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ABSTRACT

In this paper, we introduce the retrieval problem, a simple reasoning task that can
be solved only by transformers with a minimum number of layers. The task has
an adjustable difficulty that can further increase the required number of layers to
any arbitrary value. We demonstrate that large language models can solve the task
under different prompting formulations without any fine-tuning. To understand
how transformers solve the retrieval problem, we train several transformers on a
minimal formulation. We find that successful learning occurs only under the pres-
ence of an implicit curriculum. We uncover the learned mechanisms by studying
the attention maps in the trained transformers. We also study the training process,
uncovering that attention heads always emerge in a specific sequence.

1 INTRODUCTION

How do neural networks solve the tasks that they are trained on? Is there a clear algorithm hiding
behind the millions of unintelligible weights and biases? These are the questions that the field
of mechanistic interpretability tries to answer. If successful, this line of research could lead to a
better understanding of neural networks and the development of AI systems with increased safety,
reliability, and efficiency (Doshi-Velez & Kim, 2017; Olah et al., 2020; Elhage et al., 2021).

Transformers (Vaswani, 2017) have become the dominant architecture in natural language process-
ing, achieving state-of-the-art results on a wide range of tasks (Brown, 2020; Achiam et al., 2023).
Recent interpretability research has successfully uncovered the mechanisms learned by single-layer
(Nanda et al., 2023; Quirke et al., 2023) and two-layer (Olsson et al., 2022) transformers. However,
understanding the mechanisms learned by deeper transformers remains an open problem. Auto-
matic circuit analysis of large language models provides valuable insights about isolated circuits
that span several layers, but such circuits remain not fully understood (Wang et al., 2022; Conmy
et al., 2023). Therefore, understanding the mechanisms of multi-layer transformers is a crucial step
towards understanding state-of-the-art language models.

In this paper, we try to answer the following questions:

Q1. Are there tasks that can be solved only by transformers with a specific depth?

Q2. Are large language models able to solve such tasks without specific fine-tuning?

Q3. What is the mechanism that transformers use to solve the task?

Q4. How does this mechanism emerge during training?

We answer Q1 positively by introducing the retrieval problem, as well as a close variant that we
term the conditional retrieval problem. We answer Q2 positively by demonstrating that large lan-
guage models can solve both problems without any specific fine-tuning under multiple prompting
formulations. This suggests that large language models have learned a complex mechanism formed
by multiple stacked attention heads. To elucidate this mechanism (Q3), we train several transform-
ers on a minimal formulation of the retrieval problem. By studying the attention maps in the trained
transformers, we uncover multiple possible mechanisms that we term retrieval heads. Regarding
the training process (Q4), we find that retrieval heads emerge only under the presence of an implicit
curriculum and always in a specific sequence.
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Alice lives in Wonderland. [...]
Harry's mother is Alice. [...]
Wizards live with their mothers. [...]
Harry is a wizard. [...]
Where does Harry live?

Harry lives in Wonderland.

Large Language Model

Conditional Retrieval Question

[...] = irrelevant information to ensure full reasoning
           e.g. Mary is a pirate. Aslan lives in Narnia. etc.

A = 7 [...]
B = A [...]
C = B [...]
D = C [...]
What is the value of  D?

The value of  D is 7.

Large Language Model

Retrieval Question

[...] = irrelevant information to ensure full
           retrieval, e.g. H = 2, G = H, etc.

Figure 1: Illustrative examples of retrieval and conditional retrieval questions.

2 RELATED WORK

Single-layer transformers. Perhaps the most well-studied setting for single-layer transformers is
the problem of modular addition. Nanda et al. (2023) show that transformers solve modular addition
by arranging the embedding vectors in a circular structure and leveraging the attention mechanism
to perform trigonometric operations. Zhong et al. (2024) extend this work by uncovering other algo-
rithms and embedding structures. Even the training dynamics are beginning to be understood, with
Ding et al. (2024) studying the survival of initial circular representations and Musat (2024) propos-
ing an effective theory of the training dynamics by modeling the embeddings as a particle system.
Quirke et al. (2023) train a single-layer transformer with three attention heads on the problem of
n-digit integer addition. They find that transformers break down the multi-digit addition task into
parallel, digit-specific streams, using different algorithms for various digit positions.

