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Abstract001

Recently, many studies have demonstrated that002
exclusively incorporating OCR-derived text003
and spatial layouts with large language models004
(LLMs) can be highly effective for document005
understanding tasks. However, existing meth-006
ods that integrate spatial layouts with text have007
limitations, such as producing overly long text008
sequences or failing to fully leverage the au-009
toregressive traits of LLMs. In this work, we010
introduce Interleaving Layout and Text in a011
Large Language Model (LayTextLLM) for doc-012
ument understanding. LayTextLLM projects013
each bounding box to a single embedding and014
interleaves it with text, efficiently avoiding long015
sequence issues while leveraging autoregres-016
sive traits of LLMs. LayTextLLM not only017
streamlines the interaction of layout and tex-018
tual data but also shows enhanced performance019
in KIE and VQA. Comprehensive benchmark020
evaluations reveal significant improvements of021
LayTextLLM, with a 15.2% increase on KIE022
tasks and 10.7% on VQA tasks compared to023
previous SOTA OCR-based LLMs.1024

1 Introduction025

Recent research has increasingly explored the use026

of Large Language Models (LLMs) or MultiModal027

Large Language Models (MLLMs) (Achiam et al.,028

2023; Team et al., 2023; Anthropic, 2024; Reid029

et al., 2024; Feng et al., 2023a,b; Liu et al., 2024c;030

Lu et al., 2024; Nourbakhsh et al., 2024; Gao et al.,031

2024; Li et al., 2024a; Zhou et al., 2024; Zhu et al.,032

2024; Zhao et al., 2024) for document-oriented033

Visual Question Answering (VQA) and Key Infor-034

mation Extraction (KIE).035

A line of research utilizes off-the-shelf OCR036

tools to extract text and spatial layouts, which are037

then combined with LLMs to address Visually Rich038

Document Understanding (VRDU) tasks. These039

approaches assume that most valuable information040

1Code is available at URL masked for anonymous review.

for document comprehension can be derived from 041

the text and its spatial layouts, viewing spatial lay- 042

outs as “lightweight visual information” (Wang 043

et al., 2024a). Following this premise, several stud- 044

ies (Liu et al., 2024c; Perot et al., 2023; Luo et al., 045

2024; Chen et al., 2023a; He et al., 2023) have 046

explored various approaches that integrate spatial 047

layouts with text for LLMs and achieves results 048

that are competitive with those of MLLMs. 049

The most natural method to incorporate layout 050

information is by treating spatial layouts as to- 051

kens, which allows for the seamless interleaving of 052

text and layout into a unified text sequence (Perot 053

et al., 2023; Chen et al., 2023a; He et al., 2023). 054

For example, Perot et al. (2023) employ for- 055

mat such as “HARRISBURG 78|09” to represent 056

OCR text and corresponding layout, where “HAR- 057

RISBURG” is OCR text and “78|09” indicates 058

the mean of the horizontal and vertical coordi- 059

nates, respectively. Similarly, He et al. (2023) 060

use “[x_min, y_min, x_max, y_max]” to represent 061

layout information. These approaches can effec- 062

tively take advantage of autoregressive character- 063

istics of LLMs and is known as the “coordinate- 064

as-tokens” scheme (Perot et al., 2023). In contrast, 065

DocLLM (Wang et al., 2024a) explores interact- 066

ing spatial layouts with text through a disentangled 067

spatial attention mechanism that captures cross- 068

alignment between text and layout modalities. 069

However, we believe that both of the previous 070

approaches have limitations. As shown in Fig- 071

ure 1, coordinate-as-tokens significantly increases 072

the number of tokens. Additionally, to accurately 073

comprehend coordinates and enhance zero-shot ca- 074

pabilities, this scheme often requires few-shot in- 075

context demonstrations and large-scale language 076

models, such as ChatGPT Davinci-003 (175B) (He 077

et al., 2023), which exacerbates issues related to 078

sequence length and GPU resource demands. Al- 079

though DocLLM does not increase sequence length, 080

its performance may be improved by more effec- 081
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Figure 1: The performance against input sequence
length of different datasets across various OCR-based
methods where data is from Table 1 and 5.

tively leveraging the autoregressive traits of LLMs.082

To address these problems, this paper explores083

a simple yet effective approach to enhance the in-084

teraction between spatial layouts and text — In-085

terleaving Layout and Text in a Large Language086

Model (LayTextLLM) for document understanding.087

Adhering to the common practice of interleaving088

any modality with text (Huang et al., 2023; Peng089

et al., 2023; Dong et al., 2024), we specifically ap-090

ply this principle to spatial layouts. In particular,091

we map each bounding box to a single embedding,092

which is then interleaved with its corresponding093

text. As shown in Figure 1, LayTextLLM signif-094

icantly outperforms the 175B models, while only095

slightly increasing or even reducing the sequence096

length compared to DocLLM. Our contributions097

can be listed as follows:098

• We propose LayTextLLM for document un-099

derstanding. To the best of the authors’ knowl-100

edge, this is the first work to employ a unified101

embedding approach (Section 3.1) that inter-102

leaves spatial layouts directly with textual data103

within a LLM. By representing each bounding104

box with one token, LayTextLLM efficiently105

addresses sequence length issues brought by106

coordiante-as-tokens while fully leveraging107

autoregressive traits for VRDU tasks.108

• We propose three tailored pre-training tasks109

(Section 3.2.1) to improve the model’s under-110

standing of the interaction between layout and111

text, and its ability to generate precise coor-112

dinates for regions of interest. These tasks 113

include Line-level Layout Decoding, Text-to- 114

Layout Prediction, and Layout-to-Text Pre- 115

diction. Besides, we introduce Spatially- 116

Grounded KIE (Section 3.2.2) to further en- 117

hance the model’s performance on KIE task. 118

• Extensive experimental results quantitatively 119

demonstrate that LayTextLLM significantly 120

surpasses previous state-of-the-art (SOTA) 121

OCR-based methods. Notably, it outper- 122

forms DocLLM by 10.7% on VQA tasks and 123

15.2% on KIE tasks (Section 4). Further- 124

more, it achieves superior performance on 125

SOTA OCR-free MLLMs, such as Qwen2- 126

VL among most KIE datasets. Ablations and 127

visualizations demonstrate the utility of the 128

proposed component, with analysis showing 129

that LayTextLLM not only improves perfor- 130

mance but also reduces input sequence length 131

compared to current OCR-based models. 132

2 Related Work 133

2.1 OCR-based LLMs for VRDU 134

Early document understanding methods (Hwang 135

et al., 2020; Xu et al., 2020, 2021; Hong et al., 136

2022; Tang et al., 2022) tend to solve the task in a 137

two-stage manner, i.e., first reading texts from input 138

document images using off-the-shelf OCR engines 139

and then understanding the extracted texts. Consid- 140

ering the advantages of LLMs (e.g., high general- 141

izability), some recent methods endeavor to com- 142

bine LLMs with OCR-derived results to solve docu- 143

ment understanding. Inspired by the coordinate-as- 144

tokens” approach in ICL-D3IE (Perot et al., 2023), 145

He et al. (2023) use numerical tokens to integrate 146

layout information, combining layout and text into 147

a unified sequence that maximizes the autoregres- 148

sive benefits of LLMs. To reinforce the layout 149

information while avoiding increasing the number 150

of tokens, DocLLM (Wang et al., 2024a) designs a 151

disentangled spatial attention mechanism to capture 152

cross-alignment between text and layout modalities. 153

Recently, LayoutLLM (Luo et al., 2024) utilizes 154

the pre-trained layout-aware model (Huang et al., 155

2022), to insert the visual information, layout in- 156

formation and text information. However, these 157

methods struggle to leverage autoregressive prop- 158

erties of LLMs while avoiding the computational 159

overhead of increasing token counts. Finding a way 160

to integrate layout information remains a challenge. 161
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2.2 OCR-free MLLMs for VRDU162

