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Figure 1: An illustration of the training scheme in ISAGrasp. A few human demonstrations are provided from
motion capture. These demonstrations are retargeted to a four-fingered allegro robot in simulation. We use a
correspondence-aware generative model to extrapolate the retargeted demonstrations to a large dataset of novel
objects. We use this dataset to train a single grasping policy that is able to generalize to a variety of unseen
objects in simulation and real world.

Abstract: Dexterous robotic hands have the capability to interact with a wide
variety of household objects to perform tasks like grasping. However, learning ro-
bust real world grasping policies for arbitrary objects has proven challenging due
to the difficulty of generating high quality training data. In this work, we propose
a learning system (ISAGrasp) for leveraging a small number of human demonstra-
tions to bootstrap the generation of a much larger dataset containing successful
grasps on a variety of novel objects. Our key insight is to use a correspondence-
aware implicit generative model to deform object meshes and demonstrated hu-
man grasps in order to generate a diverse dataset of novel objects and successful
grasps for supervised learning, while maintaining semantic realism. We use this
dataset to train a robust grasping policy in simulation which can be deployed in
the real world. We demonstrate grasping performance with a four-fingered Alle-
gro hand in both simulation and the real world, and show this method can handle
entirely new semantic classes and achieve a 79% success rate on grasping unseen
objects in the real world

Keywords: Dexterous Manipulation, Learning from Demonstration, Data Aug-
mentation, Grasping

1 Introduction

Human hands are powerful tools for manipulating a wide range of objects. Our goal is to build dex-
terous robotic manipulators that can robustly and adeptly interact with human-centric environments.
However, robustly controlling a dexterous hand remains challenging due to its high dimensional
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state and action space and its multi-modal contact dynamics. Recent work has used deep reinforce-
ment learning algorithms to learn complex tasks with dexterous manipulators [1, 2, 3, 4, 5, 6]. These
methods often require careful reward engineering and environment design, and often lack general-
ization, struggling with robust real world deployment. An alternative paradigm involves collecting a
large labelled dataset and using supervised learning (imitation learning). This has shown significant
success with parallel jaw grippers [7, 8, 9] and suction cups [9, 10]. However, imitation learning
methods have proven difficult to scale to multi-fingered robots due to the burden of human data
collection. To scale robust policy learning to dexterous grasping, we require techniques that can
leverage a small amount of human effort to learn robust, general grasping policies. This can be done
by extrapolating a small number of human demonstrations to generate an abundance of data that
interacts with diverse objects and is successful at grasping objects under real world dynamics. The
key question is —how do we generate this type of diverse training data?

In this work, we propose Implicit Shape Augmentated Grasping (ISAGrasp), shown in Figure 1,
a learning system that leverages a correspondence-aware generative model [11] to extrapolate a
small number of human demonstrations to a large dataset of realistic objects and their corresponding
grasps. In particular, we directly perform deformations on implicit 3-D shape representations of
various objects in a learned latent space. The representation of point-wise shape deformations allows
us to generate transformed grasps for novel objects that can be made successful with a small amount
of active interaction in simulation. In doing so, implicit shape augmentation allows us to grow from
a small dataset of human demonstration data for dexterous grasping to a significantly larger and
more diverse dataset with novel object shapes and dynamically successful grasps. Given the dataset
constructed by implicit shape augmentation, we can now perform large scale supervised learning.
In this work, we represent a policy as predicting a pre-grasp and a final pose from pointclouds of the
target object, with intermediate motion being performed with standard motion planning libraries.
We show empirically that a policy learned via supervised learning on the dataset constructed by
ISAGrasp is able to generalize widely across different objects in simulation and the real world. We
demonstrate the efficacy of this pipeline on the rescaled YCB instances, ShapeNet and GoogleScans
objects in simulation and achieve a 79% success rate on 22 unseen objects in the real world.