Two-layer transformers. By studying two-layer transformers, Olsson et al. (2022) uncover a
mechanism termed induction head that, given an input sequece ab. . . a, can predict b. One possible
use of an induction head is sequence copying, but it can also perform more high-level functions such
as translation. The induction head is formed by two stacked attention heads. The first head copies
into the residual stream of b the value of the previous token a. The second head is then able to
attend to the token b and copy it into the residual stream of the final token. Reddy (2023) explains
the emergence of the induction head during training by the sequential learning of three nested logits
enabled by an implicit curriculum.

Large language models. Several studies on large language models use automated or semi-
automated methods to isolate circuits that solve a specific task (Conmy et al., 2023; Goldowsky-
Dill et al., 2023). Such circuits often span many layers, but their mechanisms remain not fully
understood (Wang et al., 2022). Attention heads in large language models are often strongly inter-
dependent, which makes it difficult to isolate and understand individual heads (Bricken et al., 2023).
In large language models, even the simple task of greater-than comparison, which could in princi-
ple be solved by a single-layer transformer, is solved by a complex mechanism formed by multiple
attention heads and MLPs (Hanna et al., 2024).

3 PROBLEM DEFINITION

The retrieval problem is directly inspired by the induction problem introduced by Olsson et al.
(2022). Given an input sequence ab. . .a, the induction problem requires the model to predict the
token b. We directly extend this formulation by increasing the number of induction steps to D.
Given an input sequence xD−1xD . . . . . . . . .x1x2. . .x0x1. . .x0, the retrieval problem consists in
predicting the token xD. By setting D = 1, we recover exactly the original induction problem.

We propose an even more general variant of the retrieval problem, which we term the conditional
retrieval problem, where each retrieval step could depend on multiple previously retrieved values,
not just the last one. For example, given the input sequence xyz. . .ay. . .ax. . .a, predicting the
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token z would constitute a conditional retrieval problem. The retrieval steps in the retrieval problem
are perfectly linear, while in the conditional retrieval, they form a directed acyclic graph.
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Accuracy of state-of-the-art language models
on the retrieval task (equations formulation)

GPT-4o
Claude 3.5 Sonnet
Gemini 1.5 Pro
Llama 3.1 405b
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Relatives
formulation

Functions
formulation

Kingdoms
formulation

(D=5)

Lives with
formulation

(D=5)

Accuracy of GPT-4o on different retrieval
and conditional retrieval tasks

Figure 2: Accuracy of large language models on the retrieval and conditional
retrieval problems. Dashed lines indicate the accuracy of random guessing. Full
prompts and benchmarking details are provided in Appendix A.

4 LARGE LANGUAGE MODELS

To better illustrate the task and to enable benchmarking of large language models, we propose 5
specific formulations of the retrieval problems: 3 retrieval formulations and 2 conditional retrieval
formulations.

F1. Equations formulation: “a = 3. b = a. c = b. c = ?”
F2. Lives-with formulation: “Alice lives in Switzerland. Bob lives with Alice. Charlie lives

with Bob. David lives with Charlie. Where does David live?”
F3. Kingdoms formulation: “Alice lives in Novaria. Novarians believe in harmonianism. Har-

monianists eat lamb. Lamb contains Zephyrium. Zephyrium causes Chronogy. Who has
Chronogy?”

F4. Functions formulation (conditional retrieval): “f(2) = 3. g = f. a = 2. g(a) = ?”
F5. Relatives formulation (conditional retrieval): “Jane lives in Switzerland. Alex’s mother is

Jane. Engineers live with their mothers. Alex is an engineer. Where does Alex live?”

To ensure that the retrieval problem is not trivially solvable by just finding the noun that fits the
question, we interleave multiple retrieval chains in the same question. This ensures that the model
performs the entire reasoning chain. To facilitate benchmarking, we also ask the model to output the
answer directly without any additional words and we repeat sampling until an acceptable answer is
generated. In Appendix A, we provide examples of the full prompts, correct answers, and acceptable
answers for each formulation.

We test the large language models on 500 randomly generated questions for each formulation. The
results are presented in Figure 2. For the equations formulation, we also measure the accuracy for
different difficulty levels D (number of equations) and we find that large language models can solve
it almost perfectly for D ≤ 5. Great performance is also achieved on the lives-with and kingdoms
formulations with D = 5, as well as on the conditional retrieval formulations functions and relatives.

