
RefreshKV: Updating Small KV Cache During Long-form Generation

Anonymous ACL submission

Abstract

Generating long sequences of tokens given a001
long-context input is a very compute-intensive002
inference scenario for large language models003
(LLMs). One prominent inference speed-up004
approach is constructing a smaller key-value005
(KV) cache, relieving LLMs from computing006
attention over a long sequence of tokens. While007
such methods work well to generate short se-008
quences, their performance degrades rapidly009
for long-form generation. Most KV compres-010
sion happens once, prematurely removing to-011
kens that can be useful later in the genera-012
tion. We propose a new inference-time method,013
RefreshKV, that flexibly alternates between014
full context attention and attention over a sub-015
set of input tokens during generation. After016
each full attention step, we update the smaller017
KV cache based on the attention pattern over018
the entire input. Applying our method to off-019
the-shelf LLMs achieves comparable speedup020
to eviction-based methods while improving021
performance for various long-form generation022
tasks. Lastly, we show that continued pretrain-023
ing with our inference setting brings further024
gains in performance.025

1 Introduction026

Large language models (LLMs) are capable of in-027

gesting extremely long inputs and generating long028

outputs (Meta, 2024; Gemini, 2024). Yet, deploy-029

ing such long-context LLMs is very costly. As the030

context length increases, memory usage for storing031

the key-value (KV) cache increases linearly, while032

attention computation scales quadratically. These033

two factors lead to high latency during inference;034

Adnan et al. (2024) reports 50x latency increase035

as context length increased 16x for the MPT-7B036

model (MosaicML, 2023).037

Prior works (Beltagy et al., 2020; Child et al.,038

2019; Xiao et al., 2023; Zhang et al., 2024b; Li039

et al., 2024; Adnan et al., 2024) propose to main-040

tain a smaller KV cache by evicting a subset of041

past tokens. These approaches improve both the 042

memory and computation efficiency, as the KV 043

cache of only a subset of tokens will be kept and at- 044

tention computation is reduced. However, once an 045

input token is eliminated from the KV cache (either 046

based on locality assumption (Xiao et al., 2023) or 047

by eviction during the generation process (Zhang 048

et al., 2024b)), one cannot recover eliminated to- 049

kens. We find that while such methods show minor 050

degradation compared to full KV cache in short- 051

form generation tasks, their performance degrades 052

rapidly for long-form generation tasks. 053

Having observed the limitations of existing 054

approaches, we propose a novel approach, Re- 055

freshKV, which periodically refreshes the smaller 056

KV cache during the generation process. Our 057

method keeps the full KV cache throughout in- 058

ference (thus no gain in memory footprint), but 059

perform attention over a dynamically constructed 060

small KV cache to achieve inference speedups. Our 061

method alternates between two modes of genera- 062

tion: generation that attends over the full KV cache 063

and generation that attends over a smaller KV cache 064

with subset of tokens (see Figure 1). To construct 065

the smaller KV, we identify the topK attended to- 066

kens from the most recent step that attends over the 067

full KV cache, observing that consecutive tokens 068

have similar attention pattern (Li et al., 2024). 069

A key component of RefreshKV is deciding 070

when to perform the computationally expensive full 071

attention steps and refresh the small KV cache. In- 072

stead of mandating a fixed (and potentially subopti- 073

mal) schedule, RefreshKV compares the query em- 074

bedding similarity of the current and previous full 075

attention step, and dynamically triggers full atten- 076

tion step when the similarity is low. Our approach 077

(no KV eviction, dynamically constructed smaller 078

KV, low latency) establishes a middle ground be- 079

tween full attention (no KV eviction, high latency, 080

high performance) and sparse attention (KV evic- 081

tion, reduced latency, low performance), particu- 082

1

Full KV

t=1

SnapKV

RefreshKV
(Ours)

2) Refresh partial cache based
on attention scores

Tokens generated at previous decoding steps

Token generated at step t

Chain-of-key task
Input

Your task is to generate a chain of 10
keys from the context, such that the
first word of the current key is the
second word of the previous key.  
Context: province-survival […] party-
marketplace[…] survival-ATM

❌ province-survival, survival-test

✅ province-survival, survival-ATM

Output

t=2 t=3 t=4
Prefilling Generation

1) Attention over the full cache
and obtain the attention scores

The length of a valid chain

O(L)