In summary, our contributions are (1) we propose a novel system, ISAGrasp, that is able to generate
both a wide variety of objects and the corresponding dexterous grasps from a few human demon-
strations. (2) We show that the augmented dataset can be used for learning point-cloud based control
policies that are able to robustly grasp a large variety of novel objects in simulation (3) We demon-
strate the efficacy of the proposed pipeline by deploying it in the real world. (4) We analyze the
proposed pipeline through several ablation studies in simulation.
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Figure 2: Implicit Shape Augmentation for generating augmented dataset from demonstrations. First a human
demonstration is retargeted onto the Allegro hand to generate meshes and grasp labels. This data can then be
used to generate a variety of new objects via shape augmentation with DIF-Net [11]. Grasps for these deformed
objects can then be further refined with rejection sampling to generate dynamically consistent grasps.

To learn robust grasping policies that can operate in the real world for grasping novel objects of
various shapes, we propose ISAGrasp —a framework for supervised learning of robust and general-
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Figure 3: Illustration of retargeting a human hand
demonstration to an Allegro hand

dg =

N∑
i=0

‖ ~ari − sr ~ahi
‖2 , (1)

dc =

N∑
i=0

‖ ~cri − ~chi
‖2 , (2)

dr = G(Mr,Mh), (3)
arg min
(qr,fr,Mr)

(wgdg + wcdc + wrdr), (4)

Figure 4: Optimization setup describing the retar-
geting problem from human to Allegro hand

izable grasping policies from successful grasps on a large variety of objects generated from a small
set of human provided expert demonstrations.

Given a pointcloud of an object, we model a grasping policy as predicting (1) a pre-grasp pose T
that controls robot hand’s translation Tt and rotation Tq, and (2) a final pose Gf that controls the
16-DoF finger pose that can firmly grab the object.

ISAGrasp assumes access to a set of labelled human grasping demonstrations, can be used to learn
grasping policies via supervised learning. However, to learn truly robust and general grasping poli-
cies, this dataset must be grown to a much more diverse set of objects and successful grasps. Gen-
erating a multi-fingered grasping dataset of diverse yet realistic objects is a non-trivial problem
[12, 13, 14]. We approach this problem by leveraging a correspondence-aware, deformation-based
generative model to widely augment the set of human provided demonstrations, which can then be
used to learn robust and general policies via supervised learning. An overview of our ISAGrasp
system is shown in Figure 2, and we detail each component below.

2.1 Human-Robot Retargeting

ISAGrasp first collects N human hand-arm demonstrations D={τh0 , τh1 , . . . , τhN} using motion cap-
ture, where each demonstration τi = {(hi0, oi0), (hi1, o

i
1), . . . , (hiT , o

i
T )} is a trajectory of hand pose

ht and object pose ot. These demonstrations are then “retargeted” to a 22-DoF floating Allegro
hand [15] in simulation. Note that this is a nontrivial problem since these demonstrations are in the
morphology of the human hand and are typically not functional when directly mapped to a robot
hand using standard Inverse Kinematics [16].

We formulate the retargeting objective as a non-linear optimization problem. First, to allow a robot
to grasp in a similar pose to a human demonstration, we use the same cost function proposed in
DexPilot [17], shown in Eq. 1, where sr is the ratio between the sizes of the robot and human
hands, and each ~ari and ~ahi

is a displacement vector between finger tips and the palm of the robot
and human hands, shown as blue in Figure 3. While Eq. 1 encourages grasp shape similarity, we
additionally minimize the differences between the relative poses to the object, as captured by the
vectors between fingers and the object center for the human grasp, ~cri , and the retargeted grasp, ~chi

(see Eq.2 and orange lines in Fig. 3). Finally, to orient the robot palm similar to the human hand, we
add Eq. 3, which optimizes the minimum geodesic distance G in SO(3) between the rotation matrix
of the human palm Mh and the robot palm Mr. The final retargeting goal is to find the 22 DoF
configuration that minimizes the weighted sum of these three terms, which results in a candidate
grasp Gr for each object in a human provided dataset.

As we describe in Section 2.3, the retargeted grasps are then refined via a rejection sampling step
and used to generate the dataset with successful, dynamically consistent retargeted grasps. However,
since this dataset is typically quite limited, we next outline how to augment the dataset with novel
objects and grasps via implicit shape augmentation.

