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Abstract

This work presents a novel approach to the one-
class classification problem by leveraging invert-
ible neural networks (INNs). Our method, "Invert-
ible One-Class Classification" (IOCN), maps the
data distribution to a compact latent distribution,
specifically a uniform distribution on a hypercube.
In contrast to the usual latent Gaussian, the uni-
form distribution defines a clear boundary between
inliers and outliers and thus facilitates outlier de-
tection by simply measuring the signed distance to
the boundary. To train our mapping, we propose
a novel objective function and prove that its op-
timum is the transport from the data distribution
to the uniform distribution in the latent hypercube.
Interestingly, this objective is simpler than the tra-
ditional maximum likelihood training because it
does not require the flow’s Jacobian determinant.
Experiments demonstrate we outperform standard
normalizing flows in outlier detection performance
and match the state of the art.

1 INTRODUCTION

Detecting outliers is a central problem in machine learning.
As discriminative model may rely on shortcuts [Geirhos
et al., 2020], generative models seem to be a better fit for
anomaly detection: To learn the generative process, the
model needs to learn all semantic information of inliers
from the training data. Nalisnick et al. [2019] show that
naively using the density learned by the generative model,
e.g. a normalizing flow, does not perform well as anomaly
score, and subsequent works tries to fix this behavior [Ren
et al., 2019, Serrà et al., 2020], often relying on additional
data to improve outlier detection [Schirrmeister et al., 2020,
Hendrycks et al., 2019, Schmier et al., 2023]. While for
images it is straightforward to either generate additional

contrastive data trough augmentations as in Ren et al. [2019]
or to find hierarchies of datasets as in Schirrmeister et al.
[2020], finding such augmentations or hierarchies is chal-
lenging for other data domains. Our method does not rely
on additional contrastive data, making it applicable across
various settings.

We follow the argumentation of Le Lan and Dinh [2021],
that the underlying problem is more fundamental: The den-
sity relies on the presentation in the data space, and - under
a reparametrization of the data space - the density of a data
point (and therefore its outlier score) can change signifi-
cantly.

Therefore, we propose a new approach for outlier detection:
By learning the transformation of the data distribution onto
a compact latent distribution, we define the outlier score as
the signed distance to the boundary of the compact density
in the latent space. Reparametrization of the data space may
change the magnitude of the outlier score of a point, but will
not change its sign, i.e., if the data point is mapped inside
the support of the compact latent density (and therefore is
considered an inlier) or outside of the support (and there-
fore is considered an outlier). Our method follows a line of
research where the enclosing hypervolume of the inlier data
is learned [Schölkopf et al., 1999, Ruff et al., 2018, Goyal
et al., 2020]. We use invertible neural networks [Ardizzone
et al., 2019] to learn the mapping into the latent space. INNs
have gained prominence due to their ability to bijectively
map data between input and latent space without destroying
information.

The key innovation of our approach lies in our new training
algorithm, allowing us to map the training data to a compact
latent distribution. This is in strong contrast to maximum
likelihood training with normalizing flows [Papamakarios
et al., 2021], whose latent distribution must have support
over the whole latent space. The basic idea of our training
objective is to pull transformed training samples towards
the latent distribution, while adding an outward pointing
gradient on samples from the latent distribution. We show
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that our invertible network converges to the desired mapping
from the data to the compact latent distribution. By using a
compact latent distribution, we create a hypervolume in the
data space that encapsulates the training data points.

We use the learned model for anomaly detection: At infer-
ence time, we measure the signed distance of transformed
data points to the boundary of the compact latent distribution
in the latent space. This distance-based measure provides a
robust and interpretable indicator of outlier presence in the
data.

Our contributions are the following:

1. Proposing a new training paradigm for distribution
learning with invertible neural networks

2. Training an invertible neural network with a compact
latent base distribution

3. Mathematical derivation of the training objective

2 RELATED WORK

2.1 ANOMALY DETECTION METHODS

Anomaly detection constitutes a foundational challenge in
data science, with a multitude of classical methods. For our
experimental comparisons, we leverage the PyOD library
[Zhao et al., 2019] encompassing these classical methods:
KNN is a proximity-based technique, using the distance to
the kth neighbor as the outlier score [Angiulli and Pizzuti,
2002]. SOD also relies on neighbours of the test sample,
but uses them to construct lower dimensional subspaces to
detect outliers [Kriegel et al., 2009] Isolation Forest (IFOR-
EST) tries to isolate the test sample from the training data by
randomly selecting features and splits. It uses the path length
until the test sample is isolated as measure for its outlierness
[Liu et al., 2008]. COPOD is a parameter-free and computa-
tionally efficient method, it constructs an empirical copula
to the outlierness of the test sample [Li et al., 2020]. We re-
fer to the PyOD library for the implementations and further
details. Our approach draws inspiration from the One-Class
SVM [Schölkopf et al., 1999], which extends the support
vector algorithm to handle unlabelled data by seeking the
maximum margin hyperplane encapsulating all inliers in
a kernel space. Building upon this, Ruff et al. [2018] re-
fined the concept by employing deep neural networks for
embedding learning, imposing strict constraints on network
flexibility to prevent trivial solutions. Goyal et al. [2020]
add the assumption that points from the inlier class lie on a
locally linear low dimensional submanifold to further robus-
tify Deep one-class classification. Moreover, methods like
Fu et al. [2024] utilize learned embeddings, measuring the
distance to training instances in the embedding space for
outlier assessment.

Our idea is closely related to Xiao et al. [2023], who try

to learn a mapping from the data distribution to a lower
dimensional target distribution by simultaneously minimiz-
ing the distance between the projected target distribution
to the target distribution and the reconstructing error in the
data space. In contrast, our use of invertible neural networks
ensures zero reconstruction error and is also well defined
for outlier data, while the behavior of an auto-encoder is
undefined for data points away from the inlier training data.

There are several notable approaches for anomaly detection,
which we compare our results against in the experiments:
RCA by Liu et al. [2021] enhances anomaly detection ro-
bustness using a framework that integrates robust statis-
tics and machine learning, outperforming existing methods
in noisy conditions. ICL [Shenkar and Wolf, 2022] em-
ploys invariant contrastive learning to improve anomaly
distinguishability by learning invariant representations of
normal data. GOAD by Bergman and Hoshen [2020] and
SLAD Xu et al. [2023b] leverage classification-based and
self-supervised learning approaches, respectively, to achieve
state-of-the-art results in anomaly detection by training mod-
els on synthetic outliers and self-supervised tasks.

Our focus lies on outlier detection, where models exclu-
sively access normal samples during training, aiming to
discern inlier instances from other data at test time on a per-
sample basis. This paradigm has been investigated across
various methodologies, including k-nearest neighbors-based
methods [Nizan and Tal, 2023, Papernot and McDaniel,
2018] and density-based techniques [Schirrmeister et al.,
2020, Schmier et al., 2023]. Following Zong et al. [2018] we
assume that our model has only access to normal ("clean")
data and does not have access to anomalous data or addi-
tional training data with different semantics. Another line
of research uses unlabeled normal and anomalous ("dirty")
data at train time, e.g. the recent survey of Jiang et al. [2023].
One-Class classification methods often rely on an estimate
of the outliers in the "dirty" training set Jiang et al. [2023],
Ruff et al. [2018], Goyal et al. [2020]. Many approaches
use additional labeled data to train their anomaly detec-
tion model, e.g., Schirrmeister et al. [2020], Schmier et al.
[2023], Hendrycks et al. [2019].

2.2 INVERTIBLE NEURAL NETWORKS

Invertible neural networks represent a specialized class tai-
lored to model diffeomorphisms, transformations that are
smooth and possess a smooth inverse. Predominantly uti-
lized within the realm of normalizing flows [Papamakarios
et al., 2021], these networks aim to transform data distri-
butions onto simpler base distributions, often achieved by
maximizing the likelihood of the training data under the
transformed distribution. We utilize in this work the cou-
pling block architecture, where for each block the dimen-
sions are split into a passive and active part. The active part
is transformed as an invertible function of the passive part,
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Figure 1: Our method on three 2D datasets. The first two are taken from the scikit-learn library [Pedregosa et al., 2011]. We
map the data distribution onto the unit cube in the latent space. Using a compact latent distribution gives a natural outlier
decision boundary by mapping the boundary of the latent space cube back into the data space. Since we use an invertible
neural net and a uniform latent distribution, the inlier region is simply connected, we see this as a small bridge between the
two modes in the moon example (left) and the two gaussians (right).

