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ABSTRACT

The core of cross-modal retrieval is to measure the content similarity between
data of different modalities. The main challenge focuses on learning a shared
representation space for multiple modalities where the similarity measurement
can reflect the semantic closeness. The multiplicity of correspondences further
escalates the challenge since all the possible matches should be ranked ahead of the
negatives. Probabilistic embeddings are proposed to handle the multiplicity while
suffering from similarity miscalibration. To address it, we propose to calibrate the
similarity for probabilistic embeddings. The key idea is to estimate the density
ratio between the distributions of the two modalities, and use it to calibrate the
similarity measurement in the embedding space. To the best of our knowledge, we
are the first to study the miscalibration in probabilistic embeddings. In addition, we
further evaluate three pre-training tasks of language models, which is important for
cross-modal but seldom investigated in previous studies. Extensive experiments as
well as ablation studies on two benchmarks demonstrate its superior performance
in tackling the multiplicity of cross-modal retrieval.

1 INTRODUCTION

Visual media and natural language are the two most prevalent modalities exhibiting information in
our daily life. It is essential for computers to understand, match, and transform such cross-modal
data. Cross-modal retrieval, a fundamental and crucial problem in multimodal learning, has attracted
extensive attention in recent years. Typically, cross-modal retrieval requires a shared representation
space that allows computing a similarity measurement between the query and the retrieved data.

Building a shared representation space for multiple modalities is challenging due to the heterogeneity
across different modalities. The multiplicity of correspondences further escalates the challenge: an
image potentially matches with a number of different texts. Conversely, given a caption, there may
be multiple manifestations of the caption in visual forms (Fig. 1 (a)). The multiplicity poses new
challenges for similarity measurement in cross modal retrieval since all the possible matches should
be ranked ahead of the negatives. Most methods (Rasiwasia et al., 2010; Yan & Mikolajczyk, 2015;
Wang et al., 2019; Wei et al., 2020) ignore the multiplicity and use deterministic functions to map a
sample as a single point in the embedding space (Fig. 1 (a)). However, the single point representation
can hardly handle the multiplicity. Recently, probabilistic embeddings (Oh et al., 2018; Chun et al.,
2021) are proposed to map a sample as a Gaussian distribution in the embedding space, in order to
cover a large area and increase the possibility to search for more possible matches.

The underlying assumption of probabilistic embeddings is that the two modalities are perfectly
aligned and embeddings lie in a shared representation space. However, the assumption does not
always hold in practice due to the modality heterogeneity (Rasiwasia et al., 2010), As a result, the
embedding spaces are partially rather than fully aligned (Fig. 1 (b)). Besides, modality embeddings
may easily fall out of the shared space when the variance is large and the overlap is small, yielding
inaccurate similarity measurement between image-text pairs.

To narrow the aforementioned gap, we propose a novel calibration method for probabilistic embed-
dings in cross-modal retrieval. We propose to estimate the density ratio between the two distributions,
and use it to calibrate the similarity measurement in the embedding space. The similarity calibration
can effectively align the distributions between the two modalities and enlarge the shared representation
space (Fig. 1 (c)), facilitating more accurate one-to-many matching. Our method can be seamlessly
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Figure 1: (a) Deterministic embedding can hardly handle the multiplicity; b) Probabilistic embedding
suffers from misaligned subspace; c) We propose a new method to enlarge the aligned subspace.

integrated into current contrastive learning frameworks where matched pairs will be pulled closer and
unmatched pairs will be pushed away in the embedding space. In addition to the similarity calibration,
we further evaluate three pre-training tasks of language models, which plays the crucial role for
cross-modal retrieval but seldom investigated in previous studies. To summarize, our contribution
is multi-fold: 1) To the best of our knowledge, we are the first to study the miscalibration issue in
probabilistic embeddings. 2) We propose to use density ratio between the two modalities to calibrate
the similarity measurement between image-text pairs, enlarging the shared representation space
and facilitating more accurate one-to-many matching. 3) We investigate different pre-training tasks
for cross-modal retrieval. 4) Extensive experiments as well as ablation studies on two benchmarks
demonstrate its superior performance in tackling the multiplicity for cross-modal retrieval.

