
Differentiable Model Scaling using Differentiable Topk

Kai Liu 1 Ruohui Wang 1 Jianfei Gao 1 Kai Chen 1

Abstract
Over the past few years, as large language mod-
els have ushered in an era of intelligence emer-
gence, there has been an intensified focus on
scaling networks. Although Neural Architecture
Search (NAS) methods have been proposed to au-
tomate this process, they suffer from low search
efficiency. This study introduces Differentiable
Model Scaling (DMS), increasing the efficiency
for searching optimal width and depth in networks.
DMS can model both width and depth in a direct
and fully differentiable way, making it easy to
optimize. We have evaluated our DMS across
diverse tasks, ranging from vision tasks to NLP
tasks and various network architectures, includ-
ing CNNs and Transformers. Results consistently
indicate that our DMS can find improved struc-
tures and outperforms state-of-the-art NAS meth-
ods. Specifically, for image classification on Ima-
geNet, our DMS improves the top-1 accuracy of
EfficientNet-B0 and Deit-Tiny by 1.4% and 0.6%,
respectively, and outperforms the state-of-the-art
zero-shot NAS method, ZiCo, by 1.3% while re-
quiring only 0.4 GPU days for searching. For
object detection on COCO, DMS improves the
mAP of Yolo-v8-n by 2.0%. For language model-
ing, our pruned Llama-7B outperforms the prior
method with lower perplexity and higher zero-
shot classification accuracy. Our code is avail-
able at https://github.com/LKJacky/
Differentiable-Model-Scaling.

1. Introduction
In recent years, large models such as GPTs (Radford et al.,
2018) and ViTs (Dosovitskiy et al., 2020) have showcased
outstanding performance. Notably, the emergent intelli-
gence of GPT4 (OpenAI, 2023) has underscored the im-

1Shanghai AI Laboratory, Shanghai, China. Corre-
spondence to: Kai Liu <liukai@pjlab.org.cn>, Kai Chen
<chenkai@pjlab.org.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

portance of scaling networks as a critical pathway toward
achieving artificial general intelligence (AGI). To support
this scaling process, we introduce a general and potent
method to determine the optimal width and depth of a net-
work during its scaling.

Currently, the structure design of most networks still re-
lies on human expertise. It typically demands significant
resources to tune structural hyperparameters, making it chal-
lenging to pinpoint the optimal structure. Meanwhile, Neu-
ral Architecture Search (NAS) methods have been intro-
duced to automate network structure design. We classify
NAS methods into two categories based on their search
strategies: stochastic search methods (Xie et al., 2022; Liu
et al., 2022; Tan & Le, 2019) and gradient-based methods
(Liu et al., 2018a; Wan et al., 2020; Guo et al., 2021a).

The stochastic search methods involve sampling numerous
sub-networks to compare performance. However, these
methods are limited to low search efficiency due to the
sample-evaluate cycle, leading to reduced performance and
increased search costs.

Unlike stochastic search methods, gradient-based methods
employ gradient descent to optimize structural parameters,
enhancing their efficiency and making them more adept at
balancing search costs with ultimate performance. However,
a significant challenge persists: how to model structural hy-
perparameters in a direct and differentiable manner. Prior
methods have struggled to meet this challenge, resulting
in diminished performance and increased costs. Specifi-
cally, we group prior methods into three categories based
on their modeling strategies: (1) multiple element selection,
(2) single number selection, and (3) gradient estimate topk.
Specifically, when searching for the number of channels in
a convolutional layer, multiple element selection methods
(Li et al.; Guo et al., 2021b) model the channel number
as multiple selections of channels, as shown in Figure 1
(a.1). They introduce a much larger search space of element
combinations. Single number selection methods (Wan et al.,
2020) model the channel number as a single selection from
multiple numbers, as shown in Figure 1 (a.2). It ignores the
order relationship among these numbers. Gradient estimate
topk approaches (Guo et al., 2021a; Gao et al., 2022; Ning
et al., 2020) attempt to model width and depth directly, as
shown in Figure 1 (a.3). However, they are not differen-

1

https://github.com/LKJacky/Differentiable-Model-Scaling
https://github.com/LKJacky/Differentiable-Model-Scaling

Differentiable Model Scaling using Differentiable Topk

tiable, necessitating the development of different gradient
estimation methods. As a result, these methods lack stability
and are difficult to optimize.

Regrettably, all the above strategies fall short of modeling
structural hyperparameters in a clear-cut and fully differ-
entiable fashion. To address the aforementioned challenge,
we introduce a fully differentiable topk operator, which
can seamlessly model depths and widths in a direct and
differentiable manner. Notably, each differentiable topk
operator has a single learnable parameter, representing ei-
ther a depth or width structural hyperparameter. It can be
optimized based on guidance from both task loss and re-
source constraint loss. Our method stands out in terms of
high optimization efficiency when contrasted with existing
gradient-based approaches.

Based on our differentiable topk, we develop a Differen-
tiable Model Scaling (DMS) algorithm to search for net-
works’ optimal width and depth. To validate the efficacy and
efficiency of our approach, we rigorously tested it across
various tasks, including vision tasks and NLP tasks, and
different architectures, including CNNs and Transformers.
Thanks to the high search efficiency of our differentiable
topk, DMS achieves better performance or much lower
search costs than prior SOTA methods.

Overall, our contributions are as follows:

• We introduce a differentiable topk operator, which is
easy to optimize as it can model structural hyperparam-
eters in a direct and differentiable manner.

• We develop a Differentiable Model Scaling (DMS)
algorithm based on our differentiable topk to search
for networks’ optimal width and depth.

• We evaluate our DMS across various tasks and archi-
tectures. For example, DMS outperforms the state-of-
the-art zero-shot NAS method, ZiCo, by 1.3% while
requiring only 0.4 GPU days for searching. DMS costs
fewer than a fraction of dozens of the search costs of
one-shot NAS methods and multi-shot NAS methods
with comparable performance. Besides, our method is
a widely applicable method, which improves the mAP
of Yolo-v8-n by 2.0% on COCO and improves the
zero-shot classification accuracy of pruned Llama-7B.

2. Related Work
The width and depth of networks are critical aspects of
model architecture design. A multitude of methodologies
have been proposed to automate this process, notably Neural
Architecture Search (NAS) (Zoph & Le, 2016; Liu et al.,
2018a) and model structure pruning (Li et al., 2020; Li
et al.). NAS algorithms typically aim to design models

automatically from scratch, while model structure prun-
ing approaches focus on compressing pretrained models to
enhance their efficiency. Despite their contrasting method-
ologies, both approaches contribute to the search for model
structure.

These search methods can generally be categorized into two
groups based on their search strategies: stochastic search
methods (Zoph & Le, 2016; Xie et al., 2022; Liu et al., 2022)
and gradient-based methods (Liu et al., 2018a; Guo et al.,
2021a). In the following sections, we will introduce these
methods and compare them with ours.

2.1. Stochastic Search Methods

Stochastic search methods usually operate through a cyclical
process of sampling and evaluation. At each step, they sam-
ple models with different structures and then evaluate them.
This strategy is versatile as it can handle both contiguous
and discrete search spaces. However, a significant down-
side is its low search efficiency, leading to high resource
consumption and suboptimal performance. Specifically,
stochastic search-based methods can be divided into three
groups: multi-shot NAS, one-shot NAS, and zero-shot NAS.
Multi-shot NAS (Tan & Le, 2019; Liu et al., 2022) requires
the training of multiple models, which is time-consuming.
For instance, EfficientNet (Tan & Le, 2019) uses over 1714
TPU days for searching. One-shot NAS (Xie et al., 2022;
Cai et al., 2019) requires training a large supernet, which is
also resource-intensive. For example, ScaleNet (Xie et al.,
2022) uses 379 GPU days for training a supernet. Zero-
shot NAS (Li et al., 2023; Lin et al., 2021) reduces the cost
by eliminating the need to train any model. However, its
performance has not yet met the desired standard.

2.2. Gradient-based Methods

Gradient-based structure search methods (Liu et al., 2018a;
Guo et al., 2021a) employ gradient descent to explore the
structure of models. Generally, these methods are more effi-
cient than their stochastic search counterparts. The critical
aspect of gradient-based methods is how to use learnable pa-
rameters to model structural hyperparameters and compute
their gradients. Ideally, the learnable parameters should di-
rectly model structural hyperparameters, and their gradients
should be computed in a fully differentiable manner. How-
ever, prior methods have struggled to meet these two criteria
in modeling the width and depth of networks. We group
them into three categories: (1) multiple element selection,
(2) single number selection, and (3) gradient estimate topk.
The first two categories model structural hyperparameters
indirectly, while the third category is not differentiable and
requires gradient estimation.