and the passive part remains unchanged. This was first in-
troduced by Dinh et al. [2015] with addition as invertible
transformation, and extended by Dinh et al. [2017] to affine
transformations. Coupling blocks are analytically invertible,
forward and backward pass are equally efficient to compute.
Other methods are only numerically invertible, e.g. autore-
gressive flows, where the dimensions are ordered and every
dimension is transformed as a function of the previous di-
mensions [Kingma et al., 2017, Papamakarios et al., 2018]
or IResNet [Behrmann et al., 2019], which introduces con-
straints on the Lipschitz constant to render standard ResNet
architectures invertible. Invertible neural networks have also
been explored in anomaly detection contexts. Grcić et al.
[2023] employ an invertible neural network as a normalizing
flow to generate negative examples during training, albeit
relying on maximum likelihood for training,

3 METHOD

Our method "Invertible one-class network" aims to learn
a bijective mapping that transports the inlier data onto a
latent hypercube and outliers outside of the hypercube. To
achieve this, we utilize a two step strategy that involves
pulling inlier data towards the origin and simultaneously
adding a gradient on the latent space distribution. First, we
sample a minibatch of N training points xi and N samples
from the latent distribution zi. We use the invertible neural
network (INN) to map the latent distribution in the data
space x̃i = INN−1(zi) without computing the gradients.
Then we perform a gradient step of the contrastive loss
between the two types of points:

L =

N∑
i=0

(f(INN(xi))− f(INN(x̃i))) . (1)

The function f in the loss computation needs to be a convex
function, we use the max function over the feature dimen-
sions of a sample. We show pseudocode for our training
algorithm in the appendix in section A.4. The loss term
for the generated samples tries to push these points out of

the inlier region, unless this force is counteracted by an
opposing force from a "twin" point in the batch’s training
set portion. We show in the next section, that this has the
net effect that the inlier region converges towards the data
points as desired.

3.1 MATHEMATICAL DERIVATION

Without detaching the cube pre-images, the forward and
backward pass on the latent samples would cancel each
other out, and the network would learn a trivial solution
by mapping all inlier data into a small neighborhood of
the origin. With the additional gradient, we show that the
mapping from data distribution onto the hypercube is a
minimum of the optimization problem:

Theorem 3.1. For a continuous data distribution pd(x), a
continuous latent distribution pc(z), a pull function f(z)
with f ′(z)p′c(z) < 0 ∀z and a sufficiently powerful invert-
ible network INN, the invertible network has the mapping
from the data distribution to the latent distribution as a local
minimum for the loss function in equation (1).

Proof sketch. We introduce a function g(z, ϵ, ξ) =
INNϵ(INN−1

ξ (z))), where ϵ and ξ are the deviations from
the desired mapping from the data to the latent distribution
and reformulate the loss functions in terms of g. We ap-
proximate g for small deviations from the optimal solution,
calculate the gradient of the loss with respect to the devia-
tions from the desired solution and show that ∇ϵL ≈ −αϵ
for α > 0. Therefore, gradient descent on the deviation ϵ
leads back to the optimal solution. We show the complete
derivation in appendix A.3.

3.2 OUTLIER MEASURE

To quantify outliers, we use the signed distance from data
points to the boundaries of the hypercube in the latent space.
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Table 1: AUROC scores on CIFAR-10 classes for the One-Vs-Rest setting. PCA, KNN, KDE, COPOD and IForest are taken
from the PyOD library [Zhao et al., 2019]. DeepSVDD, RCA, ICL, GOAD and SLAD are taken from the deepOD library
[Xu et al., 2023a]. FLOW is a normalizing flow with the same architecture as our "Invertible One-Class Network" (IOCN).