2 RELATED WORK

Cross-modal retrieval. The problem of cross-modal retrieval, for image and text modalities, has
been the subject of extensive research in the recent past (Hu et al., 2019; Wang et al., 2019; Wei
et al., 2020). Most existing methods are based on one-to-one mapping of instances into a shared
embedding space. One popular approach is maximizing correlation between related instances in the
embedding space. Rasiwasia et al. (2010) use canonical correlation analysis (CCA) to maximize
correlation between images and text. Most recent methods incorporate deep neural networks to learn
their embedding models in an end-to-end fashion. Andrew et al. (2013) propose deep CCA (DCCA),
and Yan & Mikolajczyk (2015) make it applicable to high dimensional image and text representations
cross-modal retrieval. Some attempts have been made to model the bi-directional one-to-many
matching. Song & Soleymani (2019) introduced the Polysemous Visual-Semantic Embeddings
(PVSE) by letting an embedding function propose K candidate representations for a given input.
PVSE has been shown to successfully capture the multiplicity of correspondences and improve over
previous methods based on one-to-one mapping. Li et al. (2019) proposed to use a pretrained object
detector (e.g. Faster R-CNN (Ren et al., 2015)) to compute region embeddings and build multiple
region-word matching. This strategy contributes to significant performance improvements at the
expense of a significant increase in computational cost. Instead of deterministic embedding, Chun
et al. (2021) proposed to learn stochastic embeddings to address this issue. They embed each instance
as a probabilistic distribution rather than a single vector. The probabilistic embeddings can implicitly
perform the one-to-many matching between visual and textual concepts. However, none of these
methods align the instance-level distributions and the two modalities may still reside in their own
spaces, yielding wrong similarity measurement.

Importance Sampling. Importance sampling (Hesterberg, 1988) refers to a collection of Monte
Carlo methods where a mathematical expectation with respect to a target distribution is approximated
by a weighted average of random draws from another distribution. Importance sampling has been
widely applied in domain adaptation (Ben-David et al., 2007; Blitzer et al., 2008; Daume III & Marcu,
2006) to correct the mismatch between the distributions of training and test sets, leading to unbiased
estimates of the generalization error (Cortes et al., 2008). To the best of our knowledge, we are the
first to apply importance sampling in similarity calibration for probabilistic embeddings.
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3 METHOD

We focus on cross-modal retrieval for vision and language data. Let D = (X ,Y) denote a collection
of vision and language data, where X is a set of images and Y a set of captions. For a caption y ∈ Y
(respectively an image x ∈ X ), there are multiple matching images {x} (respectively captions {y})
due to the multiplicity. The goal is to achieve a shared subspace to measure the similarity between
image-caption pairs. Typically, two mapping functions fθ : x→ u and gφ : y→ v will be learned
where u and v are image and caption embeddings, respectively. Rather than point embeddings, u
and v are probabilistic distributions to facilitate multiplicity. The details of probabilistic embedding
will be introduced in Sec. 3.3. For each image-caption pair (xi,yj), we sample their representations
as ui ∼ pθ(ui | xi) and vj ∼ pφ(vj | yj).

In most existing works (Rasiwasia et al., 2010; Hu et al., 2019; Chun et al., 2021), cosine similarity
is widely used to measure the similarity:

s(I, T ) = ui
Tvj. (1)

Let Lt denotes the image-to-text retrieval loss and Li denotes the text-to-image retrieval loss, hinge-
based bidirectional triplet loss (Hermans et al., 2017) can be calculated by:

Lt = [α− s(I, T ) + s(I, T̂ )]+, Li = [α− s(I, T ) + s(Î , T )]+, (2)

where T̂ = argmaxj 6=T s(I, j) and Î = argmaxi6=I s(i, T ) denotes the hardest negatives in a
mini-batch. Function [·]+ = max(·, 0) and α denotes the margin factor. The overall loss function is:

Ltriplet = Ep(ui)Ep(vj) logLt︸ ︷︷ ︸
Text retrieval

+Ep(vj)Ep(ui) logLi︸ ︷︷ ︸
Image retrieval

. (3)

3.1 SIMILARITY CALIBRATION

We argue that the similarity measurement in Eq. 1 is questionable. The underlining assumption
of ui and vj are well aligned in a shared subspace may not always hold true due to the modality
heterogeneity as well as the discrepancy between fθ and gφ. To address this issue, we propose to
calibrate s(I, T ) toward more truthful similarity measurement:

s(I, T ) = (ui)
T (w · vj), where w =

p(ui)

p(vj)
. (4)

Let us consider three cases. (1) w = 1: The embeddings are well aligned in a share space which
degrades to Eq. 1. (2) w = C: The misalignment of the embeddings is a constant across all the pairs.
(3) w = p(ui)

p(vj)
: The misalignment of the embeddings is a learnable variable where each image-text

pair should have a unique w. Obviously, either (1) or (2) is a special (simplified) case of (3).

