abstract space, the representation space, in
which the higher-level policy defines the desired behavior of the lower-level policy. Distance in the
representation space can then be used to reward and guide the lower-level policy towards specific
goal states. Moreover, environments with rich observations and complex dynamics (e.g., Bellemare
et al., 2020) have motivated recent works on learning representations as controllable or contingent
features (Bengio et al., 2017; Choi et al., 2019), on top of which one can potentially learn latent
models in the perspective of planning (Hafner et al., 2019b; Nasiriany et al., 2019; Schrittwieser
et al., 2020) and control (Watter et al., 2015; Banijamali et al., 2018; Hafner et al., 2019a).

In this work, we are interested in the reward-agnostic setting in which an RL agent first interacts
with the environment to build a representation, φ, of the state space, S, without relying on any
task-specific reward signal. This representation can later be used to solve a task posed in the envi-
ronment in the form of a reward function. In this setting, the environment dynamics are the only
informative interaction channel available to the agent. This has naturally motivated graph Laplacian-
based methods to address the task-agnostic phase; where the graph vertices correspond to the states
and its edges to the transitions probabilities. The Laplacian’s eigenvectors can been leveraged as a
holistic state representation, termed the Laplacian representation, which captures the environment’s
dynamics structure and geometry (Mahadevan, 2005; Mahadevan & Maggioni, 2007).

Wu et al. (2019) recently proposed an efficient approximation of the Laplacian representation (LAP-
REP) by framing the graph drawing objective as a temporally-contrastive loss (see Section 2.2).
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While this formulation works around potentially prohibitive eigendecompositions, which extends
the representation’s applicability to large and continuous state spaces, it assumes access to a uniform
sampling prior over S. In practice, this translates in the ability to reset the agent to a uniform random
starting state in the environment, which artificially alleviates the exploration problem. As we will
show in Section 4, the uniformity of that prior is crucial for the quality of the learned representation.
However, such sampling is not trivial in the absence of the uniform prior privilege, since the agent
has to learn to explore the state space to be able to access arbitrary states. In effect, one must handle
the exploration along the representation learning in order to preserve the representation’s quality.
In this work, we propose a representation learning framework that conciliate a similar temporally-
contrastive approach with exploration in the task-agnostic setting.

: Skill trajectory

: Random Walk
(a) Train 𝜑 on random 
walk trajectories

(b) Use the learned 
𝜑 to train skills to 
travel across the 
explored area  

(c) Use skills to 
discover new regions 
and update 𝜑

(d) Using the updated 𝜑, 
extend the skills to cover 
the newly discovered area

Figure 1: Our representation is trained to encode
the area that the agent has learned to cover. Skills
are continuously trained on the representation to
discover new areas where novel data is collected
to refine the representation, progressively extend-
ing its coverage. Similar incremental discovery is
at the core of several works (Ecoffet et al., 2021;
Pong et al., 2019; Machado, 2019).

In practice, the representation is trained on data
collected with a uniformly random policy, πµ
(random walk trajectories). Without a uni-
form access to the state space, the collected
data is concentrated around accessible starting
states. To achieve a better data collection, we
tie the representation learning problem to that
of learning a covering strategy. Briefly, our
method consists in using the available repre-
sentation to learn a skill-based (hierarchical)
covering policy that is in turn used to discover
yet unseen parts of the state space, provid-
ing novel data to refine and expand the rep-
resentation. Our approach, illustrated in Fig-
ure 1, is inspired by the cyclic option discov-
ery framework (Machado, 2019), which moti-
vated several related methods (Machado et al.,
2017; 2018; Jinnai et al., 2020). In addition,
we propose to integrate the temporal abstrac-
tions learned by the skills in the contrastive
representation learning objective to encourage
temporally-extended exploration and enforce
the representation’s dynamics-awareness, i.e.
how representative the φ-induced euclidean dis-
tance is of distances in the state space.

We empirically show our agent’s ability to pro-
gressively explore the state space and to consistently extend the representation covered domain in
a non-uniform prior setting. We show that our representation leads to better value predictions than
LAP-REP, and that it recovers the representation quality expected from a uniform prior. We also
evaluate our representation in shaping rewards for goal-achieving tasks, and we show it outper-
forms LAP-REP, confirming both its superior ability in capturing dynamics and in scaling to larger
environments. Finally, the skills learned in our framework also prove to be successful at difficult
continuous navigation tasks with sparse rewards, where other standard skill discovery methods are
limited.

2 PRELIMINARIES

2.1 TASK-AGNOSTIC REINFORCEMENT LEARNING

We describe a task-agnostic RL environment as a task-agnostic Markov decision process (MDP)
M = (S,A, P, γ, d0) where S is the state space, A the action space, P : S × A → ∆(S) the
transition dynamics defining the next state distribution given current state and action taken, γ ∈
[0, 1) the discount factor, and d0 the initial state distribution. A policy π : S → ∆(A) maps states
s ∈ S to distributions over actions.

Knowledge acquired from task-agnostic interactions with the environment (e.g., a representation or
a policy) can then be leveraged for specific tasks. A task is instantiated with a reward function,
R : S → R, which is combined with the task-agnostic MDP. The task objective is to find the
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optimal policy maximizing the expected discounted return, Eπ,d0
[∑

t γ
tR(st, at)

]
, starting from

state s0 ∼ d0 and acting according to at ∼ π(·|st).

