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Abstract

The remarkable success of large language pretraining and the discovery of the empirical
scaling laws signify a paradigm shift in machine learning. Notably, the primary objective
has evolved from minimizing generalization error to reducing approximation error, and the
most effective strategy has transitioned from regularization (in a broad sense) to scaling
up models. This raises a critical question:

Do the established principles that proved successful in the generalization-centric era remain
valid in this new era of scaling?

This paper examines several influential regularization-based principles that may no longer
hold true in the scaling-centric, large language model (LLM) era. These principles in-
clude explicit L2 regularization and implicit regularization through small batch sizes and
large learning rates. Additionally, we identify a new phenomenon termed “scaling law
crossover,” where two scaling curves intersect at a certain scale, implying that methods
effective at smaller scales may not generalize to larger ones. Together, these observations
highlight two fundamental questions within this new paradigm:

e Guiding Principles for Scaling: If regularization is no longer the primary guid-
ing principle for model design, what new principles are emerging to guide scaling?

e Model Comparison at Scale: How to reliably and effectively compare models at
the scale where only a single experiment is feasible?

1 Introduction

The advent of large language pretraining (Devlin et al., 2018; Radford et al., 2019; Raffel et al., 2020;
Brown et al., 2020) and the emergence of scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022; Achiam
et al., 2023; Hestness et al., 2017) have led to a new paradigm within machine learning. This shift redi-
rects both the primary objective and primary approach from optimizing generalization (Zhang et al., 2021)
on a fixed small dataset using regularization to reducing approximation error on a huge text corpus using
scale.

More precisely, in the previous paradigm, we have far more compute than needed to interpolate the train-
ing set. To improve the performance of the model on unseen data, we need to reduce the degree of over-
fitting via all kinds of regularization, including inductive biases, explicit regularization (e.g., L2 Regular-
ization), implicit regularization (e.g., large learning rate, small batch size), among many others. By con-
trast, in the new paradigm, we are compute constraint, i.e., we have far more data and our compute is not
enough to fit such data perfectly. Existing work shows, empirically, the better the model memorizes the
data (smaller approximation error), the more powerful the (foundational) model is. As such, the most ef-
fective approach to improve performance (of downstream tasks) is to throw more compute to consume the
data, aka scaling up our models (bench authors, 2023).

To distinguish these two paradigms, we refer to the former as “generalization-centric paradigm” and the
latter as “scaling-centric paradigm.” We summarize several key differences below in Fig. 1.
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Figure 1: A proposal to reconcile “Classical” Machine Learning (U-shape), ImageNet-scale Deep Learning
(Second-descent) and Internet-scale Deep Learning (Skydiving).

1. Objective: minimizing generalizaion error vs. minimizing approximation error.

2. Approach: regularization vs. scaling.

Given these fundamental differences, blindly applying best practices from the generalization-centric
paradigm to the scaling-centric paradigm may be detrimental. This note revisits several influential ideas
that likely originated from the need for regularization aimed at reducing overfitting:

o Larger earning rates near the maximum stable learning rate (Lewkowycz et al., 2020; Li et al.,
2019) usually generalize better.

o Small batch sizes (Keskar et al., 2016; Smith & Le, 2017) usually generalize better.

Our empirical evidence suggests that several pieces of conventional wisdom relating to regularization in
machine learning may not hold true in the scaling-centric paradigm. This raises a crucial question:

“If reqularization (reducing overfitting) is no longer the primary guiding principle for designing ML
models, what new principles are emerging to guide scaling?”

Another key distinction between the new paradigm and the old one is the immense scale involved (Ope-
nAl et al., 2023; Anil et al., 2023; Zhang et al., 2024), which presents significant challenges both theoreti-
cally and practically. Notably, we observe a phenomenon termed “scaling law crossover”: techniques that
enhance performance at smaller scales may not translate effectively to larger ones, i.e., these techniques
“overfit” to small scales. We illustrate this phenomenon with three examples. This raises a fundamental
question in machine learning:

“Given the potential for scaling law crossovers, how can we effectively compare models at a scale where
only a single experiment is feasible?”
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Consequently, this new paradigm necessitates the development of novel ideas and mindsets to understand
and improve scaling. We hope this work stimulates more discussion and out-of-the-box thinking on these
critical challenges, moving the field forward.

2 Background: Two Paradigms in Machine Learning

The central goal in machine learning is to learn a function capable of making predictions on unseen data
by understanding the underlying structure of the data. Formally, given a training set 7 = {(xs, ¥:)1<i<|7|}
drawn from some distribution (x,y) ~ D, we aim to learn a function, parameterized by 6 € €, that mini-
mizes the test loss' on unseen data:

Z(fo; D) = E(x)~l(fo(x),y)] (1)
In practice, we learn fp by minimizing the training loss (the average loss on the training set):

1
L(foT) = D, Ufox),y) 2)
T4
WET
This approach is known as empirical risk minimization (ERM). The test error can be decomposed into the
sum of generalization gap and training error (approximation error)

Z(fo;D) = (L(e;D)=Z(f0;T)) + ZL(fo;T) 3)
—— ———
Test Error Generalization Gap Approximation Error

We discuss two paradigms in machine learning, distin-
guished by the relative and absolute scales? of the data

Generalization-centric vs. Scaling-centric
and model:

—==Interpolation Threshold

o Generalization-centric paradigm:

Direction for Scaling

Data scale is relatively small. This paradigm e
further divides into two sub-paradigms: ’

(heavily under-parametrized)

Direction for Scaling

l

Generalization-centric 7
(over-parametrized) .

— Classical bias-variance trade-off (U-
shaped) regime: Model capacity is in-
tentionally constrained below the interpo-
lation threshold (red dot e in Fig. 2). In o
this regime, both Generalization Gap and /'/?SSSS.W”;?:S;Q?
Approximation Error are non-negligible. g

Scale of Model

— Modern over-parameterized (second- Scale of Data
descent) regime: Model scale signifi-
cantly surpasses data scale (green dot Figure 2: Generalization vs Scaling Paradigms.

in Fig. 2). In this regime, Approzimation
Error is negligible.

e Scaling-centric paradigm: Large data and
model scales, with data scale exceeding model
scale (blue dot e in Fig. 2). In this regime, the Generalization Gap is negligible.