5 THEORETICAL ANALYSIS OF INFORMATION FLOW

In this section, we provide formal proof that the retrieval problem requires a minimum number of
transformer layers depending on the number of retrieval steps D. We model the information flow
between different positions during self-attention under the following assumption:

3
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Assumption 1. During self-attention, a position can only attend to another position if they already
share a piece of information.

This assumption is motivated by the fact that a position can only attend to another position if their key
and query vectors align. Constructing aligned key-query pairs is only possible if the two positions
already share some information. More precisely, the shared information must be located in the row
spaces of the query and key matrices of the attending and attended positions, respectively.

Lemma 1. During self-attention, a position can only attend to another position if they already
contain a shared token embedding or positional encoding.

Proof. In the retrieval problem, the token valuess and pair positions are assigned randomly and
independently. Knowing a token or position does not provide any information about any other token
or position. Therefore, the only way for two positions to share information is if they already contain
a shared token embedding or positional encoding.

C D ... B C ...E F ... D E ... A B ... A F

Figure 3: Positions that contain shared information before any trans-
former layers in the case of D = 5. Top edges denote shared token
embeddings. Bottom edges denote shared positional encodings.

Definitions. Let’s consider all relevant input positions ordered by their reachability from the last
token following exactly the paths in Figure 3 (e.g., x0x0x1x1x2x2 . . . ). We denote the residual
stream of i-th position in this sequence after layer t as rt,i (e.g., r0,0 is the residual stream of the last
token before any transformer layers). We denote by pi the positional encoding for the i-th input pair
in the same order of reachability. The initial residual stream r0,i contains only the token embedding
and the positional encoding of the i-th position. The token embedding xi is shared by r0,2i and
r0,2i+1, and the positional encoding pi is shared by r0,2i−1 and r0,2i. Since the distinction between
the token embedding and the positional encoding is not relevant for the information flow, we can
consider them together by denoting as ei the piece of information shared by r0,i and r0,i+1.

We are interested in the minimum number of layers t such that rt,0 could contain the target token
xD. We make a further simplification by introducing an additional assumption that ignores network
capacity limitations:

Assumption 2. When a position attends to another position, it retrieves all the information contained
in the attended position.

Solving this setting will give us a lower bound on the number of layers required to solve the retrieval
problem in the case of a limited network capacity.

Lemma 2. After every layer, every residual stream rt,i will contain a contiguous sequence of pieces
of information (e.g., {ea, ea+1, . . . , eb}).

Proof. We can show this using mathematical induction. The initial residual stream r0,i contains only
the token embedding and the positional encoding, which represent the consecutive pieces of infor-
mation {ei, ei+1}. During self-attention, the existing contiguous sequence of pieces of information
in rt,i will be merged with other contiguous sequences (assumption 2) that share at least one piece
of information with rt,i (lemma 1). Their union in rt+1,i remains a contiguous sequence.

Lemma 3. After every layer t, the contiguous sequence of pieces of information in rt,i will have a
length of at most 3t + 1 for all i.

Proof. We can show this using mathematical induction once again. The initial residual streams r0,i
contain exactly two pieces of information: the token embedding and the positional encoding. During
the t-th layer of self-attention, the contiguous sequence of pieces of information in rt−1,i will grow
by at most 3t−1 pieces of information to the left and the right, resulting in a new total length of at
most 3t + 1.
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Theorem 1. The embedding vector xD of the target token cannot be present in the residual stream
rt,0 after t layers if t < log3(2D).

Proof. The embedding of the target token xD corresponds to the piece of information e2D. For rt,0
to contain e2D, the length of its contiguous sequence must be at least 2D + 1. By Lemma 3, this
length will not be reached if 3t + 1 < 2D + 1, which is equivalent to t < log3(2D).

Theorem 1 shows that the retrieval problem with D steps cannot be solved by transformers with less
than log3(2D) layers. This result is a lower bound that does not take into account the limitations
of network capacity, causal masking, or training dynamics. In practice, we expect the number of
required layers to be even higher.