2.2 Implicit Shape Augmentation

Given a small set of object point clouds and successful retargeted grasps, Gr, we build a large
scale augmented dataset of novel objects and their corresponding successful grasps Gd, using a
correspondence-aware implicit generative model, DIF-Net [11].
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To recap at a high level, DIF-Net aims to learn an implicit representation of 3D shapes as a scalar
field. More specifically, DIF-Net represents a 3D shape via a instance agnostic template implicit
field (which is common for all shapes of a particular category and represent the common features
of a category), together with a latent conditional 3D deformation field (that perturbs this template
field) which allows the shapes to be adapted to every particular object instance while maintaining
semantic 3-D structure. Different novel but realistic shapes can be generated by sampling different
latent vectors α and generating object deformations on known object classes using the learned de-
formation and correction fields, while maintaining semantics. This model naturally provides dense
correspondences across object instances since different object instances are pointwise deformations
on the same template.

We use this generative model in two ways: (1) leverage the ability to sample a variety of object
instances by sampling latent vectors α to generate various novel objects via deformations and (2)
the resulting dense correspondences allow us to estimate dynamically consistent grasps from human
demonstrations to novel generated objects. Specifically, we use the latent conditional deformation
field from a pretrained DIF-Net to generate novel instances and dynamically consistent grasps. To
generate novel objects, we sample latent vectors α from a Gaussian that conditions a latent con-
ditional deformation field. This deformation field generates point-wise deformations of particular
object meshes chosen from the set of human demonstrations to generate novel objects. Second, to
estimate the new grasps Gd for the deformed objects, we find N reference points on the original
mesh that are close to the root position tr of the robot hand and compute the position to of the robot
relative to a local coordinate system Oi, centered at each reference point i: toi = O−1

i · tr. Once the
object is deformed, we compute the corresponding coordinate system Od

i on the deformed meshes
using the same deformation field, to estimate the new grasp location td using the average of the local
offsets: td = 1

N ΣN
i=1(Od

i · toi ). In this way, the dense correspondences obtained via the DIF-Net are
directly useful in generating grasps for novel, deformed object instances.

Deformation Reference Implicit Shape Augmentation

Deformation Field

Latent vector

Figure 5: Deformation map and grasping correspondences for objects generated in ISAGrasp. Grasping corre-
spondences on the original object (reference) and the deformed objects are highlighted inside the circle. As can
be seen, object semantics are maintained. Different object instances are generated by sampling different latents

Figure 5 visualizes how objects and correspondences deform with different sampled latent vectors.
We highlight the reference points on the original mesh, and their correspondences on deformed
meshes (purple circles). The objects are deformed into a variety of realistic shapes while maintaining
the original semantic structures and grasping correspondences.

Using the new grasp location td, together with retargeted orientation qr and finger pose fr, we can
construct new grasps Gd(td, qr, fr). While Gd are not guaranteed to be successful grasps, they
provide good starting points for the local search procedure described next.

2.3 Grasp Refinement for Dynamics Consistency

Given transformed grasps Gd, we use pose perturbation with rejection sampling to generate suc-
cessful and dynamically consistent grasping poses. Since our shape augmentation model transforms
successful grasps via the 3D deformation field, we found that only a small amount of perturbation
is typically needed to find successful grasps for the deformed models using rejection sampling. In
particular, we sample local perturbations δt, δr and δf from a uniform distribution, and add these
perturbations to the translation td, rotation qr and finger joints fr of the transformed poses Gd.
We evaluate success of each perturbed grasp Gp using a physics simulator (Pybullet [18]) and add
domain randomization to save robust successful grasps and objects to the training dataset.
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Figure 6: Policy network architecture. The
point-net++ architecture inputs an object
point cloud p, object surface normal ~No, the
table normal ~Nt, robot facing direction ~Nf

and the pointing direction ~Np to generate
palm translation, rotation and finger joints
for the dexterous grasp.

Using above methods, we can generate a large and suc-
cessful dexterous grasping dataset with a variety of novel
objects, and then perform supervised policy learning, as
described in the next section.