With the increasing popularity of MLLMs (Feng163

et al., 2023b; Hu et al., 2024; Liu et al., 2024c; Tang164

et al., 2024; Chen et al., 2024a; Dong et al., 2024;165

Li et al., 2024b; Liu et al., 2024a), various meth-166

ods are proposed to solve VRDU through explic-167

itly training models on visual text understanding168

datasets and perform end-to-end inference with-169

out using OCR engines. LLaVAR (Zhang et al.,170

2023) and UniDoc (Feng et al., 2023b) are no-171

table examples that expand upon the document-172

oriented VQA capabilities of LLaVA (Liu et al.,173

2024b) by incorporating document-based tasks.174

These models pioneer the use of MLLMs for175

predicting texts and coordinates from document176

images, enabling the development of OCR-free177

document understanding methods. Additionally,178

DocPedia (Feng et al., 2023a) operates document179

images in the frequency domain, allowing for180

higher input resolution without increasing the in-181

put sequence length. Recent advancements in this182

field, including mPLUG-DocOwl (Ye et al., 2023),183

Qwen-VL (Bai et al., 2023), Qwen2-VL (Wang184

et al., 2024b), and TextMonkey (Liu et al., 2024c),185

leverage publicly available document-related VQA186

datasets to further enhance the document under-187

standing capability. Although these OCR-free188

methods have exhibited their advantages, they still189

struggle with the high-resolution input to reserve190

more text-related details.191

3 Method192

In this section, we introduce LayTextLLM. We193

begin by detailing the model architecture, which194

features an innovative Spatial Layout Projector195

(Section 3.1) that transforms four-dimensional lay-196

out coordinates into a single-token embedding.197

Next, we present three layout-text alignment pre-198

training tasks: line-level layout decoding, text-199

to-layout prediction, and layout-to-text prediction200

(Section 3.2.1) to ensure a seamless integration201

of layout and text understanding. Finally, we de-202

scribe the incorporation of spatially-grounded key203

information extraction as a auxiliary task during204

supervised fine-tuning (SFT) (Section 3.2.2), to205

enhance the performance in KIE tasks.206

3.1 Model Architecture207

The overall architecture of LayTextLLM is shown208

in Figure 2. LayTextLLM is built on the Llama2-209

7B-chat model (Gao et al., 2023).210

Spatial Layout Projector To enable the model 211

to seamlessly integrate spatial layouts with text, we 212

propose a novel Spatial Layout Projector (SLP). 213

This projector employs a two-layer MLP to trans- 214

form layout coordinates into bounding box tokens, 215

facilitating the interleaving of spatial and textual 216

information. Concretely, each OCR-derived spatial 217

layout is represented by a bounding box defined 218

by four-dimensional coordinates [x1, y1, x2, y2], 219

where these coordinates denote the normalized min- 220

imum and maximum horizontal (x) and vertical (y) 221

extents of the box, respectively. The SLP maps 222

these coordinates into a high-dimensional embed- 223

ding space, enabling the LLM to process them as a 224

single token. This is computed as: 225

z = W2 · (GeLU(W1 · c+ b1)) + b2 (1) 226

where c ∈ R4 is the vector of bounding box coor- 227

dinates, W1 ∈ Rh×4 and W2 ∈ Rd×h are weight 228

matrices, b1 ∈ Rh×1 and b2 ∈ Rd×1 are bias vec- 229

tors, h is the hidden dimension of the MLP, and 230

d is the dimension of the final embedding. In this 231

study, we set h = d. The resulting bounding box 232

token z ∈ Rd is a high-dimensional representation 233

of the spatial layout. Importantly, the SLP is shared 234

across all bounding box tokens, which introduces a 235

minimal number of parameters to the model. 236

Large Language Model As shown in Figure 2, 237

the bounding box token z is interleaved with its 238

corresponding textual embeddings and fed into the 239

LLM. To introduce additional trainable parame- 240

ters for layout information, we integrate a Partial 241

Low-Rank Adaptation (P-LoRA) module proposed 242

in InternLM-XComposer2 (Dong et al., 2024) de- 243

tailed in Appendix A. Additionally, to improve 244

the efficiency of coordinate decoding, we intro- 245

duce 1,000 special tokens, i.e., “<B0>” through 246

“<B999>” to represent output coordinates. 247

3.2 Training Tasks 248

LayTextLLM is pre-trained using three innovative 249

tasks designed to align layout and text. During 250

the SFT phase, we introduce a novel Spatially- 251

Grounded Key Information Extraction task as a 252

auxiliary task, which significantly enhances the 253

model’s performance on KIE-related tasks. Fig- 254

ures 3 and 4 illustrate the above tasks. 255

3.2.1 Layout-text Alignment Pre-training 256

Line-level Layout Decoding To enhance the 257

model’s ability to interpret and reconstruct layout 258
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Figure 2: An overview of LayTextLLM incorporates interleaving bounding box tokens (bi) with text tokens (ti),
where the superscripts represent the sequence positions of the tokens.
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(a) Line-level Layout Decoding
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(b) Text-to-layout Prediction
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(c) Layout-to-text Prediction

Figure 3: Illustration of layout-text alignment pre-training tasks. <box> is the placeholder for bounding box tokens.

information, we introduce the Line-level Layout259

Decoding task. This task leverages the bounding260

box embeddings, which encode spatial layout de-261

tails, and challenges the model to decode these262

embeddings back into precise coordinates. Specifi-263

cally, the model is provided with word-level OCR264

texts and their corresponding layout coordinates as265

input. It is then prompted with the question: “What266

are the textlines and corresponding coordinates?”267

The model is expected to intelligently merge word-268

level OCR texts into coherent line-level texts while269

simultaneously generating the coordinates that rep-270

resent the layout of these line-level texts. The271

output consists of two components: (1) the recon-272

structed line-level texts and (2) the corresponding273

combined coordinates, which are derived by aggre- 274

gating the word-level bounding boxes to reflect the 275

spatial arrangement of the line-level OCR. Through 276

this task, the model is expected to demonstrate 277

two key abilities: (1) the ability to logically group 278

word-level texts into line-level texts using layout 279

information, and (2) the ability to accurately de- 280

code bounding box embeddings back into spatial 281

coordinates. By doing so, the model demonstrates 282

a deeper understanding of both textual content and 283

its spatial organization within a document. 284

Text-to-layout Prediction To enhance the 285

model’s ability to comprehend and predict doc- 286

ument layouts, we introduce the Text-to-Layout 287
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(a) SG-KIE for Entity Linking
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<B602> <B259> ]
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(b) SG-KIE for Semantic Entity Recognition

Figure 4: Illustration of Spatially-Grounded KIE task. <box> is the placeholder for bounding box tokens.