Now we can calibrate the loss function in Eq. 3 based on the calibrated similarity. More specifically,
we maximize the measurement between positive pairs (I, T ) by:

Ep(ui)Ep(vj) log s(I, T ) = Ep(ui)[Ep(vj) log(ui
Tvj) + Ep(vj) log

p(ui)

p(vj)
]

= Ep(ui)[Ep(vj) log(ui
Tvj)︸ ︷︷ ︸

Point matching

−KL(p(vj)||p(ui))︸ ︷︷ ︸
Distribution matching

].
(5)

At the same time, we minimize the measurement between negative pairs (I, T̂ ) or (Î , T ) by:
Ep(ui)[Ep(vj) log(ui

Tvj) + KL(p(vj)||p(ui))]. We highlight that Eq. 5 is the combination of point
matching and distribution matching. The proposed calibration can effectively align two embeddings
and enlarge the aligned subspace (Fig. 1 (c)), facilitating accurate one-to-many matching.

3.2 PRE-TRAINING TASKS FOR LANGUAGE MODELS

Pre-training tasks play the key role for downstream tasks. Although pre-training tasks have been
intensively studied in image (Zbontar et al., 2021; He et al., 2020; Chen et al., 2020b) and text represen-
tations (Devlin et al., 2019; Karpukhin et al., 2020; Gao et al., 2021; Raffel et al., 2020) individually,
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they are seldom investigated in cross-modal retrieval. To investigate which pre-training task can facil-
itate better caption embeddings, we evaluate three pre-training tasks for language models: Masked
Language Modelling (MLM) (Devlin et al., 2019), Dense Passage Retrieval (DPR) (Karpukhin et al.,
2020), and Simple Contrastive Sentence Embedding (SimCSE) (Gao et al., 2021).

MLM refers to randomly mask some input tokens and predict these masked tokens. In Devlin et al.
(2019), 15% of all the tokens in a sequence are randomly masked. To mitigate the mismatch between
pre-training and fine-tuning, “masked” words are not always replaced by the actual [MASK] token.
In detail, if the token is chosen to be masked, it will be replaced by the [MASK] token with an 80%
probability and a random token with a 10% probability, and keep unchanged with a 10% probability.

DPR is designed for open-domain question answering. The goal is to retrieve the relevant passages
including the answers for the question. To achieve it, two encoders are employed to get the question
and passage embeddings. A contrastive learning framework is utilized to maximize the inner product
between positive pairs (the question and relevant passage vectors) and minimize it between negative
pairs (the question and irrelevant passage vectors).

SimCSE leverages a simple contrastive learning framework to learn sentence embedding. They
propose an unsupervised and a supervised approach. In unsupervised approach, the model predicts
the input sentence itself in a contrastive framework where standard dropout is used to generate
positive pairs. In supervised approach, they leverage annotated pairs into a contrastive learning
framework where“entailment” (manually created sentences with the same semantics) are positives
and “contradiction” (manually created sentences with the opposite semantics) are hard negatives.
SimCSE greatly advances the state-of-the-art on standard on semantic textual similarity tasks.

In Sec. 4.4, we empirically demonstrate that SimCSE outperforms the other two pre-training tasks,
possibly due to that the contrastive learning with entailment and contradiction contribute to better
caption embeddings for cross-modal retrieval.

3.3 IMPLEMENTATION

We apply image and text augmentation to approximate p(ui) and p(vj), respectively. KL divergence
in Eq. 5 is asymmetric and well-known for the problem of vanishing gradient. To address it, we use
Wasserstein distance (Villani, 2003) to minimize the discrepancy between p(ui) and p(vj), yielding
more stable distribution matching.