IFor simplicity, we assume the irreducible loss is zero.
2We use the term “scale” broadly in this context to encompass
both the capacity of the model and the complexity of the data.
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2.1 The Bias-Variance Trade-off and the U-shape Regime

In this classical setting, the complexity of the training set 7 is typically smaller than the richness of the
function class H = {fy : 0 € Q} and the absolute scales of the data and models are small. Conventional
wisdom in machine learning suggests that one needs to carefully control the complexity of the function
space H (Belkin et al., 2019) to balance Generalization Gap and Approzimation Error:

1. If H is too small (underfitting), all functions in A will have high bias, i.e. high Approzimation Er-
ror. This leads to a large training error, and thus a large test error.

2. If H is too large (overfitting), the learned function may overfit the training data, leading to high
variance. This results in a small training error but a large Generalization Gap (the difference be-
tween test and training errors), and thus a large test error.

This observation is known as the bias-variance trade-off, a fundamental result in machine learning (Hastie
et al., 2009). It traditionally suggests a U-shaped error curve (Figure 3 (a)), with optimal test error
achieved by balancing bias and variance (Hastie et al., 2009). It was believed that test loss would in-
crease monotonically after this optimal trade-off point due to overfitting, where models capture noise in
the training data. As such, the optimal function class was thought to be in the undercapacity /under-
parameterized regime, in which the functions cannot perfectly fit (interpolate) the training data. Regular-
ization methods (Hastie et al., 2009) like L2, weight decay, Lasso, Early Stopping etc. are used to achieve
the optimal trade-off.

2.2 Over-parameterization and the Second-descent Regime

The success of deep neural networks in tasks like image recognition around 2012 (Krizhevsky et al., 2012)
marked a (sub-)paradigm shift inside generalization-centric machine learning. Over-parameterized neu-
ral networks, possessing more parameters than required to perfectly fit the training data (interpolation
threshold), surprisingly continued to improve as they became even more over-parameterized, surpass-

ing the performance of under-parameterized models (He et al., 2016; Neyshabur et al., 2018). This phe-
nomenon, where increasing model complexity beyond the interpolation threshold leads to improved per-
formance, offered a new perspective beyond the classical bias-variance trade-off. It inspired the proposal
of the “double-descent curve” (Figure 3 (b)) to accommodate both the traditional U-shaped curve in

the under-parameterized regime and the observed single-descent curve in the over-parameterized regime
(Belkin et al., 2019).

Key questions arose: why do over-parameterized neural networks generalize well, exhibiting benign over-
fitting (Bartlett et al., 2020), and how can we design algorithms and architectures to improve gener-
alization? A central question is why some global minima generalize much better than others in over-
parameterized models (Zhang et al., 2021; Neyshabur et al., 2018). This led to research on implicit regu-
larization (Neyshabur, 2017) in neural networks, aiming to provide theoretical and practical insights. Sev-
eral key findings emerged:
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Large Learning Rate is Better. Practitioners observed better generalization with near-maximal sta-
ble learning rates. Explanations include the flat minima hypothesis (SGD noise helps escape sharp min-
ima (Keskar et al., 2016)), the edge-of-stability concept (larger learning rates decrease hessian curvature)
(Cohen et al., 2020), and escaping the linearization regime (large learning rates help networks learn useful
representations) (Lewkowycz et al., 2020).

Small Batch Size is Better (Keskar et al., 2016; Smith & Le, 2017). A critical batch size exists,
below which generalization does not worsen with decreasing batch size. Above this, performance degrades,
resembling a RelLU-shaped curve. This is attributed to gradient noise from small batches biasing towards
flatter minima, while large batches lead to sharp minima.

These insights were developed to improve and explain generalization through implicit or explicit regu-
larization, which is believed to reduce variance, guiding the network to find better minima (Foret et al.,
2020).

Fig. 4 (a) depicts typical learning dynamics in this paradigm: training and test error curves diverge after a
period of training, creating a generalization gap, while training error (classification) reaches a global mini-
mum. Minimizing this generalization gap remains a central focus in this paradigm

We summarize two key principles in the generalization-centric paradigm:

e Guiding Principles for Generalization: Overfitting is a core challenge, and “regularization”
serves as the primary guiding principle for understanding and improving generalization.

e« Model Comparison via Validation Set: Due to the relatively smaller scale of problems in this
paradigm, we can afford to train multiple models and rely on hold-out validation sets for model
comparison, which is a reliable and effective approach.

However, in the scaling paradigm, we may lose the advantages offered by both of these principles.

2.3 Heavy Under-parameterization and the Skydiving Regime

Breakthroughs in large language model pretraining leads us to a scaling-centric paradigm, distinguished
from the previous generalization-centric paradigm by two key features. First, the complexity of training
data T far surpasses the capacity of the models (Raffel et al., 2020; Brown et al., 2020; Hoffmann et al.,
2022; Touvron et al., 2023) and the training loss remains far from reaching a plateau. Second, both the
data and the models themselves operate at a scale vastly larger than in previous paradigms, as illustrated
in Figure 2 blue dot e.

Figure 4 (b) illustrates the typical learning dynamics in this paradigm: test and training error curves re-
main closely aligned throughout training, even when model size and compute are scaled up by factors of
500 and 250,000, respectively. The training error has not yet reached its global minimum, suggesting fur-
ther scaling up either or both the model size and dataset size could lead to improved performance. This
behavior corresponds to the “skydiving (blue)” regime depicted in Figure 1, preceding the U-shaped bias-
variance trade-off curve (Fig. 3 (a)). In this regime, training and test errors on a holdout evaluation set
are nearly identical. Consequently, the primary goal shifts from mitigating overfitting to minimizing the
pretraining (approximation) error, as the generalization gap has yet to emerge.