Multiple element selection methods (Li et al.) model the
number of elements as multiple selections from elements

2

Differentiable Model Scaling using Differentiable Topk

Figure 1. Different Gradient-based Modeling Strategies for Width and Depth. For all strategies, they use learnable parameters to generate
an element mask to select width elements or depth elements. SubFigure (a) illustrates four methods to generate the element mask, while
(b) shows how the mask is used to search width and depth. (a.1) Multiple Element Selection: The element count is transformed into a
multiple-element selection. (a.2) Single Number Selection: The element count is transformed into a selection from multiple numbers. (a.3)
Gradient Estimate Topk: The element count is directly modeled yet non-differentiable. (a.4) Our Differentiable Topk: The element count
is directly modeled and is fully differentiable. “Direct” means that the learnable parameters directly model the structural hyperparameters,
while “Differentiable” means that the gradient of the learnable parameters can be computed in a fully differentiable manner.

(e.g., channel selection), as shown in Figure 1 (a.1). Simi-
larly, Single number selection methods (Wan et al., 2020)
model element quantity as a single choice from multiple
numbers, as shown in Figure 1 (a.2). Both them model
structural hyperparameters in indirect and inaccurate ways
and introduce much more learnable structural parameters,
making optimization hard. Naturally, They result in low
performance.

Gradient estimate topk approaches (Guo et al., 2021a; Gao
et al., 2022; Ning et al., 2020) attempt to model width and
depth directly, as shown in Figure 1 (a.3). However, they are
not differentiable, necessitating the development of different
gradient estimation methods. As a result, these methods lack
stability and are also difficult to optimize.

To improve the optimization efficiency for structure search,
we introduce a new differentiable topk that can model width
and depth directly and is fully differentiable. Thanks to the
differentiable topk, our method can achieve better perfor-
mance and higher efficiency than prior methods.

2.3. Differentiable Topk

The topk operator selects the k elements from N elements
based on their importance values. Previous differentiable
topk operators focus on making the selection of elements
differentiable with a fixed k (Xie et al., 2020; Petersen et al.,
2022). In contrast, our topk method focuses on making the
number of selected elements k differentiable. Our differen-
tiable topk is a novel operator which is the only one that can
be applied to search structural hyperparameters.

3. Method
In this section, we will detail our Differentiable Model Scal-
ing (DMS) in two steps. First, we introduce our differen-
tiable topk, which models structural hyperparameters di-
rectly in a fully differentiable manner. Second, we explain
how to use our differentiable topk to construct our DMS
algorithm.

3

Differentiable Model Scaling using Differentiable Topk

3.1. Differentiable Topk

Suppose there is a structural hyperparameter denoted by k,
representing the number of elements, such as k channels in
a convolutional layer or k residual blocks in a network stage.
k has a maximal value of N . We use c ∈ RN to represent
the element importance, where a larger value indicates a
higher importance. The objective of our differentiable topk
is to output a soft mask m ∈ [0, 1]N to indicate the selected
elements with top k importance scores.

Our topk operator uses a learnable parameter a as a thresh-
old to select elements whose importance values are larger
than a. a is able to model the number of elements k di-
rectly, as k can be seen as a function of a, where k =∑N

i=1 1[ci > a]. 1[A] is an indicator function, which equals
1 if the A is true and 0 otherwise. We use ci to represent
the importance of the i-th element. We denote our topk as a
function f as follows:

mi = f(a) ≈

{
1 if ci > a

0 otherwise
(1)

In prior methods, f is usually a piecewise function, which
is not smooth and not differentiable, and the gradient of a
is computed by estimation. We argue the biggest challenge
to employing a fully differentiable f with respect to a is
that the channel importance is distributed unevenly. Specifi-
cally, uneven distribution causes the importance difference
between two neighboring elements, ordered by importance
value, to vary significantly. Supposed a is updated by a
fixed value in each iteration, when the difference is large, a
lot of steps are needed for a to go across these two elements.
When the difference is small, a can cross many elements in
one step. Therefore, optimizing a in a fully differentiable
manner is too hard when element importance is uneven.

To address this challenge, we employ an importance normal-
ization process to forcefully convert the unevenly distributed
importance to evenly distributed values, making the topk
function smooth and easy to optimize in a differentiable way.
To sum up, our differentiable topk has two steps: importance
normalization and soft mask generation.

3.1.1. IMPORTANCE NORMALIZATION

We normalize all element importance by mapping them to
evenly distributed values from 0 to 1, based on the follow-
ing:

c′i =
1

N

N∑
j=1

1[ci > cj]. (2)

The normalized element importance is denoted by c′. 1[A]
is the same indicator function as above. Any two elements
in c are supposed to be different, which is usually the case
in practice. Notably, although c′ is evenly distributed from
0 to 1, c can follow any distribution.

Intuitively, c′i indicates the portion of c values smaller than
ci. Besides, the learnable threshold a also becomes mean-
ingful, representing the pruning ratio of elements. k can be
computed by k = ⌊(1−a)N⌉, where ⌊ ⌉ is a round function.
a is limited to the range of [0, 1], where a = 0 indicates no
pruning and a = 1 indicates pruning all elements.

3.1.2. SOFT MASK GENERATION

After the normalization, it’s easy to generate the soft mask
m using a smooth and differentiable function based on
the relative size of pruning ratio a and normalized element
importance c′.

mi = f(a) = Sigmoid(λ(c′i − a)) =
1

1 + e−λ(c′
i−a)

.

(3)

We add a hyperparameter λ to control the degree of approxi-
mation from Equation 3 to a hard mask generation function.
When λ tends to infinity, Equation (3) approaches a hard
mask generation function. We usually set λ to N . Because
when c′i > a+3/N or c′i < a−3/N , |(mi−⌊mi⌉)| < 0.05.
It means that except for the six elements whose importance
values are around the pruning ratio, the masks of other el-
ements are close to 0 or 1, where the approximation error
is less than 0.05. Therefore, λ = N is sufficient to approxi-
mate a hard mask generation function for our topk.

The forward and backward graph of Equation 3 are shown
in Figure 2 (a) and Figure 2 (b), respectively. It can be
observed that 1) Our topk models the number of elements
k directly using the learnable pruning ratio a, and it gener-
ates a polarized soft mask m to simulate the pruned model
perfectly during forward. 2) Our differentiable topk is fully
differentiable and is able to be optimized stably. The gradi-
ent of a with respect to mi is ∂mi

∂a = −λ(1−mi)mi. Our
topk intuitively detects the gradient of the mask in the fuzzy
area with 0.05 < mi < 0.95. Note, Figure 2 (b) illustrates
the value of ∂mi

∂a , which is not the total gradient of a. The
total gradient of a is

∑N
i=1

∂task loss
∂mi

∂mi

∂a + ∂resource loss
∂a .

3.1.3. ELEMENT EVALUATION

As we do not limit the distribution of element importance,
element importance can be quantified through various meth-
ods, such as L1-norm (Li et al., 2016), among others. In our
approach, we implement Taylor importance (Molchanov
et al., 2019) in a moving average manner as follows:

4

Differentiable Model Scaling using Differentiable Topk

0.0 0.5 1.0
Normalized Importance

0.00

0.25

0.50

0.75

1.00
So

ft
M

as
k

Va
lu

e

a=0.25
a=0.5
a=0.75

(a) Forward

0.0 0.5 1.0
Normalized Importance

20

10

0

Gr
ad

ie
nt

 V
al

ue

a=0.25
a=0.5
a=0.75

(b) Backward

Figure 2. Forwad and Backward Graph of Our Differentiable Topk.
We set maximal element number N = λ = 100, pruning ratio a ∈
{0.25, 0.5, 0.75}. The x-axis represents the normalized element
importance c′i. (a) demonstrates the forward process, where the
y-axis represents the soft mask mi. (b) illustrates the backward
process, where the y-axis represents the gradient of a with respect
to mi, ∂mi

∂a
.

ct+1
i = cti × decay + (mt

i × gi)
2 × (1− decay). (4)

Here, t represents the training step. gi is the gradient of mi

with respect to training loss. Decay refers to the decay rate.
The initial value of c0i is set to zero, and the decay rate is set
to 0.99. Note that the importance of elements is not updated
by gradient descent. By leveraging Taylor importance, we
can efficiently and stably estimate the importance of ele-
ments. We conduct an ablation study on the importance
evaluation methods in Section 5.1, which shows that Taylor
importance is enough to achieve good performance.

3.2. Differentiable Model Scaling

Relying on our differentiable topk, we develop Differen-
tiable Model Scaling (DMS) to optimize the width and depth
of networks. Our DMS has three pipeline variants based on
that of training-based model pruning, as shown in Table 1.

DMSp is the standard training-based model pruning
pipeline, it consists of pretrain stage, search stage, and re-
train stage. The pretrain stage is used to pretrain a supernet.
It usually costs a lot of time and resources. In the search
stage, we search for the optimal width and depth of the
supernet under a specific resource constraint. Due to the
high search efficiency of our method, the search stage only
uses about 1/10 or fewer of the epochs of retraining. In the
retrain stage, we retrain the searched model. We use this
pipeline when comparing with SOTA pruning methods.

DMSnp is our default and most-used pipeline in our paper.
The high costs of pretrain stage, which may make up most
of the total costs, is a big obstacle to the practical application
of NAS and pruning methods. To overcome this problem,
we discard the pretrain stage from the DMSpand directly

Table 1. Three Pipelines We Used in Our Paper.