2.2 THE LAPLACIAN REPRESENTATION

The Laplacian representation (LAP-REP), as proposed by Wu et al. (2019), can be learned with the
following contrastive objective:

LLap(φ;Dπµ) = E
(u,v)∼Dπµ

[
‖φ(u)− φ(v)‖22

]
+β E

u∼Dπµ
v∼Dπµ

[
(φ(u)>φ(v))2 − ‖φ(u)‖22 − ‖φ(v)‖22

]
, (1)

where β is a hyperparameter, πµ is the uniformly random policy, Dπµ a set of trajectories from
πµ (random walks). We use (u, v) ∼ Dπµ to denote the sampling of a random transition from
Dπµ , and similarly u ∼ Dπµ for a random state. Wu et al. (2019) showed the competitiveness of
the Laplacian representation when provided with a uniform prior over S during the collection of
Dπµ . Their objective (Eq. 1) is a temporally-contrastive loss: it is comprised of an attractive term
that forces temporally close states to have similar representations and a repulsive term that keeps
temporally far states’ representations far apart. Here, the repulsive term was specifically derived
from the orthonormality constraint of the Laplacian eigenvectors.

2.3 THE NON-UNIFORM PRIOR SETTING

In RL, representation learning is deeply coupled to the problem of exploration. Indeed, the induced
state distribution defines the representation’s training distribution. However, LAP-REP (Wu et al.,
2019) has been learned in the specific uniform prior setting that alleviates the exploration challenge.
In this setting, Dπµ , from Eq. 1, is a collection of random walks with uniformly random starting
states, which provides a uniform training distribution to the representation learning objective. In
the case of a non-uniform prior, the induced visitation distribution can be quite concentrated around
the start state distribution when solely relying on random walks, hence the need for an exploration
strategy for a better covering distribution.

To study the problem described above, we investigate the setting in which the environment has a
fixed predefined state s0 to which it resets with a probability pr every K steps; with K of the order
of diameter of S. With a uniformly random behavior policy, this setting is equivalent to a initial
state distribution that is concentrated around s0 and whose density decays exponentially away from
it. We will refer to this setting as the non-uniform prior (non-µ) setting, as opposed to the uniform
prior (µ) setting where the agent has access to the uniform state distribution.

3 TEMPORAL ABSTRACTIONS-AUGMENTED REPRESENTATION LEARNING

In this section, we present Temporal Abstractions-augmented Temporally-Contrastive learning
(TATC), a representation learning approach in which the representation works in tandem with a
skill-based covering policy for a better representation learning in the non-uniform prior setting. We
first propose an alternative objective to Eq. 1 that suits this setting, then describe the exploratory pol-
icy training. Finally, we introduce an augmentation of the proposed objective based on the learned
temporal abstractions to improve exploration and enforce the representation’s dynamics-awareness.

3.1 TEMPORALLY-CONTRASTIVE REPRESENTATION OBJECTIVE

As mentioned in Section 2.2, the repulsive term in LAP-REP’s objective (Eq. 1) derives from the
eigenvectors’ orthonormality constraint. However, because the environment is expected to be pro-
gressively covered in the non-uniform prior setting, the orthonormality constraint can make online
representation learning highly non-stationary.1 For this reason, we adopt the following objective
with a generic repulsive term that is more amenable to online learning:

Lcont(φ;Dπµ) := E
(u,v)∼Dπµ

[
‖φ(u)− φ(v)‖22

]
+ β E

u∼Dπµ
v∼Dπµ

[exp(−‖φ(u)− φ(v)‖2)] . (2)

1In general, even within a given matrix’s perturbation neighborhood, its eigenvectors can show a highly
nonlinear sensitivity (Trefethen & Bau, 1997).

3



Under review as a conference paper at ICLR 2022

3.2 REPRESENTATION-BASED COVERING POLICY

In the non-uniform prior setting, exploration is required to provide the representation with a better
training distribution. To this purpose, we adopt a hierarchical RL approach to leverage the ex-
ploratory efficiency of options (Sutton et al., 1999; Nachum et al., 2019b), or skills. The agent
acts according to a bi-level policy (πhi, πlow). The high-level policy πhi : S → ∆(Ω) defines,
at each state s, a distribution over a set Ω of directions (unit vectors) in the representation space
(Ω = {δ | δ ∈ Rd, ‖δ‖2=1}). Each direction corresponds to a fixed length skill encoded by the
low-level policy πlow : S × Ω → ∆(A). These skills are expected to travel in the representation
space along the directions instructed by πhi. In short, given a sampled direction πhi(·|s) ∼ δ ∈ Ω,
the low-level policy executes the directional skill πlow(·|s, δ) for a fixed number of steps c before a
new direction is sampled.

Now, we describe the intrinsic rewards used to train the policies πhi and πlow.

Low-level Policy. πlow is simply trained to follow directions defined by πhi in the representation
space. For a given δ ∈ Ω ⊂ Rd, the corresponding skill πlow(·|s, δ) is trained to maximize the
intrinsic reward function:

rδ(s, s′) := cos(δ, φ(s′)− φ(s)) =
δ>(φ(s′)− φ(s))

‖φ(s′)− φ(s)‖
(3)

where (s, s′) is an observed state transition, and φ the representation being learned. We use
the cosine similarity as a way to encourage learning diverse directional skills. Indeed, skills co-
specialization is avoided by rewarding the agent for the steps induced along the instructed direction
δ regardless of their magnitudes.