This divergence in primary objectives suggests that conventional wisdom from generalization-centric ma-
chine learning might not readily apply to the new paradigm. Specifically, “regularization” may no longer
be the driving force for performance improvement (see Section 4) nor the guiding principle for understand-
ing scaling. Furthermore, Section 5 explores the challenges arising from the immense scale involved. In
particular, the hold-out validation set method may not be applicable for model comparison in this setting.
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Figure 4: Learning Dynamics: Generalization (Image Classification) vs. Scaling (Language
Model Pretraining). (a) ResNet-18 on CIFAR-10. Training and test error curves initially overlap, then
diverge, forming a generalization gap. Minimizing this gap is the central objective as the network easily
interpolates training data. (b). Decoder-only transformer on C4. Evaluation curves consistently remain
within training curves throughout training, even when the model size and compute is scaled up by a factor
of 500 and 250,000, respectively.

3 Architecture and Optimizer

We use decoder-only transformer architecture (Vaswani et al., 2017). All language models are trained on
the C4 dataset (Raffel et al., 2020). We use the open-source NanoDO codebase (Liu et al., 2024) for our
training process. Specific architectural details are listed below.

Rotary (Su et al., 2024) Positional Embedding.

QK-Norm (Gilmer J. & J., 2023; Dehghani et al., 2023), i.e., two Layer Normalization layers are
applied to the queries and keys before the dot-product attention computation

Untying the head from the embedding, i.e., we do not use weight tying of the first and last layer.

Gelu (Hendrycks & Gimpel, 2016) activation with F' = 4D, where D and F' are the model dim
and hidden dim of the MLP, resp. However, we use Geglu (Shazeer, 2020) in some experiments.

The head dimension of query and key is set to dnead = 64, resulting in H = D/dpeaq attention
heads throughout this paper.

The sequence length is S = 512.
The vocabulary size is V' = 32101.

The total number of parameters in the backbone is approximately .#* ~ 12D?L, where D repre-
sents the model dimension and L is the number of layers in the transformer.

Most models are trained to Chinchilla optimality (Hoffmann et al., 2022), utilizing a total of =
20 x (12D?L 4+ DV') tokens.

The total compute is estimated using the “# = 6.4 2" formula Kaplan et al. (2020), where the
estimated number of floating-point operations (FLOPs) .# is 6 x Number of Parameters(./#") x
Number of Tokens(2).

Optimizer. Our default optimizer is AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2017; Deep-
Mind et al., 2020) with 8; = 0.9, 82 = 0.95, € = 1e-20 and coupled weight decay A = 0.1.



Under review as submission to TMLR

4 Is Regularization Needed?

As discussed earlier, regularization plays a pivotal role in the generalization-centric paradigm. It effectively
mitigates overfitting and bridges the gap between training and test losses. In this section, we revisit three
popular regularization techniques commonly employed in machine learning: explicit L2 regularization, and
the implicit regularization effects of large learning rates and small batch sizes.

While the conclusion of this section — that explicit/implicit regularization is not necessary in the absence
of overfitting — may be obvious to many, it is useful to re-examine our prior beliefs in the context of the
scaling-centric paradigm.

4.1 Does L2 Regularization Improve Performance?

To assess the impact of L2 regularization across different training regimes, we compare its benefits in
scaling-centric versus generalization-centric settings.

First, we showcase the usefulness of L2 in improving generalization. We trained a ResNet-50 on ImageNet
using Flax’s default settings, which include L2 regularization (A = 0.0001). We then trained a second
model without L2 regularization (A = 0). As shown in Fig. 6, L2 regularization substantially boosts

test accuracy by 6% (0.764 vs. 0.703). While the model without L2 achieves a higher training accuracy
(~ 0.856 vs. ~ 0.807), this clearly highlights the effectiveness of L2 regularization in reducing overfitting
and improving generalization.

Next, we provide evidence that L2 regularization may not be
useful for language model pretraining. To do so, we trained
four 151M transformers, varying the use of L2 regularization
and weight decay. The training dynamics are presented in
Figure 5, leading to the following observations:
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Figure 5: Training dynamics of four transformer models. From left to right: no L2 and no weight decay,
small L2 and no weight decay, no L2 but with weight decay, with both L2 and weight decay.


https://github.com/google/flax/tree/main/examples/imagenet

Under review as submission to TMLR

----- Train (Small LR) —— Test
—— Test (Small LR) —— Train
----- Train (Large LR)
—— Test(Large LR)

o
B

o
o

g

o
o
o

=

w
o
~

=
N
/

Cifar-10 Classification Error
N
Cifar-10 Classification Error

o
N

el Smaller
Generalization|

L
Generalization
Gap

o

T [ 0.0

0 10 20 30 40 50 10 102 107" 10°
Training Epoch Peak Learning Rate

g
=)
i/

(a) Large Learning Rate is Better (b) Optimal LR is near Max Stable LR

Figure 7: Large Learning Rate Improves Generalization. (a) Networks trained with large or small
learning rates can achieve perfect training accuracy, but large learning rates generalize better. (b) The
optimal learning rate is often near the maximum stable rate.

Discussion. While L2 regularization is widely acknowl-

edged to reduce overfitting and thus enhance generalization

performance, our preliminary experiments indicate that it

may not offer similar benefits for language model pretrain-

ing. This aligns with current practices, as flagship language models such as GPT-3 (Brown et al., 2020),
PALM (Chowdhery et al., 2023), Chinchilla (Hoffmann et al., 2022), Llama-2 (Touvron et al., 2023) and
DeepSeek-V2 (DeepSeek-Al et al., 2024) do not employ L2 regularization. While weight decay is widely
used in training language models, our observations are consistent with Andriushchenko et al. (2023) in
that it does not play a conventional regularizer role. Guiding principles are needed to deepen our under-
standing of weight decay in this context.