6 MINIMAL PROBLEM FORMULATION

In order to better study the mechanism by which transformers solve the retrieval problem, we in-
troduce a minimal formulation of the retrieval problem with N retrieval chains, D retrieval steps
per chain, and K embedding dimensions. We use N = 4 and K = 4 throughout. Each chain
contains D + 1 unique symbols forming D pairs and one query. For every input sequence, each of
the N(D + 1) unique symbols is assigned a K-dimensional vector whose components are sampled
i.i.d from a standard normal distribution.

We create the input sequences by perfectly interleaving the pairs of symbols forming each retrieval
chain, followed by the N query symbols. We randomly shuffle the query vectors. We also shuffle the
input pairs from different chains within the same retrieval step. Finally, we concatenate each token
embedding with a K-dimensional rotary positional encoding (Su et al., 2023). Each input sequence
will contain N(2D + 1) vectors of dimension 2K. The output sequences consist of N vectors, one
for each query token.

7 IMPLICIT CURRICULUM & NUMBER OF LAYERS

We consider two possible formulations: an implicit curriculum (IC) formulation and a non-IC for-
mulation. In the IC formulation, the target vectors have DN dimensions and contain all the tokens
forming each retrieval chain concatenated (except the query token x0). In the non-IC formulation,
the target vectors are K-dimensional and contain only the last token of each retrieval chain, namely
xD.

Our initial experiments suggest that the implicit curriculum (IC) plays a crucial role in the successful
learning of the retrieval problem. To better quantify this effect, we conduct two comprehensive sets
of experiments, one for each formulation (IC and non-IC). For each formulation, we train 64 trans-
formers with 1 to 8 layers (8 transformers for each number of layers). We plot the final validation
loss averaged across all runs with the same number of layers in Figure 4 (left).

To better understand the connection between the number of layers and the difficulty of the retrieval
problem, we also plot the partial validation loss for each position in the retrieval chains in the IC for-
mulation (Figure 4, right). We use D = 5 for the IC formulation to better illustrate this connection,
but only D = 3 for the non-IC formulation to illustrate the importance of the implicit curriculum.

7.1 TRAINING DETAILS

For each formulation and number of layers, we train 8 transformers following the recipe of Radford
et al. (2019). Each transformer has 8 attention heads per layer and residual streams of size 128.
We train for 10k steps using the Adam optimizer (Kingma, 2014) with a learning rate of 10−3,
decoupled weight decay of 0.1 (Loshchilov, 2017), a batch size of 512, 220 randomly generated
training examples, layer normalization (Ba et al., 2016), no dropout, and mean squared error loss.
We measure the final validation loss by averaging the validation loss over the last 100 training steps.
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Figure 4: Final validation loss by number of layers, averaged across multiple runs.
Left: IC vs. non-IC formulations. Right: Partial validation loss for each position in
the retrieval chains (IC only).

7.2 RESULTS

First, we observe that the IC formulation is essential for successful learning. In the non-IC formu-
lation, the transformers fail to learn the retrieval problem even for D = 3, regardless of the number
of layers. We confirm that for 100% of the non-IC runs, the final validation loss is above 0.7.

Second, we empirically confirm the connection between the number of layers and the difficulty of the
retrieval problem. For the IC formulation, the later positions in the retrieval chains (corresponding
to greater D) are more difficult to learn and require more layers.

Third, we find our first hint regarding the emergence of retrieval heads. During training with IC, the
partial losses for earlier positions in the retrieval chains always decrease faster than the partial losses
for later positions. We confirm that in 100% of the IC runs, the partial loss goes below 0.5 for x1

first, then for x2, and so on. We will further investigate this phenomenon in section 9.

8 REVERSE-ENGINEERING THE CIRCUITS LEARNED

To understand the mechanism learned by transformers to solve the retrieval problem, we train three
transformers (denoted as A, B, and C) with 12 layers and only one attention head per layer on
the retrieval problem with D = 3. We then manually reverse-engineer the circuits learned by the
transformers by studying their attention maps. The uncovered circuits are depicted in Figure 5. We
describe our reverse-engineer process in detail in Appendix D.