method plane car bird cat deer dog frog horse ship truck mean
COPOD [Li et al., 2020] 85.4 97.6 77.5 83.3 90.3 84.6 92.9 91.3 97.2 96.3 89.6
IForest [Liu et al., 2008] 92.8 97.7 85.3 85.5 91.0 88.6 93.4 93.4 97.3 96.5 92.1
KDE [Latecki et al., 2007] 94.7 99.1 90.9 90.7 93.6 92.2 96.6 95.4 98.8 98.3 95.0
PCA [Shyu et al., 2003] 94.5 99.0 91.1 90.7 93.7 93.1 97.0 95.6 98.8 98.4 95.2
KNN [Angiulli and Pizzuti, 2002] 95.9 98.7 92.7 90.9 93.9 95.7 98.2 96.2 98.8 97.7 95.9
DeepSVDD [Ruff et al., 2018] 91.2 95.1 84.7 83.9 84.4 87.3 94.2 91.3 94.5 94.5 90.1
GOAD [Bergman and Hoshen, 2020] 94.6 99.1 90.7 90.2 93.7 91.6 96.4 95.4 98.7 98.2 94.9
ICL [Shenkar and Wolf, 2022] 96.1 98.8 90.1 89.8 94.0 95.5 98.2 96.3 98.4 98.4 95.6
RCA [Liu et al., 2021] 95.9 99.0 93.1 92.5 93.7 96.0 98.3 96.1 98.8 98.4 96.2
SLAD [Xu et al., 2023b] 96.8 99.0 93.9 92.4 94.3 96.3 98.5 96.5 99.0 98.5 96.5
FLOW [Dinh et al., 2017] 95.5 97.6 93.3 89.5 93.4 95.5 97.8 94.1 98.1 97.1 95.2
IOCN (ours) 96.7 98.3 94.6 92.9 94.5 96.3 98.7 96.3 98.4 97.9 96.5

This distance-based measure distinguishes inliers, which re-
side within the hypercube, from outliers, which are mapped
to the outside of its boundaries.

The outlier measure s(x) for a data point x is computed as:

sout(x) =

D∑
k=1

max (|INN(x)k| − 1, 0), (2)

sin(x) = min(max
k

(|INN(x)k|)− 1, 0) (3)

s(x) = sout(x) + sin(x) (4)

where INN(x)k represents the k-th dimensions of the latent
representation of x.

4 EXPERIMENTS

We conduct experiments across different scenarios. We first
investigate two-dimensional datasets in section 4.1. In sec-
tion 4.2, we apply out method on features extracted from
the CIFAR10 dataset [Krizhevsky and Hinton, 2009].

4.1 ILLUSTRATIVE 2D EXPERIMENTS

In Figure 1 we plot several data distributions and the outlier
decision boundary, i.e. the surface of the uniform latent dis-
tribution mapped back to the data space using the trained
INN. Our model effectively maps the inlier data to a cube
in the latent space. A drawback of our method is the topo-
logical constraint that the inlier distribution must be simply
connected, however we observe that the connecting bridges
in the latent space have negligible volume in the data space,
even though this effect is stronger the lower the dimension
D of the data. For D >= 3 we expect these bridges to have
negligible volume.

4.2 CIFAR EXPERIMENTS

We follow the experimental setup of Schmier et al. [2023]
for our CIFAR10 [Krizhevsky and Hinton, 2009] experi-
ments. We do not train directly on images, but use 128-
dimensional feature vectors extracted by MoCo [He et al.,
2020] as input. We report implementation details and all
used methods in the appendix in section A.5. We compare
solely to unsupervised methods which do not require neg-
ative or contrastive data for training. Training is done on a
clean dataset of the inlier class using features extracted from
the 5000 training images of the regular CIFAR10 split. We
report the area under the receiver operating characteristic
curve (AUROC) for all methods when using all other CI-
FAR10 classes as outliers at test time in table 1. Our method
outperforms almost all used anomaly detection methods.
While our method matched the performance of SLAD [Xu
et al., 2023b], it stands out by being simpler and easier to
implement. To get a better insight in our method, we re-
port the confusion matrix for all classes in the appendix in
section A.6 and show image examples in Figure 3.

5 CONCLUSION & FURTHER WORK

We introduce a novel training paradigm for one-class classi-
fication utilizing invertible neural networks. Our approach
shows that it is possible to learn the desired mapping from
the data distribution to a latent distribution without relying
on the Jacobian determinant. Unlike standard normalizing
flows, our method allows for the use of a compact latent dis-
tribution, which provides an interpretable outlier measure.
We outperform standard normalizing flows in outlier detec-
tion and match the state of the art performance of SLAD
[Xu et al., 2023b]. Since we do not require the Jacobian
determinant future research will investigate alternative in-
vertible architectures compared to split-coupling flows. To
alleviate the simple connectedness constraint, other compact
latent distributions will be explored.
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A APPENDIX

A.1 EXPLANATORY 1D EXAMPLE
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Figure 2: Explanatory 1D example of our method. We show the data and latent space before, while and after training.
The black arrows in the latent space show the direction and strength of the loss gradients for the respective x-values. For
the untrained model, we see the "pull" on the transformed data distribution and the outwards pointing gradients on the
latent distribution. While training, the invertible network experiences gradients where the transformed data and the latent
distribution do not coincide. For the perfectly trained model, the gradients vanish.

