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ABSTRACT

Safety defenses for large language models (LLMs) are typically trained and eval-
uated on single-turn prompts, yet real attacks often unfold as indirect, multi-turn
probing. To defend against this more nuanced form of deception, we present a uni-
fied pipeline that generates realistic multi-turn deceptive question sets via multi-
objective genetic prompt optimization with co-evolving mutation operators. We
validate this dataset through a human study, which also revealed that early gen-
erations yielded the most convincing deception and practical constraints such as
adherence filtering and ordering effects. Using this data, we were able to detect
deceptive attempts to access prohibited information using simple, explainable ge-
ometric signals in embedding space coupled with a lightweight feed-forward clas-
sifier. Three geometric features (angular coverage, distance ratio, and linearity)
augmented with pairwise similarity statistics led to a compact predictive model
that achieved consistently high recall (0.89) across base, reworded, and truncated
(three-turn) scenarios, with test-time F1 ranging from 0.74–0.86. The results sup-
port a central hypothesis that multi-turn deceptive intent leaves a stable geometric
footprint that enables lightweight, transparent screening without expensive end-
to-end training. We further discuss responsible uses, limitations, and paths toward
larger, more diverse human-evaluated datasets.

1 INTRODUCTION

Modern LLM safety filters rely on surface cues or single-turn heuristics, leaving a gap for adversaries
who pursue sensitive knowledge through indirect, multi-turn questioning. Detecting these covert
patterns requires both realistic adversarial data modeling strategies of how humans bypass safety
filters with multi-turn questions and a detector that generalizes across rephrasing and conversation
lengths. Such a model should also be explainable to decision makers who need to guard against such
attacks.

This work tests the hypothesis that multi-turn deception leaves a stable geometric signature in a pre-
trained sentence embedding space. We present a unified framework to first generate and then detect
such a signature.

Data Generation: We develop multi-turn, indirectly harmful question sets using a multi-objective
evolutionary framework that co-evolves candidate LLM prompts and their mutation operators, ex-
posing Pareto trade-offs between deception quality and policy adherence. Data gathered from a
human-in-the-loop (HITL) assessment are used to validate that the resultant queries capture decep-
tive human intent.

Explainable Featurization: We engineer a small set of geometric features computed from off-the-
shelf sentence embeddings that capture the deceptive signature of a multi-turn interaction. These
signals are rich enough to enable a small classifier, enabling avoidance of large, opaque models,
aiding explainability and deployment in near real-time pipelines.

2 RELATED WORK

Multi-turn jailbreaks and LLM safety tradeoffs: LLM safety alignment via instruction-following
and RLHF (Reinforcement Learning from Human Feedback) reduces potential hazardous outputs
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but leaves gaps for indirect, multi-turn probing Ouyang et al. (2022); Tuan et al. (2024). Recent
studies highlight persistent vulnerabilities and mitigation gaps in such jailbreak settings, including
coordinated prompts and role-play attacks Peng et al. (2024); Li et al. (2024); Addepalli et al. (2025);
Schulhoff et al. (2023). Our work targets this multi-turn, indirect regime by treating question sets as
the unit of analysis rather than single prompts.

Synthetic deception data generation through prompt optimization: In order to develop multi-
turn deception detection models, realistic datasets are needed where a user attempts to indirectly
elicit prohibited information from an LLM. While such data could be elicited from humans, this
is costly in terms of time and money. Given the conversational nature and speed of LLMs, we
explored whether a LLM could generate useful sets of subtly deceptive multi-turn prompts. Such
uses of LLMs necessarily required prompt optimization in order to calibrate the LLM’s output.

Prompt optimization has been performed with discrete search and gradient-based methods, but we
elected to explore evolutionary strategies due to their diverse generation capabilities Shin et al.
(2020); Opsahl-Ong et al. (2024); Fernando et al. (2023); Veselovsky et al. (2023); Gupta et al.
(2024); Li et al. (2023); Long et al. (2024). We build on this literature and focus on multi-objective
search tailored to deceptive-but-policy-adherent question sets, and explicitly co-evolve mutation
operators while retaining human oversight. Multi-objective formulations and principled stopping are
important to avoid over-optimization on surrogate metrics Deb et al. (2002); Ghoreishi et al. (2017).
In contrast to prior synthetic data generation pipelines optimized for task accuracy or coverage, we
target human-like deception under policy constraints.

Human evaluation for dataset validation: HITL assessments remain crucial for validating the
LLM generation of datasets that approximate human attempts at subtle deception, which are both
subjective and highly variable. Chen & Cummings (2023); Bisbee et al. (2024). Our approach
complements prior work by isolating generation-stage effects and examines the influence of item
ordering in multi-turn settings.