Layer Transformer B

10

11

9

8

C D ... B C ... A B ... A

ABBCCD

B
CD

AB
CD

AB
CD

Layer Trasnformer A

11

12

7

5

C D ... B C ... A B ... A

ABBCCD

B
CD

AB
CD

AB

Layer Transformer C

11

12

10

7

C D ... B C ... A B ... A

ABBCCD

A
BC

A
BC

AB
CD

Figure 5: Reverse-engineered circuits from three 12-layer transformers
trained on the retrieval problem with D = 3 and IC.

8.1 TRAINING DETAILS

We follow a similar training recipe as in the previous section. Each transformer has 12 layers, one
attention head per layer, and residual streams of size 128. We train each transformer for 24k steps,
a batch size of 128, and 262k randomly generated training examples (IC).
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8.2 RESULTS

We find that transformers A, B, and C achieve a validation mean squared error of less than 0.01.
By studying the attention maps in the trained transformers, we observe that most attention heads do
not perform any useful computation. Only a few attention heads are responsible for the information
flow. Their behavior is easily interpretable (see Appendix B).

We manually reverse-engineer the entire circuits learned by the three transformers, which are de-
picted in Figure 5. We perform extensive validations of the circuits using ablations. Our reverse-
engineering process is described in detail in Appendix D.

We observe two interesting facts about the reverse-engineered circuits:

i. First, in all three transformers, the first relevant attention head is connecting the first and
second tokens in each input pair, enabling the subsequent attention heads to attend to the
second token in the pair using the value of the first token. This mechanism is highly remi-
niscent of the induction head mechanism (Olsson et al., 2022; Reddy, 2023).

ii. Second, except for the first attention head, the circuits learned by the transformers are very
different. Interestingly, none of the transformers use the minimum number of attention
heads required to solve the retrieval problem for D = 3. All transformers use 4 atten-
tion heads, but it is possible to use only 3 (for example, by combining layers 7 and 11 in
transformer A).

9 EMERGENCE OF ATTENTION HEADS DURING TRAINING

To better understand how the retrieval heads emerge during training, we train a 24-layer transformer
(denoted as Transformer D) on the retrieval problem with D = 4 and IC. We manually reverse-
engineer the circuits learned by Transformer D following the same procedure as before. Afterward,
we measure the attention during training for each attention path in the reverse-engineered circuit.
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Figure 6: Loss during training of Transformer D (24 layers) with IC and D = 4.
Left: training and validation loss. Right: partial validation loss for each position
in the retrieval chain.

9.1 TRAINING DETAILS

We follow a similar training recipe as in the previous sections. Transformer D has 24 layers, one
attention head per layer, and residual streams of size 512. We train for 6400 steps (800 epochs), a
batch size of 256, and 262k randomly generated training examples (IC, D = 4). To speed up the
training and reduce the checkpoint size, we remove the MLPs and reduce the head size to 16.

We save a checkpoint every 10 epochs (80 steps) that we later use to measure the average attention
for each attention path in the reverse-engineered circuit, at each epoch during training, using 32
input sequences.

9.2 RESULTS

Transformer D achieves a validation mean squared error of 0.031. We plot the training, validation,
and partial validation loss in Figure 6. Using the same reverse-engineering procedure, we uncover
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a more complex circuit than before, with multiple paths connecting the same positions (Figure 7,
left). After ablation, the mean squared error increases to 0.045.

For every checkpoint, we measure the average attention for each attention path in the reverse-
engineered circuit. We approximate the attention between checkpoints using linear interpolation.
We display the plots for each attention path in Appendix C. Finally, we show the first epoch when
the average attention goes above 0.5 for each attention path (Figure 7, right).

Transformer D
Layer

Epoch of  attention emergence

23

24

22
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21

C D ... B C ... A B ... AD E ...

520 467

528 483
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487 471
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450 467 485 522
Layer

23

24
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14
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C D ... B C ... A B ... AD E ...

DE CD BC AB

ABC
DE

B
CD

A
BC

A
BC

BC
DE

AB
CD

AB
CD

ABC
DE

Figure 7: Left: manually reverse-engineered circuits of Transformer D.
Right: the epoch when the average attention goes above 0.5 for each
attention path.