A.2 MATHEMATICAL DERIVATION FOR L2 LOSS

To explain our mathematical derivation in section A.3, we show the same approach for the L2 classification loss:

Theorem A.1. For given training data {x, y}i and a prediction function fθ(x) from the x-space to the y-space, the
prediction function has a local minimum if fθ(xi) = yi ∀i

Proof.

L =
∑
i

(fθ(xi)− yi)
2 (5)

⇒ ∇θL =
∑
i

2(fθ(xi, θ)− yi)∇θfθ(xi, θ) (6)

⇒ ∇θL(θ̃) = 0⇐ fθ̃(xi) = yi (7)
linear pertubation in ϵ :

fθ(xi) =fθ̃(xi) + h(xi)ϵ = yi + h(xi)ϵ (8)

⇒ ∇ϵL =
∑
i

2h(xi)ϵ · h(xi) (9)

⇒ ϵnew =ϵ− α∇ϵL = ϵ(1− α
∑
i

2h(xi)
2) (10)

⇒ |ϵnew| < |ϵ| for small α (11)

As the new pertubation ϵnew is smaller then the previous pertubation ϵ, the solution f(xi) = yi is a local minimum of the
optimization problem.
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A.3 MATHEMATICAL DERIVATION

Theorem A.2. For a continuous data distribution pd(x), a continuous latent distribution pc(z), a pull function f(z) with
f ′(z)p′c(z) < 0 ∀z and a sufficiently flexible invertible network, the invertible network INN has the mapping from the data
distribution to the latent distribution as a local minimum for the loss function in equation (1).

Proof. To show that the mapping from the learned network has the mapping from the latent distribution to the data
distribution as an minimum, we show that for a small pertubation the gradient of the loss in respect to the pertubation is in
the direction of the pertubation, and therefore gradient descent reduces the pertubation. To illustrate the approach, we show
the same derivation for the L2 loss in section A.2.

L =

∫
pdata(x)f(INN(x)) dx−

∫
pcube(z)f(INN(sg(INN−1(x)))) dz (12)

=

∫
pcube(z)f(INN(INN−1

∗ (z))) dz−
∫

pcube(z)f(INN(sg(INN−1(x)))) dz (13)

where INN−1
∗ is the mapping from the cube to the data distribution

=

∫
pcube(z) (f(g(z, ϵ, 0))− f(g(z, ϵ, ξ))) dz (14)

with g(z, ϵ, ξ) = INNϵ(INN−1
ξ (z))and INN0 = INN∗

where ϵ and ξ are the linear perturbations.
As g(z, ϵ, ϵ) = z for the same perturbations of both network directions,
the expansion of g in ϵ and ξ simplifies:

g(z, ϵ, ξ) = z + h1(z)(ϵ− ξ) + h2(z)ϵ(ϵ− ξ) + h3(z)ξ(ϵ− ξ) +O(ϵ3) (15)
Using the approximation for g, we approximate f(g)):
⇒ f(g(z, ϵ, ξ)) = f(z) + f ′(z)h1(z)(ϵ− ξ)

+ f ′(z)h2(z)ϵ(ϵ− ξ) + f ′(z)h3(z)ξ(ϵ− ξ)

+ f ′′(z)h1(z)
2(ϵ− ξ)2 +O(ϵ3, ξ3) (16)

We plug the approximation of f(g) into eq. 14 to obtain:

⇒ L =

∫
pcube(z) (f

′(z)h1(z)ξ + f ′(z)h2(z)ϵξ)− f ′(z)h3(z)ξ(ϵ− ξ)

+ f ′′(z)h1(z)
2(2ϵξ − ξ2) +O(ϵ3)

)
dz (17)

Taking the gradient with respect to ϵ gives:

⇒ ∇ϵL =

∫
pcube(z)

(
f ′(z)h2(z)ξ − f ′(z)h3(z)ξ + f ′′(z)h1(z)