Data augmentation. For image augmentation, we assume access to a set Ψ, where each element is a
specific image transformation. We can generate multiple augmentations by sampling from Ψ. For
text augmentation, we use a fine-tuned T5 model (Raffel et al., 2020) to get multiple paraphrased
captions from the original caption.

Wasserstein distance. We use 2-Wasserstein (W2) distance to align the distribution between p(ui)
and p(vj). TheW2 coupling distance between p(ui) and p(vj) on Rn is:

W2(p(ui); p(vj)) := inf E
(
‖ui − vj‖22

)1/2
, (6)

where the infimum runs over all random vectors (ui,vj) of Rn×Rn with ui ∼ p(ui) and vj ∼ p(vj).
We assume ui and vj follow Gaussian distribution in the embedding space: p(ui) = N (µi,Σi),
p(vj) = N (µj ,Σj). Eq. 6 is reduced to:

W2(p(ui); p(vj))
2 = ‖µi − µj‖22 +

∥∥∥Σ
1/2
i − Σ

1/2
j

∥∥∥2
2
. (7)

We empirically demonstrate that 2-Wasserstein distance outperforms KL divergence by a large margin
in Sec. 4.4.

4 EXPERIMENTS

To evaluate the effectiveness of the proposed similarity calibration, we perform experiments in both
image-to-text and text-to-image retrieval on two widely used datasets. We perform ablation studies
to investigate the key components of our approach. We also compare with previous state-of-the-art
methods for cross-modal retrieval.
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4.1 DATASETS AND METRICS

Datasets. We conducted experiments on the two widely-used benchmark datasets: Flickr30K (Young
et al., 2014) and MS-COCO (Lin et al., 2014), to evaluate our proposed model and compare with
several state-of-the-art baselines. Flickr30K. This dataset consists of 31,783 images. Each image is
described by 5 different sentences. Following the settings in previous work (Chen & Luo, 2020; Lee
et al., 2018; Qu et al., 2020), this dataset is split into 29,783 training images, 1,000 validation images,
and 1,000 testing images. MS-COCO. It is a large-scale dataset including 123,287 images, where
each image is associated with 5 annotated sentences. Similarly, we followed the split of (Chen & Luo,
2020; Lee et al., 2018; Qu et al., 2020), i.e., 113,287 images for training, 5,000 images for validation,
and 5,000 images for testing. We report the results on the two evaluation settings: 1) MS-COCO
1K, the final result is calculated by averaging the results over 5-folds of 1K testing images; and 2)
MS-COCO 5K, the evaluation result is directly calculated on the full 5K testing images.

Metrics. Recall@k (R@k). We report rank-1 (R@1), rank-5 (R@5), and rank-10 (R@10) results on
both datasets. Recall-Precision (R-P). Musgrave et al. (2020) proposed the Recall-Precision (R-P)
metric as an alternative. For each query, we compute the ratio between matched items and top-r
retrieved items, where r is the number of ground-truth matches. This precision metric has a promising
property that a retrieval model achieves the highest R-P score if and only if it retrieves all the matched
items before the negatives. Compared to Recall@k, R-P score can better evaluate the one-to-many
matching for image-to-text retrieval.

Method Backbone Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10
DAN (Nam et al., 2017) VGG-19 41.4 73.5 82.5 31.8 61.7 72.5
RRF-Net (Liu et al., 2017) ResNet-152 47.6 77.4 87.1 35.4 68.3 79.9
CMPM +CMPC (Zhang & Lu, 2018) ResNet-152 49.6 76.8 86.1 37.3 65.7 75.5
DAN (Nam et al., 2017) ResNet-152 55.0 81.8 89.0 39.4 69.2 79.1
NAR (Liu et al., 2019) ResNet-152 55.1 80.3 89.6 39.4 68.8 79.9
VSE++ (Faghri et al., 2016) ResNet-152 52.9 80.5 87.2 39.6 70.1 79.5
SCO (Huang et al., 2018) ResNet-152 55.5 82.0 89.3 41.1 70.5 80.1
GXN (Gu et al., 2018) ResNet-152 56.8 − 89.6 41.5 − 80.1
TIMAM (Sarafianos et al., 2019) ResNet-152 53.1 78.8 87.6 42.6 71.6 81.9
Ours ResNet-152 62.7 86.2 91.5 49.6 78.8 85.2

Table 1: Comparison (%) on Flickr30K (Young et al., 2014). Our method outperforms all baselines
by a large margin in both Image-to-Text and Text-to-Image retrieval.