By analyzing the partial loss curves and the emergence of attention paths, we can make the following
observations:

i. After 450 epochs of slow learning, an induction head that can retrieve token B emerges
abruptly (Reddy, 2023) on layers 14 and 21. This drives down the first partial loss.

ii. Quickly after, another attention head emerges on layer 22. This head reuses the induction
head (with slight adjustments) to retrieve token C and drive down the second partial loss.

iii. Finally, two more heads emerge on layers 23 and 24 that reuse the circuit formed by heads
14, 21, and 22 to retrieve the tokens D and E, respectively. This drives down the last two
partial losses.

iv. Head 24 emerges much later than head 23, possibly due to the greater modifications re-
quired to reuse the existing circuit.

Together, these observations strongly suggest the following possible explanation for the importance
of the implicit curriculum: The implicit curriculum provides a sequence of increasingly complex
tasks that enables learning the entire retrieval mechanism one head at a time, starting with an
induction head.

10 DISCUSSION

In this section, we briefly discuss two interesting aspects of our work in relation to language models.

RETREIVAL PROBLEMS & NATURAL LANGUAGE

In section 4, we saw that large language models achieve great performance on the retrieval problem.
However, the retrieval task cannot be explicitly present in the training data since it has not been
publicly stated before. How can we reconcile these two facts? One possible explanation is that the
retrieval problem is implicitly present as a subproblem in many common tasks such as working with
relations between persons, tracking the evolution of a concept, solving mathematical and reasoning
problems, programming, and many more. Moreover, the great variety of tasks in natural language
data, each requiring different types of retrieval, could act as an implicit curriculum. The emergence
of the retrieval mechanism in language models could be explained by the need to work with complex
relationships between entities, combined with an implicit curriculum.
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Consider the following real-world example from the Wikipedia article on llamas “Llamas are social
animals and live with others as a herd. [ . . . ] A cria (from Spanish for ‘baby’) is the name for a
baby llama, alpaca, vicuña, or guanaco. Crias are typically born with all the females of the herd
gathering around.” An autoregressive language model trying to predict the second occurrence of
the word herd (rather than flock, group, or pack) would need to first retrieve the fact that crias are
llamas, and then use it to retrieve the fact that llamas live in herds. This process is very similar to
the retrieval problem with D = 2.

EMERGENT ABILITIES IN LARGE LANGUAGE MODELS

Another interesting implication of our work is related to the emergent abilities of large language
models (Wei et al., 2022). An ability is emergent if it is not present in smaller models but is present
in larger models. Understanding emergence is an important direction because it could potentially
allow us to predict what abilities future models may have, as well as provide new insights into how
to train more capable language models.

The existence of tasks that require a minimum number of layers, such as the retrieval problem,
provides a possible explanation for the emergence of new abilities in large language models. As the
model grows in size, it becomes possible to learn more complex circuits that would be impossible
to learn in smaller models. This unlocks new abilities that were previously unattainable.

Schaeffer et al. (2023) have previously suggested that the emergence of new abilities in large lan-
guage models is just a “mirage” that appears only under nonlinear or discontinuous metrics. Our
work provides a very strong counterargument to this claim if we consider the ability of a model
to solve the retrieval problem. A transformer cannot solve the retrieval problem with a specific
difficulty unless it has the minimum number of necessary layers.

11 CONCLUSION

In this work, we introduced the retrieval problem, a simple task that requires transformers to retrieve
information from multiple positions in the input sequence. We show that the retrieval problem
requires a certain number of layers to be solved. By training transformers on a minimal formulation
of the task, we find that transformers solve the task using a mechanism that resembles an induction
head. We find that this mechanism emerges gradually with the help of an implicit curriculum,
starting with an induction head and then adding more heads one by one.

Limitations. Our analysis of transformers trained on a minimal formulation of the retrieval prob-
lem might not generalize perfectly to large language models. We also do not provide a full expla-
nation of the training dynamics of transformers on the retrieval problem. Further research is needed
to fully understand the multi-layered circuits learned by large language models and the training
dynamics that enable their learning.

9
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A RETRIEVAL AND CONDITIONAL RETRIEVAL PROMPTS

Below we provide one full example for each of the retrieval and conditional retrieval formulations
used in the paper. The examples are generated using the same programs used for benchmarking
the large language models. Each example consists of a prompt, a correct answer, and acceptable
answers. Acceptable answers are used to filter out incoherent answers by repeateadly sampling
from the model until an acceptable answer is found.