Pipeline Pretrain Search Retrain

DMSnp N All weights Y
DMSp Y All weights Y
DMSp- Y Only structural parameters N

search from a randomly initialized supernet. According
to our ablation study in Appendix A.3.2, DMSnpsurpluses
DMSpby increasing the supernet size on both performance
and efficiency. DMSnpmakes our method maintain high
performance and is more efficient than other NAS methods.

DMSp- is used to compare different search methods ex-
tremely quickly. Compared with DMSp, it only optimizes
the structural parameters and does not retrain the searched
models. Take advantage of existing pretrained supernets,
it also outputs reasonable results. Besides, it only takes
hundreds of iterations, costing less than 10 minutes on a
single RTX3090, to search for a model.

Search Space: As shown in Figure 1 (b), our search space
encompasses both the width and depth of networks, which
are the most critical structural hyperparameters for model
scaling. To represent these dimensions, we use our differ-
entiable topk. The width in networks typically covers the
channel dimension in convolutional layers, the feature di-
mension in fully connected layers, and so on. Regarding
depth, we focus on networks with residual connections and
search the number of blocks in each stage. Specifically,
We incorporate the soft masks of differentiable topk into
residual connections, allowing each block to be represented
as xi+1 = xi + f(xi)×mi.

Besides, for a structural hyperparameter x, we search it in
the range of [1, xmax] with a step of 1, while most of prior
NAS methods (Cai et al., 2019; Chen et al., 2021) search it
in the range of [xmin, xmax] with a large step, like 32. Their
search spaces have been a pretty good sub-space of ours,
designed by human experts. However, our search space is
more general and costs the least human effort. More details
about our search space are provided in Appendix A.1.1.

Resource Constraint Loss To ensure that a network ad-
heres to specific resource constraints, we incorporate an
additional component into the optimization process, termed
the “resource constraint loss”. Consequently, the aggregate
loss function is:

loss =losstask + λresource × lossresource. (5)

lossresource =

{
log(rcrt) if rc > rt

0 otherwise
. (6)

Here, losstask denotes the task loss. lossresource repre-

5

Differentiable Model Scaling using Differentiable Topk

sents the additional resource constraint loss, and the term
λresource acts as its weighting factor. rc symbolizes the
current level of resource consumption, which is calculated
based on the learnable parameters of differentiable topk op-
erators. rt denotes the targeted level of resource consump-
tion and is user-specified. As our topk is fully differentiable,
the learnable structural parameters can be optimized under
the guidance of both task loss and resource constraint loss.
Our method is compatible with various resource constraints,
including MAC constraint, latency constraint, and number
of parameters constraint. More details about our resource
constraint loss are provided in Appendix A.1.2.

4. Experiment
We applied our method to rigorous evaluations across vari-
ous tasks, including vision and NLP tasks, and architectures,
including CNNs and Transformers. We focus on search
costs and performance. The search cost associated with a
model is divided into two distinct components: the public
cost that costs once for all searched models for a method,
like supernet pretraining, and the private cost that costs for
each model. Notably, our method consistently outperforms
both baseline models and prior NAS methods, highlighting
its superior performance and adaptability.

4.1. Comparison with Different Search Methods

To demonstrate the higher search efficiency of our method,
we first compared it with different search methods in the
same setting. For simplicity and fairness, we utilize “DMSp-”
pipeline for all methods in this section, which loads pre-
trained weights. As all methods load pretrained weights,
we don’t count pretrain costs in search costs in this section.
All experiments in this section are conducted on ImageNet
(Deng et al., 2009).

4.1.1. COMPARISON WITH GRADIENT-BASED METHODS

Firstly, we compare our method with other gradient-based
methods, including the multiple element selection (MES),
single number selection (SNS), and gradient estimate topk
(GET). We use ResNet-50 as our supernet and search for
models with about 3G MACs. The search stage costs 800
iterations for all methods. The results are shown in Table 2.

Our method achieves the best performance among all
gradient-based methods by a large margin. Compared with
the multiple element selection and single number selection,
our method uses much fewer (less than 1/250) learnable
parameters, making it easier to optimize. Compared with
the gradient estimate topk, our parameters get more accurate
gradients, achieving much better performance. These results
demonstrate our “direct and differentiable” manner is much
more efficient than other gradient-based methods.

Table 2. Comparison with other Gradient-based Methods: “MES”
means multiple element selection, “SNS” means single number
selection, and “GET” means gradient estimate topk. ”N” means
the number of learnable structural parameters. We use “DMSp-”
pipeline for all methods in this table.

Method Top-1 (%) Macs (G) N

MES
(Herrmann et al., 2020) 55.5 3.2 11468

SNS (Wan et al., 2020) 58.6 3.4 11468
GET (Yao et al., 2021) 61.6 3 41
DMSp-(ours) 70.7 3 41

Table 3. Comparison with Evolutionary Algorithm: “EA” means
evolutionary algorithm. Only EA + predictor needs a public search
cost, which is used to train an accuracy predictor. The unit for
search cost is GPU hours. We use the pipeline of “DMSp-” in this
table.

Method Top-1 (%) Macs (G) Cost
Public+Private

EA + predictor
(Cai et al., 2019) 78.2 0.45 40 + 0.01

EA
(Cai et al., 2019) 78.2 0.45 0 + 1.1

DMSp-(ours) 78.2 0.45 0 + 0.05

4.1.2. COMPARISON WITH EVOLUTIONARY ALGORITHM

We additionally compare our method with an evolutionary
algorithm (EA), a typical stochastic search method. We
utilize the supernet of OFA (Cai et al., 2019) and search for
models with 0.45G MACs. The results are shown in Table
3. Our DMS just consumes less than 1/20 of the search
cost of the evolutionary algorithm without any performance
degradation. It reveals that our method is more efficient than
the evolutionary algorithm under the guidance of gradients.

4.2. Comparison with SOTA NAS Methods

Then, we compare our method with SOTA NAS methods on
ImageNet. We choose EfficientNet models as baselines and
search for optimal configurations in terms of their width and
depth. EfficientNet (Tan & Le, 2019) is a widely accepted
baseline for NAS research (Xie et al., 2022; Liu et al., 2022).
We use our default pipeline “DMSnp”, which does not load
pretrained weights, in this section, Therefore, the public
search cost for our method is zero.

The performance of these searched models and their search
costs are presented in Table 4. According to the level of
their search costs, we divide all compared NAS methods
into two groups: low-search-cost methods and high-search-
cost methods. Low-search-cost methods usually contain

6

Differentiable Model Scaling using Differentiable Topk

Table 4. Experiments on EfficientNet. We compare our DMS with other NAS methods on EfficientNet variants. We divide all NAS
methods into two groups, including low-search-cost methods and high-search-cost methods. Our method outperforms low-search-cost
methods by a large margin with similar search costs, and it uses much fewer search costs than high-search-cost methods achieving
comparable or better performance. The unit of search cost is TPU days for EfficientNet and GPU days for other models. “Ratio” stands
for the ratio of the search cost of the model to that of our corresponding DMS model. ‡ means the model is trained with distillation. How
to obtain these search costs is detailed in Appendix A.4.2. Note we use our default “DMSnp” pipeline, which does not load pretrained
supernets, in this table.

Model NAS Type Top-1 (%) MACs (G) Params (M) Search Cost
Public + Private Ratio Cost

Level

JointPruning‡ (Guo et al., 2021a) Gradient 77.3 0.34 / 0 + 8 2.5×

Low
DMSnp-EN-350‡ (ours) Gradient 78.5 0.35 5.6 0 + 3.2 1×
Zen-score‡ (Lin et al., 2021) ZeroShot 78.0 0.41 5.7 0 + 0.5 1.3×
ZiCo‡ (Li et al., 2023) ZeroShot 78.1 0.45 / 0 + 0.4 1×
DMSnp*-EN-450‡ (ours) Gradient 79.4 0.45 6.5 0 + 0.4 1×
ScaleNet-EN-B0 (Xie et al., 2022) OneShot 77.5 0.35 4.4 379 + 1.6 119×

High

DMSnp-EN-350 (ours) Gradient 78.0 0.35 5.6 0 + 3.2 1×
EfficientNet-B0 (Tan & Le, 2019) MultiShot 77.1 0.39 5.3 1714 + 0 536×
DMSnp-EN-B0 (ours) Gradient 78.5 0.39 6.2 0 + 3.2 1×
EfficientNet-B1 (Tan & Le, 2019) MultiShot 79.1 0.69 7.8 1714 + 0 296×
ScaleNet-EN-B1 (Xie et al., 2022) OneShot 79.9 0.80 7.4 379 + 3.7 66×
MA-EN-B1 (Liu et al., 2022) MultiShot 79.9 0.68 8.8 > 124 + 131 > 44×
DMSnp-EN-B1 (ours) Gradient 80.0 0.68 8.9 0 + 5.8 1×
EfficientNet-B2 (Tan & Le, 2019) MultiShot 80.1 1.0 9.2 1714 + 0 245×
MA-EN-B2 (Liu et al., 2022) MultiShot 80.9 1.0 9.3 > 124 + 192 > 45×
DMSnp-EN-B2 (ours) Gradient 81.1 1.1 9.6 0 + 7.0 1×

gradient-based and zero-shot NAS methods. This category
only needs several GPU days, which are fewer than that of
training the searched model itself. high-search-cost meth-
ods usually contain multi-shot and one-shot NAS methods,
which usually cost more than one hundred GPU days (much
over than training the searched model itself).