2.4 Policy Learning via Supervised Learning

As described in the beginning of Section 2, we model the
grasping problem as predicting a pre-grasp pose T and a
final pose Gf given an object pointcloud observation. We
perform a standard empirical risk minimization procedure
on the above-mentioned dataset as an architecture and use
a network consisting of PointNet++ SA modules [19] as
a feature extractor. Instead of only feeding the raw point
cloud to the network, we found significant improvements
by appending object points with additional information
regarding the alignment between the robot hand and the
local object surface. In particular, we use the object point
cloud p, the surface normal at each point ~No, the normal
of the table surface ~Nt, and the hand facing direction ~Nf and pointing direction ~Np to define the
following feature vectors: f(p)=(px, py , pz , ( ~No · ~Nt), ( ~No · ~Nf ), ( ~No · ~Np), ( ~Nf · ~Nt). We append
these vectors to each point in the point cloud. We found these features provide a compact description
of alignment between the robot hand and the object, and using the relative vector alignments via the
pairwise dot products allows us to improve the final grasping performance.

The network outputs a 3-dim translation and 4-dim quaternion, which are used to define the pregrasp
pose T. Additionally, the network predicts a 16-dim finger poses, which is used to define final pose
Gf . Figure 6 shows our network architecture details. We provide training details in Appendix A.

3 System Details

Initial Dataset Construction. We extracted human demonstrations from the DexYCB dataset [20],
which contains mocap sequences Dhuman of humans hand poses qiT picking up 20 YCB objects [21]
with poses oiT . We picked 10 demonstrations per object, resulting in 200 demonstration in total.
Appendix B 8.2 further explains our dataset choice.

ISAGrasp Implementation Details. We use a pretrained DIF-Net [11] to augment objects into
a variety of novel shapes. First, we sample a 128-dim latent vector from a Gaussian distribution
∼ N (µ, σ2), where µ = 0 and σ = 0.002. Second, to estimate corresponding new grasps Gd, we
choose N = 20 closest points on the object surface as reference points and compute corresponding
grasp location td (Section2.2). To obtain successful deformed grasps, we apply rejection sampling
by uniformly sampling δt ∈ [−0.02 m, 0.02 m] for translation td, and δr ∈ [−0.5, 0.5] radians for
rotation qr, and apply the same perturbation δf ∈ [−0.1, 0.1] radians for finger joints.

Hardware Setup. We deploy our policy to a robotic platform that has 23 actuators across a KUKA
LBR iiwa 7 R800 robot arm and a Wonik Robotics Allegro robotic hand, and use two cameras to
provide necessary point cloud information. Details are provided in Appendix B.

4 Experiments

Through our experimental evaluation, we aim to answer the following questions:

1. Does ISAGrasp generate realistic novel objects based on a small set of scanned objects?
2. Does ISAGrasp allow for easy generation of dynamically consistent grasps on novel objects

through grasp transformation and refinement?
3. Do policies learned on the dataset produced by ISAGrasp show improved robustness and

generalization on unseen objects?
4. How does the training perform with different input features.
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Table 1: Baselines evaluated in simulation
RescaledYCB ShapeNet GoogleScans

Random 0.03 0.05 0.02
Train on successful random 0.15 0.42 0.18
Heuristic 0.27 0.40 0.16
Train on successful heuristic 0.09 0.15 0.02
Train on successful GraspIt 0.29 0.42 0.20
PPO with dense reward 0.12 0.10 0.06
DAPG +DR 0.46 0.51 0.53
DexYCB - DR - ISA 0.34 0.35 0.22
DexYCB + DR - ISA 0.74 0.56 0.51
DexYCB +DR +ISA (ours) 0.74 0.74 0.70

We address these questions through a study in a PyBullet [18] simulation, followed by a real world
experimental evaluation using the robotic system described in Section 3. We provide additional
details of baselines in appendix B and more analysis on elements of the ISAGrasp in Appendix C.

Evaluation Metrics. We choose three unseen datasets with an increasing complexity:
RescaledYCB, ShapeNet [22], and GoogleScans [23] (see appendix B). In particular, RescaledYCB
contains 65 rescaled YCB objects, ShapeNet contains 200 unseen objects from ”Can”, ”Bottle”,
”Mug” and ”Bowl” categories, and GoogleScans objects contains 200 everyday objects. We place
objects randomly on the table, and evaluate performance with 5 sets of object mass and friction. The
success is defined as when the object is above the table by 10cm.