A.1 EQUATIONS FORMULATION (D = 5)

b = 2
c = 3
d = 0
a = 1
e = b
g = a
h = d
f = c
k = e
i = f
l = g
j = h
n = k
p = l
o = i
m = j
q = n
s = p
r = o
t = m
What i s t h e v a l u e o f s ? Say d i r e c t l y on ly t h e numer ic va lue ,

w i t h o u t any o t h e r words .

C o r r e c t : 1
A c c e p t a b l e : 0 , 1 , 2 , 3

A.2 LIVES-WITH FORMULATION (D = 5)

C h a r l i e l i v e s i n C a i r o
David l i v e s i n D e l h i
A l i c e l i v e s i n B e r l i n
Bob l i v e s i n Amsterdam
Henry l i v e s wi th David
Eve l i v e s wi th C h a r l i e
Frank l i v e s wi th A l i c e
Grace l i v e s wi th Bob
Kate l i v e s wi th Grace
L a r r y l i v e s wi th Frank
Jack l i v e s wi th Eve
I s a b e l l e l i v e s wi th Henry
Mary l i v e s wi th Jack
O l i v i a l i v e s wi th I s a b e l l e
Nick l i v e s wi th Kate
P e t e r l i v e s wi th L a r r y
Rose l i v e s wi th P e t e r
Queen l i v e s wi th Nick
Tom l i v e s wi th O l i v i a
Sam l i v e s wi th Mary
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Where does Rose l i v e ? Say d i r e c t l y on ly t h e name of t h e c i t y ,
w i t h o u t any o t h e r words .

C o r r e c t : B e r l i n
A c c e p t a b l e : Amsterdam , B e r l i n , Cai ro , D e l h i

A.3 KINGDOMS FORMULATION

Bob l i v e s i n S i l v a n i a .
A l i c e l i v e s i n Novar i a .
C h a r l i e l i v e s i n Aurora .
David l i v e s i n F l o r i n i a .
S i l v a n i a n s b e l i e v e s i n c e l e s t i a n i s m .
N o v a r i a n s b e l i e v e s i n harmonian i sm .
Auro rans b e l i e v e s i n e l y s i a n i s m .
F l o r i n i a n s b e l i e v e s i n lumin ism .
L u m i n i s t s e a t b e e f .
E l y s i a n i s t s e a t pork .
H a r m o n i a n i s t s e a t lamb .
C e l e s t i a n i s t s e a t c h i c k e n .
Beef c o n t a i n s A s t r a l y t e .
Chicken c o n t a i n s Nephryon .
Lamb c o n t a i n s Zephyrium .
Pork c o n t a i n s V i r e l l i u m .
Zephyrium c a u s e s Chronogy .
A s t r a l y t e c a u s e s A e t h e r f l u x .
V i r e l l i u m c a u s e s Somnosis .
Nephryon c a u s e s Synthemia .
Who has Chronogy ? Say d i r e c t l y t h e name w i t h o u t o t h e r words .

C o r r e c t : A l i c e
A c c e p t a b l e : Al i ce , Bob , C h a r l i e , David

A.4 FUNCTIONS FORMULATION (CONDITIONAL RETRIEVAL)

a ( 0 ) = 3
a ( 1 ) = 2
a ( 2 ) = 0
a ( 3 ) = 1
b ( 0 ) = 1
b ( 1 ) = 3
b ( 2 ) = 2
b ( 3 ) = 0
c ( 0 ) = 1
c ( 1 ) = 0
c ( 2 ) = 3
c ( 3 ) = 2
d ( 0 ) = 1
d ( 1 ) = 0
d ( 2 ) = 2
d ( 3 ) = 3
e = b
f = a
g = c
h = d
i = 0
j = 2
k = 3
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l = 1
What i s t h e v a l u e o f f ( i ) ? Say d i r e c t l y on ly t h e numer ic va lue ,

w i t h o u t any o t h e r words .