Compared with Low-Search-Cost Methods: Our method
also belongs to low-search-cost methods. Compared with
this category, our method achieves better performance with
similar or even lower search costs. For example, our method
outperforms JointPruning (Guo et al., 2021a) by 1.2% with
2/5 of its search cost. It also outperforms zero-shot NAS
methods, ZiCo and Zen-score, by a margin of 1.3% and
1.4%, respectively. This result demonstrates that our method
achieves significant performance improvements than previ-
ous low-search-cost NAS methods.

Compared with High-Search-Cost Methods: Compared
with this category, our method spends much fewer search
costs but still achieves comparable or even better perfor-
mance. For example, Compared with EfficientNet, our
searched models, DMSnp-EN-B0, B1, and B2, have im-
proved performance by 1.4%, 0.9%, and 1.0%, respectively.
Remarkably, DMS also achieves over 100 times search cost
savings in the search process. our method outperforms
ScaleNet by 0.5% and 0.1% on EfficientNet-B0 and B1,
respectively, with less than 1/50 of the search cost of it. Our
DMS also outperforms ModelAmplification (MA) by 0.1%

and 0.2% on EfficientNet-B1 and B2, respectively, with less
than 1/40 of the search cost of it. This result proves the high
search efficiency of our method.

For high-search-cost methods, their search costs usually
come from huge public costs, like supernet training. Even if
we average their public cost over four variants (the number
of variants used by most papers), they still cost over 20 times
our total search cost. Except for the drawback of high search
costs, the high-public-cost methods make it impossible to
search a large model. For example, if a target model needs
a month to train from scratch, like a LLM, the public search
process of high-search-cost methods may take over a year,
which is unacceptable for practical applications. While our
method only requires a few days to search for a model, it
makes it possible to search for a large model.

Through these experiments, we demonstrate that our method
is more suitable for real-world applications, as it achieves
comparable or even better performance than SOTA NAS
methods with low search costs. It makes it easy to be in-
serted into the practical pipeline of model development. We
compare our method with more NAS methods in Appendix
A.2.1 and draw this table as accuracy vs MACs plots and a
search cost vs accuracy plot in Figure 3.

7

Differentiable Model Scaling using Differentiable Topk

Table 5. Comparison with SOTA Pruning Methods. The supernet
is ResNet-50 for all methods. We use “DMSp” pipeline, which
loads pretrained weights as other methods, in this table.

Method MACs (G) Top-1 (%)

ResNet-50 4.1 76.5

LFPC (He et al., 2020) 1.6 74.46
GReg2 (Wang et al., 2020) 1.6 74.93
CC (Li et al., 2021) 1.5 74.54
TPP (Wang & Fu, 2022) 1.6 75.12
DMSp(ours) 1.6 75.53

Table 6. Experiment on Deit. We use the pipeline of “DMSnp”,
which does not load pretrained weights, in this table.

Model Top-1
(%)

MACs
(G)

Params
(M)

Deit-T
(Touvron et al., 2021) 74.5 1.3 5.7

DMS-Deit-T 75.1 1.3 6.2

4.3. Comparison with SOTA pruning methods

Our method can also be applied as a model structure prun-
ing method. We compare our method with SOTA pruning
methods in Table 5. Following prior structure pruning meth-
ods, we utilize “DMSp” pipeline, which loads pretrained
weights, and only prune width.

Compared with SOTA pruning methods, our DMS achieves
the best performance though we do not employ complicated
importance evaluation methods like others. This is because
of the strong search ability of our differentiable topk.

4.4. Experiment on Transformers

Except for CNNs, we also applied our method to Trans-
formers, a widely used architecture in vision and language
tasks.

4.4.1. EXPERIMENT ON DEIT

We apply our method to Deit-T, a one-stage vision trans-
former. We use the pipeline of “DMSnp”, which does not
load pretrained weights, in this experiment. Our searched
models outperform the original Deit-T by 0.6% with similar
MACs, as shown in Table 6.

4.4.2. EXPERIMENT ON LLM

Beyond vision tasks, we extend our method to evaluate its
applicability on a large language model (LLM) called Llama
(Touvron et al., 2023), as shown in Table 7. Due to resource
constraints, we cannot train an LLM from scratch. Instead,

we adopt a “prune and finetune” strategy using the alpaca
dataset (Taori et al., 2023). This is similar to our pipeline
of “DMSp”, but only finetuning rather than retraining. To
mitigate overfitting to the alpaca dataset, we use the origi-
nal model to distill the pruned model both during pruning
and the subsequent finetuning process. In alignment with
LLMPruner (Ma et al., 2023), we limit our pruning to the
heads of self-attentions and the hidden dimensions of the
feed-forward networks (FFN) within Llama. The resource
constraint is set to 5.47B parameters as LLMPruner. After
pruning 20% of the parameters from Llama-7B and compar-
ing it with LLMPruner, our method demonstrates superior
performance across various benchmarks. Specifically, we
observe reduced perplexity on WikiText2 (Merity et al.,
2016) and Pth (Marcus et al., 1993), and higher zero-shot
classification accuracy on BoolQ (Clark et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC-e (Clark et al., 2018),
and ARC-c (Clark et al., 2018). These experiments demon-
strate that our method is also compatible with Transformers.

We also provide more experiments on classic CNNs on im-
age classification and object detection tasks in Appendix
A.2.2 and Appendix A.2.3. Our method consistently out-
performs baseline models. In conclusion, our method is
universal and effective across various tasks and architec-
tures.

5. Ablation Study
5.1. Ablation Study on Element Importance Metrics

Here, we compare different element importance metrics,
including Index metric, SNIP (Lee et al., 2018), Fisher (Liu
et al., 2021), and Taylor (Molchanov et al., 2019). We use
the pipeline of “DMSnp”, which does not load pretrained
weights, in this section. We search for 1G models on ResNet-
50 and compare the performance after retraining.

Index metric is the simplest metric, which assigns impor-
tance value according to the index of elements statically.
SNIP, Fisher, and Taylor are more complicated metrics, us-
ing gradients and activations to update the importance of
elements with a moving average. The results are shown in
Table 8. Index metric works poorly as its static strategy.
SNIP, Fisher, and Taylor work better than the index metric
and are comparable with each other for our method.

We further compare Taylor importance with and without
moving average. The results are shown in Table 8. It can be
seen that moving average can improve the performance of
Taylor importance, because the moving average can smooth
the importance of elements, making it more stable.

Therefore we just apply Taylor importance as our default
metric, as it’s more widely used in prior works (Humble
et al., 2022; Molchanov et al., 2019).

8

Differentiable Model Scaling using Differentiable Topk

Table 7. Experiment on Llama-7B. We pruned Llama-7B using DMS and compared it with LLMPruner. We evaluate the pruned model
using perplexity on Wikitext2 and Pth datasets and zero-shot classification accuracy on BoolQ, WinoGrande, ARC-e, and ARC-c datasets.
In our results, the symbol “↑” denotes that a larger value is better, while “↓” signifies that a smaller value is preferable. We use our
pipeline of “DMSp”, which loads pretrained weights, in this table, due to resource constraints.

Model Params Wikitext2 ↓ Pth ↓ BoolQ ↑ WinoGrande ↑ ARC-e ↑ ARC-c ↑
Llama-7B (Touvron et al., 2023) 6.74B 12.62 22.14 76.5 67.01 72.8 41.38

LLM-Pruner-Llama-7B (Ma et al., 2023) 5.47B 17.39 30.2 66.79 64.96 64.06 37.88
DMSp-Llama-7B (ours) 5.47B 17.13 27.98 75.23 65.35 71.46 39.59

Table 8. Ablation Study on Element Importance Metric. We use
the pipeline of “DMSnp” in this table.

Element Importance Top-1 (%)

Index metric 72.3

SNIP (Lee et al., 2018) 73.0
Fisher (Liu et al., 2021) 73.2

Taylor w/o moving average 72.5
Taylor (Molchanov et al., 2019) 73.1

More Ablation: There are more ablation studies in Ap-
pendix A.3:

• (1) Ablation study on importance normalization, in Ap-
pendix A.3.1. It demonstrates that without importance
normalization, our method drops to an extremely low
performance. It’s caused by the unevenly distributed
importance, which makes our topk function hard to
optimize. This result demonstrates the significance of
our importance normalization.

• (2) Ablation study on pretraining and supernet sizes, in
Appendix A.3.2. It shows that our DMSnp, which does
not load pretrained weights, can outperform DMSp,
which loads pretrained weights, on efficiency and effi-
cacy by increasing supernet size.