L

K

K

L

O(K)

O(L) O(L) O(L)

O(L)O(K) O(K)

O(K) O(K) O(K) O(K)

Evict token
with lowest

attention score

Figure 1: Left: Illustration of RefreshKV (with L = 5, K = 3 and a stride S = 3) compared to baseline (SnapKV
and Full KV) when generating four tokens. The figure shows the computation complexity of attention operation, and
the size of the KV cache used at each decoding step for each method. Our approach alternates between inferencing
with the partial cache(t=1,2,4) and the full cache(t=3). Compared to eviction-based method (e.g. SnapKV) which
completely discard the evicted tokens, RefreshKV updates the partial cache based on attention scores over the
entire context during the full attention steps. Right: An example of the chain-of-key task and performance of
RefreshKV and the baselines. RefreshKV maintains performances across different length while eviction-based
baeslines’ performance degrades when generating a chain with more than one key.

larly useful for long-form generation.083

Our method can be applied to any off-the-shelf084

LLM. We experiment with two long-context LLMs,085

Llama-3.1-8B (Meta, 2024) and Qwen2-7B (Yang086

et al., 2024a). We compare against KV eviction087

baselines StreamingLLM (Xiao et al., 2023), H2O088

(Zhang et al., 2024b) and SnapKV (Li et al., 2024)089

on the long-range language modeling task and a090

suite of downstream long-context tasks (Bai et al.,091

2023; Zhang et al., 2024a; Ye et al., 2025) that092

require long outputs given long inputs.093

Our experiments show that RefreshKV outper-094

forms eviction-based methods in both these set-095

tings, with similar level of speed-up. In particular,096

we examine two long-form generation tasks that097

are not evaluated by previously proposed eviction-098

based methods: (1) when majority of tokens are099

required to generate the output (e.g. converting100

information in an HTML page to a TSV file) and101

(2) when the important tokens required at the cur-102

rent generation step is dependent on the previously103

generated tokens (a new task, Chain-of-key, as de-104

picted in Figure 1). While eviction-based methods105

such as H2O and SnapKV fail completely in HTML106

to TSV task (Ye et al., 2025), achieving 0 F1 score,107

RefreshKV recovers 52% of the performance. Our108

analysis shows that the performance gains are at-109

tributed to updating the partial cache rather than oc-110

casionally attending to the entire output. Lastly, we111

explore continued pretraining Llama-3.1-8B with 112

RefreshKV, which leads to further improvements. 113

Our contributions are as follows: 114

• We identify the failures of existing KV eviction 115

methods when LLMs are tasked with challenging 116

long-form generation. 117

• Motivated by the failures of KV cache eviction 118

methods, we introduce a new inference method, 119

RefreshKV, that rebuilds a smaller KV cache 120

periodically during long-form generation. 121

• We evaluate our method comprehensively on var- 122

ious benchmarks and two LLMs, and conduct 123

ablation studies on our design choices (e.g., dy- 124

namic stride vs. fixed stride cache updates). 125

2 RefreshKV for Long-Form Generation 126

with Long-Context LLMs 127

2.1 Background and Setting 128

Let M be a language model and x be an input 129

sequence of tokens, x = x1, · · ·xL. At infer- 130

ence time, M generates an output token sequence 131

ŷ = y1, · · · yN in two stages: (1) Pre-filling stage 132

where M ingests the input and constructs the KV 133

cache for all L tokens, and (2) Generation stage 134

where it samples one token yi at a time from the 135

conditional distribution PM (yi|x, y1 · · · yi−1). At 136

each step, the model attends to tokens in the KV 137

2

cache, and updates the cache to include the current138

token’s key-value pairs.139

Our goal is to reduce the inference latency dur-140

ing the generation stage without severe degradation141

of model performance. There are two main reasons142

for latency increase; first, the attention computation143

increases quadratically with input length L. Sec-144

ond, a large L necessitates maintaining a large KV145

cache of the past tokens, incurring latency due to146

the full KV cache movement from the GPU HBM.1147

Prior approaches, like H2O (Zhang et al., 2024b)148

and SnapKV (Li et al., 2024), address this by per-149

manently evicting “unimportant” tokens during the150

decoding process to maintain a small KV cache.151

While such methods have shown to be effective for152

short-form generation task such as “Needle-in-a-153

Haystack”(NIAH) (Kamradt, 2023), it has the po-154