C o r r e c t : 3
A c c e p t a b l e : 0 , 1 , 2 , 3

A.5 RELATIVES FORMULATION (CONDITIONAL RETRIEVAL)

Penny l i v e s i n Canada .
L i l y l i v e s i n B r a z i l .
I s a b e l l e l i v e s i n F ra nc e .
Cathy l i v e s i n Kenya .
George l i v e s i n I t a l y .
Adam l i v e s i n Mexico .
Kevin l i v e s i n Peru .
Ed l i v e s i n Laos .
Hank l i v e s i n Germany .
Mike l i v e s i n Japan .
J ane l i v e s i n England .
Fred l i v e s i n Hungary .
Dana l i v e s i n Norway .
O l i v i a l i v e s i n Q a t a r .
Bob l i v e s i n Denmark .
Nancy l i v e s i n A r g e n t i n a .
John ’ s mother i s J ane .
John ’ s s i s t e r i s O l i v i a .
John ’ s f a t h e r i s Ed .
John ’ s b r o t h e r i s Mike .
Chr i s ’ s mother i s Penny .
Chr i s ’ s s i s t e r i s Dana .
Chr i s ’ s f a t h e r i s Adam .
Chr i s ’ s b r o t h e r i s George .
Diana ’ s mother i s Nancy .
Diana ’ s s i s t e r i s I s a b e l l e .
Diana ’ s f a t h e r i s Hank .
Diana ’ s b r o t h e r i s Bob .
Eve ’ s mother i s L i l y .
Eve ’ s s i s t e r i s Cathy .
Eve ’ s f a t h e r i s Fred .
Eve ’ s b r o t h e r i s Kevin .
D o c t o r s l i v e wi th t h e i r b r o t h e r s .
Lawyers l i v e wi th t h e i r mo the r s .
T e a c h e r s l i v e wi th t h e i r s i s t e r s .
E n g i n e e r s l i v e wi th t h e i r f a t h e r s .
John works as a d o c t o r .
C h r i s works as an e n g i n e e r .
Diana works as a t e a c h e r .
Eve works as a l a wy e r .
Where does Eve l i v e ? Say d i r e c t l y on ly t h e name , w i t h o u t any o t h e r

words .

C o r r e c t : B r a z i l
A c c e p t a b l e : A r g e n t i n a , B r a z i l , Canada , Denmark , England , France ,

Germany , Hungary , I t a l y , Japan , Kenya , Laos , Mexico , Norway ,
Peru , Q a t a r
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B ATTENTION MAPS
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B.3 TRANSFORMER C
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B.4 TRANSFORMER D
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C ATTENTION EMERGENCE IN TRANSFORMER D
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D PROCEDURE FOR REVERSE-ENGINEERING CIRCUITS

As can be seen in Appendix B, the attention maps for each attention head in the transformers contain
clear patterns that can be be manually identified without the need for any additional tools. For this
reason, we decided to manually reverse-engineer the circuits, while validating them thoroughly using
ablations to ensure their correctness.

The exact procedure we follow to reverse-engineer the circuits:

1. We plot the attention maps for each transformer and each layer for different prompts.
2. By observing the attention maps, we identify several possible mechanisms that could ex-

plain the attention patterns of each head.
3. For each head, we determine which of the hypothesized mechanisms is correct using abla-

tions (described below) and measuring the validation loss. We choose the simplest mecha-
nism that maintains a low validation loss (below 0.05) after ablation.

4. We repeat steps 1-3 until the mechanism of each head has been identified.
5. We validate the complete mechanism by performing combined ablations on all heads and

measuring the validation loss.
6. We validate that the uncovered mechanism is not excessive by attempting to further ablate

all attention paths individually and measuring the validation loss.

To validate the circuits, we measure the validation error after ablating the attention maps in the
following manner. For the attention heads that do not perform any useful computation, we replace
the attention weights with either uniform attention or an identity matrix. For the attention heads
that are responsible for the information flow, we construct an attention map that is zero everywhere
except for the position that we expect the head to attend to, where it is set to one.

After performing the combined ablations (step 5), we find that the mean squared error increases
slightly, but remains below 0.05 for all transformers. By further ablating any apparently useful
attention path (step 6), the mean squared error increases to 0.17 − 0.89. The only exceptions are
the first useful layers of each transformer, which always attend to the previous position. After
ablating their attention as uniform, the error stays in the range 0.05 − 0.1, suggesting that they do
not contribute directly to the final output, but rather enable the information flow in the subsequent
layers.
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