High-level Policy. The high-level policy is expected to guide the covering strategy. It should do
so by sampling the skills of the most promising directions in terms of exploration: affording new
discoveries while avoiding to spend more time than needed in previously explored areas. For this
purpose, we design a reward function defined over a sequence of L consecutive skills. Let {shi

k }Lk=1

be the sequence of their initial states and their respective sampled directions δk ∼ πhi(·|shi
k ). Since

φ is trained to capture the dynamics, the travelled distance in φ’s space is a good proxy of how far
the choices made by πhi eventually brought the agent in the environment. Therefore, for a given
high-level trajectory, τ hi = (shi

1 , s
hi
2 , ..., s

hi
L, s

hi
f ), with shi

f the final state reached by the last skill, the
high-level policy is trained to maximize the following quantities:

∀k ∈ {1, ..., L}, Rhi(shi
k , δk) := ‖φ(shi

1 )− φ(shi
f )‖2, (4)

where δk ∼ πhi(·|shi
k ) is the direction sampled at shi

k . From the policy optimization perspective, each
of these quantities plays the role of the return cumulated along the sampled high-level trajectory
and not just a single (high-level) step reward. This term looks at reaching shi

f as the result of a
sequential collaboration of L skills, rewarding them equally. It values how far this sequence of skills
has eventually brought the agent.

These policy training choices are closely related to how the representation is trained. Indeed, the
exploratory behavior emerges from the interaction between the policy and the representation while
training. In the following section, we describe how the representation benefits from the temporal
abstractions learned by the covering policy (πhi, πlow).

3.3 AUGMENTING REPRESENTATION LEARNING WITH TEMPORAL ABSTRACTIONS

A skill abstracts a temporally-extended and structured behavior in a single action. As a temporal
abstraction, it represents a factorized knowledge of the environment dynamics in the form of a
policy (the directional skill policy). Here, we propose to leverage these temporal abstractions in
the representation objective in the favor of better capturing the environment dynamics. In order
to preserve the temporal contrast of the base objective (Eq. 2), we augment it with the following
contracting term along the skills trajectories:

B(φ;Ds) := E
τδ∼Ds

τδ=(s0,...,sc)

[
c−1∑
k=0

‖φ(sk)− φ(sk+1)‖

]
, (5)
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where Ds is a set of collected skills trajectories. By minimizing this term, φ integrates temporally-
extended dynamics: areas connected by skills are brought closer in the representation space. This
term will be referred to as the boredom term due to its exploratory virtue, explained in the following.

How does boredom help exploration ? The interaction of the high-level policy reward function
(Eq. 4) and this boredom term (Eq. 5) induces a progressive exploration mechanism. In effect, πhi
samples skills that travel further more often, i.e. with larger Rhi. The more often a skill is sampled,
the less rewarding it becomes due the minimization of B(φ). This will increase the probability
of sampling the remaining under-sampled skills, hence encouraging the exploration of less visited
parts of the state space. In short, the interplay between the policy and the representation dynamically
fights what can be considered as accumulated boredom along over-sampled skills trajectories which
increases the agent curiosity and urge it to explore.

Finally, the proposed objective to train the representation φ consists in the objective in Eq. 2 aug-
mented with the boredom term (Eq. 5), and can be written as

LTATC(φ;Ds,Dπµ) := Lcont(φ;Dπµ) + β′B(φ;Ds) (6)

with β′ a hyperparameter controlling the strength of boredom term. A detailed description of TATC
training is available in the Appendix A (Algorithm 1).

4 EXPERIMENTS

In this section, we investigate the behavior of TATC in two types of environments: gridworld en-
vironments with discrete state and action spaces, and a continuous navigation environment (Mu-
JoCo, Todorov et al. (2012)) for continuous state and action spaces. Implementation details of all
the experiments in this section can be found in Appendix C.

4.1 GRIDWORLD

For gridworld environments, we evaluate our approach in three different domains: U-MAZE, T-
MAZE and 4-ROOMS. These environments, visualized in Figure 2, raise different explorations chal-
lenges. U-MAZE is the simplest but the most relevant environment to test the dynamics-awareness
of the representations2; T-MAZE raises the challenge of splitting the exploration focus at an intersec-
tion while maintaining exploration and coverage in both corridors; 4-ROOMS is similar to U-MAZE,
but requires learning more controlled skills to efficiently move from one room to another.

(a) U-Maze 30×30 (b) T-Maze 40×30 (c) 4-rooms 21×21

Figure 2: The gridworld domains with the fixed initial state s0 highlighted in red.

The states are one-hot encoded such that no positional information is provided to the agent. For our
method, we learn a 2D representation (d = 2), and define Ω as a set of 8 unit vectors equally spaced
on the unit sphere (see Appendix C).

4.1.1 PROGRESSIVE REPRESENTATION LEARNING

Figure 3 shows the progression of the representations throughout training. The agent progressively
explores the environment starting from s0, builds the representation by continuously integrating
newly discovered parts.