tential downside of prematurely removing tokens155

useful for subsequent generation steps. Instead156

of this strict strategy, we propose to periodically157

update the small KV cache by performing full at-158

tention over all the tokens in the context and con-159

structing the small cache based on the attention160

pattern. As the cache is only occasionally updated,161

our method reduces both attention computation and162

data movement by attending to the small cache.163

2.2 Methodology and Implementation164

We present the pseudocode for generating output165

tokens using RefreshKV in Figure 2. The algo-166

rithm takes as input a language model M and a167

sequence of input tokens x1, ..., xL. As a first step,168

we prefill M with the input sequence. Then, we169

alternate between full and partial attention. Our170

approach maintains two separate KV caches Cf171

and Cp, corresponding to KV cache used in the full172

and partial attention steps respectively. These three173

components of the algorithm are described below:174

Prefilling stage (lines 1-2): Given input175

x1, ..., xL, we prefill with full attention M and ini-176

tialize full KV cache Cf with L tokens. We also177

obtain the attention scores aL for the last token178

xL. To determine the top K tokens to keep, we179

employ max pooling over attention scores of sur-180

rounding tokens, instead of the raw attention scores181

to preserve information completeness following182

prior work (Li et al., 2024).2183

1Adnan et al. (2024) reports up to 40% of the inference
latency can be attributed to data movement.

2For models with Grouped Query Attention (Ainslie et al.,
2023), we aggregate attention scores for all query heads in the
same group by taking the max to identify the top K tokens.

Deciding when to decode with full cache (line 184

4): We need to decide when to alternate between 185

performing attention over all tokens and perform- 186

ing attention over the smaller cache. One straight- 187

forward way is to use a fixed schedule, i.e. per- 188

forming full attention every S steps. However, this 189

enforces the same schedule for all the layers and in- 190

put text. Instead, we propose an adaptive schedule 191

based on the similarity between query vector of the 192

current step and the query vector of the most recent 193

full attention step. Intuitively, if the query vector 194

of a particular layer and head for the current step 195

is similar to the query vector of the most recent 196

full attention step, the attention pattern should be 197

similar. Thus, we only perform the full attention 198

step when this similarity is lower than a threshold. 199

Concretely, at every Sth decode step, for each 200

layer l, we first determine whether we need to per- 201

form full attention. We calculate the cosine similar- 202

ity between the query vectors of the input token t 203

averaged across all query heads in layer l, with the 204

averaged query vector of the most recent full atten- 205

tion step for that layer. If the similarity is higher 206

than a threshold s, we decode with the partial cache 207

Cp, and otherwise decode with Cf for layer l. We 208

describe details for each scenario below. To mini- 209

mize the computational overhead of the similarity 210

check, we perform this only every S steps; we call 211

this query comparison (QC) stride. 212

Decoding with partial cache (lines 5-7): At 213

each partial attention step, we generate the next 214

token yt ∼ M(Cp) using Cp to compute attention 215

and store the KV cache of the input token. This 216

leads to a reduction in both the attention compu- 217

tation FLOPs and the latency due to KV cache 218

movement (we only need to move the smaller KV 219

cache Cp instead of the larger full KV cache Cf , 220

where |Cp| << |Cf |). To maintain the size of 221

Cp as we decode each additional token and update 222

the KV cache with this newly generated token, we 223

remove the KV corresponding to the token with 224

the lowest attention score in the full attention step 225

from Cp (line 7). We note that decoding with Cp is 226

equivalent to SnapKV (Li et al., 2024) if the partial 227

cache is never refreshed after prefilling. 228

Decoding with full cache (lines 9-13): At each 229

full attention step, we first update the full KV cache 230

Cf with the key-value pairs of the tokens decoded 231

Our ablations (reported in Table 8 in the Appendix) show that
taking the max outperforms other aggregation method such as
mean, or relying solely on one of the query head in the group.