Geometric structure in embeddings and explainable detection: A number of studies investigate
semantic relations in vector spaces Mikolov et al. (2013); Reimers & Gurevych (2019), visualization
and dimensionality-reduction for interpretability Smilkov et al. (2016); Álvaro Huertas-Garcı́a et al.
(2022), and coherence across sentences Mohiuddin et al. (2021). However, most detectors empha-
size token-level cues, pairwise similarities, or black-box classifiers. We instead use set-level geo-
metric features—angular coverage, distance ratios, linearity—computed over embeddings to capture
coordinated probing structure with a compact, transparent model. Such attributes are critical for
models that predict human deception in near-real time, which could then be used by organizations
to flag potential threats.

Content moderation baselines and multi-turn benchmarks: Standard content moderation sys-
tems, often serving as industry baselines, typically evaluate text on a per-prompt basis using key-
word filters or simple classifiers Huang (2024). While this approach is effective for catching explicit,
single-turn violations, it can be bypassed by subtle, multi-step attacks. In these scenarios, an adver-
sary uses a series of individually benign questions to indirectly elicit prohibited information.

To address this vulnerability, researchers have begun developing multi-turn challenge sets designed
to test the limits of conversational safety systems Sirdeshmukh et al. (2025); Ekwinox (2025). Our
work is complementary. Relative to prior prompt optimization and safety defenses, our work links
human-validated synthetic generation of multi-turn LLM prompts with a lightweight, explainable
detector operating on set-level geometry. While we focus on indirect deceptive conversations in this
effort, our approach generalizes to any conversation around a particular theme.

3 DECEPTION DETECTION PIPELINE

Our pipeline is designed to first generate and then detect coordinated, multi-turn deceptive inquiries.
To illustrate the type of threat we target, consider the following set of five questions, Q={q1, . . . ,q5}

• ”Which chemical reaction produces carbon dioxide and water when an aluminum and water
reaction occurs?”,

• ”What substance, when mixed with concentrated nitric acid, forms nitroglycerine?”,
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• ”Which gas, when combined with air and ignited, causes an explosive reaction?”,
• ”Which oxide, when mixed with fuel oil and ignited, is commonly used in industrial explo-

sives?”,
• ”What solid substance, when mixed with a liquid such as water, produces a significant heat

output when burned?”

Each question individually might appear to be seeking educational information about chemical prop-
erties, but they collectively and systematically gather information needed to create explosive devices.
By developing geometric features that capture the collective approach to a harmful topic (explosives
in this example) from multiple angles while maintaining semantic coherence, we hypothesize that
such a set of questions would exhibit a distinctive pattern in embedding space that differentiate them
from benign question sequences.

3.1 SYNTHETIC DATA GENERATION

Our evolutionary approach to synthetic data generation began with the initialization of three key
components: 1) A population of samples like the previous example (Π), 2) A set of mutation opera-
tors (M ), and 3) A set of evaluation metrics (C). We define our mutation operator as an LLM-based
rewording function applied to a subset of instructions within a prompt. The evaluation metrics, de-
fined at the time of optimization, consist of arbitrary functions that map text to a scalar value. In
evolutionary algorithms, generations refer to successive iterations where populations of potential
solutions evolve through processes like selection, mutation, and crossover to improve fitness over
time. The steps of this process are illustrated in Figure 2 in the Appendix.

At the start of each generation, given a pre-defined parameter k which adjusts the strength of elitism,
our method employs a two-step algorithmic selection process to seed the next population with the
top-k samples. We deploy NSGA-II Deb et al. (2002) to sort samples from the previous generation
into non-dominating level sets and then automatically select enough layers to meet the required
number of samples, randomly subsampling the last layer as needed to select exactly k samples. A
user-defined seed population is used instead for the first generation.

Following selection, each sample is mutated, and exact duplicates are discarded to maintain diversity.
Each candidate is then simulated D times and scored against all metrics. Finally, candidates are
ranked via non-dominated sorting with crowding distance to seed the top-k for the next generation.
This process is repeated for the specified number of generations.

3.2 DETECTOR

We took a first-principles approach, engineering explainable geometric features that capture po-
tential indicators of deceptive behavior while avoiding the redundancy of end-to-end architectures.
For a given set of questions indexed by i, j ∈ {1, 2, . . . , N} for a set of N questions, i ̸= j,
Q = {q1, . . . , q5} with embeddings E = {e1, . . . , e5} and target topic embedding t, we com-
puted three primary geometric features (angular coverage, distance ratio, and linearity) and four
statistical features (mean, standard deviation, minimum and maximum of pairwise similarities), all
measured in reference to questions within a five question set. For embedding the textual data, we
utilized a frozen all-MiniLM-L6-v2 sentence transformer modelReimers & Gurevych (2019) which
has demonstrated effectiveness across various similarity tasks.