2The presence of the wall makes L2-distance in xy-coordinates deceptive. The L2-distance in a dynamics-
aware representation space should correct for that.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(a) (b) (c) (d) (e) (f) (g)

Figure 3: TATC representations learned throughout the training. Axes scales were equalized. Top
row (R1): U-MAZE. Middle row (R2): T-MAZE. Bottom row (R3): 4-ROOMS. The colors reflect
the distances in terms of the dynamics. They can be seen as quantities proportional to the length of
the shortest path from s0 (marked in red) to the represented state.

U-MAZE. The agent starts from the bottom left corner of the maze. Figure 3 shows how the rep-
resentation progressively expands until reaching the first corner (Fig.3-R1,a-e). During this phase,
the agent learns skills to travel further away from s0 along the corridor. At this stage, the rest of
the environment is still not explored. The remaining phase (Fig.3-R1,f-j) shows not only the com-
plete discovery of the corridor but also the flattening of the full domain representation: placing the
last corner further from the starting corner than the intermediate ones indicates the representation’s
success in capturing the maze dynamics.

T-MAZE. The agent starts from the bottom left corner of the maze. As in the U-Maze, it starts learn-
ing to travel along the corridor (Fig.3-R2,a-b) until reaching the intersection. There, the exploration
focus is shared between both possible paths whose representations are progressively disentangled
(Fig.3-R2,c-f). Eventually, the agent fully explores both corridors and finalizes its representation.
Note that, the discovery of one of the corridors did not hinder finishing the discovery of the other.
The boredom term proved to be important for such property (see Appendix B).

4-ROOMS. The agents starts in the first room. It progressively discovers and learns about other
rooms. Once the domain is fully explored, and similarly to U-MAZE, the representation straightens,
reflecting a holistic understanding of the environment dynamics.

Boredom Ablation Study. Appendix B provides an ablation study showing the importance of the
boredom term for the agent’s exploratory behavior and the representation’s dynamics-awareness.

4.1.2 EVALUATING THE LEARNED REPRESENTATION

We now compare our representation against LAP-REP (Wu et al., 2019) in the non-uniform prior
setting. First, to appreciate the sensitivity of LAP-REP to the uniformity of said prior, we trained
LAP-REP in two settings: (i) the uniform prior setting where the agent can be set to any arbitrary
state, as done by Wu et al. (2019), (ii) the non-uniform prior setting defined in Section 3. We show
that LAP-REP is quite sensitive to this change in distribution while TATC recovers the expressive
potential of LAP-REP learned with a uniform prior.

Prediction. To evaluate the learned representations, we first consider how well they linearly approx-
imate a given task’s optimal value function. To do so, we train an actor-critic agent (Mnih et al.,
2016) with a linear critic on top of each representation. In Figure 4, we note a significant loss in the
expressive power of LAP-REP when the access to the state space is not uniformly distributed any-
more. This figure also shows that TATC outperforms LAP-REP in the non-uniform prior setting, and

6



Under review as a conference paper at ICLR 2022

0 100 200 300 400 5000.0

2.5

5.0

7.5

10.0

12.5

15.0

||V
V

* |
| 2

U-Maze

0 50 100 150 200 250 300
epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0
T-Maze

TATC (ours) LAP-REP, non-  prior, d=2 LAP-REP, non-  prior, d=3 LAP-REP,  prior

0 100 200 300 400 500 600 7000.0

2.5

5.0

7.5

10.0

12.5

15.0
4rooms

Figure 4: Learned representation’s ability to approximate the value function. LAP-REP was learned
in the same non-uniform prior setting (non-µ) with d = 2 and d = 3 (no improvement was observed
for higher values). The dashed line gives the performance of LAP-REP in the uniform prior setting
(µ). TATC outperforms LAP-REP in non-µ setting, and succeeds in recovering its expressive power
when learned from the uniform prior. Performances were averaged over 5 different runs.

succeeds in recovering LAP-REP’s expressive power when it is learned with the unrealistic uniform
prior.

Control. We also compare the representations from the perspective of control, by training a deep
actor-critic agent on top of each representation to solve a goal-reaching task in the same domains as
above. The agent is only rewarded upon reaching the goal state (r = 1). Figure 5 shows that TATC
consistently outperforms LAP-REP, which confirms the competitive quality of our representation.
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Figure 5: Control performance (episode reward) in the fixed initial state setting (non-uniform prior).
Performances were averaged over 5 different runs.

4.2 CONTINUOUS CONTROL

The second set of experiments, which focuses on continuous state and action spaces, is conducted
on AntMaze which is essentially a MuJoCo counterpart of U-MAZE where a four-legged agent has
to learn to control its joints to maneuver along a U-shaped corridor.

To visualize our learned representation in this environment, Figure 6 depicts a grid of positional
states in the environment domain and their mapped representations. Similarly to U-MAZE, the
learned representation translates the environment dynamics by placing the end of the corridor (top
left) away from the initial state (represented in red) than the intermediate corners (top and bottom
right).