3

1. Prefill with
1. Initialize full KV cache
2. attention scores for over past tokens for all layers.
3. Initialize partial KV cache reverse(arg top-k)
4. to keep track of last token decoded with

2. // Initialize empty output sequence

3. for do
4. if scheduler- () == “partial-attention-step” then
5. , .append // Generate using partial cache
6. // Update partial cache
7. // Evict token with lowest from
8. else-if scheduler- () == “full-attention-step” then
9. // Update with new tokens in
10. .append() // Generate using full attention
11. // Update full cache
12. reverse(arg top-k) // Re-initialize with topK
13. // Set

M x1, . . . , xL
Cf

aL ← xL
Cp ← x∈Cf

(max_pool(aL, kernel_size))
posfull ← 1 Cf

O ← []
i ∈ 1,2,⋯, T

S i
o ← M(Cp) O (o)
Cp ← [Cp; KV(xL+i)] Cp
Cp ← Cp[1 :] a Cp

S i
Cf ← [Cf; Cp[− (i − posfull) :]] Cf Cp
o, a ← M(Cf), O o
Cf ← [Cf; KV(xL+i)] Cf
Cp ← x∈Cf

(max_pool(aL, kernel_size)) Cp
posfull ← i + 1 posfull

Input: Language model , input
Hyperparameters: partial cache size , a scheduling strategy

M x1, . . . , xL
K S

Output: Sequence of generated tokens O

Algorithm 1: Generation using RefreshKV

14. return O

Pr
ef

ill
in

g
D

ec
od

in
g

Full KV Cache () Size = L tokens Cf

Partial KV Cache () Size = K
tokens (local + topK tokens from)

Cp
aL

Attention update
(evict and add)

Cp
Partial Attention Steps

Prefilling Stage

Full
Attention

Full Attention Step
 update (include new tokens from)Cf Cp

Re-initialize partial KV
Cache ()Cp

i = 1

i = 2

+

KV cache changes at different steps

Figure 2: Pseudocode for RefreshKV. The model prefills the prompt with full attention and initialize the partial
cache Cp cache with attention scores of the last token. For each partial attention step, we decode with the partial
cache and append the KV pairs of the input token to the partial cache. We evict the token with the lowest attention
score to maintain a fixed-sized partial cache. For the full attention step, we first update the full KV cache with the
new tokens decoded with the partial cache, then decode with the full cache and refresh the partial cache.

with Cp. Next, we generate the next token yt ∼232

M(Cf) using the full KV cache Cf and obtain the233

attention scores aL. Finally, we refresh the partial234

cache Cp with the topK tokens based on aL.235

Memory and Time requirements Our method236

has memory requirement similar to that of vanilla237

attention, as we are not permanently evicting any238

tokens from the KV cache. However, our decod-239

ing latency is on par with other KV cache eviction240

methods, as later shown in our experiments in Sec-241

tion 3. We discuss memory and speed considera-242

tions in detail in Appendix A.2.243

3 Experiment Setup244

Models and Evaluation tasks We evaluate our245

method with two long-context language models246

Llama-3.1-8B (Meta, 2024) and Qwen2-7B (Yang247

et al., 2024a). Both models can process inputs of248

up to 128K tokens. We conduct experiments on249

language modeling and downtream tasks:250

• Language modeling We measure perplexity of251

the Arxiv and Book split of RedPajama (Together,252

2023) with context size of 16K. We report results253

on 100 sequences for each domain. To simulate254

long-form generation, we report the perplexity of255

the last 256 tokens.256

• Long-input, short output tasks: We report 257

the performance of RULER (Hsieh et al., 2024), 258

which consists of a set of 13 tasks with context 259

size of 32K that require short output. 260

• Long-input, long output tasks We evaluate our 261

methods on three sets of downstream tasks which 262

require the model to generate long-form outputs 263

(more than 100 tokens) given long-form inputs 264

(more than 10k tokens).3 (1) long-context sum- 265

marization tasks: QMSum (Zhong et al., 2021), 266

GovReport (Huang et al., 2021) and Novel Sum- 267

marization (Zhang et al., 2024a) and (2) HTML 268

to TSV task from LongProc (Ye et al., 2025) 269

benchmark.4 We report results aggregated across 270

three output lengths (0.5K, 2K, and 8K). We re- 271

port ROUGE-L for summarization tasks and row- 272

level F-1 score for the HTML to TSV task. 273

• New task: Chain-of-key generation We pro- 274

pose a synthetic task where model’s previous 275

generation steps, together with its long context 276

3For each dataset, we filter examples with input length
<10K tokens. We report dataset statistics for each dataset in
Table 6 in the Appendix.