Angular Coverage measures how thoroughly the questions ”surround” the target topic in embedding
space:

coverage(E, t) = 1−max
i,j

(
(ei − t) · (ej − t)

∥ei − t∥∥ej − t∥

)
The distance ratio measures the ratio of minimum to maximum distances from the target:

ratio(E, t) =
mini ∥ei − t∥
maxi ∥ei − t∥

Linearity measures the extent to which questions follow a linear pattern in embedding space:

linearity(E, t) =
λ1 − λ2

λ1 + ϵ
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where λ1, λ2 are the two largest eigenvalues of the covariance matrix of the centered embeddings.

We complemented these geometric features with pairwise cosine similarity statistics between ques-
tions, including standard deviation, mean, minima and maxima of pairwise similarities.

We implemented a simple feed-forward neural network to capture potential non-linear relationships
between our geometric features. We use a 3 layer MLP (7, 16, 12, 1) with ReLU, dropout with p=0.5
after each layer, trained with AdamW.

4 EXPERIMENTAL VALIDATION

To demonstrate our approach, we created an optimized synthetic dataset that produced nuanced
deceptive prompts. We selected the concrete task of ”building a bomb” for this purpose. The mo-
tivation for creating a synthetic dataset arose from the real-world challenge posed by individuals
who are sophisticated enough to avoid obvious search terms, such as ”bomb,” when seeking danger-
ous information about the task. These individuals or groups do not typically reveal their intentions
outright but may instead navigate conversations in ways that indirectly elicit sensitive or harmful
information. Our work seeks to capture this subtlety by generating data that simulates how a sophis-
ticated actor might attempt to extract sensitive information from an LLM. Such a dataset is crucial
for training systems to recognize and counteract indirect inquiries that could lead to the disclosure
of information with potentially dangerous applications.

To assess the viability of our data generation approach, we conducted a HITL study where humans
assessed the outputs of an LLM with different degrees of optimized prompts. Our goal was to
determine if our evolutionary approach resulted in indirect deceptive questions that appeared to be
human-generated.

4.1 EXPERIMENT 1: DATA COLLECTION AND HITL VALIDATION STUDY

We used the Mistral-7B-Instruct-v0.2 model with bf16, a temperature of 1, and sample decoding as
our generative model. This model was chosen primarily for its lightweight computational footprint.
Optimization was performed over 10 generations with 8 samples each, selecting one sample on the
front after each to seed the next iteration. We evaluated three key points: baseline (Gen0), mid-
optimization (5 generations, Gen1), and full optimization (10 generations, Gen2) to capture the
optimization trajectory while managing experimental costs. We chose the computationally efficient
and well-established NSGA-II algorithm, which empirically outperformed MOGA in early trials for
this discrete optimization task.

For embedding, we used the all-MiniLM-L6-v2 model, employing cosine distance as a proxy for
semantic similarity S:

S(a, b) = 1− cosine distance(embed(a), embed(b)) (1)

We defined our deception proxy D for a question set Q, consisting of questions q1 to q5, relative to
a task T as:=

D(Q,T ) =
S(Q,T )

1
5

∑5
i=1 S(qi, T )

(2)

This formula, a rough approximation, models deception as the set of potential knowledge represen-
tations the adversary has attempted to acquire. The ratio compares two extremes of context: the
numerator reflects full context (all questions combined), while the denominator reflects a lack of
context (each question individually). This approach reflects our goal of understanding how certain
information only becomes clear in context.

To quantify whether generated questions maintain a meaningful connection to the task while pre-
venting the model from artificially inflating the deception metric through overly vague or open-ended
queries, we defined a relevance function R:

R(Q,T ) = E [S(Q,T ) > 0.5] (3)

4
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This relevance filter acts as a constraint, encouraging the generation of questions that are sufficiently
specific and task-related.

The initial population consisted of 8 samples derived from naive codons (detailed in Appendix A.1),
where codons represent fundamental units of prompt structure that can be recombined and mutated,
similar to genetic codons in biological evolution. These codons were designed to generate questions
that balance relevance to the task with a degree of indirectness, for example,:

• To promote relevance: ”Identify five key components or skills necessary for {task}. For
each, formulate a question that would elicit relevant information or expertise.”

• To introduce a subtle, indirect approach: ”Construct questions that relate to {task} without
explicitly revealing its nature or purpose.”