4.2 Does Maximal Stable Learning Rate Perform Better?

Conventional wisdom in neural network training often favors using a larger learning rate, possibly near
the maximum stable value, as this is believed to improve generalization performance (Li et al., 2019; Lee
et al., 2020; Lewkowycz et al., 2020). This practice is attributed to the implicit regularization of stochas-
tic gradient descent (SGD). While various learning rates can achieve perfect training accuracy for small
datasets, e.g. CIFAR-10, the gradient noise from larger learning rates is thought to guide SGD towards
better minima. This phenomenon has been explored in several influential studies, including those on flat
minima (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016; Dinh et al., 2017; Foret et al., 2020), the
edge of stability (Cohen et al., 2020; Agarwala et al., 2022; Damian et al., 2022; Gilmer J. & J., 2023),
and escaping the NTK regime (Jacot et al., 2018; Chizat et al., 2019; Lee et al., 2019; Lewkowycz et al.,
2020; Yang & Hu, 2021; Woodworth et al., 2020; Karkada, 2024). Although no rigorous theory fully ex-
plains why the maximal stable learning rate improves performance, it’s considered by many a good prac-
tice in training neural networks. We reproduce this insight by training a ResNet-18 on CIFAR-10. Figure
7a shows the regularization benefits of using a larger learning rate: while both large and small learning
rates lead to zero classification error, the larger learning rate results in a smaller test error. Fig. 7b shows
that the optimal learning rate is near the maximal stable learning rate.

Does this conventional wisdom apply to training language models? Since the primary principle behind this
practice is improving generalization (via implicit regularization) - different from the primary goal in the
scaling-centric paradigm - we might expect it to not hold true. In the following, we provide empirical evi-
dence supporting this hypothesis.

Experiment Setup. To investigate the optimal learning rate for training language models, we trained
our base model to Chinchilla-Optimal while varying the learning rates. We further test the robustness of
our findings by introducing several interventions:
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Figure 8: Optimal Learning Rates Are Significantly Lower Than Maximal Stable Learning
Rates. (a) Loss vs. learning rate curves reveal U-shaped relationships, with optimal learning rates far be-
low stability limits. (b) Despite smooth training curves, maximal stable rates consistently underperform.

1. Switching from AdamW to Lion (Chen et al., 2024) (Fig. 8a),
Removing QK-Norm (Fig. 8a),
Eliminating weight decay (Fig. 8a),

Removing warmup and learning rate schedule (Fig. 8a),

BAN e

Adjusting batch size and changing model size (Fig. 10a and Fig. 10b)

Experimental Results. Across all these setups, the relationship between loss and learning rate consis-
tently exhibited a U-shape curve. The optimal learning rate was far from the maximal stable learning rate
often favored in traditional neural network training.

Discussion. Contrary to conventional wisdom, our findings reveal that the optimal learning rate for
large language models is significantly lower than the maximal stable value? previously assumed. This sug-
gests that traditional regularization-based theories may not fully explain the dynamics of optimal learn-
ing rates in the context of training language models. Further research is needed to elucidate the complex
relationship between optimal learning rate, model scale, and other training factors (see Paquette et al.
(2024)).

4.3 Does Small Batch Size Perform Better?

In generalization-centric ML, a common observation is that, given the same computational budget (mea-
sured by the total number of training epochs), algorithms employing smaller batch sizes tend to generalize
better than those with larger batches beyond a critical threshold (Keskar et al., 2016; Smith & Le, 2017;
Shallue et al., 2019; McCandlish et al., 2018). This phenomenon is often attributed to the increased gradi-
ent noise associated with smaller batches, which acts as an implicit regularizer, mitigating overfitting. It’s
hypothesized that the noise helps guide the optimization process towards minima that generalize better.

We replicate this conventional wisdom in Fig. 9 using the ImageNet example in (Heek et al., 2023). With
a fixed number of training epochs (100), the trend demonstrates that smaller batch sizes lead to better
test performance, albeit with worse training performance, effectively reducing overfitting.

However, does this conventional wisdom about small batch sizes translate to the realm of LLM training?
Given that the primary benefit of small batches is their regularization effect, and regularization may not
be the primary concern for LLMs, we have reason to question this assumption.

3This observation has been recognized (implicitly or explicitly) in existing work, e.g. Wortsman et al. (2023); Zhao et al.
(2024) among many others.
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Figure 9: Small Batch Size performs better for ImageNet. Small batch size achieves better Test
Error (left) but worse Training Error (right), vice versa for large batch size.

Experiment Setup. We trained two models (19M and 151M parameters) to Chinchilla-Optimal perfor-
mance, varying batch sizes in {16, 32,64, 128,256,512,1024}. For each batch size, an 11-point grid search
was performed to identify the optimal learning rate. To assess variability, the 19M model was trained with
five different random seeds.

Experimental Results. Fig. 10a and Fig. 10b illustrate the evaluation loss as a function of learning
rate for various batch sizes. Aggregating the best evaluation loss for each batch size, we observe a clear
U-shaped curve in Fig. 10c. This demonstrates that both excessively small and large batch sizes can nega-
tively impact model performance.

Discussion. The conventional wisdom that smaller batch sizes lead to better performance may not al-
ways apply to language model pretraining. While gradient noise from small batch sizes can potentially
benefit generalization, it may also impede optimization. The observed U-shaped relationship between loss
and batch size raises interesting questions. Why does this U-shape occur, and what trade-offs determine
the optimal batch size? These questions remain open for further investigation and could provide valuable
insights into improving the efficiency of large-scale language model training.

4.4 Discussion

Through three examples, we provided evidence that regularization, either implicit or explicit, may not be
necessary for language model pretraining. It may no longer be the main driving principle for understand-
ing pretraining or making informed decisions during training. This raises a crucial question: what are the
emerging guiding principles in the scaling-centric paradigm? See Section 6 for a more in-depth discussion.
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Figure 11: Training Instability. (a) The model with D = 3072 deviates from the expected scaling trend.
(b) Closer examination of the training dynamics reveals that the D = 3072 model exhibits instability.
This instability is mitigated by the application of QK-Norm. (c¢) With QK-Norm, the scaling law exhibits
a normal and smooth behavior.