• (3) Experiments with latency constraint, in Appendix
A.3.3. It shows that our method is also compatible with
latency constraints.

• (4) Ablation study on search time, in Appendix A.3.4.
It shows that only 1/10 of epochs of training from
scratch is enough for our method to search for the
optimal structure.

• (5) Ablation study on our hyperparameters, in Ap-
pendix A.3.5. Our method only has two hyperparame-
ters that need to be tuned for each model. They include
the weight of resource constraint loss λresource and the
learning rate for structure parameters lrstructure. Our

hyperparameters are easy to tune and do not require
much effort. Under the premise of ensuring that the
model can be pruned to a specific resource constraint,
smaller λresource and larger lrstructure are preferred.

• (6) Ablation study on search spaces, in Appendix A.3.6.
Our method uses a fine-grained search space, which
does not set minimum and step values for each struc-
tural hyperparameter. It costs the least human effort
to design but is harder to search. This ablation study
shows that a human-designed coarse-grained search
space, used by prior methods, can further improves the
performance of our method.

6. Conclusion
In this paper, we introduce a novel model scaling method
termed Differentiable Model Scaling (DMS). Compared with
prior NAS methods, our DMS has three advantages. (1)
DMS is efficient for searching, which makes it easy to use.
(2) DMS also achieves high performance, comparable with
SOTA NAS methods. (3) DMS is universal and is compati-
ble with various tasks and architectures. In conclusion, our
DMS is a highly efficient and versatile method for model
scaling. In the future, we will apply our method to cutting-
edge tasks and models, like searching for a large language
model from scratch.

Acknowledgements
We express our appreciation to our colleague Zhihao Lin for
his insightful discussions. We are grateful to the anonymous
reviewers for their constructive feedback and recommenda-
tions. This project is supported by the National Key R&D
Program of China (No. 2022ZD0161600).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Differentiable Model Scaling using Differentiable Topk

References
Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-

for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Chen, M., Peng, H., Fu, J., and Ling, H. Autoformer:
Searching transformers for visual recognition. In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, pp. 12270–12280, 2021.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Contributors, M. Openmmlab model compression
toolbox and benchmark. https://github.com/
open-mmlab/mmrazor, 2021.

Contributors, M. MMYOLO: OpenMMLab YOLO series
toolbox and benchmark. https://github.com/
open-mmlab/mmyolo, 2022.

Contributors, M. Openmmlab’s pre-training tool-
box and benchmark. https://github.com/
open-mmlab/mmpretrain, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Fang, G., Ma, X., Song, M., Mi, M. B., and Wang, X. Dep-
graph: Towards any structural pruning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Gao, S., Huang, F., Zhang, Y., and Huang, H. Disentangled
differentiable network pruning. In European Conference
on Computer Vision, pp. 328–345. Springer, 2022.

Guo, J., Liu, J., and Xu, D. Jointpruning: Pruning networks
along multiple dimensions for efficient point cloud pro-
cessing. IEEE Transactions on Circuits and Systems for
Video Technology, 32(6):3659–3672, 2021a.

Guo, Y., Yuan, H., Tan, J., Wang, Z., Yang, S., and Liu,
J. Gdp: Stabilized neural network pruning via gates
with differentiable polarization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 5239–5250, 2021b.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., and Yang, Y.
Learning filter pruning criteria for deep convolutional
neural networks acceleration. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 2009–2018, 2020.

Herrmann, C., Bowen, R. S., and Zabih, R. Channel selec-
tion using gumbel softmax. In European Conference on
Computer Vision, pp. 241–257. Springer, 2020.

Humble, R., Shen, M., Latorre, J. A., Darve, E., and Alvarez,
J. Soft masking for cost-constrained channel pruning. In
European Conference on Computer Vision, pp. 641–657.
Springer, 2022.

Jocher, G., Chaurasia, A., and Qiu, J. YOLO by Ultra-
lytics, January 2023. URL https://github.com/
ultralytics/ultralytics.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Li, B., Wu, B., Su, J., and Wang, G. Eagleeye: Fast sub-net
evaluation for efficient neural network pruning. In Com-
puter Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II
16, pp. 639–654. Springer, 2020.

Li, G., Yang, Y., Bhardwaj, K., and Marculescu, R. Zico:
Zero-shot nas via inverse coefficient of variation on gra-
dients. arXiv preprint arXiv:2301.11300, 2023.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Li, Y., Zhao, P., Yuan, G., Lin, X., Wang, Y., and Chen, X.
Pruning-as-search: Efficient neural architecture search
via channel pruning and structural reparameterization.

10

https://github.com/open-mmlab/mmrazor
https://github.com/open-mmlab/mmrazor
https://github.com/open-mmlab/mmyolo
https://github.com/open-mmlab/mmyolo
https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

Differentiable Model Scaling using Differentiable Topk

Li, Y., Lin, S., Liu, J., Ye, Q., Wang, M., Chao, F., Yang,
F., Ma, J., Tian, Q., and Ji, R. Towards compact cnns
via collaborative compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6438–6447, 2021.

Lin, M., Wang, P., Sun, Z., Chen, H., Sun, X., Qian, Q.,
Li, H., and Jin, R. Zen-nas: A zero-shot nas for high-
performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 347–356, 2021.

Liu, C., Han, K., Xiao, A., Nie, Y., Zhang, W., and Wang, Y.
Network amplification with efficient macs allocation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1933–1942, 2022.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018a.

Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J.-H., Wang,
X., Chen, Y., Yang, W., Liao, Q., and Zhang, W. Group
fisher pruning for practical network compression. In
International Conference on Machine Learning, pp. 7021–
7032. PMLR, 2021.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. arXiv preprint
arXiv:1810.05270, 2018b.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. arXiv preprint
arXiv:2305.11627, 2023.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. Build-
ing a large annotated corpus of english: The penn tree-
bank. 1993.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz,
J. Importance estimation for neural network pruning. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11264–11272, 2019.

Moons, B., Noorzad, P., Skliar, A., Mariani, G., Mehta, D.,
Lott, C., and Blankevoort, T. Distilling optimal neural
networks: Rapid search in diverse spaces. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 12229–12238, 2021.

Ning, X., Zhao, T., Li, W., Lei, P., Wang, Y., and Yang, H.
Dsa: More efficient budgeted pruning via differentiable
sparsity allocation. In European Conference on Computer
Vision, pp. 592–607. Springer, 2020.

OpenAI. Gpt-4 technical report, 2023.

Petersen, F., Kuehne, H., Borgelt, C., and Deussen, O. Dif-
ferentiable top-k classification learning. In International
Conference on Machine Learning, pp. 17656–17668.
PMLR, 2022.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2820–2828, 2019.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International con-
ference on machine learning, pp. 10347–10357. PMLR,
2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu,
B., Yu, M., Xu, T., Chen, K., et al. Fbnetv2: Differen-
tiable neural architecture search for spatial and channel
dimensions. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 12965–
12974, 2020.

11

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Differentiable Model Scaling using Differentiable Topk

Wang, H. and Fu, Y. Trainability preserving neural struc-
tured pruning. arXiv preprint arXiv:2207.12534, 2022.

Wang, H., Qin, C., Zhang, Y., and Fu, Y. Neural pruning via
growing regularization. arXiv preprint arXiv:2012.09243,
2020.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Wightman, R., Touvron, H., and Jégou, H. Resnet strikes
back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021.

Xie, J., Su, X., You, S., Ma, Z., Wang, F., and Qian, C.
Scalenet: Searching for the model to scale. In European
Conference on Computer Vision, pp. 104–120. Springer,
2022.

Xie, Y., Dai, H., Chen, M., Dai, B., Zhao, T., Zha, H.,
Wei, W., and Pfister, T. Differentiable top-k with optimal
transport. Advances in Neural Information Processing
Systems, 33:20520–20531, 2020.

Yao, Z., Wu, X., Ma, L., Shen, S., Keutzer, K., Ma-
honey, M. W., and He, Y. Leap: Learnable prun-
ing for transformer-based models. arXiv preprint
arXiv:2105.14636, 2021.

Zhuang, T., Zhang, Z., Huang, Y., Zeng, X., Shuang, K., and
Li, X. Neuron-level structured pruning using polarization
regularizer. Advances in neural information processing
systems, 33:9865–9877, 2020.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Differentiable Model Scaling using Differentiable Topk

A. Appendix
A.1. More Details about DMS

A.1.1. SEARCH SPACE

Our search space encompasses both the width and depth of networks, which are the most critical structural hyperparameters
for model scaling.

The width in networks typically covers the channel dimension in convolutional layers, the feature dimension in fully
connected layers, qkv dimension and the number of heads in attention mechanisms, among others. For convolutional and
fully connected layers, we use two distinct differentiable topk operators to model their respective input and output widths,
treating each channel or feature as an individual element. For multi-head attention, we employ a single differentiable topk to
represent the number of heads, treating each head as a separate element.