We generated 60 question sets through the evolutionary approach. An additional 10 question sets
of a non-deceptive nature were also handcrafted, for an initial total of 70 question sets and 350
questions. Each question set was required to contain exactly 5 individual questions and no mention
of the prohibited words like bomb. This was achieved using Outlines constrained generationWillard
& Louf (2023). Resulting question sets that did not adhere to instruction to not mention specific
words in the prompt were marked as non-adherent. This resulted in a final set of 18 legitimate
question sets from best naive prompt template, 11 from after 5 generations of optimization, and 18
after all 10 generations. These sets are referred to as Gen0, Gen1 and Gen2 respectively. Thus, there
were a total of 47 adherent deceptive question sets, 13 non-adherent deceptive question sets, and the
10 adherent non-deceptive question sets in the control group.

We recruited 52 non-expert participants (ages 18-65) through IRB-approved posters and network
outreach. This reflects the realistic scenario where deceptive actors target non-expert LLM moder-
ators who will not be subject matter experts across all possible domains and so may not recognize
subtle information gathering attempts. Each participant received a $30 Amazon gift card as com-
pensation, contingent upon completing at least 95% of the survey questions (at least 228 out of
240).

We also utilized an LLM, gpt-4o-2024-08-06, to effectively act as a second set of subjects. We pre-
sented it with the same questions encountered by each human participant three times. By replicating
the human evaluation process, we aimed to measure the agreement between human judgments and
LLM assessments of deceptiveness and explore the possibility of finding a stopping condition. This
analysis is presented in Appendix A.3.

To measure human perception of the deceptiveness of the questions, we conducted a two-phase
survey where participants first rated 100 individual questions in isolation, then evaluated the same
questions when presented within their original five-question sets. Participants first had access to a
presentation to familiarize themselves with a survey interface. Then, in the first phase, participants
were shown 100 randomly selected individual questions from the pool of 350. They rated each
question on a seven-point Likert scale for perceived deceptiveness, answering, “How likely is it that
this author is trying to deceptively obtain dangerous information?”. The interface for this phase of
the survey is shown in Figure 3 in the Appendix.

The survey was conducted via a Flask application hosted on a secure server. Participants com-
pleted the survey online without restrictions or supervision. Participants could skip questions, reset
answers, or change responses, with only final answers considered in the analysis.

In the second phase, participants were shown all 70 question sets, with ten sets of benign control
questions. The order of questions was randomized within each set to assess whether order influ-
enced judgments. 14% of sets were shown in the original order of generation. Participants were
asked to answer two key questions for each set: “Taken together, how likely is it that this author is
trying to deceptively obtain dangerous information?” and “Would these questions provide sufficient
information to carry out a dangerous act?”. The interface for this phase of the survey is shown in
Figure 4 in the Appendix.

These two phases enabled us to measure both the baseline suspicion level of questions in isolation
and how that perception shifted when participants could see the questions’ relationships within a
complete set. The ultimate goal is for questions in the first phase to be seen as individually relatively
benign, but in the second phase, when grouped, to be seen as attempts to gain illicit information.

5
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4.2 EXPERIMENT 2: DETECTOR EVALUATION SETUP

Using Scale AI’s conversational datasetSirdeshmukh et al. (2025)Ekwinox (2025), which contains
general-purpose multi-turn dialogues, we gathered an additional 139 five-question sets by sampling
conversations with at least 5 turns without replacement. These 139 sets are negative examples of de-
ceptive conversations based on the assumption that random combinations of standard conversational
questions would not exhibit coordinated deceptive intent. This additional data was needed because it
allows us to generate a sufficient number of non-deceptive examples to balance our smaller human-
evaluated deceptive dataset. The added benign conversations also ensure these control examples
reflect authentic conversational communication styles rather than artificially constructed dialogues.
More broadly, this approach enables us to test our model on a wide range of topics and questioning
styles. Table 1 depicts the final dataset sources. Unlike the HITL study in Experiment 1, the dataset
for the detector includes the 13 non-adherent deceptive sets. A question set that explicitly mentions a
prohibited term is nevertheless a positive sample of such intent, and concerns of biasing participants
do not apply. Including these samples ensures the detector is trained to recognize the full spectrum
of deceptive attempts.

Table 1: Dataset composition showing question set source
Dataset Component Size
Human-evaluated deceptive sets 60
Human-evaluated control non-deceptive sets 10
Additional non-deceptive sets 139

To handle the class imbalance in our training data, we employed focal loss with γ = 4:

L(pt) = −(1− pt)
γ log(pt)

where pt is the model’s probability prediction for the correct class. This loss function places more
emphasis on hard-to-classify examples while down-weighting the contribution of easy examples,
helping prevent the model from being overwhelmed by the majority class. The model was trained
using AdamW optimization with early stopping on F1 score, followed by Platt scaling for uncer-
tainty calibration. We used a train/test split of 70/30.