5 Scaling Law Crossover, a Curse from Scale?

In the generalization-centric paradigm, the scales we operate on are significantly smaller than those in the
LLM setting. This allows us to test new ideas on smaller datasets like CIFAR10 and, if successful, scale
them up to ImageNet. Since hyperparameter tuning is feasible even at ImageNet scales, we can readily
test our ideas without excessive concern about hyperparameters. Consequently, when proposing new ideas,
we often pay little attention to how hyperparameters should evolve with scale, assuming users can perform
the tuning themselves. For instance, when introducing alternative architectures (e.g., skip connections,
batch normalization), data augmentation techniques, or new optimizers like AdamW, we don’t necessarily
need to provide guidance on how the learning rate and other hyperparameters should scale with model
and dataset sizes.

However, in the “skydiving” regime, the sheer scale of data and models presents a significant challenge.
Traditional hyperparameter tuning becomes impractical due to the immense computational costs involved.
This makes it incredibly difficult and expensive to verify new ideas or compare different approaches at
scale. Consider the seemingly simple question of whether a global gradient clipping norm of 1 or 2 is more
effective in a 100B parameter model. Answering this question through direct experimentation would re-
quire substantial resources and time, highlighting the unique challenges posed by this regime.

In what follows, we present a new phenomenon, termed scaling-law crossover, where the effectiveness of
different techniques reverses at a certain scale. One idea outperforms another below a critical scale, while
the opposite holds above it.

We present three cases of scaling-law crossover with increasing complexity, offering explanations for the
first two but leaving the third as an open question that underscores the complexities of scaling. Unlike
the traditional “test on CIFAR, scale to ImageNet” workflow, the reality of scaling laws may necessitate a
continuous climb up the scaling ladder: testing at progressively larger scales until a crossover is observed,
or we gain enough confidence to bet that the idea is effective at the desired scale. Therefore, evaluating
an idea’s potential may take days or even weeks, and require 100+ GPUs and a group of researchers. This
process becomes increasingly harder and more costly as we climb up the scaling ladder.

5.1 Warmup: Training Instability

Training instability in large language models (LLMs) is a widely recognized challenge within the research
community (Liu et al., 2020; Chowdhery et al., 2023; Dehghani et al., 2023; Zhang et al., 2023; Molybog
et al., 2023; Cohen et al., 2022; Wortsman et al., 2023). In this section, we reproduce this phenomenon
and explore potential solutions. While our initial fix appears to resolve the issue, it hides a deeper problem
in scaling strategies.
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Figure 12: Constant Learning Rate vs LR = 2/D. A constant learning rate LR = 2/1024 and a learn-
ing rate of LR = 2/D yield nearly identical performance at small scales (D < 1024). However, their perfor-
mance diverges at larger scales (D > 1024), with LR = 2/D demonstrating superior performance both (b)
with and (a) without QK-Norm.

Experiment Setup. We train a series of models with varying dimensions (D, F) = (128k,512k) for
kell,2,3,4,6,8 12,16, 20,24, 32,40, 48]. All models share the same batch size (256), number of layers (6),
sequence length (512), and training steps (200,000, not Chinchilla-Optimal). We use a constant learning
rate LR = 2/1024 for all model sizes.

In Figure 11a, we plot the evaluation loss against computational cost (flops) for each model. While perfor-
mance generally improves with scale, a discontinuity emerges around 10? exaflops (D = 3072). Examining
the learning dynamics for D = 3072 (Figure 11b) reveals training instability in larger models: the evalu-
ation loss spikes during training (between 1,000-10,000 steps) but self-corrects later. Clearly, our scaling
approach requires adjustment.

Fortunately, several techniques exist to address training instability: Z-loss (Chowdhery et al., 2023), ex-
tended warmup periods (Wortsman et al., 2023), learning rate reduction, increased weight decay, and QK-
Norm (to prevent attention logit explosion (Dehghani et al., 2023)).

We try QK-Norm, and it proves effective. Not only does it resolve the instability for D > 3072 (Figure
11b), but it also enhances performance for larger model sizes (Figure 11¢). However, a crucial question
remains: have we truly addressed the underlying issue, or have we merely patched a symptom?

5.2 Sub-Optimal Learning Rate Scaling Rule

Years of research investment in understanding the training dynamics of neural networks has taught us

a valuable lesson: learning rates should be adjusted based on training specifics, particularly model scale
Goh (2017); Lee et al. (2019); Sohl-Dickstein et al. (2020); Xiao et al. (2019); Yang et al. (2022); Bi et al.
(2024). The challenge lies in determining how to adjust them effectively.

We compare two proposals: using a constant learning rate (LR = 2/1024 as in Section 5.1) versus scaling
the learning rate with model width (LR = 2/D) Everett et al. (2024).

Proposal Blue. Constant learning rate LR = 2/1024 for all model sizes.
Proposal Red. Learning rate scales with model dimension, LR = 2/D.

We evaluate these proposals with and without QK-Norm. Results are presented in Figure 11.
Observations.

1. Using 2/D learning rates mitigates training instability, even without QK-Norm.

2. While the two proposals yield nearly identical performance at small scales (D < 1024), with
Proposal Blue potentially slightly better, a crossover occurs at D > 1024. Beyond this point,
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Proposal Red consistently outperforms Proposal blue, and this performance gap widens with in-
creasing scale, regardless of the presence or absence of QK-norm (Fig. 12a and 12b.)

Retrospectively, the compute inefficiency of Proposal Blue can be attributed to sub-optimal learning rate
or sub-optimal hyperparameter choices. However, these inefficiencies may not be apparent until we iden-
tify the sub-optimal component in our proposal and discover a new one to fix it (in this case, changing
learning rate scaling rule from constant to 2/D). We might have mistakenly believed that adding QK-
norm to Blue fully addresses the issue, unaware of deeper problems within our proposals. This raises three
questions:

o Is the 2/D learning rate scaling rule a true cure or merely a band-aid solution? Could there be an
even better one?

e Are there inherent limitations or hidden bottlenecks in our model architectures that degrade per-
formance at large scales but are not observable at small scales?

e How can we effectively distinguish between proposals whose performance is nearly indistinguish-
able at small scales, yet exhibits significant differences at larger scales that are too expensive to
run?