Method Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10
DVSA (Karpathy & Fei-Fei, 2015) 16.5 39.2 52.0 10.7 29.6 42.2
GMM-FV (Klein et al., 2015) 17.3 39.0 50.2 10.8 28.3 40.1
Order (Vendrov et al., 2016) 23.3 − 65.0 18.0 − 57.6
VQA-A (Lin & Parikh, 2016) 23.5 50.7 63.6 16.7 40.5 53.8
CMPM (Zhang & Lu, 2018) 31.1 60.7 73.9 22.9 50.2 63.8
VSE++ (Faghri et al., 2016) 41.3 71.1 81.2 30.3 59.4 72.4
SCO (Huang et al., 2018) 42.8 72.3 83.0 33.1 62.9 75.5
PVSE (K=1) (Song & Soleymani, 2019) 41.7 73.0 83.0 30.6 61.4 73.6
PVSE (Song & Soleymani, 2019) 45.2 74.3 84.5 32.4 63.0 75.0
PCME (Chun et al., 2021) 44.2 73.8 83.6 31.9 62.1 74.5
Ours 44.8 75.1 84.8 33.8 64.8 76.4

Table 2: Comparison (%) on MS-COCO (Lin et al., 2014) 5K test set . Our approach achieves the
best results in Text-to-Image retrieval on the 5K test set.

4.2 IMPLEMENTATION DETAILS

We use ResNet152 (He et al., 2016) and BERT (Devlin et al., 2019) as image and text encoder,
respectively. We use Adam optimizer (Kingma & Ba, 2014) for model training with the mini-batch
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size of 64 and the epoches of 30. We set the initial learning rate as 0.0002 with decaying 10% of
every 15 epochs. The dimension of visual features is 2,048. The basic version of the pre-trained
BERT (Devlin et al., 2019) is utilized, equipped with 12 layers, 12 heads, 768 hidden units, and
110M parameters in total, to get the word embeddings with dimension of 768. We set the dimension
of joint embedding space as 512.

4.3 RETRIEVAL COMPARISON

Results on Flickr30K (Young et al., 2014): We compare our approach to previous state-of-the art
methods. We report the results on the Flickr30K (Young et al., 2014) in Tab. 1. Similar to the most
methods, we use ResNet-152 He et al. (2016) as the image encoder for fair comparison. Our method
outperforms all methods by a large margin in both Image-to-Text and Text-to-Image retrieval. In
detail, our method outperforms the second best by 5.9% and 7.0% in Image-to-Text and Text-to-
Image retrieval, respectively. Specially, TIMAM (Sarafianos et al., 2019) also used Bert (Kenton &
Toutanova, 2019) as the backbone for text encoder. TIMAM utilizes adversarial training to align the
distributions between the two modalities through adversarial training (Goodfellow et al., 2015) and
results in modality-invariant embeddings. The superior performance demonstrates that the proposed
similarity calibration can facilitate more accurate similarity measurement and correctly capture the
multiplicity of correspondences.

Method Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10
DVSA (Karpathy & Fei-Fei, 2015) 38.4 69.9 80.5 27.4 60.2 74.8
GMM-FV (Klein et al., 2015) 39.4 67.9 80.9 25.1 59.8 76.6
m-CNN (Ma et al., 2015) 42.8 73.1 84.1 32.6 68.6 82.8
Order (Vendrov et al., 2016) 46.7 − 88.9 37.9 − 85.9
DSPE (Wang et al., 2016) 50.1 79.7 89.2 39.6 75.2 86.9
VQA-A (Lin & Parikh, 2016) 50.5 80.1 89.7 37.0 70.9 82.9
2WayNet (Eisenschtat & Wolf, 2017) 55.8 75.2 − 39.7 63.3 −
RRF-Net (Liu et al., 2017) 56.4 85.3 91.5 43.9 78.1 88.6
CMPM (Zhang & Lu, 2018) 56.1 86.3 92.9 44.6 78.8 89.0
VSE++ (Faghri et al., 2016) 64.6 90.0 95.7 52.0 84.3 92.0
GXN (Gu et al., 2018) 68.5 − 97.9 56.6 − 94.5
SCO (Huang et al., 2018) 69.9 92.9 97.5 56.7 87.5 94.8
PVSE (K=1) (Song & Soleymani, 2019) 66.7 91.0 96.2 53.5 85.1 92.7
PVSE (Song & Soleymani, 2019) 69.2 91.6 96.6 55.2 86.5 93.7
PCME (Chun et al., 2021) 68.8 91.6 96.7 54.6 86.3 93.8
Ours 69.7 93.5 97.8 57.0 88.2 95.6