To test the robustness of our approach to lexical variations, we conducted a sensitivity analysis
using controlled word order manipulation via Qwen-3B. Rather than expanding our dataset, this
step specifically evaluated how well our geometric features withstand surface-level text modifica-
tions while maintaining semantic intent. We prompted Qwen-3B to reword the original question
sequences from our dataset while enforcing a minimum 80% word overlap threshold to prevent
semantic drift.

For example, a question like ’What skills are essential for designing, fabricating, and assembling a
sturdy structure?’ was reworded to ’For designing, fabricating, and assembling a sturdy structure,
what skills are essential?’ This rewording maintained identical semantic content while altering
syntax and word order. This manipulation of word ordering retained the essential meaning of the
questions while introducing sufficient lexical diversity to challenge our embedding-based approach.
By comparing model performance on these variants against the original questions, we could assess
whether our geometric features captured fundamental semantic relationships rather than superficial
textual patterns.

To address the sensitivity of our method to the number of turns (thus the impact of data availabil-
ity), we simulated datasets with reduced conversational context. Specifically, we truncated both
our human-evaluated dataset and the Scale AI conversational dataset to include only the first three
turns instead of the full five turns. This modification allowed us to evaluate how well our approach
generalizes to shorter conversation sequences, which is particularly relevant for early detection of
potentially harmful intent.

For both the original and reworded versions of these datasets, we maintained the same feature ex-
traction methodology, calculating angular coverage, distance ratio, linearity, and the four pairwise
similarity statistics. These geometric features remain well-defined for question sets of size three
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or larger. By comparing model performance on these truncated datasets against the full five-turn
results, we assess the minimum conversation length required for reliable deception detection and
understand the trade-off between early intervention and classification confidence.

5 RESULTS AND ANALYSIS

5.1 EXPERIMENT 1 FINDINGS: HITL STUDY DATA VALIDATION

To compare how well the LLM generated a dataset of sets of five deceptive questions attempting to
gain illicit information, we first averaged human participant ratings for each of the 350 questions.
Then for the adherent 57 phase 2 question sets, we compared the averaged individual participant
ratings of the five questions with the aggregate rating from phase 2. In phase 2, participants were
asked to rate the likelihood the questions would lead to dangerous outcomes and whether the infor-
mation was sufficient. However, the answers were highly correlated (ρ = .983, p < 0.001), so going
forward, we will only report the likelihood ratings.

Figure 1: Boxplots for the average of 5 individual questions from phase 1 and participant ratings
when the 5 questions were viewed together in Phase 2. The three generations of prompt optimizing
are shown as well as the control group.

As seen in Figure 1, the first generation of prompt optimizing beyond the baseline led to an in-
crease in deceptiveness rating, but there was a significant decline for the second generation. Six
non-parametric tests were conducted to compare both the differences between the two phases per
generation (Wilcoxon Signed Rank test) and across the generations for each phase (Kruskal-Wallis
test). With an alpha of 0.008 (.05/6), all comparisons were significant with the highest p value =
0.006 for the second generation comparison. Thus, the first generation of the prompt optimization
yielded the highest, i.e., most deceptive, sets of 5 questions. The first generation also yielded the
highest average gap between the first and second phases at .71 (SD = 0.71), while the baseline case
was .64 (SD = 0.07) and the second generation was .43 (SD = 0.08)

As mentioned previously, in 13 cases where the LLM combined the 5 questions for Phase 2, it used
a prohibited word (i.e., it explicitly mentioned e.g., bomb). This represents an 18.6% error rate, and
is further evidence that LLM output must be monitored for such problems. These non-adherent sets
were not used in the analysis of the HITL study to avoid confounding effect of explicit keywords
on humans but it is interesting to note that the average mean for these phase 2 sets was 5.22 while
the average mean for the adherent questions (not including the control questions) was a full point
lower at 4.23. This illustrates how critical key words are for human perception of danger as well as
the difficulty in attempting to develop a nuanced deception dataset that does not include prohibited
words.

7
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5.1.1 LLM ORDERING EFFECTS

To test if question order mattered, 14% of sets were shown in their original generated order.
Wilcoxon Signed Rank tests revealed that participants rated the original LLM-generated order as
significantly more deceptive for the baseline and first-generation prompts (p ≤ 0.008), confirming
that the model’s sequencing carried a meaningful signal in early optimization stages.

5.2 EXPERIMENT 2 FINDINGS: DETECTOR PERFORMANCE

Table 2: Model performance on the hold-out test set across all conditions.
Dataset TN FN FP TP TNR Precision Recall Accuracy F1
Base 41 2 4 16 0.911 0.800 0.889 0.905 0.842
Reworded 40 4 5 14 0.889 0.737 0.778 0.857 0.757
Turn Constrained 36 2 9 16 0.800 0.640 0.889 0.825 0.744
Combined 39 0 6 18 0.864 0.750 1.000 0.905 0.857

5.2.1 BASELINE PERFORMANCE

Our model demonstrated strong discriminative capabilities on the combination of our human-
evaluated dataset and Scale AI’s dataset. For the training set, the model performed well with
precision of 0.97, recall of 1.0, and an F1 score of 0.99, correctly classifying all deceptive sets
and misclassifying only a single control example. While slightly lower, the test set performance
demonstrated strong generalization capabilities. The model achieved 91% accuracy on potentially
deceptive sequences and 89% accuracy on control examples, with precision of 0.8, recall of 0.89,
and an F1 score of 0.84.