5.3 Sub-optimal Weight Decay Scaling Rule

Experiment Setup. The architectures remain consistent with previous sections, varying only the scal-
ing factor k in (D, F) = (128k,512k). Crucially, models are trained to Chinchilla-Optimal, meaning the
training horizon scales with model size (20 tokens per parameter).

Proposal Blue: We employ muP (Maximal Update Parametrization (Yang et al., 2022)) and a constant,
dimension-independent weight decay. Optimal hyperparameters were determined through hyperparameter
search with independent weight decay (A = 0.000566) which remains the same for all D, and learning rate
(n = 0.0055) for the base model D = 512.

Proposal Red: We scale the learning rate inversely with the model size (LR = 2/D), and additionally, the
weight decay is scaled similarly, with independent weight decay A = 0.1 x 2/D.

Note that Proposal Blue is consistent with the recommendation from the muP paper “weight decay should
scale independently with width” (Yang et al., 2022; 2023).

Observation. While muP is often considered a best practice for scaling up models, its performance
gains observed at smaller scales may not translate effectively to larger ones. A crossover point emerges,
beyond which Proposal Blue (based on muP) loses its advantage; see Fig. 13a. This is likely because muP
assumes that the number of training tokens (and thus, training steps) is constant with respect to model
dimension (D). However, this assumption doesn’t hold in practice, especially with Chinchilla-Optimal
scaling, which suggests a training token count of 204" (where .4 is the number of parameters, propor-
tional to D? for fixed layers). Therefore, muP’s underlying assumption conflicts with the Chinchilla-
Optimal scaling strategy (Everett et al., 2024). As shown in Fig. 13b, constant weight decay leads to sig-
nificant suppression of parameter norms throughout training. Scaling the weight decay with the learning
rate (LR = 2/D) results in better parameter norm dynamics.

5.4 Is Gradient Normalization a Good ldea?

Experiment setup. In this experiment, we co-scale model dimension D and number of layers L with
a fixed aspect ratio D/L = 512/6 and train all models to Chinchilla-Optimal. Our learning rate search
procedure suggests the formula n = 2/D x (6/N)°67 x 2025 We call this Proposal Red.

Proposal Blue: We propose the following modifications to the base model:
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Figure 13: Crossover Phenomenon due to Sub-optimal Weight Decay. (a) A constant weight de-
cay strategy initially outperforms a decaying weight decay approach at smaller scales. However, this ad-
vantage diminishes and reverses at larger scales, demonstrating a crossover phenomenon. (b) With con-
stant weight decay, parameter norms are significantly suppressed throughout training. (c¢) Decaying the
weight decay alongside the learning rate results in less suppressed parameter norms.

1. Activation Function and MLP Dimension: Replace the GeLU activation function with its
gated variant, GeGLU (Shazeer, 2020), and increase the hidden dimension of the MLP to F' = 6D.
Gated activations like GeGLU are commonly believed to improve model performance.

2. Weight Decay: Increase the weight decay by a factor of 4.

3. Gradient Normalization: Normalize the raw gradients by their root mean square (RMS) before
passing them to the AdamW optimizer.

The ablation study (Fig. 14a) shows promising results for these modifications, particularly in terms of im-
proved performance and reduced learning rate sensitivity (Wortsman et al., 2023). It seems we may have
found an innovation. Let’s now evaluate Proposal Blue at scales.

Observation. Evidently, we encounter another scaling law crossover, as illustrated in Figure 14b. While
Proposal Blue initially exhibits promising results at smaller scales, this advantage diminishes, leading to

a crossover point around 2 — 3 x 10% exaflops — a significantly larger scale than observed in previous ex-
periments. Unlike those instances, the cause of this crossover remains elusive. Does gradient normalization
become inherently detrimental at larger scales? Should the learning rate scaling formula be adjusted when

355 —— Baseline —— + Gradient Normalization
’ +4X Weight Decay 3.4 —— Baseline
—— + Gradient Normalization
3.54 3.2
) »
§ 3.53 § 3.0
& 3.52 g8
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2° 2* 27 107 100 101 102 108
Learning Rate ExaFlops
(a) Ablation Study. (b) Gradient Normalization and Crossover

Figure 14: Gradient Normalization Leads to Scaling Law Crossover? (a) An ablation study show-
ing Proposal Blue performs better at small scales. In particular, gradient normalization not only improves
performance but also reduces learning rate sensitivity in the scale we are testing. (b) Performance gain
from Proposal Blue does not transfer to large scale. A crossover occurs around 2 — 3 x 10? exaflops.
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incorporating gradient normalization? Even if we successfully address the limitations of the gradient nor-
malization proposal and verify its effectiveness up to 10® exaflops, can we confidently assert that the fix
will remain effective at even larger scales, such as 10* exaflops?

5.5 Discussion

We discuss several direct consequence of scaling law crossover and leave a more in-depth discussion for the
next section.

1. Hyperparameter Tuning at Scale. As performance is highly sensitive to the choice of hyper-
parameter scaling rules, (False Negative) good ideas may be killed owing to insufficient hyperpa-
rameter tuning and (False Positive) sub-optimal ideas may be promoted due to weak baseline.

2. Credit Assignment. The crossover scaling phenomenon underscores that demonstrating impres-
sive performance at small scales is insufficient. While proposing new ideas and testing them at
small scales remains crucial, rigorously verifying ideas at large scales demands substantial effort,
resources, and, crucially, faith in their potential. Thus, we argue that scaling up existing ideas and
rigorously demonstrating their effectiveness at scale is as important as, or even more important
than, proposing new ideas and testing them on small scales. Both types of contributions are essen-
tial and should be recognized and valued.