Prediction task. In this task, the model predicts288

spatial coordinates for text segments based on289

word-level OCR inputs and their corresponding290

layout information. Specifically, given a prompt291

such as “What are the bounding boxes of the292

words: {word1} \n {word2} \n {word3}...?”, where293

{word} represents line-level text randomly selected294

from the input (number of selected words limited295

to 5), the model is required to generate precise296

spatial coordinates for each of the specified words.297

Layout-to-text Prediction We also propose the298

Layout-to-Text Prediction task. In this task, the299

model predicts textual content based on spatial300

layout information and bounding box coordinates.301

Given a prompt such as “What are the words lo-302

cated within: {bbox1} \n {bbox2} \n {bbox3}...?”,303

where {bbox} is the placeholder of bounding box304

embedding representing the spatial coordinates of305

text regions (with the number of bounding boxes306

limited to 5), the model generates the correspond-307

ing textual content for each specified region. The308

Text-to-Layout Prediction and Layout-to-Text Pre-309

diction tasks offer complementary advantages to310

advance document layout understanding. All word-311

level and line-level OCR results can be easily ob-312

tained using off-the-shelf OCR tools, making it313

easy to scale up for large-scale pre-training.314

3.2.2 Supervised Fine-tuning315

During the SFT phase, we fine-tuned the pre-316

trained model with the Document Dense De-317

scription (DDD) and Layout-aware SFT datasets318

from Luo et al. (2024). Additionally, we introduce319

Spatially-Grounded Key Information Extraction320

(SG-KIE) task, which requires the model to not321

only answer questions (i.e., extract specific values)322

but also provide the coordinates of these answers323

by responding to the prompt “Please provide the324

coordinates for your answer.” as a auxiliary task325

to further improve the model performance on KIE 326

tasks. 327

In the literature, KIE tasks are classified into two 328

types: Entity Linking (EL) and Semantic Entity 329

Recognition (SER). EL is an open-set KIE task in 330

which both the key and its corresponding value are 331

present in the input. In contrast, SER is a closed-set 332

KIE task where the key has a predefined meaning, 333

and the value must be extracted from the document. 334

For the EL task, SG-KIE requires the model 335

to output the answer in the following format: 336

“{key}{key_bbox}’s value is {value}{value_bbox}”, 337

where {key} and {value} represent the respective 338

key and value, and {key_bbox} and {value_bbox} 339

denotes the spatial layout information of the cor- 340

responding textual content. For the SER task, 341

the answer format is: “{value}{value_bbox}”, 342

where {value} refers to the extracted value, and 343

{value_bbox} represents the spatial layout of the 344

extracted text in the document. The illustrations of 345

SG-KIE for these tasks are presented in Figure 4. 346

4 Experiments 347

4.1 Datasets 348

Layout-text Alignment Pre-training Data In 349

training process, we exclusively used open-source 350

data to facilitate replication. We subsampled data 351

from two datasets for layout-text alignment pre- 352

training: (1) DocILE (Šimsa et al., 2023) and (2) 353

RVL_CDIP (Harley et al., 2015). 354

SFT data We selected KVP10k (Naparstek 355

et al., 2024) and SIBR (Yang et al., 2023) datasets 356

to create training examples of SG-KIE tasks. 357

For document-oriented VQA, we selected Doc- 358

ument Dense Description (DDD) and Layout- 359

aware SFT data used in Luo et al. (2024), which 360

are two synthetic datasets generated by GPT-4. 361

Besides, DocVQA (Mathew et al., 2021), In- 362

foVQA (Mathew et al., 2022), ChartQA (Masry 363
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et al., 2022), VisualMRC (Tanaka et al., 2021) is364