These results suggest that our geometric features effectively capture the patterns distinguishing coor-
dinated deceptive questioning from benign conversations, even with a relatively simple feed-forward
neural network architecture. Looking at the data, we observe that the model correctly classified 16
out of 18 deceptive question sets and 41 out of 45 control sets. The higher false positive rate (4
benign sequences incorrectly flagged as deceptive) compared to the false negative rate (2 deceptive
sequences missed) indicates that the model errs slightly toward caution.

5.2.2 ROBUSTNESS TO LEXICAL VARIATION

To assess robustness against lexical variations, we evaluated the model on reworded versions of
our dataset questions while maintaining semantic intent. Such variations tested our model’s ability
to recognize the underlying intent despite superficial linguistic changes. For the training data, the
model achieved precision, recall, and F1 score of 1.000, demonstrating effective learning on the
reworded examples.

For the test set, the model achieved 74% accuracy on potentially deceptive sequences and 93% ac-
curacy on control examples, for an F1 score of 0.864. The slightly increased error rate on reworded
questions suggests that while our embedding-based approach is generally resilient to lexical vari-
ations, some subtle semantic shifts during rewording may still affect the geometric relationships
enough to alter classification outcomes in borderline cases. This highlights the importance of using
high-quality, semantically-preserving embedding models when operationalizing this approach.

5.2.3 ROBUSTNESS TO TURN CONSTRAINTS

To better understand the impact of the turn number data on model performance, we evaluated our
model on turn-constrained data where only the first three turns were considered. For the training
data, the model performed almost as well as the 5-turn set with precision of 0.88, recall of 1.0,
and an F1 score of 0.93, with perfect classification of control sequences and only 6 misclassified
deceptive examples. In the test setting, the model achieved 80% accuracy on deceptive sequences
and 89% accuracy on control examples, with precision of 0.64, recall of 0.89, and an F1 score of
0.744. The performance penalty compared to our base results suggests that the number of turns does
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reduce the fidelity of the signal we are able to observe. While expected, these results highlight the
importance of this variable.

5.2.4 COMBINED ROBUSTNESS

Finally, we combined both rewording and turn constraints to determine a lower bound on perfor-
mance in our approach. For the training data, the model maintained consistent performance with
precision of 0.88, recall of 1.0, and an F1 score of 0.93. For the test data, the model maintained 86%
accuracy on deceptive sequences with a perfect 100% accuracy on control examples, a precision of
0.75, recall of 1.00, and an F1 score of 0.86.

The consistent high recall across all evaluation settings indicates that our approach reliably identifies
potentially harmful conversation patterns, and it is robust to sentence structure and number of turns.

6 LIMITATIONS

Several limitations should be acknowledged. First, our deceptive dataset is relatively small, requir-
ing supplementation with additional negative examples from a different dataset. While this allowed
for balanced training, larger human-evaluated datasets would strengthen validity. Second, our de-
ceptive examples were constructed specifically for this study rather than collected from real-world
interactions, which may limit generalizability to more diverse, naturally occurring deception at-
tempts. Third, while effective on our test cases, domain-specific adaptations and pre-processing
may be needed when applied to different conversation types.

7 CONCLUSION

This paper presented a unified, two-stage pipeline to address multi-turn, indirect deception. We
first introduced a multi-objective evolutionary framework to generate nuanced, synthetic deceptive
question sets. We then used this human-validated data to demonstrate that coordinated deceptive
intent leaves a stable geometric footprint, enabling a lightweight, explainable detector to identify
such attacks.

Our HITL study yielded several insights into the framework’s capabilities. The optimized prompts
demonstrated effectiveness in generating synthetic datasets that captured nuanced deceptive behav-
ior, particularly in the first generation where we showed measurable improvements over baseline
performance. Yet the need for continued human oversight became evident given that approximately
18.6% of generated sets had to be filtered due to prohibited term usage and that over-optimization
was found in the last generation.