22ξ +O(ϵ2)
)
dz (18)

=

∫
pcube(z)(f

′(z)(h2(z)− h3(z))ξ + f ′′(z)h1(z)
22ξ +O(ϵ2)) dz (19)

Using the derivation in section A.3.1:

=

∫
pcube(z)(f

′(z)h1(z)h
′
1(z)ξ + f ′′(z)h1(z)

22ξ +O(ϵ2)) dz (20)

=

∫
pcube(z)(f

′(z)
1

2
(h1(z)

2)′ξ + f ′′(z)h1(z)
22ξ +O(ϵ2)) dz (21)

=

∫
pcube(z)((f

′(z)h1(z)
2)′ξ + f ′′(z)h1(z)

2ξ +O(ϵ2)) dz (22)

=− ξ

∫
p′cube(z)f

′(z)h1(z)
2dz + ξ

∫
pcube(z)f

′′(z)h1(z)
2 dz +O(ϵ2)) (23)

When evaluating, we set ϵ = ξ, this corresponds to the stopgrad in the original loss formulation, as we only take the
derivative with respect to ϵ, but when evaluating the forward and backward pass are identical. Therefore, if p′cube(z)f ′(z) <
0 ∀z ∈ sup(pc), both terms are non-negative and gradient descent leads to the optimal solution INN∗. This condition is
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easily met by standard loss functions and latent distributions, e.g., uniform cube or normal distribution as latent distribution
and squared or maximal absolute distance to the origin as loss function.

A.3.1 Additional derivation

We leverage additional knowledge of the introduced function g to establish a relationship between various terms in its Taylor
approximation. Specifically, we use the fact that g is a concatenation of two inverse transformations. By interchanging
the parameters of these transformations and concatenating two g functions, we obtain the identity. Approximating this
concatenated version in terms of the Taylor expansion of the single g function, we derive the relation h′

1h1 = h2 − h3 for
the Taylor expansion of g.

With g(z, ϵ, ξ) = INNϵ(INN−1
ξ (z))), we can apply g twice with interchanged parameters ϵ and ξ:

g(g(z, ξ, ϵ), ϵ, ξ) = INNϵ(INN−1
ξ (INNξ(INN−1

ϵ (z)))) = INNϵ(INN−1
ϵ (z)) = z,

and therefore with g(z, ϵ, ξ) = z + h1(z)(ϵ− ξ) +h2(z)ϵ(ϵ− ξ) + h3(z)ξ(ϵ− ξ):

⇒ g(g(z, ξ, ϵ), ϵ, ξ) = g(z, ξ, ϵ) + h1(g(z, ξ, ϵ))(ϵ− ξ) +h2(g(z, ξ, ϵ))ϵ(ϵ− ξ) + h3(g(z, ξ, ϵ))ξ(ϵ− ξ)

= z+h1(z)(ξ−ϵ)+h′
1(z)h1(z)(ξ−ϵ)(ϵ−ξ) +h2(z)ξ(ξ−ϵ)+h3(z)ϵ(ξ−ϵ)+h1(z)(ϵ−ξ) +h2(z)ϵ(ϵ−ξ)+h3(z)ξ(ϵ−ξ)

Comparison of coefficient leads to h′
1h1 = h2 − h3

A.4 PSEUDOCODE

Algorithm 1 Anomaly Detection using Invertible One-Class Networks

1: Input: Training dataset {x1,x2, . . . ,xN}
2: Invertible neural net INN, pull function f(z), e.g., f(z) = maxi |zi|
3: Initialize INN parameters
4:
5: function TRAININN({x1,x2, . . . ,xN})
6: for epoch = 1 to T do
7: for i = 1 to N do
8: z← INN(xi) ▷ Forward pass through INN
9: Lpull ← f(z) ▷ Pull latent points towards origin

10: Sample latent point z̃ ∼ U [−1, 1]D
11: x̃← INN−1(z̃) ▷ Backward pass from uniform latent point
12: x̃← stopgrad(x̃) ▷ Do not use the inverse pass for gradient computation
13: zrecon ← INN(x̃) ▷ Forward pass for reconstructed data
14: Lpush ← −f(zrecon) ▷ Push latent points away from origin
15: Update INN parameters by minimizing Lpull + Lpush
16: end for
17: end for
18: end function
19:
20: function ANOMALYDETECTION(x)
21: z← INN(x)
22: scoreout ← ∥z− clip(z, -1, 1)∥1 ▷ Calculate outer distance
23: scorein ← min(maxk(|(z)k|)− 1, 0) ▷ Calculate inner distance
24: AnomalyScore← scorein + scorein
25: return AnomalyScore
26: end function
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A.5 IMPLEMENTATION DETAILS AND BASELINE METHODS FOR CIFAR10 EXPERIMENTS