Specifically, we apply our differentiable topk to different layers by multiplying masks, output by differentiable topk
operators, and inputs to layers. For convolutional layers, suppose the input is X ∈ RB×C×H×W , and the mask is reshaped
as m ∈ R1×C×1×1, X ×m works as the new input to the layer. For an attention layer, we search the head dims of qkv and
the number of heads. Suppose our supernet has H heads and D dims in each head. We have a mask for qk head dim with
mqk ∈ R1×1×1×D, a mask for v head dim with mv ∈ R1×1×1×D, and a mask for number of heads mhead ∈ R1×H×1×1.
Suppose the sequence length is L, and the qkv for self-attention is Q,K, V ∈ RB×H×L×D. We compute the output of the
self-attention by softmax(Q

′K′T
√
D

)V ′, where Q′ = Q×mqk ×mhead,K
′ = K ×mqk ×mhead, V

′ = V ×mv ×mhead.

It is crucial to highlight that there can be channel or feature dependencies within models (Liu et al., 2021; Fang et al.,
2023). Interdependent Layers are treated as one group and share the same differentiable topk. We implemented this using
an open-source model compression toolkit MMRazor (Contributors, 2021), which is able to build element dependencies
automatically.

Regarding depth, we focus on networks with residual connections. In this context, a residual block can be defined as
xi+1 = xi + f(xi), and contiguous residual blocks are viewed as a network stage. The depth in our approach mainly
comprises the number of blocks in each stage. We use a single differentiable topk for a network stage, with each block
functioning as a distinct element. We incorporate the soft masks of differentiable topk into residual connections, allowing
each block to be represented as xi+1 = xi + f(xi)×mi. In the context of Transformers, an attention mechanism combined
with a feed-forward network (FFN) is considered as one block sharing the same soft mask.

The depth and width structure hyperparameters are trained jointly in our approach. For example, we have a layer and an
input x; we use mLi

∈ [0, 1] to denote the depth mask and mC ∈ [0, 1]N for the width mask. The forward process is as
follows: y = mC × x+mLi

× layer(mC × x). After searching, we will prune depth and width according to the depth
mask and width mask, respectively.

Besides, as some maximal numbers of elements are small from several to tens, like the number of blocks and attention heads,
we increase the λ in the differentiable topk operators from N to 4N to approximate a hard mask generation function better.

For a structural hyperparameter x, we search it, in a fine-grained manner, in the range of [1, xmax] with a step of 1. while
most of prior NAS methods (Cai et al., 2019; Chen et al., 2021) search it, in a coarse-grained manner, in the range of
[xmin, xmax] with a large step, like 32. Our search method is also comparable with these coarse-grained search spaces. We
limit the value of a to [0, 1− xmin

xmax
] to ensure x ∈ [xmin, xmax]. We treat contiguous elements in a step as a unit, and each

unit shares the same element importance and mask. For example, when searching the number of channels in a layer with a
step of 32, each 32 channels share the same element importance and mask.

A.1.2. RESOURCE CONSTRAIT

Our resource constraint loss is defined as:

lossresource =

{
log(rcrt) if rc > rt

0 otherwise
. (7)

(8)

In this definition, rc symbolizes the current level of resource consumption, and rt denotes the targeted level of resource

13

Differentiable Model Scaling using Differentiable Topk

consumption. If rc exceeds rt, a non-zero lossresource is used to compress the model. The value of rt is user-specified.
The value of rc is calculated based on the learnable parameters of differentiable topk operators. Take a linear layer as
an example, we use fin and fout to represent the number of input and output features, respectively. ain and aout are the
learnable parameters of differentiable topk operators for that layer. We compute different resource consumption as follows:

MAC constraint: rc = fin × ain × fout × aout × batchsize

The Number of Parameters constraint: rc = fin × ain × fout × aout

Latency constraint: rc = latencymax × F (ain, aout), where latencymax is the latency of the layer without pruning. F is
a contiguous function to map the pruning ratio ain,aout to the ratio of the latency of the pruned layer to the original layer. F
can be found by:

F = argminF (MSE(latencypruned(ain,aout) − latencymax × F (ain, aout))) (9)

latencypruned(ain,aout) is the latency of the pruned layer with ain,aout as the pruning ratio. Take the OFA search space
as an example, aout always equals ain, and each block only has three width choices. Hence, we just employ a quadratic
function as F , and it works fine.

To enhance stability during training, we gradually reduce rt to the final target value rfinalt throughout the training process
by default. For an epoch-based training procedure, rt is determined by an exponential decay function as shown below:

rt = (
rfinalt

rsupernet
)

e
emax × rsupernet, where

rfinalt

rsupernet
< 1. (10)

Here, e denotes the current epoch out of total epochs emax. rsupernet is a constant representing the resource demand of the
supernet.

Furthermore, since resource consumption can fluctuate significantly with respect to depth, we introduce extra epochs
dedicated to optimizing width while maintaining depth constant. By adopting the strategies outlined above, Differentiable
Model Scaling ensures that models adhere to specific resource constraints.

A.2. More Experiments

A.2.1. COMPARISON WITH MORE NAS METHODS

We additionally compare our method with more NAS methods, as shown in Table 9. Note this is a rough comparison. As it’s
hard to compute a precise search cost for some methods, we only group them into two groups, including high-search-cost
methods and low-search-cost methods, according to a rough estimation of their search costs. High-search-cost methods cost
over 100 GPU days, while others belong to low-search-cost methods.

We draw Table 4 and Table 9 as accuracy vs MACs plots and a search costs vs accuracy plot, as shown in Figure 3. It can be
observed that our DMS outperforms low-search-cost methods significantly. DMS achieves much lower search costs than
high-search-cost methods, achieving comparable and even higher performance.

A.2.2. MORE IMAGE CLASSIFICATION EXPERIMENTS ON CNNS

We validated our method on ResNet (He et al., 2016) and MobileNetV2 (Sandler et al., 2018). Our searched ResNet
surpasses ResNet-50 by 1.1%. Furthermore, when the searched ResNet is trained using an enhanced training setting
(referred to as rsb-a1 (Wightman et al., 2021)), it also exceeds the corresponding model by 0.9%. Although MobileNetV2 is
lightweight, our searched version outperforms the original model by a margin of 1.0%.

A.2.3. OBJECT DETECTION EXPERIMENTS ON COCO

Since the complete end-to-end searching of our differentiable topk, DMS is a general search method that can be applied
to various tasks. We also evaluated DMS for object detection on COCO. We chose Yolo-v8-n (Jocher et al., 2023) as the
baseline model and searched for the optimal structure of it. Our searched version betters the original model by 2.0% in box
AP, as shown in Table 11.

14

Differentiable Model Scaling using Differentiable Topk

Table 9. Rough Comparison with more NAS methods. As some methods did not report their search cost, we simply use ”High” and
”Low” to represent the search cost of NAS methods, while ”High” for multi-shot NAS methods and one-shot NAS methods, ”Low” for
gradient-based NAS methods and zero-shot NAS methods. ‡ means the model is trained with distillation. We use the pipeline of “DMSnp”,
which does not load pretrained weights, in this table

Model NAS Type Top-1 (%) MACs (G) Params (M) Cost Level

JointPruning‡ (Guo et al., 2021a) Gradient 77.3 0.34 /

Low

DMSnp-EN-350‡ (ours) Gradient 78.5 0.35 5.6
Zen-score‡ (Lin et al., 2021) ZeroShot 78.0 0.41 5.7
DMSnp-EN-B0‡ (ours) Gradient 79.0 0.39 6.2
ZiCo‡ (Li et al., 2023) ZeroShot 78.1 0.45 /
DMSnp*-EN-450‡ (ours) Gradient 79.4 0.45 6.5
Zen-score‡ (Lin et al., 2021) ZeroShot 79.1 0.60 7.1
ZiCo‡ (Li et al., 2023) ZeroShot 79.4 0.60 /
DMSnp-EN-B1‡ (ours) Gradient 80.7 0.68 8.9
ZiCo‡ (Li et al., 2023) ZeroShot 80.5 1.0 /
Zen-score‡ (Lin et al., 2021) ZeroShot 80.8 0.9 19.4
DMSnp-EN-B2‡ (ours) Gradient 81.8 1.1 9.6

MnasNet-A2 (Tan et al., 2019) MultiShot 75.6 0.34 4.8

High

FBNetV2-L1 (Wan et al., 2020) Gradient 77.2 0.33 /
ScaleNet-EN-B0 (Xie et al., 2022) OneShot 77.5 0.35 4.4
DMSnp-EN-350 (ours) Gradient 78.0 0.35 5.6
MnasNet-A3 (Tan et al., 2019) MultiShot 76.7 0.40 5.2
EfficientNet-B0 (Tan & Le, 2019) MultiShot 77.1 0.39 5.3
DMSnp-EN-B0 (ours) Gradient 78.5 0.39 6.2
DONNA‡ (Moons et al., 2021) OneShot 78.0 0.50 /
DMSnp*-EN-450 (ours) Gradient 78.8 0.45 6.5
DMSnp*-EN-450‡ (ours) Gradient 79.4 0.45 6.5
EfficientNet-B1 (Tan & Le, 2019) MultiShot 79.1 0.69 7.8
DMSnp-EN-B1 (ours) Gradient 80.0 0.68 8.9
ScaleNet-EN-B1 (Xie et al., 2022) OneShot 79.9 0.80 7.4
ModelAmplification-EN-B1 (Liu et al., 2022) MultiShot 79.9 0.68 8.8
EfficientNet-B2 (Tan & Le, 2019) MultiShot 80.1 1.0 9.2
ModelAmplification-EN-B2 (Liu et al., 2022) MultiShot 80.9 1.0 9.3
BigNAS-XL‡ (Liu et al., 2022) OneShot 80.9 1.0 9.5
DMSnp-EN-B2 (ours) Gradient 81.1 1.1 9.6
DMSnp-EN-B2‡ (ours) Gradient 81.8 1.1 9.6

Table 10. Experiments on ImageNet with Classic CNNs. We searched the models’ width and depth and compared them with the original
models. We use the pipeline of “DMSnp”, which does not load pretrained weights, in this table.