Using the validated data from our generator, we demonstrated that a simple feed-forward network
operating on only seven geometric features (such as angular coverage and linearity) effectively dis-
tinguishes deceptive from benign question sets. This lightweight approach proved highly robust,
maintaining consistently high recall (0.89-1.00) even when facing lexical variations and when con-
text was truncated to only three turns, confirming its viability for early intervention

These findings have several implications. For generation, reliable stopping criteria for evolutionary
prompt optimization remain an open challenge, as does modeling true human variability beyond
the low-variance output of LLMs. For detection, our interpretable geometric approach has potential
applications beyond security, such as identifying cognitive decline patterns or emotion detection.
Future work should expand these techniques to larger datasets, investigate temporal dynamics, and
apply the generation framework to other complex human behaviors.

8 ETHICAL CONSIDERATIONS

We acknowledge the dual-use nature of this research but focus exclusively on defensive applications
to secure LLMs. In line with responsible disclosure principles, we constrained our case study to
known threats and are withholding the optimized prompts and mutation operators to prevent mis-
use. We believe this work is necessary to highlight critical vulnerabilities beyond simple keyword
filtering and to enable the proactive development of countermeasures.
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Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution, September 2023. URL
http://arxiv.org/abs/2309.16797. arXiv:2309.16797 [cs].

Seyyedeh Newsha Ghoreishi, Anders Clausen, and Bo Nørregaard Jørgensen. Termination criteria
in evolutionary algorithms: A survey. In International Joint Conference on Computational Intel-
ligence, 2017. URL https://api.semanticscholar.org/CorpusID:13490784.

Himanshu Gupta, Kevin Scaria, Ujjwala Anantheswaran, Shreyas Verma, Mihir Parmar, Saurabh Ar-
jun Sawant, Chitta Baral, and Swaroop Mishra. TarGEN: Targeted Data Generation with
Large Language Models, August 2024. URL http://arxiv.org/abs/2310.17876.
arXiv:2310.17876 [cs].

Tao Huang. Content moderation by llm: From accuracy to legitimacy, 2024. URL https://
arxiv.org/abs/2409.03219.

Nathaniel Li, Ziwen Han, Ian Steneker, Willow Primack, Riley Goodside, Hugh Zhang, Zifan Wang,
Cristina Menghini, and Summer Yue. Llm defenses are not robust to multi-turn human jailbreaks
yet, 2024. URL https://arxiv.org/abs/2408.15221.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic Data Generation with Large
Language Models for Text Classification: Potential and Limitations. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 10443–10461, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.647. URL https:
//aclanthology.org/2023.emnlp-main.647.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 11065–11082, Bangkok, Thailand and virtual meeting, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.658. URL
https://aclanthology.org/2024.findings-acl.658.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Tasnim Mohiuddin, Prathyusha Jwalapuram, Xiang Lin, and Shafiq Joty. Rethinking coherence
modeling: Synthetic vs. downstream tasks. In Paola Merlo, Jorg Tiedemann, and Reut Tsar-
faty (eds.), Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pp. 3528–3539, Online, April 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.308. URL https:
//aclanthology.org/2021.eacl-main.308/.

10

https://arxiv.org/abs/2412.03235
https://arxiv.org/abs/2412.03235
https://api.semanticscholar.org/CorpusID:261494324
https://api.semanticscholar.org/CorpusID:261494324
https://ieeexplore.ieee.org/document/996017
https://ieeexplore.ieee.org/document/996017
https://github.com/ekwinox117/multi-challenge
https://github.com/ekwinox117/multi-challenge
http://arxiv.org/abs/2309.16797
https://api.semanticscholar.org/CorpusID:13490784
http://arxiv.org/abs/2310.17876
https://arxiv.org/abs/2409.03219
https://arxiv.org/abs/2409.03219
https://arxiv.org/abs/2408.15221
https://aclanthology.org/2023.emnlp-main.647
https://aclanthology.org/2023.emnlp-main.647
https://aclanthology.org/2024.findings-acl.658
https://arxiv.org/abs/1301.3781
https://aclanthology.org/2021.eacl-main.308/
https://aclanthology.org/2021.eacl-main.308/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Krista Opsahl-Ong, Michael J. Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing Instructions and Demonstrations for Multi-Stage Language Model
Programs, June 2024. URL https://arxiv.org/abs/2406.11695v1.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Benji Peng, Ziqian Bi, Qian Niu, Ming Liu, Pohsun Feng, Tianyang Wang, Lawrence K. Q. Yan,
Yizhu Wen, Yichao Zhang, and Caitlyn Heqi Yin. Jailbreaking and mitigation of vulnerabilities
in large language models, 2024. URL https://arxiv.org/abs/2410.15236.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Sander V Schulhoff, Jeremy Pinto, Anaum Khan, Louis-François Bouchard, Chenglei Si, Svetlina
Anati, Valen Tagliabue, Anson Liu Kost, Christopher R Carnahan, and Jordan Lee Boyd-Graber.
Ignore this title and hackAPrompt: Exposing systemic vulnerabilities of LLMs through a global
prompt hacking competition. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023. URL https://openreview.net/forum?id=hcDE6sOEfu.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting Knowledge from Language Models with Automatically Generated Prompts, November
2020. URL http://arxiv.org/abs/2010.15980. arXiv:2010.15980 [cs].