4.2.1 REWARD SHAPING WITH LEARNED REPRESENTATION

We first demonstrate how our learned representation is able to improve an RL agent’s performance
when the distances in the representation space are used for reward shaping, the same setting in which
Wu et al. (2019) evaluated LAP-REP. We define a goal-achieving task by setting a goal state g at the
end of the corridor (top left). The objective is to learn to navigate to a state s close enough to the goal
area (‖s − g‖2 ≤ ε). We define the reward function based on the distance in representation space
(TATC and LAP-REP). More specifically, we train a soft actor-critic (SAC) agent (Haarnoja et al.,
2018) to reach the goal with a dense reward defined as rdenset = −‖φ(st+1) − φ(g)‖2. Similarly
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Figure 6: TATC learned representation visu-
alized on a grid of positional states. Colors
reflect the distance in the representation space
from the initial state, highlighted in red. Axes
scales were equalized. We can visually appreci-
ate how the U-shaped continuous state domain
is mapped to a flatter manifold reflecting the
presence of the wall.
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Figure 7: Results of reward shaping using
learned representations: Performances were av-
eraged over 5 different runs and then exponen-
tially smoothed (0.9) for better visualization.

to Wu et al. (2019), we also compare against the half-half mix of the dense reward and the sparse
reward rmixt = 0.5 · rdenset + 0.5 · 1 [‖st+1 − g‖2 ≤ ε].
For this evaluation, we used a larger environment than those used by Wu et al. (2019), making it a
more challenging task. Unlike our representation, LAP-REP was learned with a uniform prior over
S as in Wu et al. (2019), but with d = 2 instead of d = 20. Figure 7 shows that our representation
is effective in reward shaping, with both mix and dense variants , and enjoys a comparable if not
superior dynamics-awareness to LAP-REP, even when TATC is learned from a non-uniform prior
and LAP-REP is learned from a uniform one. Note that LAP-REP with a non-uniform prior is unable
to guide the agent to success.

This result further confirms the conclusions drawn from the GridWorld experiments (Section 4.1.2)
and positions TATC as a competitive alternative to LAP-REP in this difficult setting.

4.2.2 THE LEARNED SKILLS
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Figure 8: Skills Evaluation: performance gath-
ered from 5 independent runs and then exponen-
tially smoothed (0.9) for better visualization.

We evaluate the exploratory potential of
TATC’s skills. Here, we compare the learned
skills against 2 task-agnostic skill discovery
methods, DIAYN (Eysenbach et al., 2019), and
DCO (Jinnai et al., 2020). DIAYN learns a
diverse set of skills by maximizing mutual in-
formation between skills and states. Similarly
to our skills, DCO training is also based on a
temporally-contrastive representation. In this
case, DCO requires a pretrained LAP-REP (that
approximates the Laplacian’s second eigenvec-
tor). We train the required representation, as
well as DCO, with the advantage of data col-
lected from a uniform prior over S. For fairness,
we train 8 skills for both methods (DCO and
DIAYN).

Once trained, the skills learned by each method
are fixed and used to train a discrete high-level
policy that can select across the available skills
to solve a goal-reaching task with a sparse reward function rt = 1 [‖st+1 − g‖2 ≤ ε]. The sparsity
of the reward naturally poses a challenge as no additional signal can guide the agent towards the
goal, unlike the evaluation setting of DCO and DIAYN by Jinnai et al. (2020). The results (Figure 8)
show that the skills learned by TATC quickly assist to complete the task while the skills learned with
DCO and DIAYN do not. DIAYN’s limited performance in difficult sparse-reward navigation tasks
was also confirmed by Kamienny et al. (2021). These results suggest that in order to succeed, DCO
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and DIYAN skills may require a richer signal like the distance-based dense reward used by Jinnai
et al. (2020) to evaluate both of them – and where they show similar performances.

5 RELATED WORK

The potential of graph Laplacian representations in capturing functional information about the en-
vironment has motivated their use in the task-agnostic RL setting (e.g., Mahadevan, 2005; Machado
et al., 2017; 2018). These are powerful tools that proved to scale to the continuous case (Wu et al.,
2019; Machado et al., 2018; Jinnai et al., 2020). While these recent works proved to learn useful
representations, they overlooked the challenging exploration problem that emerges when collecting
the representation training data. Our framework proposes an alternative approach that explicitly
couples the exploration challenge with the representation learning objective.

This work also relates to self-supervised learning (Bromley et al., 1994; Chopra et al., 2005), which
brought recent advances in representation learning (Bachman et al., 2019; He et al., 2020; Chen
et al., 2020; Grill et al., 2020; Caron et al., 2020). These techniques have naturally been adapted
to RL, especially contrastive methods. While some of these benefited from visually contrasting
observations (Laskin et al., 2020; Yarats et al., 2021), others leveraged temporal contrasts to learn
representations (Mazoure et al., 2020; Stooke et al., 2021; Li et al., 2021), which fall closer to our
work.

We designed our covering policy as a hierarchical agent. This has actually been the default setting
to model temporally-extended actions (Sutton et al., 1999). Our work shares the same motivation as
Vezhnevets et al. (2017) for training skills to follow latent directions. Among the large body of work
on skill discovery, the eigenoptions framework (Machado et al., 2017) and its extensions (Machado
et al., 2018; Jinnai et al., 2020) are probably the closest to our skill training scheme. Moreover,
Eigenoptions also fit in the directional skills definition as they are trained to travel along the di-
rections defined by the eigenvectors of the Laplacian (dimensionality of |S|, potentially large). To
contrast, we train directional skills defined by an arbitrarily diverse set of directions in the learned
representation space (small dimensionality) to progressively learn about the environment. The incre-
mental discovery paradigm has been previously adopted, either for exploration (Ecoffet et al., 2021),
incremental skill discovery (Jinnai et al., 2020; Pong et al., 2019), or even state abstraction (Misra
et al., 2020). Finally, we use learned skills to penalize boredom (Schmidhuber, 1991; Oudeyer et al.,
2007; Oudeyer & Kaplan, 2009) in the representation space and encourage exploration. The idea of
using skills to foster curiosity has also been investigated by Bougie & Ichise (2020).