included following (Liu et al., 2024c). For KIE365

task, we selected SROIE (Huang et al., 2019),366

CORD (Park et al., 2019), FUNSD (Jaume et al.,367

2019) datasets following Wang et al. (2024a); Luo368

et al. (2024); Liu et al. (2024c). The dataset statis-369

tics are provided in Appendix C.370

4.2 Implementation Detail371

The LLM component of LayTextLLM is initial-372

ized from the Llama2-7B-chat (Touvron et al.,373

2023), consistent with previous OCR-based meth-374

ods like DocLLM (Wang et al., 2024a), which375

also use Llama2-7B. We also replicated the re-376

sults of the coor-as-tokens scheme using Llama2-377

7B for consistency. Noting the LayoutLLM (Luo378

et al., 2024) utilizes Llama2-7B and Vicuna 1.5379

7B, which is fine-tuned from Llama2-7B. Thus, for380

the majority of our comparisons, the models are381

based on the same or similar LLM backbones, al-382

lowing for a fair comparison between approaches.383

Other MLLM baselines use backbones like Qwen-384

VL (Bai et al., 2023), Qwen2-VL (Wang et al.,385

2024b), InternVL (Chen et al., 2024b), and Vi-386

cuna (Chen et al., 2024a), all with at least 7B pa-387

rameters, excluding the visual encoder. This also388

makes the comparison fair.389

In this study, we developed two versions of Lay-390

TextLLM to facilitate a comparative analysis under391

different training configurations. Following the ter-392

minology established by Luo et al. (2024), the term393

“zero-shot” denotes models that are trained without394

exposure to data from downstream test datasets.395

For the first version, LayTextLLMzero, we uti-396

lized DDD, Layout-aware SFT data, KVP10k,397

and SIBR for training. The second version,398

LayTextLLMall, extends this training regimen399

by incorporating a broader array of VQA and400

KIE datasets, including DocVQA, InfoVQA, Vi-401

sualMRC, ChartQA, FUNSD, CORD, and SROIE.402

Both versions are initialized with the same pre-403

trained LayTextLLM weights, with the key dif-404

ference being that LayTextLLMall benefits from405

the inclusion of additional downstream training406

datasets. We used word-level and line-level OCR407

provided by the respective datasets for a fair com-408

parison, with the exception of the ChartQA dataset,409

which does not provide OCR. Detailed setup can410

be found in Appendix D.411

4.3 Baselines 412

OCR-based baselines For OCR-based base- 413

line models, we implemented a basic approach 414

using only OCR-derived text as input. This was 415

done using two versions: Llama2-7B-base and 416

Llama2-7B-chat. We also adapted the coordinate- 417

as-tokens scheme from He et al. (2023) for these 418

models, resulting in two new variants: Llama2-7B- 419

basecoor and Llama2-7B-chatcoor. Additionally, 420

we included results from a stronger baseline us- 421

ing the ChatGPT Davinci-003 (175B) model (He 422

et al., 2023), termed Davinci-003-175Bcoor. One 423

other recent SOTA OCR-based approach, Do- 424

cLLM (Wang et al., 2024a) is also included. 425

OCR-free baselines These baselines include 426

UniDoc (Feng et al., 2023b), DocPedia (Feng et al., 427

2023a), Monkey (Li et al., 2023), InternVL (Chen 428

et al., 2023b), InternLM-XComposer2 (Dong 429

et al., 2024), TextMonkey, TextMonkey+ (Liu 430

et al., 2024c), Qwen2-VL (Wang et al., 2024b). We 431

selected the above models as baselines due to their 432

superior performance in both document-oriented 433

VQA and KIE tasks. 434

Visual+OCR baselines We selected 435

LayoutLLMLlama2CoT (Luo et al., 2024) 436

and the most recent SOTA method 437

DocLayLLMLlama2CoT (Liao et al., 2024), 438

which integrates visual cues, text and layout, as 439

stronger baselines. 440

4.4 Evaluation Metrics 441

To ensure a fair comparison with other OCR-based 442

methods, we conducted additional evaluations us- 443

ing original metrics specific to certain datasets, 444

such as F1 score (Wang et al., 2024a; He et al., 445

2023), ANLS (Gao et al., 2019; Wang et al., 2024a; 446

Luo et al., 2024) and CIDEr (Vedantam et al., 2015; 447

Wang et al., 2024a). To ensure a fair comparison 448

with OCR-free methods, we adopted the accuracy 449

metric (Liu et al., 2024c; Feng et al., 2023b), where 450

a response from the model is considered correct if 451

it fully captures the ground truth. 452

4.5 Quantitative Results 453

Comparison with SOTA OCR-based Methods 454

For the primary comparison in our work, we evalu- 455

ate against other SOTA pure OCR-based methods. 456

The experimental results, as presented in Table 1, 457

demonstrate significant performance improvements 458

achieved by the LayTextLLM models compared 459

to DocLLM (Wang et al., 2024a). Specifically, 460
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Document-Oriented VQA KIE
DocVQA VisualMRC Avg FUNSD CORD SROIE Avg

Metric ANLS % / CIDEr F-score %

Text
Llama2-7B-base 34.0 182.7 108.3 25.6 51.9 43.4 40.3
Llama2-7B-chat 20.5 6.3 13.4 23.4 51.8 58.6 44.6

Text + Coordinates
Llama2-7B-basecoor (He et al., 2023) 8.4 3.8 6.1 6.0 46.4 34.7 29.0
Llama2-7B-chatcoor (He et al., 2023) 12.3 28.0 20.1 14.4 38.1 50.6 34.3
Davinci-003-175Bcoor (He et al., 2023) - - - - 92.6 95.8 -
DocLLM (Wang et al., 2024a) 69.5∗ 264.1∗ 166.8 51.8∗ 67.4∗ 91.9∗ 70.4

LayTextLLMzero (Ours) 66.6 229.1 147.9 57.6 87.3 89.4 78.1
LayTextLLMall (Ours) 75.6∗ 279.4∗ 177.5 63.3∗ 97.3∗ 96.0∗ 85.6

Table 1: Comparison with SOTA OCR-based methods. The asterisk(*) indicates that the model was trained using
the training set associated with the evaluation set.

Document-Oriented VQA KIE
DocVQA InfoVQA Avg FUNSD SROIE POIE CORD Avg

Metric Accuracy %

OCR-free
UniDoc (Feng et al., 2023b) 7.7 14.7 11.2 1.0 2.9 5.1 - -
DocPedia (Feng et al., 2023a) 47.1∗ 15.2∗ 31.2 29.9 21.4 39.9 - -
Monkey (Li et al., 2023) 50.1∗ 25.8∗ 38.0 24.1 41.9 19.9 - -
InternVL (Chen et al., 2023b) 28.7∗ 23.6∗ 26.2 6.5 26.4 25.9 - -
InternLM-XComposer2 (Dong et al., 2024) 39.7 28.6 34.2 15.3 34.2 49.3 - -
TextMonkey (Liu et al., 2024c) 64.3∗ 28.2∗ 46.3 32.3 47.0 27.9 - -
TextMonkey+ (Liu et al., 2024c) 66.7∗ 28.6∗ 47.7 42.9 46.2 32.0 - -
Qwen2-VL (Wang et al., 2024b) 81.4∗ 45.2∗ 63.3 53.2 71.3 85.7 78.8 72.2

Text + Coordinates
LayTextLLMzero (Ours) 70.4 29.8 50.1 54.9 88.3 65.1 86.9 73.8
LayTextLLMall (Ours) 77.7∗ 40.1∗ 59.0 60.1∗ 95.5∗ 68.1 96.7∗ 80.1

Table 2: Comparison with SOTA OCR-free MLLMs.

LayTextLLMzero exhibits notably superior perfor-461

mance, with its zero-shot capabilities even rivaling462

SFT approaches. For instance, in the KIE task,463

LayTextLLMzero achieves an overall performance464

of 78.1%, significantly outperforming DocLLM’s465

score of 70.4%. Furthermore, under the same train-466

ing conditions, LayTextLLMall surpasses the pre-467

vious OCR-based SOTA by a substantial margin,468

achieving an overall improvement of 10.7% in the469

VQA task and 15.2% in the KIE tasks. Besides, we470

found that the spatial information can be decoded471

back into coordinates even without visual infor-472

mation, as discussed in Appendix I, which is not473

exhibited in DocLLM. Similarly, when contrasting474

with coordinate-as-tokens employed in Llama2-7B,475

LayTextLLMzero again outperforms significantly.476

More qualitative results are shown in Appendix B.477

More discussion of subperformance of DocLLM478

and coordinate-as-tokens can be seen Appendix F.479

Comparison with SOTA OCR-free Methods480

We also compare LayTextLLM with other OCR-481

free methods, and the results in Table 2 highlight482

its exceptional performance across various tasks.483

Due to fairness concerns, results for ChartQA are484

reported separately in Appendix G, as the dataset485

lacks OCR-derived outputs, and we employed in-486

house OCR tools instead.487

LayTextLLMzero significantly outperforms most 488

OCR-free methods except for Qwen2-VL. No- 489

tably, even without exposure to the dataset’s 490

training set, LayTextLLMzero achieves compet- 491

itive VQA performance, rivaling models like 492

TextMonkey+, which were trained on correspond- 493

ing datasets. When fine-tuned with relevant data, 494

LayTextLLMall exhibits even greater performance 495

improvements. Compared to the SOTA MLLM 496

Qwen2-VL, LayTextLLM sub-performs on VQA 497

tasks which is further discussed in Limitation (Sec- 498

tion 5). However, it outperforms Qwen2-VL in 499

terms of KIE tasks. Notably, LayTextLLMzero ex- 500

ceeds Qwen2-VL on three out of four KIE bench- 501

marks, with significant improvements of 1.7% on 502

FUNSD, 17% on SROIE, and 8.1% on CORD. 503

Comparison with SOTA Visual+OCR Methods 504

As shown in Table 3, in zero-shot scenarios, our ap- 505

proach outperforms LayoutLLM and DocLayLLM 506

on most KIE datasets, with improvements of 12.4% 507

and 5.4%, respectively. This is noteworthy given 508

that both LayoutLLM and DocLayLLM utilize vi- 509

sual, OCR text, and layout information as inputs 510

and inference with Chain-of-thought, highlighting 511

our ability to effectively leverage OCR-based re- 512

sults. However, similar to the comparison results 513

with MLLMs, LayTextLLM exhibits limitations in 514
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Document-Oriented VQA KIE
DocVQA VisualMRC Avg FUNSD− CORD− SROIE− Avg

Metric ANLS %

Visual + Text + Coordinates
LayoutLLMLlama2CoT (Luo et al., 2024) 74.2 55.7 64.9 78.6 62.2 70.9 70.6
DocLayLLMLlama2CoT (Liao et al., 2024) 72.8 55.0 63.9 78.7 70.8 83.2 77.6

Text + Coordinates
LayTextLLMzero (Ours) 66.6 37.9 52.3 79.0 79.8 90.2 83.0
LayTextLLMall (Ours) 75.6∗ 42.3∗ 59.0 83.4∗ 83.1∗ 95.6∗ 87.4

Table 3: Comparison with LayoutLLM. The superscript minus(−) indicates that the cleaned test set used in Luo
et al. (2024).