3. Avoid Biased Search Spaces. The scaling law crossover phenomenon indicates that it is crucial
to avoid overemphasizing ideas that work well at small scales. This narrow focus might lead us
to miss groundbreaking approaches, similar to the “vision transformer” (Dosovitskiy et al., 2020),
that excel at large scales but might not shine on smaller ones.

6 Discussion and Conclusion
Let us revisit the two central themes: model comparison at scale and guiding principles for scaling.

6.1 Model Comparison at Scale

The ability to effectively and reliably compare models is fundamental to advancing machine learning. In
the generalization-centric paradigm, the validation set approach remains a simple, reliable, cost-effective
and theoretically grounded method for such comparisons. However, this approach does not apply to the
scaling-centric paradigm. The immense scale often prevents training multiple models for comparison. Fur-
thermore, the phenomenon of scaling law crossover — where the relative performance of methods can
change as models scale — poses a fundamental challenge: we cannot simply compare two models at small
scales and assume that the observed ranking will hold at larger scales. It raises a fundamental question:

Model Comparison at Scale: How to compare models at a scale where training is feasible only once?

We discuss two possible methods below.

6.1.1 Scaling Law Extrapolation for Model Comparision

The first approach relies on scaling law extrapolation (Kaplan et al., 2020): extrapolating observations
from smaller scales to predict performance at larger scales. Specifically, we assume the following functional
form relating loss .Z to computational cost (flops, denoted by f):

L(f)=afl +c (4)

for a given class of models (Kaplan et al., 2020), where the parameters (a, b, ¢) depend on the model’s spe-
cific characteristics. We then generate a sequence of measurements {(f;,l;)}1<i<x by training a series of
models up to a certain scale (e.g., & = 5 and up to 40 exaflops, as shown in Fig. 15), where (f;,1;) repre-
sents the flops and loss of the i-th model. Next, we find the optimal values of (a,b,c) that best fit these
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Figure 15: Scaling Law Extrapolation: Naively fitting a power law to observed data points can lead
to inaccurate extrapolations. For example, our “Blue” and “Red” proposals showed significant deviations
after 10x and 30x compute extrapolation, respectively.

measurements. Finally, we use Equation 4 to make predictions about future performance, such as the ex-
pected loss at f = 5e3 exaflops.

We apply this approach naively to Proposal Blue and Proposal Red from Section 5.4, using k& = 5 and
f <40 exaflops. The results are presented in Figure 15.

Although our scaling law extrapolations capture the overall scaling trend, the precision of the predic-
tions is insufficient for reliable model comparison. Proposal Blue deviates from the predicted trend around
3 x 10? exaflops, failing to achieve a 10x extrapolation, while Proposal Red deviates around 10? exaflops,
failing a 30x extrapolation. Furthermore, the scaling law extrapolations incorrectly predict that crossover
occurs in the interval [4 x 10%,5 x 10%], while the actual crossover occurs in [2 x 10%,3 x 10%], as shown
in Figure 14b. This demonstrates that naively extrapolating scaling laws for model comparison can be un-
reliable and lacks a solid theoretical foundation. In contrast, the GPT-4 technical report (OpenAl et al.,
2023) showcases the potential for accurate 1,000x and even 10,000x extrapolations, although the specific
techniques and conditions enabling such accurate extrapolations remain unclear.

Overall, to reliably apply scaling law extrapolation for model comparison at scale, we believe extensive re-
search is necessary to fully comprehend both the macro and micro dynamics at play. This may include a
deeper understanding of the intricate relationship between optimization, architectures, data, and scales
(Kaplan et al., 2020; Bahri et al., 2024; Hoffmann et al., 2022; DeepSeek-AI et al., 2024; Paquette et al.,
2024; Bordelon et al., 2024; Lin et al., 2024), as well as the subtleties within our machine learning sys-
tems. These subtleties encompass factors such as learning rate schedules (Hoffmann et al., 2022), parame-
ter counting choices, the number of warmup steps (Porian et al., 2024), curve fitting approaches (Besiroglu
et al., 2024), and even the epsilon value in AdamW (Wortsman et al., 2023; Everett et al., 2024).

6.1.2 Are Hyperparameter Transfer sufficient for Model Comparison?

pu-Transfer (Yang et al., 2022) is an important technique for tuning hyperparameters in large models. Its
core idea involves parameterizing the network (using maximal update parameterization) and scaling the
learning rate appropriately, enabling the zero-shot transfer of optimal hyperparameters (e.g., learning
rates, scale of initialization) from small models to much larger ones. While these methods have demon-
strated promising results (Yang et al., 2022; Lingle, 2024; Blake et al., 2024; Everett et al., 2024), certain
limitations hinder their direct application to model comparison.

Firstly, hyperparameter comparison represents only a small fraction of model comparison, which encom-

passes optimization choices (e.g., AdamW vs. Lion, schedule-free optimizer, Shampoo (Chen et al., 2024;
Defazio et al., 2024; Gupta et al., 2018)), architectural variations (e.g., multi-head attention vs. grouped-
query attention (Ainslie et al., 2023; Shazeer, 2019), transformers vs. non-transformers (Gu & Dao, 2023;
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Botev et al., 2024; Beck et al., 2024)), and data considerations (e.g., different data mixtures (Penedo
et al., 2024), varying token-to-parameter ratios).

Secondly, the current pP framework primarily focuses on scaling width* while maintaining other factors
like batch size, the number of layers, and training steps as static hyperparameters. This deviates from
practical scenarios where batch size, depth, width, and training steps often co-evolve with scale. Empirical
evidence suggests that hyperparameters may not transfer seamlessly when scaling more than one dimen-
sions concurrently (Everett et al., 2024).

Thirdly, we may seek quantitative model comparisons rather than just qualitative assessments, where hy-
perparameter transfer may not be directly applicable. For instance, to reduce inference costs, we might
overtrain a small model significantly beyond the Chinchilla-Optimal point and employ grouped-query at-
tention instead of multi-head attention. In this scenario, we would like to quantify and then optimize the
computational trade-offs between the overtrained grouped-query model and a Chinchilla-Optimally trained
multi-head model.