Baselines. Table 1 additionally compares the performance of our method to other baselines —(1)
Randomly generate grasps around the object (Random) (2) use random baseline with rejection sam-
pling to create successful dataset and train a policy (3) perform a predefined grasp where robot
always grasps from the top (Heuristic). (4) train with Heuristic baseline with rejection sampling
(5) train with Graspit!, an optimization-based grasp planner from prior work[24]. In addition, we
train compare RL baselines: (6) one with a dense reward function using PPO[25] (7) One using
an RL method (DAPG + DR) that combines an imitation learning objective via behavior cloning
with reinforcement learning [26]. (8) train with domain randomization, but no shape augmentation
(DexYCB + DR - ISA) (9) train with no shape augmentation or domain augmentation (DexYCB
- DR - ISA) in order to understand the impact of shape augmentation and the impact of domain
randomization. Please find further details of these baselines in the Appendix B.

Figure 7: Qualitative results on unseen objects in simulation and in the real world. The top 3 rows shows the
successful examples of our method on GoogleScans objects and the bottom 2 rows show successful examples
using our policy deployed on unseen objects in real world.
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Table 2: Real world test of ISAGrasp on 22 unseen objects. ISAGrasp is able to achieve 79% success rate
obj Tray Crab Chips Box1 Box2 Bread Flower Pot Roll Hat Honey
# 3/5 4/5 4/5 2/5 4/5 5/5 3/5 4/5 4/5 5/5 5/5
obj Box5 Scarf Purse Tape Box3 Bottle Cream Cap Drill Bag Pringles
# 4/5 5/5 3/5 4/5 5/5 4/5 5/5 5/5 2/5 4/5 3/5

4.1 Simulation Results.

We first evaluate the efficacy of the ISAGrasp system on learning dexterous grasping policies in
simulation. Table 1 shows the overall success rate of our method ISAGrasp on three unseen datasets
in simulation. ISAGrasp (bottom row) is able to achieve 74% success rate on rescaled unseen YCB
objects even the policy is only trained on augmented shapes. In addition, our method achieves 74%
and 70% success rate on ShapeNet and GoogleScans objects. We describe analysis on how the
various baselines perform in details in Appendix B.

4.2 Real World Experiments.

Next, we evaluated the grasping policy learned in simulation by ISAGrasp, directly in the real world.
We perform directly simulation to reality transfer of the learned policy as described in Section 2.4.
We evaluate our policy on 22 unseen real world daily objects (see Appendix Figure 17) and evaluate
each object 5 times with random poses. We report number of success on each object in Table 2. On
average, the policy is able to achieve 79% success rate on real world evaluation on novel objects.
We observe several failure cases: (1) if the object is more transparent (Box1: container box), the
pointclouds are incomplete and the network is less robust. (2) objects which require more careful
grasping (Power drill) often have lower success rate. These show that we can leverage policies
trained in simulation directly for real world grasping using ISAGrasp and that the robustness and
generalization properties transfer from simulation to the real world.

4.3 Ablations and Analysis

We first provide some insights into the impact of various design decisions in ISAGrasp below:

Impact of using correspondence-aware generative models: To understand how important us-

Original Point-wise  Gaussian

Random GeneratedCorrespondence-aware 

ShapeGANDIF-Net

Figure 8: Analysis on shape generation. DIF-Net generates realistic and semantically meaningful objects (Left
Panel) while ShapeGAN generates novel objects but often unrealistic and without any correspondences (Middle
Panel). We show the refinement rate for obtaining successful grasps on these objects ( R: random grasps, D:
retargeted demonstration, Corr: correspondence-guided grasps (right panel). The lack of correspondences
makes refinement challenging, yielding only 30% success rate as compared to DIF-Net at 76%.
ing the dense correspondences provided by DIF-Net are for generating successful grasps on novel
objects, we compare DIF-Net [11] with a correspondence-agnostic model, shapeGAN [14] by show-
ing their generated meshes and the refinement rate for obtaining successful grasps. Refinement rate
refers to the ratio of grasps that can be successfully refined via rejection sampling to the total number
of proposed grasps. We use this metric to compare the efficiency of creating stable grasp datasets
generated using different approaches. Shown in Figure 8 (Left), DIF-Net can smoothly deform the
original shapes and generate more realistic shapes. We conduct 50 times of perturbation with re-
jection sampling on 100 objects generated by both methods. Figure8 (Right) shows refinement rate
(R: random grasps without human demonstrations, D: using original human demonstrations without
new grasps Gd estimation, Corr: using new grasps Gd). Initialized with correspondence-guided
grasps, DIF-Net (Corr) achieves 76% refinement rate while ShapeGAN(D) achieves below 30%
with the same number of refinements. This indicates the importance of transferring grasps through
a deformation based transformation for novel objects.