Document-Oriented VQA KIE

SLP L-T PT SG-KIE P-LoRA DocVQA InfoVQA VisualMRC Avg FUNSD CORD SROIE Avg

× ✓ ✓ ✓ 65.8 25.3 28.7 39.9 49.3 65.8 61.9 59.0
✓ × ✓ ✓ 78.2 39.7 28.3 48.7 52.1 76.5 86.8 71.8
✓ ✓ × ✓ 69.1 28.7 29.3 42.3 52.3 82.4 84.0 72.9
✓ ✓ ✓ × 74.6 36.6 32.6 47.9 54.8 86.0 91.3 77.4
✓ ✓ ✓ ✓ 70.4 29.8 31.7 44.0 54.9 86.9 88.3 76.7

Table 4: Ablations on each component of LayTextLLM (Accuracy).

document-oriented VQA tasks, particularly when515

addressing questions that heavily depend on visual516

information. A more detailed analysis of these517

challenges is provided in Limitations (Section 5).518

4.6 Analysis519

Ablations To better assess the utility of each520

component in LayTextLLM, an ablation study was521

conducted, the results of which are presented in Ta-522

ble 4. Detailed information on the training setup for523

all variants is provided in Appendix D. The results524

clearly show that incorporating interleaved spatial525

layouts and texts significantly enhances the perfor-526

mance, evidenced by a 4.1% improvement in VQA527

and a 17.7% increase in KIE (the first row vs. the528

fourth row), indicating that SLP is a critical com-529

ponent. Interestingly, using next-token-prediction530

as the pre-training task (i.e., the second row) gener-531

ally outperforms layout-text alignment pre-training532

across almost all VQA tasks. However, for KIE533

tasks, layout-text alignment pre-training remains534

more effective. We hypothesize that layout-text535

alignment pre-training helps the model learn the536

relationship between layout and text, which is par-537

ticularly useful for layout-aware tasks like KIE.538

In contrast, next-token-prediction focuses on re-539

constructing the entire document, which is more540

beneficial for semantic-rich tasks like VQA. Fur-541

thermore, including SG-KIE results in a modest542

performance increase of 1.7% in VQA (the third543

row vs. the fourth row) but a significant improve-544

ment in KIE tasks (i.e., 3.8%), which is as expected.545

Intriguingly, excluding P-LoRA improves perfor-546

mance on VQA and KIE tasks, suggesting it adds547

unnecessary complexity or interference, which fur- 548

ther highlights the benefits of interleaving texts and 549

layouts. 550

Sequence Length Table 5 presents statistics 551

on the average input sequence length across dif- 552

ferent datasets. Intriguingly, despite interleav- 553

ing bounding box tokens, LayTextLLM consis- 554

tently exhibits the shortest sequence length in 555

three out of four datasets, even surpassing Do- 556

cLLM, which is counterintuitive. We attribute 557

this to the tokenizer mechanism. For example, us- 558

ing tokenizer.encode(), a single word from the 559

OCR engine, like “International” is encoded into a 560

single ID [4623]. Conversely, when the entire OCR 561

output is processed as one sequence, such as “... 562

CPC,International,Inc...”, the word “International” 563

is split into two IDs [17579, 1288], corresponding 564

to “Intern” and “ational” respectively. This type 565

of case occurs frequently, we provide further dis- 566

cussion in Appendix E. 567

Dataset LayTextLLM DocLLM Coor-as-tokens

DocVQA 664.3 827.5 4085.7
CORD 137.9 153.2 607.3

FUNSD 701.9 847.5 4183.4
SROIE 529.2 505.1 1357.7

Table 5: Average sequence length.

5 Conclusion 568

We propose LayTextLLM, interleaving spatial lay- 569

outs and text to improve predictions through an 570

innovative SLP, the Layout-text Alignment pre- 571

training and the SG-KIE tasks. Extensive experi- 572

ments show the effectiveness of LayTextLLM. 573
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Limitations574

Although LayTextLLM has shown significant ca-575

pabilities in text-rich VQA and KIE tasks, this576

alone does not suffice for all real-world applica-577

tions. There are some instances where reasoning578

must be based solely on visual cues (e.g. size, color,579

objects)—a challenge that remains unmet. Ques-580

tions such as “What is the difference between the581

highest and the lowest green bar?” and “What is582

written on the card on the palm?” illustrate this583

gap. Two bad cases, detailed in Figures 6 and 7,584

also underscore these limitations. Addressing these585

challenges underscores the need for future advance-586

ments that incorporate visual cues into the capabil-587

ities of LayTextLLM. Since the integration with588

MLLMs is not the primary focus of this work, the589

preliminary experiments exploring this approach590

are discussed in Appendix J.591
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Pre-trained
Weights

Bbox Token Text Token

Figure 5: The illustration of P-LoRA, adapted
from Dong et al. (2024).

A Layout Partial Low-Rank Adaptation947

After using the SLP to generate bounding box to-948

kens and a tokenizer to produce text tokens, these949

two modalities are then interacted using a Lay-950

out Partial Low-Rank Adaptation (P-LoRA) mod-951

ule in LLMs. P-LoRA, introduced in InternLM-952

XComposer2 (Dong et al., 2024), is originally used953

to adapt LLMs to the visual modality. It applies954

plug-in low-rank modules specified to the visual955

tokens, which adds minimal parameters while pre-956

serving the LLMs inherent knowledge.957

Formally, for a linear layer in the LLM, the orig-958

inal weights WO ∈ RCout×Cin and bias BO ∈959

RCout are specified for input and output dimensions960

Cin and Cout. P-LoRA modifies this setup by incor-961

porating two additional matrices, WA ∈ RCr×Cin962

and WB ∈ RCout×Cr . These matrices are lower-963

rank, with Cr being considerably smaller than both964

Cin and Cout, and are specifically designed to inter-965

act with new modality tokens, which in our case are966

bounding box tokens. For example, given an input967

x = [xb, xt] comprising of bounding box tokens968

(xb) and textual tokens (xt) is fed into the system,969

the forward process is as follows, where x̂t, x̂b and970

x̂ are outputs:971

x̂t = W0xt +B0

x̂b = W0xb +WBWAxb +B0

x̂ = [x̂b, x̂t]