6 CONCLUSION

The Laplacian representation as proposed by Wu et al. (2019) made the benefits of spectral meth-
ods affordable in large state spaces where function approximation is required. Unfortunately, this
representation’s quality is strongly tied to the uniformity of its training data distribution, as shown
is Section 4. This has motivated the method proposed in this work where we reconcile similar
temporally-contrastive representations with exploration demanding settings. Our approach lever-
ages the practical skills’ training that such representations allow, and uses the learned skills to better
cover the state space and hence learn a better representation. In addition, we propose to augment the
temporal contrast-based representation objective with temporal abstractions captured by the acquired
skills. This has two benefits: it enforces the representation’s dynamics-awareness, and contributes
to exploring the environment by inducing boredom-fighting curiosity in the covering policy. We
validate our method in tabular as well as continuous environments. Our representation learned in
a non-uniform prior setting shows a comparable representational power to the one acquired from
a uniform prior, and proves to scale well to challenging settings. Moreover, the skills that emerge
from our algorithm show competitive performance in hard continuous control tasks with sparse re-
wards where standard skill discovery methods fail. Thus, with these results, we hope to bring such
representations’ applicability one step closer to realistic contexts.
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A TEMPORAL ABSTRACTIONS-AUGMENTED TEMPORALLY-CONTRASTIVE
LEARNING (TATC) IN THE NON-UNIFORM PRIOR SETTING

The proposed approach consists in a simultaneous training of the representation φ and the hierar-
chical agent (πlow, πhi). The idea is to progressively extend the explored area while maintaining the
previously collected knowledge. To do so, in the non-uniform prior setting, the agent switches with
some probability prw between following a uniformly random policy πµ and executing the hierar-
chical policy (skills). The latter helps reach further areas, more efficiently, where data collected by
πµ would be used to train the representation φ. Along their training, the skills would progressively
extend to reach newly discovered areas, advancing the exploration frontier. Algorithm 1 provides a
pseudocode of the proposed approach, in the non-uniform prior setting.

Algorithm 1 TATC in the non-uniform prior setting

1: Input: L, c, prw, N
2: for iteration = 1, 2, . . . do
3: Dπµ = ∅, Ds = ∅
4: for batch = 1, 2, . . . , N do
5: Reset to s0 with probability pr.
6: p ∼ Unif ([0,1])
7: if p < prw then
8: Run the uniformly random policy πµ to collect L random walk trajectories {τ ′i}Li=1 of c

steps each.
9: Dπµ ← Dπµ ∪ {τ ′k}Lk=1

10: else
11: Run (πhi, πlow) to collect L consecutive skills’ trajectories {(τk, δk)}Lk=1 and their cor-

responding directions
12: Ds ← Ds ∪ {(τk, δk)}Lk=1
13: end if
14: end for
15: Optimize the policies (πhi, πlow) using their intrinsic objectives 4 and 3 (vanilla actor-critic

update)
16: Optimize φ so as to minimize LTATC(φ;Ds,Dπµ) (Eq. 6).
17: end for

B REPRESENTATION OBJECTIVE AUGMENTATION: ABLATION STUDY

B.1 BOREDOM AUGMENTATION HELPS EXPLORATION

In order to illustrate the importance of the proposed augmentation – with the boredom term B –
in the final objective (Eq. 6,) we conducted the same representation learning experiments for the
three gridworld domains in the non-uniform prior setting, but this time with the non-augmented
representation learning objective (β′ = 0).

Figure 9 shows how the agent failed at exploring the whole domain. In T-MAZE, it focuses only on
one corridor without getting curious about the other one. Regarding U-MAZE and 4-ROOMS, the
agent stops exploring after discovering the end of the first corridor and the second room respectively.
This is due to the lack of incentive to visit the yet unseen states, as they are less rewarding for πhi
(i.e. closer in the representation space, hence smallerRhi) than the furthest explored state. The effect
of the proposed augmentation would compress the representation of the explored area, say the first
corridor in U-MAZE, which makes the rest of the environment more appealing to explore for πhi
(i.e. further in the representation space, hence larger Rhi). This emphasizes the importance of the
boredom term in inducing the agent’s exploratory behavior.

B.2 BOREDOM AUGMENTATION ENFORCES DYNAMICS-AWARENESS

To verify the benefit of the boredom term beyond helping exploration, we train the representation
with the non-augmented objective (β′ = 0) but this time in the uniform prior setting, so that to
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(a) U-MAZE (b) T-MAZE (c) 4-ROOMS

Figure 9: Learned representations in the gridworld domains with the non-augmented objective.
Without the boredom term, the agent fails to cover the state space (cf. Figure 3), and may settle for
incomplete representations. The colors reflect the distances in terms of the dynamics. They can be
seen as quantities proportional to the length of the shortest path from the s0 (marked in red) to the
represented state.

marginalize the exploration problem. Figure 10 illustrates the learned representations in the three
gridworld domains. These representations have failed to capture the dynamics. For example, in the
case of 4-ROOMS, the distances from the first room to the fourth and third rooms are comparable
in the representation space, which indicates that the representation does not take into account the
relative order in which the rooms should be visited, when moving from the first room to the last.
Similarly, in U-MAZE, the end of the maze is closer to the initial area than the second corner is.
However, in order to reach the former on must pass by the latter. This proves that the boredom
term is not only important for the desired exploratory behavior (cf. Figure 9), but also enhances the
dynamics-awareness of our representation.