Impact of Input Representation: To understand the choice of input representation for supervised
learning, we compare feature choices used as input for training policies, evaluated on objects from
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the ShapeNet and GoogleScans datasets. We observe that using pointcloud p, surface normal vector
~No, Robot vectors ~Nf and ~Np performs best.

5 Related Work

Table 3: Ablations on input features

p p+ ~No p+ ~No+ ~Nf + ~Np

Success 0.47 0.57 0.72

Manipulation with Dexterous Hands. To
control a dexterous hand, prior work has inves-
tigated including planning with analytical mod-
els [27] and online trajectory optimization [28].

However, these methods assume accurate dynamics models and robust state estimates, which are
difficult to obtain in complex real-world manipulation. Learning-based approaches particularly
with deep reinforcement learning (RL) [29, 30, 5, 31, 32, 6, 2] have been investigated. Despite
the progress, training deep RL models remains challenging due to high sample complexity and
reward engineering. Although this issue has been mitigated by incorporating human demonstra-
tions [26, 33, 3, 34, 1], these methods are still faced with a major challenge in scalability[3, 2]. Prior
work has collected demonstrations kinesthetically [33], through VR interfaces [26], or using motion
capture (mocap) solutions [35, 36, 37, 3], which are often limited in size. In comparison, the focus
of our work allows policies to generalize to novel, unseen shapes, which could be easily combined
with pipelines for improvement with RL with demonstrations [3, 1, 38, 26].

Data Augmentation and Robustness. Data augmentation has been used traditionally in vision
tasks where images are cropped, rotated, normalized, etc [39, 40, 41, 42, 41, 42] to improve gener-
alization and model robustness. In contrast, our work aims to generate novel objects with varying
physical dynamics and does not simply learn invariant behavior but learns different grasping be-
havior for different objects. In a similar vein, domain randomization is used in robotics, where
predefined parameters such as lighting, camera are randomized during training[43, 44] in order to
learn a policy that is invariant to these parameters. However, this randomization does not aid with
generalization to novel object shapes. More recently, methods have aimed to generate novel objects
shapes programmatically [13], or use a generative model to create new objects in an adversarial
setting [45]. This is. motivated similarly, but differs in being for parallel jaw grasping problems and
not generating dynamically consistent grasping behavior via correspondences.

6 Limitations

Challenging objects: it’s more challenging for our policy to succeed when the object is large or too
flat. Since our shape augmentation is built on dexYCB dataset, it becomes more challenging if the
test object is too different from the training objects, or requires a more specific way of grasping. The
shape augmentation also does not cover objects of widely varying scales. See visualizations on chal-
lenging objects in Appendix D. Real world experiments: The method assumes access to a fairly
complete point cloud. It will not succeed in scenarios with heavy amounts of occlusion or noise in
the point clouds. Functional grasping: Currently the method does not do dexterous and functional
grasps, and is only designed to lift the object. The utility of a dexterous hand is perhaps best utilized
with functional grasps, but the current system does not optimize for this directly. Accounting for
kinematics: The current system does not account for the kinematics of potentially hitting the table
when the hand is mounted on a full arm setup. This should be accounted for as we build on this
work in the future.

7 Conclusion

We present ISAGrasp, a novel system for learning dexterous grasping policies in the real world.
ISAGrasp leverages a data augmentation approach that bootstraps a small number of human demon-
strations with a large dataset with diverse and novel objects and grasps. By using a correspondence-
aware generative model, we can deform original object shapes and generate dynamically consistent
new grasps. We create a large and diverse grasping dataset and train a policy via supervised learning
that can then be deployed in simulation and the real world on grasping novel objects, achieving over
75% success rate on grasping novel object instances in the real world.