(2)972

B Qualitative Examples 973

Qualitative examples of document-oriented VQA 974

(upper row) and KIE (bottom row) are shown in 975

Figure 8. The results indicate that LayTextLLM is 976

highly effective in utilizing spatial layout informa- 977

tion to make more accurate predictions for these 978

challenging examples. For example, in the upper 979

right figure, many numeric texts in the receipt act 980

as noise for the baseline method. In contrast, Lay- 981

TextLLM integrates layout information to accu- 982

rately predict the total price, as demonstrated by 983

the other examples, underscoring the utility of Lay- 984

TextLLM. 985

C Dataset Statistics 986

Table 6 and 7 show the statistics of datasets used in 987

layout-text alignment pre-training and SFT, respec- 988

tively. In layout-text alignment pre-training, for 989

training efficiency, we randomly selected around 990

50,000 documents from each of the DocILE and 991

RVL_CDIP datasets. For every document, we gen- 992

erated two tasks: line-level layout decoding and 993

either a text-to-layout or layout-to-text prediction 994

task, which yields a total of around 200,000 pre- 995

training examples. We also tested the model on a 996

KIE dataset POIE (Kuang et al., 2023). 997

Dataset DocILE RVL_CDIP

Num Documents 55,719 59444
Num Examples 111,438 118,888

Num Tokens 75,952,078 67,340,246

Table 6: Dataset statistics for layout-text alignment pre-
training (using Llama-2 Tokenizer).

D Implementation Detail 998

All training and inference procedures are conducted 999

on eight NVIDIA A100 GPUs. 1000

Training LayTextLLM is initialized with 1001

Llama2-7b-chat model, the pre-training, SFT, 1002

and other model hyper-parameters can be seen 1003

in Table 8. Additional parameters including SLP 1004

and P-LoRA are randomly initialized. During 1005

pre-training and SFT, all parameters are trainable. 1006

Please note that all variants of LayTextLLM, 1007

including those utilized in ablation studies, are 1008

trained in accordance with the same settings. 1009

Specifically, for all variants in ablation study, 1010

we train with the same setting and dataset in 1011

accordance with LayTextLLMzero. For the variant 1012
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Question: What is the difference between
the highest and the lowest green bar?

GroundTruth: 6

Our Prediction: 40

Figure 6: A failure case of LayTextLLM on ChartQA.

What is written on the card on the palm?

GroundTruth: Trabon

Our Prediction: put your lubrication 
problems in good hands

Figure 7: A failure case of LayTextLLM on DocVQA.

without SLP, we replace the bounding box token1013

placeholder “<box>” with “\n”. For the variant1014

without layout-text alignment pre-training, we1015

pre-train the model on the same dataset using a1016

conventional next-token prediction task, excluding1017

the loss computation for the bounding box token.1018

After pre-training, we fine-tune the model on the1019

SFT datasets. For the variant without SG-KIE1020

tasks, we remove the SG-KIE data from the SFT1021

datasets while retaining the original SER and EL1022

tasks in KVP10k and SIBR to ensure the total1023

number of training examples remains unchanged.1024

For the variant without P-LoRA, we replace1025

all P-LoRA modules with linear layers, as was1026

previously done.1027

All baseline results are sourced from Liu et al.1028

(2024c) or respective original papers, with the1029

exception of the Llama2-7B series, the Llama2- 1030

7Bcoor series, and Qwen2-VL, these results were 1031

re-implemented by authors. 1032

Inference For the document-oriented VQA test 1033

set, we use the original question-answer pairs as 1034

the prompt and ground truth, respectively. For 1035

KIE tasks, we reformat the key-value pairs into 1036

a question-answer format, as described in Wang 1037

et al. (2024a); Luo et al. (2024); Liu et al. (2024c). 1038

Additionally, for the FUNSD dataset, we focus 1039

our testing on the entity linking annotations as de- 1040

scribed in Luo et al. (2024). Note that for KIE 1041

tasks, we report the result of directly generating 1042

the answer texts, instead of generating the answer 1043

with the coordinates (SG-KIE). The discussion re- 1044

garding inference with SG-KIE can be found in 1045
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Dataset DDD Layout-aware SFT KVP10k SIBR DocVQA InfoVQA ChartQA VisualMRC FUNSD CORD SROIE

Num Documents 115,955 50,409 4,249 600 10,192 4,405 3,699 7,012 147 794 626
Num Examples 115,955 280,073 50,661 12,978 39,459 23,945 7,398 7,013 2,375 8,932 2,503

Num Tokens 71,067,212 101,209,393 27,018,563 8,045,694 17,621,621 1,024,236 1,052,752 1,622,387 11,543,711 1,140,437 1,066,930

Table 7: Dataset statistics for SFT (using Llama-2 Tokenizer).

Backbone Plora rank Batch size Max length Precision Train params Fix params

Lay-Text Pretrain Llama2-7B-base 256 128 4096 bf16 7.4 B 0B
SFT Llama2-7B-base 256 128 4096 bf16 7.4 B 0B

Learning rate Weight decay Scheduler Adam betas Adam epsilon Warm up Epoch

Lay-Text Pretrain 5.0e-05 0.01 cosine [0.9, 0.999] 1.0e-08 0.005 4
SFT 1.0e-05 0.01 cosine [0.9, 0.999] 1.0e-08 0.005 4

Table 8: LayTextLLM trainng Hyper-parameters.