4We exclude the other tasks from LongProc as they primar-
ily involve short inputs, resulting in minimal speedup in our
setting. For completeness, we report the performance of these
tasks in Section A.7 in the Appendix, observing a similar trend
as the HTML to TSV task in terms of end-task performance.

4

input, guides future generation steps. Given a277

context which consists of a list of two-word keys,278

the model is tasked with generating a sequence279

of T keys, such that the first word of the next280

key is the last word of the current key. This task281

requires models to look up information in the282

context based on what has been previously gener-283

ated, resembling multi-hop retrieval. An example284

of the task is illustrated in Figure 1. We report285

accuracy of the output by the relative length of a286

valid chain (i.e. the length of the valid sub-chain287

divided by T). More details and examples are in288

Section A.6 in the Appendix.289

Comparison systems We implement the follow-290

ing baselines: (1) Vanilla attention that maintains291

and performs attention over the full KV cache292

(2) StreamingLLM (Xiao et al., 2023) which con-293

sists of “sink tokens” and recent tokens. (3) H2O294

(Zhang et al., 2024b) which consists of recent295

tokens and dynamically updated “heavy hitters”,296

defined by high cumulative attention scores. (4)297

SnapKV (Li et al., 2024) which consists of tokens298

with high attention scores from the last few tokens299

in the prompt. We describe the setting for each300

baseline in Section A.1 in the Appendix.301

Inference settings We prefill the model with the302

input and report wall clock times for the decoding303

phase. Our experiments are run on a single A100304

80GB GPU using Flash Attention (Dao, 2024).5305

We set K to be 1/8 of the input length. NovelSumm306

contains the longest input length (100K tokens) and307

we set K to be 4096, corresponds to 1/25L. We re-308

port results with greedy decoding. For RefreshKV,309

we report results for two different query compar-310

ison strides {5, 10} with a similarity threshold s311

of 0.85 for Llama-3.1-8B and 0.95 for Qwen2-7B.312

We determine the value of s by experimenting with313

a range of values on a held-out set of the Book314

dataset (reported in Section A.4 in the Appendix)315

and apply the same threshold for all the tasks.316

4 Results317

4.1 Language Modeling318

Table 1 outlines the performance of the baselines319

and RefreshKV for perplexity. For both models,320

RefreshKV achieves better perplexity and compara-321

ble inference speeds compared to StreamingLLM322

and SnapKV for QC = 10. Our method also323

achieves better performance than the best baseline,324

5We describe implementation details in Section A.1.

Method Arxiv/Book PPL ↓ Time ↓

Llama-3.1-8B
Vanilla 2.22/7.07 7.50
Streaming 2.62/7.94 6.61
H2O 2.48/7.60 10.77
SnapKV 2.54/7.78 6.77
Refresh (QC=5) 2.27/7.31 6.67
Refresh (QC=10) 2.32/7.41 6.33

QWEN-2-7B
Vanilla 2.33/8.26 9.07
Streaming 2.75/9.10 6.27
H2O 2.68/9.02 11.57
SnapKV 2.80/9.18 6.09
Refresh (QC=5) 2.39/8.55 6.71
Refresh (QC=10) 2.49/8.72 6.33

Table 1: Perplexity results and latency on language
modeling task for LLama-3.1-8B and QWEN-2-7B. We
report results on Arxiv and Book corpora with input
context length of 16K tokens. We set K = 2048.

Figure 3: We plot the perplexity ratio against the vanilla
baseline for RefreshKV (with stride of 10) and SnapKV
based on the tokens generated (x axis). While the ratio
is similar at the beginning of the sequence, as the gener-
ation goes SnapKV’s perplexity diverges from vanilla
approach while that of RefreshKV is relatively stable.