8



Acknowledgement

We thank Mohit Shridhar for providing helpful feedback on our initial draft. We thank Aaron Wals-
man for providing additional helps on figures and the draft. We are also grateful for Vikash Kumar,
Aravind Rajeswaran, Jason Ma and Mandi Zhao for discussions on running RL baseline experi-
ments. Part of this work was done while Qiuyu Chen was an Intern at NVIDIA. The work was also
funded in part by an Intel gift.

References
[1] P. Mandikal and K. Grauman. DexVIP: Learning dexterous grasping with human hand pose

priors from video. In CoRL, 2021.

[2] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. In CoRL,
2021.

[3] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang. DexMV: Imitation learning
for dexterous manipulation from human videos. arXiv preprint arXiv:2108.05877, 2021.

[4] P. Mandikal and K. Grauman. Learning dexterous grasping with object-centric visual affor-
dances. In ICRA, 2021.

[5] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar. Deep dynamics models for learning
dexterous manipulation. In CoRL, 2019.

[6] R. Jeong, J. T. Springenberg, J. Kay, D. Zheng, A. Galashov, N. Heess, and F. Nori. Learning
dexterous manipulation from suboptimal experts. In CoRL, 2020.

[7] A. Mousavian, C. Eppner, and D. Fox. 6-DOF GraspNet: Variational grasp generation for
object manipulation. In ICCV, 2019.

[8] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13438–13444. IEEE, 2021.

[9] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. arXiv preprint arXiv:1703.09312, 2017.

[10] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic
manipulation. arXiv preprint arXiv:2010.14406, 2020.

[11] Y. Deng, J. Yang, and X. Tong. Deformed implicit field: Modeling 3d shapes with learned
dense correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10286–10296, 2021.

[12] S. Brahmbhatt, A. Handa, J. Hays, and D. Fox. ContactGrasp: Functional multi-finger grasp
synthesis from contact. In IROS, 2019.

[13] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. McGrew, A. Ray,
J. Schneider, P. Welinder, et al. Domain randomization and generative models for robotic grasp-
ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3482–3489. IEEE, 2018.

[14] M. Kleineberg, M. Fey, and F. Weichert. Adversarial generation of continuous implicit shape
representations. arXiv preprint arXiv:2002.00349, 2020.

[15] W. Robotics. Allegro Hand. https://www.wonikrobotics.com/
research-robot-hand.

[16] M. Gleicher. Retargetting motion to new characters. In SIGGRAPH, 1998.

9

https://www.wonikrobotics.com/research-robot-hand
https://www.wonikrobotics.com/research-robot-hand


[17] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao, Q. Wan, S. Birchfield, N. Ratliff, and
D. Fox. DexPilot: Vision-based teleoperation of dexterous robotic hand-arm system. In ICRA,
2020.

[18] E. Coumans and Y. Bai. PyBullet: a Python module for physics simulation for games, robotics
and machine learning. https://pybullet.org, 2016–2021.

[19] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017.

[20] Y.-W. Chao, W. Yang, Y. Xiang, P. Molchanov, A. Handa, J. Tremblay, Y. S. Narang, K. Van
Wyk, U. Iqbal, S. Birchfield, J. Kautz, and D. Fox. DexYCB: A benchmark for capturing hand
grasping of objects. In CVPR, 2021.

[21] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The YCB object
and model set: Towards common benchmarks for manipulation research. In 2015 International
Conference on Advanced Robotics (ICAR), 2015.

[22] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[23] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and
V. Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household items.
arXiv preprint arXiv:2204.11918, 2022.

[24] A. T. Miller and P. K. Allen. Graspit! a versatile simulator for robotic grasping. IEEE Robotics
& Automation Magazine, 11(4):110–122, 2004.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[26] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. In RSS, 2018.

[27] Y. Bai and C. K. Liu. Dexterous manipulation using both palm and fingers. In ICRA, 2014.

[28] V. Kumar, Y. Tassa, T. Erez, and E. Todorov. Real-time behaviour synthesis for dynamic hand-
manipulation. In ICRA, 2014.

[29] V. Kumar, E. Todorov, and S. Levine. Optimal control with learned local models: Application
to dexterous manipulation. In ICRA, 2016.

[30] A. Gupta, C. Eppner, S. Levine, and P. Abbeel. Learning dexterous manipulation for a soft
robotic hand from human demonstrations. In IROS, 2016.

[31] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki,
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