Appendix H.1046

To eliminate the impact of randomness on evalu-1047

ation, no sampling methods are employed during1048

testing for any of the models. Instead, beam search1049

with a beam size of 1 is used for generation across1050

all models. Additionally, the maximum number1051

of new tokens is set to 512, while the maximum1052

number of input tokens is set to 4096.1053

E Discussion of Input Sequence Length1054

As mentioned in Section 4.6, it is intriguing that1055

LayTextLLM has fewer input sequences than Do-1056

cLLM, which is counterintuitive given that Lay-1057

TextLLM interleaves bounding box tokens, typ-1058

ically resulting in longer sequence lengths. We1059

attribute this to the Byte Pair Encoding (BPE) tok-1060

enizers (Sennrich et al., 2016) prevalently used in1061

modern LLMs such as Llama2.1062

BPE operates by building a vocabulary of com-1063

monly occurring subwords (or token pieces) de-1064

rived from the training data. Initially, it tokenizes1065

the text at the character level and then progres-1066

sively merges the most frequent adjacent pairs of1067

characters or sequences. The objective is to strike1068

a balance between minimizing vocabulary size and1069

maximizing encoding efficiency.1070

Thus, when tokenizing a single word like “Inter-1071

national” on its own, the tokenizer might identify it1072

as a common sequence in the training data and en-1073

code it as a single token. This is especially likely if1074

“International” frequently appears as a standalone1075

word in the training contexts. However, when the1076

word “International” is part of a larger sequence of1077

words such as including in a long sequence of OCR-1078

derived texts like “...335 CPC,International,Inc...”,1079

the context changes. The tokenizer might split1080

“International” into sub-tokens like “Intern” and1081

“ational” because, in various contexts within the 1082

training data, these subwords might appear more 1083

frequently in different combinations or are more 1084

useful for the model to understand variations in 1085

meaning or syntax. 1086

When using LayTextLLM, we input word-level 1087

OCR results into the tokenizer, typically resulting 1088

in the former situation, where words are encoded as 1089

single tokens. Conversely, with DocLLM, the en- 1090

tire OCR output is processed as one large sequence, 1091

leading to the latter situation and a longer sequence 1092

length than in LayTextLLM. This difference under- 1093

scores the utility of LayTextLLM in achieving both 1094

accuracy and inference efficiency due to its shorter 1095

sequence length. 1096

F Discussion on Advantage of 1097

Interleaving Layout and Text 1098

Discussion on DocLLM We visualize the atten- 1099

tion patterns between input and output tokens in 1100

Figure 9. The attention pattern is insightful with 1101

the specific question, “What is the quantity of - 1102

TICKET CP?<0x0A>” 1103

As shown in Figure 9(a), when the model begins 1104

predicting the answer “Final”, “<0x0A>”(newline 1105

symbol) is heavily focusing on layout information, 1106

as seen by the significant attention on the bound- 1107

ing box embedding “<unk>” token before “(Qty”. 1108

This highlights the model’s effort to orient itself 1109

spatially and understand the structural context of 1110

the tokens. At this stage, the model is develop- 1111

ing a cognitive understanding of how the elements 1112

are laid out on the page. We extract and visual- 1113

ize the attention scores that “<0x0A>” assigns 1114

to each bounding box in Figure 9(c). The visu- 1115

alization shows that the model focuses most on 1116

“Qty”, followed by “-TICKET” and “2.00”, which 1117
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reflects the layout information essential for mak-1118

ing the prediction. In the final layer (Figure 9(b)),1119

the model’s attention shifts dramatically towards1120

the “Qty” token, which holds the semantic mean-1121

ing necessary to answer the question. This shift1122

from layout-based cognition to content-based rea-1123

soning illustrates how the bounding box tokens act1124

as spatial anchors that help the model pinpoint and1125

organize the relevant information (such as “Qty”)1126

to make the correct prediction.1127

The attention of LayTextLLM exhibits a distinct1128

pattern compared to models like DocLLM, which1129

uses block infilling to predict missing blocks from1130

both preceding and succeeding context. In con-1131

trast, LayTextLLM adheres to an auto-regressive1132

approach, focusing its attention solely on preceding1133

information. Furthermore, interleaving bounding1134

box and text embeddings creates strong attention1135

connections between textual and spatial representa-1136

tions, as shown in Figure 9. In contrast, DocLLM1137

integrates spatial information into the calculation1138

of attention score which is implicitly. As shown in1139

Table 1, LayTextLLM significantly outperforms1140

DocLLM, again underscoring the advantage of1141

interleaving bounding box and text embeddings.1142

Also, we found that the spatial information can be1143

decoded back into coordinates even without input-1144

ing visual information, as discussed in Appendix I,1145

which is not exhibited in DocLLM.1146

We also conduct a fairer experiment by re-1147

implementing DocLLM using the identical training1148

settings as LayTextLLMzero. In order to ensure a1149

more intuitive and fair comparison between the two1150

layout adaptation methods (i.e., SLP versus disen-1151

tangled spatial attention), we exclude the use of P-1152

LoRA in LayTextLLMzero. Table 9 demonstrates1153

that SLP is a more effective method for incorpo-1154

rating layout information, as evidenced by a 6.7%1155

improvement in VQA and an 8.4% improvement1156

in KIE. Additionally, while DocLLM introduces a1157

suite of attention weights for layout information, it1158

significantly increases the number of parameters in1159

LLaMA-2 from 6.73B to 8.37B. In contrast, Lay-1160

TextLLM introduces a much smaller increase in1161

parameters.1162

Discussion on coordinate-as-tokens The sub-1163

performance of coordinate-as-tokens methods can1164

be attributed to the following three reasons: (1) The1165

coordinate-as-tokens approach tends to introduce1166

an excessive number of tokens, often exceeding the1167

pre-defined maximum length of Llama2-7B (i.e.,1168

4096). Consequently, this leads to a lack of crucial 1169

OCR information, resulting in hallucination and 1170

subpar performance. (2) When re-implementing 1171

the coordinate-as-tokens method with Llama2-7B, 1172

we did not introduce the ICL strategy, as it would 1173

contribute additional length to the input sequence. 1174

(3) The coordinate-as-tokens approach necessitates 1175

a considerably larger-sized LLM to comprehend 1176

the numerical tokens effectively. 1177

G Results of ChartQA 1178

As shown in Figure 6, the question-answer pairs in 1179

ChartQA (Masry et al., 2022) tend to involve the 1180

visual cues for reasoning. However, with only text 1181

and layout information as input, the proposed Lay- 1182

TextLLM inevitably have difficulties in reasoning 1183

visual-related information. Thus, on the ChartQA 1184

dataset, LayTextLLM can hardly achieve better 1185

performance than previous methods that include 1186

visual inputs. Although the visual information is 1187

not used in LayTextLLM, it can still exhibit better 1188

zero-shot ability than UniDoc (Feng et al., 2023b). 1189

After incorporating the training set of ChartQA, 1190

the performance of LayTextLLM can be boosted 1191

to 42.2%. Considering the importance of visual 1192

cues in ChartQA-like tasks, we will try to involve 1193

the visual information into LayTextLLM in future 1194

work. A preliminary discussion can be seen in 1195

Appendix J. 1196

H Inference with SG-KIE 1197

As discussed in Section 4.6, incorporating SG-KIE 1198

as an auxiliary task in SFT has been shown to en- 1199

hance the performance of KIE tasks. In this section, 1200

we investigate the effectiveness of using SG-KIE 1201

as a direct inference task for KIE. The results are 1202

shown in Table 11. We can observe that, for the 1203

FUNSD− and CORD− datasets, SG-KIE inference 1204

demonstrates improved performance. However, for 1205

the SROIE− dataset, there is a slight decrease in 1206

performance. We manually reviewed the problem- 1207

atic cases of SG-KIE and identified two main rea- 1208

sons for the performance drop: (1) incorrect format, 1209

which leads to parsing errors such as “432.60[ SR 1210

@ 6%[ <B-1013><B453> <B><B478> ]”, and 1211

(2) ambiguous key types in the SROIE− dataset. 1212

For instance, the key “total” can refer to “grand 1213

total” and if the model has not been trained with 1214

the dataset, SG-KIE may mistakenly localize it to 1215

the wrong value. A notable instance of this issue 1216

is shown in Figure 10. These types of errors occur 1217
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Document-Oriented VQA KIE Num Params

Methods DocVQA InfoVQA VisualMRC Avg FUNSD CORD SROIE Avg

DocLLM 66.6 28.3 28.6 41.2 51.3 71.8 83.9 69.0 8.37B
LayTextLLM 74.6 36.6 32.6 47.9 54.8 86.0 91.3 77.4 6.76B

Table 9: Comparison of two layout adaptation methods, i.e., SLP in LayTextLLM and Disentangled Spatial Attention
in DocLLM.