H2O, with a much shorter inference time per exam- 325

ple, as we do not require accessing attention score 326

at each decoding step. Setting QC = 5 increases 327

inference time but also brings performance gain 328

compared to QC = 10, allowing a performance- 329

efficiency trade-off. 330

The key distinction between RefreshKV and 331

SnapKV is that our method refreshes the partial 332

cache as generation progresses. We compare the 333

perplexity degradation ratio of both methods rela- 334

tive to vanilla attention over different generation 335

timestamps in Figure 3 with Llama-3.1-8B on the 336

book dataset. While both methods begin with a 337

similar perplexity ratio compared to vanilla (step 338

0-16), SnapKV’s performance degrades as gener- 339

ation proceeds, whereas RefreshKV maintains a 340

5

Input/Output length 32K/<30 10K/ 0.1K 10K/0.7K 128K/1K 30K/2.2K 22K/50
Dataset RULER QMSum GovReport NovelSumm HTML to TSV Chain-of-key*
Method Acc↑ R-L↑ R-L↑ R-L↑ F-1↑ Acc↑

Vanilla 90 / 79 25.63 / 24.98 34.11 / 33.38 31.29 / 19.91 33 / 24 56 / 83
Streaming 22 / 21 22.27 / 20.30 16.30 / 23.84 24.66 / 22.11 2 / 5 2 / 2
H2O 21 / 21 22.12 / 20.83 27.41 / 26.91 19.31 / 18.51 0 / 0 10 / 11
SnapKV 79 / 58 24.33 / 22.93 28.06 / 28.80 29.23 / 19.09 0 / 0 12 / 13
RefreshKV (QC=5) 86 / 75 24.92 / 24.34 32.56 / 31.40 29.98 / 19.70 17 / 10 25 / 24
RefreshKV (QC=10) 80 / 67 24.73 / 23.98 31.47 / 31.36 29.37 / 18.94 8 / 6 15 / 15

Table 2: Downstream task performance. In each cell, the first number represents the performance of Llama-3.1
model and the second number for QWEN-2 model. *We report performance of Llama-3.1-70B and Qwen-2-72B
for the chain-of-key task, as the smaller variants cannot perform the task even in vanilla setting.