In conclusion, hyperparameter transfer technique alone at its current form is not sufficient to resolve the
challenge of model comparison at scale.

6.2 Guiding Principles for Scaling

In the pursuit of models that generalize well, regularization plays a central role. It serves as a guiding
principle for understanding machine learning algorithms, making informed decisions during training, and
inspiring novel ideas. Through the lens of regularization, we can understand a variety of phenomena and
discover new techniques in machine learning. We list several examples below:

e« Hyperparameter Choices: We can grasp the impact of hyperparameters like learning rate and
batch size on generalization. For instance, we understand why larger learning rates can be ben-
eficial and why excessively large batch sizes can hinder generalization. This understanding has
inspired novel techniques like Sharpness-Aware Minimization (SAM) Foret et al. (2020) which ex-
plicitly promote generalization by seeking flatter minima in the loss landscape.

e« Weight Decay: We can explain the regularization effects of weight decay and understand its var-
ious mechanisms for improving generalization Zhang et al. (2018).

e Double Descent and Over-parameterization: We can understand the regularization effect of
over-parameterization and how it helps mitigate overfitting in certain regimes (Hastie et al., 2022;
Mei & Montanari, 2022; Adlam & Pennington, 2020).

o Weight Sharing and Pooling: Weight sharing in convolutional neural networks (CNNs) induces
equivalences in the function space, and global average pooling further enforces invariance. These
properties provably enhance generalization by reducing (regularizing) the complexity of the func-
tion class (Mei et al., 2021).

o Locality and Hierarchy: Locality (e.g., local receptive fields) regularizes the network by pri-
oritizing the learning of local interactions (simpler) before long-range ones Misiakiewicz & Mei
(2022); Favero et al. (2021). Hierarchy, coupled with locality, allows models to learn complex func-
tions in a balanced manner, capturing both local (higher-order interactions) and global (lower-
order interactions) information Xiao (2022). These properties help explain why Convolutional
Neural Networks (CNNs) often generalize better than Multi-Layer Perceptrons (MLPs), and why
deeper CNNs often outperform shallower ones.

However, when it comes to scaling, the guiding principles become less clear. One foundamental challenge
is the existence of the scaling law crossover phenomenon. This phenomenon makes it unwise to optimize

4While there has been some progress in depth scaling (Yang et al., 2023; Bordelon et al., 2023), the signal for hyperpa-
rameter transfer remains convoluted.
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performance for any static scale, as such an approach may only be effective up to a certain point and fail
to generalize to larger scales, i.e., it risks overfitting to a finite scale. Unfortunately, scaling law crossover
is likely unavoidable in practice. Any observed scaling law represents a specific, and likely suboptimal, tra-
jectory through a vast space of possible scaling strategies.

To illustrate this, consider training a sequence of transformers with increasing flop budgets f € N. We
can approximate the flops as f ~ 6.4 %, where .4 is the number of parameters and Z is the number
of data tokens. The loss, .Z, depends on numerous factors including width (D), layers (L), &, batch size
(B), learning rate (n), weight decay (\), and others. For simplicity, let’s focus on these six, recognizing
that 4 ~ 12D2L for transformers with F = 4D.

With the constraint f = 6 - 12D?L - &, we have five free variables. A scaling rule, ¢, dictates how these
variables scale with f:

SR={¢:feN— (D,L,2,B,n,\) e N* x R:  with f=T72D>L%} (5)

Each ¢ produces a scaling law curve within a 5-dimensional surface. Unless we identify the optimal scaling
rule(s), ¢*, that minimize % for all f:

Z(¢*(f)) = inf Z(6(f)),

$ESR

any given scaling law can likely be crossed by another. Since practical scaling rules are often heuristic and
unlikely optimal, crossover is to be expected. For example:

o We did not realize that Kaplan’s scaling rule 2 o f0-27 (Kaplan et al., 2020) was sub-optimal
until the discovery of a better scaling rule 2 o< f°-5 (Hoffmann et al., 2022). But how do we know
that the Chinchilla scaling rule is optimal? Indeed, the exponent @ = 0.5 is not universal and
depends on the dataset in a complicated manner (Paquette et al., 2024). In practice, a Chinchilla-
type empirical analysis is often needed to determine the optimal scaling relationship between 2
and 4 for new datasets (Bi et al., 2024; Dubey et al., 2024).

e Section 5.2 shows that a constant learning rate scaling rule is sub-optimal, as scaling the learn-
ing rate with 2/D leads to better scaling (Yang et al., 2022; Everett et al., 2024). But how do we
know there isn’t an even better scaling rule?

e Section 5.3 demonstrates that a constant, independent weight decay is sub-optimal, since decaying
weight decay with the learning rate leads to better scaling. Again, how do we know there isn’t a
better approach?

Therefore, there is little hope of identifying truly optimal scaling rules ¢* in practice. It is more likely that
we will gradually identify better practices and better methodologies for scaling. To do so effectively and
reliably, we need guiding principles to navigate the complex, high-dimensional scaling space SR° and facil-
itate meaningful comparisons between different scaling strategies.

This leads to a central question in scaling:
“What are the guiding principles for scaling that enable model comparison at scale?”
7 Limitation.

Machine learning is a rapidly evolving field, and our current understanding of scaling phenomena remains
limited. What holds true today may not be valid in a few months. Notably, we mainly focus on reducing

5In practice, the dimensionality of the scaling space is much greater than what is assumed here.
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the loss in pretraining and our analysis assumes a “skydiving” regime, where data complexity significantly
exceeds model complexity. This assumption may break in at least two settings. First, in post-training
(e.g., instructional finetuning), the number of tokens are smaller than the number of parameters and re-
ducing overfitting is important. We didn’t dive into post-training in this paper. Second, as computational
resources grow exponentially while high-quality data may plateau, it is likely that we will re-enter a U-
shaped regime or even the second-descent regime (Fig. 1). In this case, traditional wisdom may regain rel-
evance, and “new wisdom” may become outdated.
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