ChartQA

OCR-free
UniDoc (Feng et al., 2023b) 10.9
DocPedia (Feng et al., 2023a) 46.9∗

Monkey (Li et al., 2023) 54.0∗

InternVL (Chen et al., 2023b) 45.6∗

InternLM-XComposer2 (Dong et al., 2024) 51.6∗

TextMonkey (Liu et al., 2024c) 58.2∗

TextMonkey+ (Liu et al., 2024c) 59.9∗

Qwen2-VL (Wang et al., 2024b) 61.9∗

Text + Coordinates
LayTextLLMzero (Ours) 30.2
LayTextLLMall (Ours) 42.6∗

Table 10: Comparison with SOTA OCR-free MLLMs
on ChartQA (accuracy). ∗ denotes the use of the
dataset’s training set.

frequently in the dataset.1218

For improvement, we observed that SG-KIE per-1219

forms better when processing complex answers1220

that require the aggregation of multiple consecutive1221

word-level OCR results, leading to more accurate1222

and complete outputs, as illustrated in Figure 11.1223

Dataset FUNSD− CORD− SROIE−

LayTextLLMzero 79.6 81.3 87.0
LayTextLLMzero−sg 80.0 81.9 86.0

Table 11: Inference with SG-KIE vs. without SG-KIE
(accuracy).

I Decoding Bounding Box Coordinates1224

We also evaluate the model’s ability to decode1225

bounding box embeddings into coordinates. Since1226

the SG-KIE task requires the model to generate1227

precise coordinates for answers, this task can be1228

used to assess the performance in accurately pre-1229

dicting bounding boxes. Specifically, we select1230

the examples with correct predictions for textual1231

answer and compute the Intersection over Union1232

(IoU) score (Rezatofighi et al., 2019) between the1233

predicted and ground truth coordinates. We tested1234

the on three datasets: FUNSD, which is not used to1235

train LayTextLLMzero. If the IoU exceeds 0.5, we1236

consider the bounding box prediction to be correct.1237

Accuracy is used as the metric to evaluate this capa- 1238

bility, we compute accuracy for the coordinates for 1239

both key and value. Results show that about 77.5% 1240

bounding box is correctly predicted, cases are vi- 1241

sualized in Figure 12. Also, we visualize the coor- 1242

dinates prediction for the pre-training task—line- 1243

level layout decoding—in Figure 13. Moreover, 1244

SG-KIE produces coordinates, which is obviously 1245

interpretable, and providing coordinates seems to 1246

be more valuable for certain downstream tasks. 1247

FUNSD LayTextLLMzero

Accuracy 77.5

Table 12: Coordinate prediction accuracy.

J Combination with MLLMs 1248

As discussed in Limitation (Section 5), Lay- 1249

TextLLM faces challenges with VQA tasks that 1250

require the comprehension of visual elements such 1251

as font, size, shape, objects, color, and other visual 1252

attributes. To address this limitation, we conducted 1253

a preliminary experiment combining LayTextLLM 1254

with a MLLM to explore the potential of leveraging 1255

visual information while preserving the strengths 1256

of LayTextLLM. 1257

Specifically, we upgrade the multimodal ver- 1258

sion of LayTextLLM by building upon Qwen2-VL 1259

and incorporating a SLP. For simplicity, neither 1260

P-LoRA nor special tokens are introduced. we 1261

layout-text alignment pre-trained and SFT the mod- 1262

ified Qwen2-VL on the same datasets used for 1263

LayTextLLMzero, resulting a Qwen2-VL-LayText 1264

model. We also trained a counterpart of Qwen2- 1265

VL-LayText by incorporating only OCR text, ex- 1266

cluding layout information. This model, which 1267

is identical in training settings to Qwen2-VL- 1268

LayText, was named Qwen2-VL-Text and serves 1269

as a baseline. The model performance can be seen 1270

in Table 13. Although it shows a slight drop in 1271

performance on VQA tasks, Qwen2-VL-LayText 1272

achieves significant improvements in KIE tasks, 1273

with an overall accuracy of 76.4% compared to 1274
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67.7%. This further demonstrates the effectiveness1275

of interleaving layouts and text. Interestingly, sim-1276

ply adding OCR text (i.e., Qwen2-VL-Text) also1277

results in a notable improvement in KIE tasks when1278

paired with Qwen2-VL. We believe this is because1279

datasets with poor performance, such as CORD1280

and SROIE, primarily consist of text with small or1281

blurred fonts. In these cases, off-the-shelf OCR en-1282

gines still outperform MLLMs in text recognition.1283
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Document-Oriented VQA KIE
DocVQA InfoVQA Avg FUNSD CORD SROIE Avg

Metric ANLS %

Visual + Text + Coordinates
Qwen2-VL (Wang et al., 2024b) 81.4 45.2 63.3 53.2 71.3 78.8 67.7
Qwen2-VLtext 77.0 43.5 60.2 46.0 90.2 83.5 73.2
Qwen2-VLLayText 81.4 42.7 62.1 54.2 91.2 83.7 76.4

Table 13: Comparison with Qwen2-VL-LayText with other baselines (accuracy).

What is the date in this receipt?

2003

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

29 JUN 18

What is the total price in this receipt?

100.00

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

79.50✓

✖

✓

✖

what is the 10th service provided
under the 'services provided by
child welfare staff'?

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

✖

10th service provided under the 'services
provided by child welfare staff' is 'Licenses
children's institutions, agencies and day

✓
licenses independent full time and day
care homes

Which is the last financial year
(FY) listed under sub-heading
"Funding"?

1977

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

 FY 1978 ✓

✖

Figure 8: Qualitative comparison with the baseline method.
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(b) Attention map of the last layer.
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(c) Attention score visualization of
bounding box tokens.

Figure 9: Visualization of attention maps of LayTextLLM. Best viewed in color and with zoom. “<unk>” is the
placeholder for the bounding box token.

What is the "total" in the given document?

GroundTruth: 37.90

Our Prediction: 15.57[<B742> <B694> <B841> 
<B712> ]

Figure 10: A failure case of SG-KIE in SROIE−. The red box indicates the ground truth and the green box is the
prediction.

What is the content in the "application of 
shields:" field?

Normal Prediction: The displays are easily assembled 
and durable. Some questions have been raised conceming
the inability to be flush with the counter and / or 
against the register.

SG-KIE Prediction: application of 
shields:[<B110><B601><B260><B615> ]'s value is:\nThe
displays are easily assembled and durable. Some 
questions have been raised conceming the inability to be 
flush with the counter and / or against the register. As 
well as the ability to place this or the Back Bar if the 
settlement goes through[<B107><B594><B762><B720> ]

Figure 11: A good case of SG-KIE in FUNSD−. The red box indicates the ground truth value and the green box is
the key.
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(a) Question: what is the content in the "Date:" field?
Answer: December 9, 1999

(b) Question: what is the content in the "Pages (Including
Cover)" field?
Answer: 4

Figure 12: Illustration of coordinates prediction for entity linking task. The red box indicates the key text region and
the green box indicates the value text region.
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(a) FUNSD (b) FUNSD

(c) POIE

Figure 13: Illustration of coordinates prediction line-level layout decoding. Documents are subsampled from OOD
dataset. Red boxes are coordinates for line-level text regions.
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