stable ratio, highlighting the benefit of refreshing341

the small KV cache during generation.342

4.2 Downstream Tasks343

Results for downstream tasks are reported in Table344

2. We also report the average input and output345

length for each dataset. For RULER, we report346

results aggregated over 13 tasks here and report the347

per-task performance in Table 14 in the Appendix.348

Eviction-based methods fail for long-form gen-349

eration tasks. Baseline methods that evict tokens350

from the KV cache permanently (StreamingLLM,351

H2O and SnapKV) show degradation for tasks352

that require long-form outputs. While SnapKV353

performs better than the other two baselines on354

RULER, it shows severe performance degradation355

on the HTML to TSV task, achieving 0 F-1 scores356

for the former. For the Chain of key task, eviction-357

based methods are unable to generate a chain with358

more than two keys, achieving accuracy < 20.359

RefreshKV closes the gap between vanilla and360

eviction-based approach. On HTML to TSV361

task, RefreshKV with QC = 5 recovers 52% and362

42% of performance for Llama-3.1-8B and Qwen2-363

7B respectively. On the Chain-of-key task, Re-364

freshKV is the only method that is able to generate365

a valid key with length longer than two keys, as366

shown in Figure 1. For the long-form summariza-367

tion tasks, RefreshKV outperforms baselines in all368

three datasets, except for NovelSumm with Qwen2-369

7B, where StreamingLLM outperforms the vanilla370

full attention. We also observe gains for RULER371

tasks, particularly the subtasks that require generat-372

ing longer output (e.g. generating multiple keys),373

which we discuss in Section A.8 in the Appendix.374

5 Ablation Studies 375

5.1 Adaptive stride vs. Fixed stride 376

We trigger full attention step when the query vector 377

of the input token is substantially different from 378

the query vector of the most recent full attention 379

step. Can we use a simpler strategy to decide when 380

to perform full attention? In this section, we ex- 381

plore refreshing at a fixed stride, performing full 382

attention every N -th step across all the layers. 383

Setting We compare the results of (1) employ- 384

ing a dynamic stride with the set-up in Section 3, 385

i.e. QC stride of {5, 10} and similarity threshold 386

s = 0.85 (Llama-3.1-8B) and s = 0.95 (Qwen2- 387

7B) and (2) employing a fixed stride S of {10, 15} 388

for comparable decoding time. We report results 389

on the language modeling task on the Book dataset 390

and two downstream tasks. We report the decod- 391

ing time measured on one A100 machine. For the 392

language modeling task, we report the time for 393

generating 256 tokens. For the downstream tasks, 394

we measure the time of generating the first 50 to- 395

kens. We also report the effective stride averaged 396

across all the layers, i.e. how often is full attention 397

performed when employing dynamic strides. 398

Results Table 3 presents the results. For Llama- 399

3.1-8B, comparing QC = 5 and S = 10, em- 400

ploying dynamic stride consistently achieves better 401

performance with similar or less decoding time for 402

all three tasks. We see a similar trend comparing 403

QC = 10 and S = 15. For Qwen2-7B, dynamic 404

stride achieves better performance across all three 405

tasks, with slightly more decoding time on Govre- 406

port. We also observe slightly different effective 407

stride for different tasks when employing the same 408

QC and s, showing that dynamic stride enable flex- 409

ible scheduling based on the context. We report 410

per-layer stride in Section A.5 in the Appendix. 411

6

Schedule Book HTML (0.5K) GovReport

Time ↓ Stride PPL ↓ Time ↓ Stride Acc ↑ Time ↓ Stride R-L ↑

Llama-3.1-8B
Vanilla 7.50 - 7.07 1.52 - 43 1.43 - 34.11
Fixed 7.20 10 7.40 1.40 10 17 1.37 10 32.30
Dynamic (QC=5, s=0.85) 7.17 12 7.31 1.40 14 30 1.38 14 32.56
Fixed 6.99 15 7.45 1.37 15 8 1.34 15 30.67
Dynamic (QC=10, s=0.85) 6.89 17 7.41 1.33 19 16 1.34 19 31.47

Qwen-2-7B
Vanilla 9.07 - 8.26 1.96 - 35 1.73 - 33.38
Fixed 6.59 10 8.74 1.38 10 8 1.29 10 31.18
Dynamic (QC=5, s=0.95) 6.71 7 8.55 1.29 7 20 1.34 7 31.40
Fixed 6.43 15 8.81 1.31 15 9 1.27 15 30.73
Dynamic (QC=10, s=0.95) 6.33 11 8.72 1.23 12 14 1.28 12 31.36

Table 3: Results comparing fixed stride and dynamic stride based on query similarity. In all tasks, dynamic stride
shows better task performance while performing full attention step fewer times.

Method Stride Arxiv HTML (0.5K)

Vanilla - 2.22 43
SnapKV - 2.54 0
RefreshKV 10 2.32 16
- w/o refresh 10 2.50 0
- w/o full attention 10 2.32 16

Table 4: Ablation study on LLama-3.1-8B. We report
perplexity for Arxiv and F-1 score for the HTML to
TSV task.