Table 3: Comparison (%) on MS-COCO (Lin et al., 2014) 1K test set.

Results on MS-COCO (Lin et al., 2014): We compare our approach to previous state-of-the art
methods. We report the results on 5k and 1k test sets in Tabs 2 and 3. Our approach outperforms
most of the baselines, and achieves the new state-of-the-art on the Text-to-Image on the 5K test set.
We note that both GXN (Gu et al., 2018) and SCO (Huang et al., 2018) are trained with multiple tasks
apart from the image-text matching: GXN (Gu et al., 2018) conducts cross-modal synthesis during
model training, while SCO (Huang et al., 2018) jointly classifies the objects and their orders during
model training. Our model is only trained with the image-text matching and yield competitive results.
We also compare our approach to other methods tailored for one-to-many matching: VSE++ (Faghri
et al., 2016), PVSE (Song & Soleymani, 2019), VSRN (Li et al., 2019), AOQ (Chen et al., 2020a),
and PCME (Chun et al., 2021). Specially, PCME (Chun et al., 2021) is the the first work that uses
probabilistic embeddings for cross-modal retrieval. In the 1K test set, our method outperforms all of
these methods. In detail, our method outperforms PCME (Chun et al., 2021) by 0.95% and 2.4% in
Image-to-Text and Text-to-Image retrieval, respectively. The results demonstrate that our method is
capable of better capturing the one-to-many matching in both directions.

4.4 ABLATION STUDIES
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Method
Flickr30K MS-COCO

Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R-P R@1 R@5 R@1 R@5 R-P R@1 R@5

Ours 62.7 86.2 47.2 49.6 78.8 44.8 75.1 32.5 33.8 64.8
w/o Calibration 60.7 85.2 45.6 48.0 77.4 42.4 72.8 31.3 32.6 63.5
KL Divergence 61.0 85.4 46.5 47.8 77.0 43.5 73.7 31.9 33.2 64.2
JS Divergence 61.6 86.0 46.4 48.6 78.1 43.9 74.5 32.1 34.0 64.5

Table 4: Ablation study of similarity calibration on Flickr30K (Young et al., 2014) and MS-
COCO (Lin et al., 2014). The proposed similarity calibration significantly improves both Image-to-
Text and Text-to-Image retrieval.
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Figure 2: Evaluation of similarity cali-
bration on limited training data.

Validation of similarity calibration: The similarity cali-
bration in Eq. 5 plays the key role in calibrating the sim-
ilarity measurement and enlarging the shared representa-
tion space. We implement three variants for compari-
son: 1) Without Calibration: the model is only trained
with Point Matching as shown in Eq. 5. 2) Kull-
back–Leibler (KL) divergence. 3) Jensen-Shannon (JS)
divergence : JSD(p(ui), p(vj)) = 1