For our CIFAR10 experiments in section 4.2, the MoCo network is pretrained on imagenet and the output of the last layer is
used for the training of the anomaly detection methods. We use the same preprocessing as Schmier et al. [2023], namely
normalizing the feature vectors on the hypersphere and adding a small amount of noise to obtain a valid density.

We employ the FrEIA library [Ardizzone et al., 2018-2023] for the invertible neural network and use 12 sequential allInOne
coupling blocks. We use subnetworks with a single hidden layer with a width of 128 and ReLU activation function. We train
a normalizing flow with the same architecture for comparison, and use the negative log likelihood as outlier score. Using a
distance based outlier measure for the normalizing flow did not yield an effective outlier score.

We compare our method only to other unsupervised anomaly detection methods, which do not require additional data and
can be trained on a clean dataset of inliers. We used classical anomaly detection methods from the pyod library [Zhao
et al., 2019]. We report the following unsupervised methods: k Nearest Neighbors (KNN) [Angiulli and Pizzuti, 2002],
"Outlier Detection with Kernel Density Functions" (KDE) [Latecki et al., 2007], "A novel anomaly detection scheme based
on principal component classifier" (PCA)[Shyu et al., 2003], "copula-based outlier detection (COPOD)" [Li et al., 2020] and
"Isolation Forest (IForest)" [Liu et al., 2008]. We additionally compare with recent deep anomaly detection methods, namely
DeepSVDD [Ruff et al., 2018], RCA [Liu et al., 2021], ICL [Shenkar and Wolf, 2022], GOAD [Bergman and Hoshen, 2020]
and SLAD [Xu et al., 2023b]. For the deep anomaly detection methods, the implementation of the deepOD library [Xu et al.,
2023a] is used. All methods are run with the default hyperparameters.

A.6 CIFAR10-CONFUSION MATRIX

Table 2: Confusion matrix for our "Invertible One-Class Network" on CIFAR10. The model is trained on features extracted
by MoCo [He et al., 2020]. The row indicates the training distribution, and the column the test distribution. We see that the
performance varies drastically for the class pairs, and semantically similar classes are difficult to separate, e.g. cars and
trucks.

plane car bird cat deer dog frog horse ship truck
plane 98.6 97.0 99.7 99.0 100.0 99.1 99.4 85.8 96.6
car 99.4 100.0 99.9 99.9 100.0 99.9 99.9 99.4 84.9
bird 94.8 100.0 92.2 81.4 95.9 91.3 92.0 99.7 100.0
cat 98.6 100.0 94.2 90.7 66.4 92.1 93.3 99.8 99.9

deer 99.2 100.0 92.7 95.0 96.2 95.6 68.0 99.7 99.9
dog 99.9 100.0 98.3 84.0 95.8 99.2 90.1 100.0 100.0
frog 99.4 100.0 97.1 96.8 96.8 99.5 99.6 99.9 100.0

horse 99.3 100.0 97.2 96.3 81.8 93.3 99.2 99.6 99.9
ship 94.2 98.0 99.8 99.8 99.8 99.9 99.7 99.9 97.5

truck 98.5 87.8 100.0 100.0 100.0 100.0 100.0 100.0 98.6
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B IMAGES

(a) In-distribution with lowest
anomaly score (TP)

(b) In-distribution with highest
anomaly score (FN)

(c) Outlier with lowest anomaly
score (FP)

(d) Outlier with highest anomaly
score (TN)

Figure 3: Illustrative images of our CIFAR10 experiments. Each row represents one of the ten CIFAR10 classes used as
inliers, showcasing the in-distribution and out-of-distribution images with the highest and lowest anomaly scores. We argue
that the model’s correct predictions (true positives and true negatives) and the model’s errors (false negatives and false
positives) are understandable from a human perspective. The FP appear close to the inlier distribution for the human eye,
while the FN are non-typical examples of the inlier class.
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