Model Top-1 (%) MACs (G) Params (M)

ResNet-50 (He et al., 2016) 76.5 4.1 25.6
DMS-ResNet 77.6 4.0 28.4

ResNet-50-rsb-a1 (He et al., 2016) 80.1 4.1 25.6
DMS-ResNet-rsb-a1 81.0 4.0 28.4

MobileNetV2 (Sandler et al., 2018) 72.0 0.3 3.4
DMS-MobileNetV2 73.0 0.3 5.3

Table 11. Object Detection Experiments on COCO. We use the pipeline of “DMSnp”, which does not load pretrained weights, in this table.

Model mAP (%) MACs (G) Params (M)

Yolo-v8-n (Jocher et al., 2023) 37.4 4.4 3.2
DMSnp-Yolo-v8-n (ours) 39.4 4.2 2.7

15

Differentiable Model Scaling using Differentiable Topk

(a) (b) (c)

Figure 3. We draw these three plots based on Table 4 and Table 9. We use larger dot sizes to represent the ”High” search cost level and
smaller dot sizes to represent the ”Low” search cost level. Dashed lines are used to represent the models trained with distillation. (a)
Performance Comparison with Low-Search-Cost methods It can be seen that our method outperforms these methods significantly. (b)
Performance Comparison with High-Search-Cost methods Our method achieves comparable or even better performance, while all
high-search-cost methods cost more than dozens of times our total search costs. (c) Search Cost Comparison with High-Search-Cost
methods We compare the search costs of ours and that of high-search-cost methods. We only draw methods with precise search cost
estimation. The search costs of unpainted high-search-cost methods are also larger than 100 GPU days. We present search costs on a log
scale.

Table 12. Comparison with other Gradient-based Methods: We use “DMSp-” pipeline for all methods in this table.

Method Top-1 (%) MACs (G)

DMSp-w/o normalization 0.1 3
DMSp-(ours) 70.7 3

A.3. More Ablaion Study

A.3.1. ABLATION STUDY ON IMPORTANCE NORMALIZATION

We compare our method with that of disabling importance normalization (replace Eq 2 by c′i = ci), as shown in Table
12. We use the pipeline of “DMSp-” for all methods in this table, and ResNet-50 as our supernet. Without importance
normalization, our method drops to an extremely low performance. It’s caused by the unevenly distributed importance,
which makes our topk function hard to optimize. This result demonstrates the significance of our importance normalization.

A.3.2. ABLATION STUDY ON PRETRAINING AND SUPERNET SIZES

It’s widely accepted that both pretraining and increasing supernet size can improve the performance of searched models
(Liu et al., 2018b; Frankle & Carbin, 2018). However, both of them also introduce more resource consumption. Here, we
compare the influence of conducting pretraining and increasing supernet size on performance and resource consumption.
Note, when we load pretrained weights, it means we use “DMSp” pipeline, and when we do not load pretrained weights,
it means we use “DMSnp” pipeline. We search for ResNet models of 1G MACs models with different supernet sizes and
compare their performance and resource consumption. The results are shown in Table 13.

For pretraining, searching on a pretrained ResNet-50 surpluses searching on a randomly initialized ResNet-50 by 0.7%.
However, pretraining also increases resource consumption by about 10 times. For supernet sizes, searching on a randomly
initialized ResNet-152 surpluses searching on a randomly initialized ResNet-50 by 1.5%, and only increases about 3 times
the resource consumption. We find increasing supernet size is more efficient than using strong pretrained weights for our

16

Differentiable Model Scaling using Differentiable Topk

Table 13. Ablation Study on Pretraining and Supernet Size. We search for 1G models in these experiments. Costpretrain is the cost of
pretraining a supernet, Costsearch is the cost of searching a model. The unit of cost is GMACs× epochs.

Supernet Pretrain (Pipeline) Cost Top-1 (%)

ResNet-50 Y (DMSp) 410 + 41 73.8

ResNet-50 N (DMSnp) 0 + 41 73.1
ResNet-101 N (DMSnp) 0 + 79 74.2
ResNet-152 N (DMSnp) 0 + 116 74.6

Table 14. Experiment with Latency Constraint: We compare our DMS with an evolutionary algorithm (EA) under the latency constraint of
3ms on RTX3090. Only EA + predictor needs a public cost, which is used to train an accuracy predictor. The unit for search cost is GPU
hours, respectively. We use the pipeline of “DMSp-” in this table.

Method Top-1 (%) Latency (ms) Search Cost

EA + predictor
(Cai et al., 2019) 78.3 3 40 + 0.01

DMSp-(ours) 78.3 3 0 + 0.05

method. Therefore, our default pipeline “DMSnp” just searches on randomly initialized supernets, making our method much
more efficient than high-search-cost NAS methods. It also makes our method easier to be applied in the real world. This
benefit originates from the high search efficiency of our method, making us use much fewer epochs to search a model than
that of pretraining a supernet.

A.3.3. SEARCH WITH LATENCY CONSTRAINT

Except for the MAC constraint, we also conduct experiments with latency constraint. We utilize the supernet of OFA (Cai
et al., 2019) and search for models under the latency constraint of 3ms on RTX3090. The results are shown in Table 14. Our
method costs much less in search costs and achieves the same performance as the evolutionary algorithm. It demonstrates
that our method is applicable under different constraints. The implementation detail of our latency constraint is detailed in
Appendix A.1.2.

A.3.4. ABLATION STUDY OF SEARCH TIME

We assessed the relationship between search time and final performance, as detailed in Table 15. Our method achieves the
best performance with 10 epochs. It’s about 1/10 of the epochs of retraining the searched model. This proves the high search
efficiency of our method, where a few epochs are enough to search for a model. Besides, even though when the search
time is only 3 epochs, the performance of the searched model is still better than the human-designed ResNet-18 with fewer
MACs.

A.3.5. ABLATION STUDY OF HYPERPARAMETERS FOR OUR METHOD

We divide the hyperparameters of our method into two categories: fixed hyperparameters and unfixed hyperparameters.
Fixed hyperparameters are hyperparameters that are fixed for all models, while unfixed hyperparameters are hyperparameters
that needs to be turned for different models.

The fixed hyperparameters include the decay rate for Taylor importance and the temperature λ for our differentiable topk
operator.

Taylor importance (Molchanov et al., 2019) is a well-known method to measure the importance of elements, and the decay
of moving average is also widely used in the literature. Therefore, we directly use the decay rate of 0.99 regarding prior
works.

Temperature λ of our differentiable topk. The temperature is used to polarize (Zhuang et al., 2020) the mask of elements.
Directly selecting a value that can polarize the mask of elements is enough. Thanks to our importance normalization, the
temperature can be directly computed by closed-form, detailed in Section 3.1.2. The temperature λ is set to N for width
elements and 4N for depth elements and the number of heads in attention mechanisms. N is the number of elements in the

17

Differentiable Model Scaling using Differentiable Topk

Table 15. Ablation Study on Search Time. We use the pipeline of “DMSnp”, which does not load pretrained weights, in this table. Note:
Training a ResNet-18 from scratch requires 100 epochs.

Search Time MACs (G) Top-1 (%)

ResNet-18 1.8 69.9

3 epochs 1 71.6
5 epochs 1 72.9
10 epochs 1 73.1
20 epochs 1 72.8

Table 16. Ablation Study on Unfixed Hyperparameters. ”/” denotes that the model cannot reach our resource target. We use the pipeline
of “DMSnp”, which does not load pretrained weights, in this table.

λresource

lrstructure 5e-2 5e-3 5e-4 5e-5

0.1 / / / /
1 73.0 73.1 72.9 /
10 72.5 72.2 72.6 70.9

corresponding dimension. They work well for all models.

Therefore, we do not conduct an ablation study on these fixed hyperparameters.

The unfixed hyperparameters include the weight of resource constraint loss λresource and the learning rate for structure
parameters lrstructure. They are used to control the update of the structure parameters. The update value of a structure
parameter is computed by lrstructure×(gtask+λresource×gresource), where gtask and gresource is the gradient of structure
parameters with respect to the task loss and resource constraint loss, Table 16 shows the ablation study results.