2 [KL(p(ui), p(vj)) +
KL(p(vj), p(ui))]. Results on Flickr30K (Young et al.,
2014) and MS-COCO (Lin et al., 2014) are reported in
Tab. 4. Our approach outperforms the other three variants in
Flickr30K (Young et al., 2014) across all evaluation metrics.
In Image-to-Text retrieval on Flickr30K (Young et al., 2014),
our method outperforms w/o Calibration and JSD by 2% and
1.1% in R@1. In R-P, our method outperforms w/o Calibra-
tion and JSD by 1.6% and 0.8%. In Text-to-Image retrieval
on Flickr30K (Young et al., 2014), our method outperforms
w/o Calibration and JSD by 1.6% and 1.0% in R@1. In Image-to-Text retrieval on MS-COCO (Lin
et al., 2014), our method outperforms w/o Calibration and JSD by 2.4% and 0.9% in R@1. In R-P,
our method outperforms w/o Calibration and JSD by 1.2% and 0.4%. In Text-to-Image retrieval on
MS-COCO (Lin et al., 2014), although the result of R@1 is slightly lower than that of JSD, our
method outperforms w/o Calibration and JSD by 1.3% and 0.3% in R@5. To further evaluate the
effectiveness of the proposed similarity calibration, we conduct experiments with limited training
data. Results of R-P on Flickr30K (Young et al., 2014) are shown in Fig. 2. The improvements are
more significant especially when the training data are extremely limited (38.3% v.s. 34.4% with 20%
of training pairs). Results demonstrate the effectiveness of the proposed similarity calibration.

Validation of data augmentation: We apply image and text augmentation to approximate the
distributions of the two modalities. To better understand the effect of augmentation, we conduct
experiments by varying the number of augmentations. In detail, we vary the number of image
augmentations from 1 to 10 for each image, and vary the number of text augmentations from 1 to
5 for each caption. Note that, in both Flickr30K (Young et al., 2014) and MS-COCO (Lin et al.,
2014), we have 5 captions for each image. As a result, there will be 30 captions for each image if
we create 5 augmentations for each caption. We report the results of Recall-Precision on different
number of augmentations in Fig. 3. In both image and caption augmentations, more augmentations
can consistently improve R-P due to more accurate distribution distribution estimation.

Evaluation of pre-training tasks: To investigate which pre-training task of language models can
boost the performance for cross-modal retrieval, we evaluate three pre-training tasks for language
models: Masked Language Modelling (MLM) (Devlin et al., 2019), Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020), and Simple Contrastive Sentence Embedding (SimCSE) (Gao
et al., 2021). In SimCSE, we evaluate the two variants: unsupervised (un) and supervised (su)
approaches. In unsupervised approach, the model predicts the input sentence itself in a contrastive
objective, with only standard dropout as noise. In supervised approach, they leverage annotated
pairs in a contrastive learning framework by using “entailment” (manually created sentences with the
same semantics) pairs as positives and “contradiction” (manually created sentences with the opposite
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Figure 3: Ablation study on the number of data augmentations. More augmentations contribute to
higher Recall-Precision due to more accurate distribution estimation.

Task Image-to-Text Text-to-Image

R@1 R@5 R-P R@1 R@5
MLM (Devlin et al., 2019) 60.3 85.5 45.4 48.0 76.9
DPR (Karpukhin et al., 2020) 59.7 84.9 45.6 47.2 77.6
SimCSE (un) (Gao et al., 2021) 60.1 85.3 45.6 48.3 77.1
SimCSE (su) (Gao et al., 2021) 62.7 86.2 47.2 49.6 78.8

Table 5: Comparison (%) of pre-training tasks on Flickr30K (Young et al., 2014). SimCSE (su)
outperforms other tasks in both Image-to-Text and Text-to-Image retrieval.

semantics) pairs as hard negatives. Results on Flickr30K (Young et al., 2014) are reported in Tab. 5.
As shown in Tab. 5, SimCSE (su) outperforms others in both Image-to-Text and Text-to-Image. In
comparison to MLM, SimCSE (su) can not only boost the performance (2.4% in R@1 and 1.8%
in R-P) in Text-to-Image, but also boost the performance (1.6% in R@1) in Image-to-Text. Results
demonstrate that contrastive learning with entailment and contradiction contribute to better sentence
embedding.

5 CONCLUSION

In this paper, we introduced a novel calibration method for probabilistic embeddings in cross-modal
retrieval. We estimate the density ratio between the distributions of the two modalities, and use it to
calibrate the similarity measurement in the embedding space. The similarity calibration can effectively
align the distributions between the two modalities and enlarge the shared representation space,
facilitating more accurate one-to-many matching. In addition, we further evaluate three pre-training
tasks of language models for cross-modal retrieval. We empirically found that SimCSE outperforms
the other two pre-training tasks due to better sentence embeddings. Extensive experiments as well as
ablation studies on two benchmarks demonstrate its superior performance in tackling the multiplicity
of cross-modal retrieval.
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