(a) U-Maze (b) T-Maze (c) 4-rooms

Figure 10: Learned representations when uniformly sampling over the state space. Without the
boredom term, the representation does not reflect temporally-extended dynamics. The colors reflect
the distances in terms of the dynamics. They can be seen as quantities proportional to the length of
the shortest path from the s0 (marked in red) to the represented state.

C IMPLEMENTATION DETAILS

C.1 GRIDWORLD

For all the experiments, we defined the representation network as an MLP of two hidden layers of
size 128 and tanh activations and a linear output layer of the size of representation’s dimensionality
d. The high-level and the low-level policies are both MLPs of two hidden layers of size 128 with
tanh activations and a logsoftmax output layer of the size of their respective action spaces: the
environment’s 4 actions for the low-level policy and 8 actions for the high-level policy corresponding
to the 8 directions Ω = {(cos(2kπ/n), sin(2kπ/n)) | k ∈ {0, ..., 7}} that define diverse skills.

The policies were trained with vanilla A2C with MC returns from the collected trajectories (Monte-
Carlo estimates), i.e. no bootstrapped values where used. The skills being of a fixed size they
could be trained without any reward discount (γ = 1). The high-level and low-level policies were
entropy-regularized with the coefficients 0.3 and 0.1 respectively.

All of these networks were trained with RMSprop (Hinton et al., 2012) and a learning rate of 0.001.
Environments specific hyperparameters are provided below.
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C.1.1 REPRESENTATION LEARNING

U-MAZE. Our representation is learned in the non-uniform prior setting with pr=0.3, prw=0.4
and K=90 (around the number of steps between s0 and the furthest state in the maze). We learn
a 2-dimensional representation (d = 2) using the representation learning objective 6 with β = 0.2
and β′ = 2. We fix the skills length to c = 30 steps (so L = K/c = 3), and jointly train the
representation φ and the policies (πhi, πlow) by collecting, for each update, a batch of N = 32
trajectories of length c to fill Ds and Dπµ as described in Algorithm 1. We train them for 700
epochs where each epoch corresponds to 10 updates (convergence to the complete representation
required around 500 epochs).

T-MAZE. Our representation is learned in the non-uniform prior setting with pr=0.2, prw=0.4
and K=40 (around the number of steps between s0 and the furthest state in the maze). We learn
a 2-dimensional representation (d = 2) using the representation learning objective 6 with β = 0.2
and β′ = 2. We fix the skills’ length to c = 20 steps (so L = K/c = 2). and jointly train
the representation φ and the policies (πhi, πlow) by collecting, for each update, a batch of N = 48
trajectories of length c to fillDs andDπµ as described in Algorithm 1. We train them for 700 epochs
where each epoch corresponds to 10 updates (convergence to the complete representation required
around 350 epochs).

4-ROOMS. Our representation is learned in the non-uniform prior setting with pr=0.25, prw=0.5
and K=60 (around the number of steps between s0 and the furthest state in the maze). We learn
a 2-dimensional representation (d = 2) using the representation learning objective 6 with β = 0.2
and β′ = 2. We fix the skills’ length to c = 20 steps (so L = K/c = 3). and jointly train
the representation φ and the policies (πhi, πlow) by collecting, for each update, a batch of N = 32
trajectories of length c to fillDs andDπµ as described in Algorithm 1. We train them for 700 epochs
where each epoch corresponds to 10 updates (convergence to the complete representation required
around 350 epochs).

The Laplacian representation (LAP-REP) was trained in the same environments’ settings described
above, for both the uniform and non-uniform prior settings (of course no policy is trained here
so prw = 1, and (s0, pr) are not relevant for the uniform prior setting). We used the representation
learning objective and the associated hyperparameters proposed by Wu et al. (2019). For the uniform
prior setting, our online data collection does not cause any discrepancy compared to the offline
scheme used in Wu et al. (2019). Indeed, for a minibatch size large enough, the stochastic minibatch
based training of LAP-REP when using a uniform prior is agnostic to the data collection sheme
(offline vs online) since in both cases the minibatches are sampled from the exact same uniform
distribution over the state space.

C.1.2 PREDICTION AND CONTROL

In the prediction and control experiments, we evaluate each pretrained representation by training an
actor-critic agent to solve a goal-achieving task with a sparse reward (r = 1 upon reaching the goal).
The episode size was set to 100 steps for all the gridworld domains.

For the prediction, the critic head is a linear function in the given representation, while the actor is
a MLP with two hidden layers of size 64 and tanh activations, a logsoftmax output layer of size 4
(discrete gridworld actions) and the actor’s input is the state one-hot code. For the control experi-
ments, the actor-critic agent is defined on top of the representation as a MLP of two hidden layers
of size 64 with tanh activations that feed two output heads: a linear critic head and a logsoftmax
action head for the 4 actions. The agent is trained with A2C with MC returns and a discount of
γ = 0.98, a batchsize of 80 episodes, an entropy regularization with a 0.01 coefficient and Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.001.