Obviously, 1) Smaller λresource is better, as far as the model can reach the target resource constraint. Smaller λresource

means that the task loss takes more control of the update of the structure parameter. 2) When λresource is small, the model
is not sensitive to the change of lrstructure. When λresource is large, a relatively large lrstructure is better. This is because
reaching the target resource constraint quickly can reduce the influence of the resource constraint loss, as resource constraint
loss is zero when the model reaches the target resource constraint.

Therefore, the setting of λresource and lrstructure is not difficult. We first fix lrstructure and turn λresource to a small value
and ensure the model can reach the target resource constraint. Then, we turn lrstructure to a relatively large value, which
makes the model reach the target resource constraint in the first hundreds of iterations. Only observing the decrease in
resource use in the first epoch is enough to set these two hyperparameters.

Compared with other NAS methods, our method uses fewer hyperparameters. For example, ModelAmplification (Liu et al.,
2022) must turn at least five hyperparameters for different tasks and models.

A.3.6. ABLATION STUDY ON SEARCH SPACES

In prior experiments, except for our own search space, we also apply our method on the search space defined by OFA (Cai
et al., 2019) in Section 4.1.2 and Appendix A.3.3. Experiment results demonstrate our method works fine on these search
spaces. Here, we further conduct an ablation study about search spaces.

There are two differences between the search space of our method and that of prior NAS methods.

• On CNN models, we only search for width and depth, while prior methods usually also search for resolution and kernel
size. We do not search for resolution and kernel size because we want to build a general search method that can be
applied to various tasks and architectures. Searching for resolution and kernel size is not necessary for transformers
and other tasks except for vision tasks.

18

Differentiable Model Scaling using Differentiable Topk

Table 17. Ablation Study on Search Space. We compare the performance with Autoformer with the exact same search space. We use the
pipeline of “DMSnp”, which does not load pretrained weights, in this table.

Method Search Space Supernet Size (G) Top-1 (G) Search Cost (GPU days)

Autoformer-T (Chen et al., 2021) Carse-Grained 2.2 74.7 > 25

DMSnp(ours) Fine-Grained 2.2 74.8 2
DMSnp(ours) Fine-Grained 6.1 75.1 5.5
DMSnp(ours) Carse-Grained 2.2 75.2 2

• Due to our high search efficiency, our search space is more fine-grained, while prior methods usually implement a
coarse-grained search space containing much fewer sub-networks than ours. Besides, Coarse-grained search spaces
also always need more expert knowledge to design, making it hard to build a general search method. Specifically, for
a structure hyperparameter x, we directly search it in the range of [1, xmax] with step 1, while most prior methods
usually search it in the range of [xmin, xmax] with a minimal step, such as 32 and 64.

Here, we conduct an ablation study based on Autoformer (Chen et al., 2021) search space. Autoformer implements a
coarse-grained search space, such as searching embedding size with a minimal size of 192, a maximal size of 240, and a
step of 24. We search two models with the exact same coarse-grained search space as Autoformer and a corresponding
fine-grained search space. The results are shown in Table 17.

On the same supernet size, regardless of whether the fine-grained search space or the coarse-grained search space, our
method performs better than Autoformer, with less than 1/10 of the search costs. It proves our high search efficiency.
Besides, we find coarse-grained search yields better performance than fine-grained search space for our methods. This is
because human-designed coarse-grained search space has been a pretty good sub-space of the fine-grained search space by
the search conducted by human experts. The coarse-grained search space was updated by many human experts in different
research projects. The “search costs” of this “human searching stage” may take a lot of time and resources.

Besides, we find increasing the supernet size makes the fine-grained search space achieve comparable performance with the
coarse-grained search space. It demonstrates that a bigger supernet size contains better subnets, which can be searched by
our method.

In this paper, as we want to build a general search method with the least human labor, we still use the fine-grained search
space as our default search space.

A.4. Implementation Details

A.4.1. DETAIL OF TRAINING SETTING

In general, given a baseline model and a training setting, we enlarge the baseline model as our supernet and decrease the
number of epochs of the training setting as our searching setting. We list details of our experiment setting as shown below.

EfficientNet: For all DMSnp-ES variants, we pruned the supernets over a span of 30 epochs. For those DMSnp-ES variants
with MACs fewer than 0.5G, the pruning was conducted from EfficientNet-B4, using an input size of 224. Meanwhile, for
DMSnp-EN-B1 and B2, the pruning was initiated from EfficientNet-B7. The input sizes for DMSnp-EN-B1 and B2 were
256 and 288, respectively. Subsequently, the DMSnp-EN variants were retrained using the corresponding training scripts of
EfficientNet available in the Timm library (Wightman, 2019).

ResNet: We pruned the ResNet over ten epochs, starting from the ResNet-152 model. After pruning, the ResNet was
retrained utilizing the MMPretrain (Contributors, 2023) training settings. This encompasses the foundational setting with a
step learning scheduler and the rsb-a1 configuration.

MobileNetV2: To search for the ideal structure for MobileNet, we commenced by enlarging MobileNetV2 before pruning.
Specifically, all channel numbers were expanded by 1.5 times, and the number of blocks in each stage was doubled. The
pruning process for MobileNetV2 spans 30 epochs. Subsequent to this, the architecture was retrained employing the
MMPretrain training settings.

19

Differentiable Model Scaling using Differentiable Topk

Deit: We enhanced the depth of the Deit-small model, moving from 12 to 16, to serve as the supernet. The pruning for
Deit was conducted with 30 epochs, including 20 epochs as a warmup phase. After pruning, we retrained the model using
MMPretrain combined with the Swin training setting.

Yolo-v8 We used Yolo-v8 with deepen factor of 0.5 and widen factor of 0.5 as our supernet, while the original Yolo-v8-n has
deepen factor of 0.33 and widen factor of 0.26. We used the training setting of Yolo-v8-n to train the supernet and pruned it
over 30 epochs. The experiment of Yolo-v8 was conducted based on MMYolo (Contributors, 2022).

A.4.2. DETAIL OF SEARCH COST ESTIMATION

In this section, we delve into the specifics of how we estimate the search costs for other NAS methods as outlined in Table
4. The search cost of a searched model is divided into two parts: the public part and the private part. The public part is
conducted for all sub-models, while the private part pertains to a specific sub-model.

EfficientNet: EfficientNet searches for common scaling strategies across all variants, thus incurring no private search cost.
The public search cost estimate for EfficientNet is sourced directly from the ScaleNet paper (Xie et al., 2022).

ScaleNet (Xie et al., 2022): The ScaleNet paper explicitly presented their search cost, which includes a public cost of 379
GPU days and a private cost of 106 GPU days for several sub-models, totaling 21G MACs. We compute the private search
cost for a sub-model based on the ratio of its MACs to the overall 21G MACs.

ModelAmplification (Liu et al., 2022): As a multi-shot NAS method, ModelAmplification requires training multiple models.
For all sub-models, it utilizes a public proxy dataset and a proxy training script. Approximately 2007 epochs are expended
to examine the proxy dataset, and an additional 2963 epochs are used for the proxy training script, leading to a total of 4970
epochs. During the model search phase, for a variant with 390M MACs, ModelAmplification trains about 390 models per
iteration. Assuming a ten-fold iteration search per model, this results in roughly 3000 epochs. By benchmarking the training
time of EfficientNet-B0 on A100, we determine that 100 epochs require about 2.5 GPU days. As a result, the public search
cost for ModelAmplification is at least 144 GPU days, while the private cost for the 390M MACs variant is 75 GPU days.
We linearly scale the search costs of different variants based on their MACs.

JointPruning (Guo et al., 2021a): As a gradient-based pruning method, JointPruning presumably employs a supernet and
training script analogous to ours. We deduce its search cost based on the number of pruning epochs. JointPruning paper
indicates that a quarter of the total training epochs is earmarked for model searching. In contrast, we utilize at most a tenth
of the total epochs for this purpose. Hence, the search cost for JointPruning is 2.5 times that of ours.

A.5. Visualization of Searched Model Structure

In Figure 4, a visualization is provided to delineate the structural intricacies of our searched DMSnp-EN-B0 in comparison
to EfficientNet-B0. A distinct observation that stands out is the depth of our DMSnp-EN-B0. It possesses 8 more inverted
residual blocks than its EfficientNet counterpart. Furthermore, when we delve deeper into the channel distribution across
different stages, it becomes evident that our DMSnp-EN-B0 has undergone significant structural modifications, veering away
from the traditional blueprint of EfficientNet-B0. Such distinct differences underscore the fine-grained adaptability of our
method, emphasizing its capability to recalibrate and refine models in a way that they are acutely tailored to the task.

20

Differentiable Model Scaling using Differentiable Topk

Figure 4. Visualization of Our Searched Structure. The x-axis represents the layers’ width (channels/features), while the y-axis represents
the layers. As DMSnp-EN-B0 has more layers than EfficientNet-B0, the width of extra layers for EfficientNet-B0 are seen as 0.

21