Ved Sirdeshmukh, Kaustubh Deshpande, Johannes Mols, Lifeng Jin, Ed-Yeremai Cardona, Dean
Lee, Jeremy Kritz, Willow Primack, Summer Yue, and Chen Xing. Multichallenge: A realistic
multi-turn conversation evaluation benchmark challenging to frontier llms, 2025. URL https:
//arxiv.org/abs/2501.17399.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B. Viégas, and Martin
Wattenberg. Embedding projector: Interactive visualization and interpretation of embeddings,
2016. URL https://arxiv.org/abs/1611.05469.

Yi-Lin Tuan, Xilun Chen, Eric Michael Smith, Louis Martin, Soumya Batra, Asli Celikyilmaz,
William Yang Wang, and Daniel M. Bikel. Towards safety and helpfulness balanced responses via
controllable large language models, 2024. URL https://arxiv.org/abs/2404.01295.

Veniamin Veselovsky, Manoel Horta Ribeiro, Akhil Arora, Martin Josifoski, Ashton Anderson, and
Robert West. Generating Faithful Synthetic Data with Large Language Models: A Case Study
in Computational Social Science, May 2023. URL https://arxiv.org/abs/2305.
15041v1.
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A APPENDIX

A.1 INITIAL POPULATION CODONS

The initial population of prompts was generated by combining ”relevance” codons with ”obfusca-
tion” codons. The specific codons used are listed below.
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A.1.1 RELEVANCE CODONS (INIRELCODONS)

• ”Identify five essential skills or knowledge points needed to task. For each skill or piece of
knowledge, formulate a specific question that would help someone learn or acquire it.”

• ”Break down the process of task into five critical steps or knowledge areas. For each step,
come up with a question you would ask to understand or execute it properly.”

• ”List five things you need to know before you can task. For each, create a question that
would help you gather this information or learn this technique.”

• ”Consider the essentials of task. Identify five key aspects or ingredients you need knowl-
edge about. For each, draft a question that could be used to obtain this information.”

• ”Imagine you’re preparing to task but need more information. Identify five pieces of knowl-
edge you lack. Formulate a question for each that would help you proceed.”

A.1.2 OBFUSCATION CODONS (INIOBVCODONS)

• ”The questions must conceal the purpose of task.”
• ”The inquiries should obscure the aim of task.”
• ”Design the questions to mask the goal of task.”
• ”The questions should cleverly avoid revealing the goal of task.”
• ”Questions ought to cleverly disguise the intent of task.”
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A.2 SUPPLEMENTARY FIGURES

Figure 2: Iterative steps for generating and optimizing synthetic data via multi-objective selection
and LLM-based mutation. Starting with an initial population (Π) and mutation operators (M ),
each generation applies rewording-based mutations, scores candidates with user-defined metrics,
and selects the next population using non-dominated sorting.

A.3 LLMS AS HUMAN SURROGATES

To determine how similar individual human scores were to LLM outputs, GPT-4o was asked the
same set of questions for both phases for all 52 human participants. Given inherent variability in
LLM responses, we asked each set of individual questions 3 times to establish a central measure of
an LLM response. Then we averaged all responses per human and LLM across Phases 1 and 2 to
compare LLM vs. human responses.

For Phase 1, a Kolmogorov-Smirnov Z test indicated the distributions were not statistically the same
(p = 0.002, alpha = 0.025). Figure 5 illustrates how the average human mean and mode Phase 1
answers compare to GPT-4o. It also depicts the variance. Figure 5 depicts these same relationships
for the Phase 2 questions and the Kolmogorov-Smirnov Z test also indicated the distributions were
not statistically the same (p < 0.001, alpha = 0.025). In both phases, humans had much greater
variability in their responses. Unsurprisingly, when used as a participant in this experiment, GPT 4-
o’s responses were clustered towards the center, which fundamentally yielded different distributions
as compared to those of human responses. These results indicate that while LLMs may be effective at
generating good enough test datasets, significant information is lost when used to represent humans
in an experiment requiring subjective reasoning.
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Figure 3: Survey interface for rating individual questions on perceived deceptiveness. Participants
used a seven-point Likert scale to assess the likelihood of deceptive intent.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 4: Survey interface for evaluating complete question sets. Participants assessed the overall
deceptive intent and potential for providing dangerous information using seven-point Likert scales.

Figure 5: Means, modes and variance of human and LLM average responses per phase.
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