C.2 MUJOCO: ANTMAZE

In this navigation task, the environment is composed of 4 × 4 × 4 blocks defining a U-shaped
corridor. The environment’s action space is 8 dimensional. For the sake of simplifying the RL
training algorithm, we mapped each dimension values interval to a discrete set of 5 values equally
spaced over the interval. We used the same architectures for the representation and the policies as
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for the gridworld, with the only difference that for the low-level policy, the action head was adapted
to the discretization of the action space by having 8 logsoftmax output heads of size 5, one for each
action dimension and the corresponding 5 discrete values. This choice makes the training algorithm
simpler as it allows using A2C here as well.

Our representation is learned in the non-uniform prior setting with pr = 0.2, prw = 0.3 and K =
500. We learn a 2-dimensional representation (d = 2) using the representation learning objective 6
with β = 0.2 and β′ = 5. We fixed their length to c = 100 steps (so L = K/c = 5). and jointly train
the representation φ and the policies (πhi, πlow) by collecting, for each update, a batch of N = 32
trajectories of length c to fill Ds and Dπµ as described in Algorithm 1. We train them for 1000
epochs where each epoch corresponds to 10 updates (convergence to the complete representation
required around 650 epochs).

The policies were trained with the same A2C used in gridworld domains and the same RMSprop hy-
perparameters. The high-level and low-level policies were entropy-regularized with the coefficients
0.15 and 0.1 respectively.

C.2.1 REWARD SHAPING

Regarding the Laplacian representation baseline, LAP-REP was learned in the same non-uniform
prior setting described above, with the representation objective and its associated hyperparameters
proposed by Wu et al. (2019). In this setting, the data collection and the representation training
are performed simultaneously in an online fashion. We have also tested the offline representation
training, replicating the training scheme in Wu et al. (2019). Still in the non-uniform prior setting, we
collected 500000 training samples (10 times more than in Wu et al. (2019)) according to a uniformly
random policy, then we trained the representation on the large dataset built this way. For all other
hyperparameters, we used the same as provided in Wu et al. (2019). Both trainings ended up giving
the same performance for the reward shaping task.

Now, for the reward shaping, we train a Soft Actor-Critic (SAC) (Haarnoja et al., 2018) agent to
reach a goal area (neighbourhood around the goal state) with episodes of size 1000 steps. We use
the following hyperparameters:

• Discount γ = 0.99

• Entropy coefficient (temperature) α = 0.1

• Soft critic updates with smoothing constant τ = 0.005

• Replay buffer of size 5 · 106 (equal to the number of training steps).

• Adam optimize with learning rate of 0.0001

As SAC is sensitive to the reward scale (Haarnoja et al., 2018), we grid-searched this hyperparameter
in {10−5, 10−4, · · · , 1.0, 2.0}, and the best performing one for our representation was 1.0, while for
LAP-REP the SAC agent didn’t succeed with any of these values to solve the task.

C.2.2 SKILLS EVALUATION

To train DCO, we first collect a dataset to estimate the second eigenvector and then use the same
dataset to train a policy – the option – using DDPG (Lillicrap et al., 2015). Each DCO option is
tied to its own eigenvector estimate and its own training set of size 500000 (10 times the size used
in Jinnai et al. (2020)). As suggested by the authors of DCO (Jinnai et al., 2020), the remaining
hyperparameters to estimate the eigenvectors and train their corresponding options were taken from
Wu et al. (2019). DIAYN skills were trained as recommended by Eysenbach et al. (2019). For fair
comparison, we train 8 skills for both DCO and DIAYN.

For the skills evaluation stage, we freeze the learned low-level policies and train a high-level policy
to use the 8 skills as the only available actions to reach the goal g on the other end of the AntMaze
environment using a sparse reward rt = 1 [‖st+1 − g‖2 ≤ ε] within a finite horizon of 1000 steps .
Note that this tasks is quite challenging given the type of reward and the length of episode especially
in a continuous state space. As our skills offer some flexibility in their execution (can be started
everywhere and run for arbitrary number of steps), this episode length was decomposed to 5 skills

17



Under review as a conference paper at ICLR 2022

of 200 steps each. The high-level policy was trained with A2C with MC returns (no discount given
the finite horizon) a batch size of 8 episodes, and RMSprop optimizer with a learning rate of 0.001.

D THE SWITCHING UTILITY OF THE BOREDOM TERM

Note that Ds, in Eq. 5, may contain trajectories from skills that are not yet duly trained; for example
early in the training or in a freshly discovered area. Since at that stage, these skills’ trajectories
are close to random walks, their contribution in the boredom term is similar to the first attractive
term, in Eq. 2, which is based on random walks. This means that a new skill trajectory initially con-
tributes to the temporal similarity term (attractive term) in training the representation, thus making
the most out of the sampled skills’ trajectories while these are still early in their training. The more
a skill is trained, the more structured its trajectories become and the more they contribute to the
intended ”boredom” effect (Section 3.3), that is encouraging exploration and dynamics awareness
(Appendix B).
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