5.2 Impact of full attention steps412

Compared to other baseline methods which never413

perform full attention during the generation, Re-414

freshKV involves extra attention calculation (i.e.415

attending over the entire output). To tease apart416

the performance gains from occasional full atten-417

tion step and updating the small KV, we present418

two ablation setting for RefreshKV: (1) w/o refresh419

which performs attention over the full KV cache420

at the fixed stride of S but without refreshing the421

partial cache. This is equivalently using the partial422

cache obtained with SnapKV and occasionally per-423

forming full attention. (2) w/o full attention which424

calculates the attention scores over the entire KV425

cache and updates the partial cache, then attends to426

the updated partial cache, instead of attending to427

the full KV cache, at stride S.428

Results are in Table 4. While performing occa-429

sional full attention (w/o refresh) improve perplex-430

ity slightly compared to SnapKV, the performance431

lags behind RefreshKV. In contrast, the ablation432

setting where partial cache is refreshed (w/o full433

attention) achieves the same performance of Re-434

freshKV for both tasks. This shows that the gain435

of RefreshKV mostly comes from refreshing the436

partial KV cache, instead of performing occasion 437

full attention over the entire cache. 438

6 Continued Pre-training with 439

RefreshKV 440

We have demonstrated RefreshKV can be used 441

as an inference-time method. However, since the 442

LLMs we study are trained with full attention, ap- 443

plying RefreshKV during inference introduces a 444

discrepancy between training and inference. Specif- 445

ically, it involves attending to a non-contiguous 446

sequence of tokens in the partial cache. Here, we 447

explore continued pretraining with RefreshKV to 448

adapt models to this new attention pattern. 449

To make training setting simpler, we do not fully 450

implement RefreshKV during training. We use 451

a fixed stride of 50 and never refresh the partial 452

cache. We assume a length L+S for all sequences, 453

where L is the pre-fill length. We perform standard 454

attention over all past tokens for the first L tokens. 455

We emulate the partial attention pattern for the last 456

S tokens in the sequence during training. For the 457

next S tokens, we perform attention over the top K 458

tokens identified as well as local tokens (i.e. tokens 459

L+1 onwards). We train the model with next token 460

prediction loss for all the tokens in the sequence. 461

Setup We set L = 8092, S = 50 and K = 2048 462

for this experiment. We randomly sample a subset 463

of 200k sequences from the Arxiv split of RedPa- 464

jama dataset. We split the data into 80%, 10% and 465

10% train/dev/test splits, resulting in 120k training 466

data samples. We perform continued pre-training 467

on Llama-3.1-8B and describe implementation de- 468

tails in Section A.1 in the Appendix. 469

7

Method Stride Test PPL (8K) Test PPL (16K)

Vanilla - 2.70 → 2.70 2.50 → 2.50
Streaming - 3.40 → 3.38 3.50 → 3.49
H2O - 3.95 → 3.90 3.52 → 3.49
SnapKV - 3.21 → 3.15 2.98 → 2.92
RefreshKV 10 2.83 → 2.79 2.57 → 2.56
RefreshKV 25 2.97 → 2.93 2.67 → 2.63
RefreshKV 50 3.13 → 3.05 2.79 → 2.72

Table 5: Results on continued pre-training with Re-
freshKV for LLaMA-3.1. The context size is 8k and we
report perplexity on the last 50 tokens. We report the
performance for each setting before (the number on the
left) and after (the number on the right) CPT.

Evaluation As our continued pretraining is rela-470

tively small scale on the base model, we focus on471

evaluating on the language modeling task for two472

settings: (1) input size L =8K consistent with the473

training set-up and (2) L =16K. We set K = 1/8L474

For each method, we report the performance from475

the pre-trained checkpoint and the performance476

after continued pre-training.477

Results We report the results in Table 5, each478

row represents a different inference strategy on the479

same model. Despite the mismatch in how partial480

KV was constructed, continued pre-training bene-481

fits other methods (Streaming, H2O) slightly. We482

see larger gain for RefreshKV from continued pre-483

training across all settings. Our training assumes a484

fixed stride of 50, but we see performance gain for485

different strides (S = 10, 25). Training on shorter486

context (8K) also translates to gains when infer-487

encing on longer context (16K), showing promise488

for improving the performance of RefreshKV with489

continued pre-training.490

7 Related Work491

Efficient inference methods Various techniques492

have been proposed to enhance inference efficiency,493

which are orthogonal to and can be combined494

with our approach. FlashAttention (Dao, 2024)495

achieves significant gain in inference speed by op-496

timizing attention computations on GPUs. A line497

of work (Xiao et al., 2022; Liu et al., 2024; Hooper498

et al., 2024) proposes to quantize KV caches to499

reduce both memory and computation cost.500

KV cache eviction Recent work extensively stud-501

ies KV cache eviction strategies, such as keeping502

only “sink” and recent tokens in the KV cache503

(Xiao et al., 2023); or tokens with high accumula-504

tive attention scores (Zhang et al., 2024b). A line505

of work propose query-aware eviction strategies, 506

using the attention scores of the last few tokens in 507

the prompt to select tokens to keep (Li et al., 2024; 508

Chen et al., 2024). Other works design eviction 509

strategies based on attention patterns of different 510

heads (Ge et al., 2024; Xiao et al., 2024b) or differ- 511

ent layers (Cai et al., 2024; Yang et al., 2024b). We 512

show that such eviction-based methods can fail on 513

long-form generation tasks and propose to refresh 514

the small KV cache during generation. 515

Sparse attention Our method achieves efficiency 516

by performing sparse attention. Earlier work (Za- 517

heer et al., 2020; Beltagy et al., 2020) investigates 518

training LLMs with a fixed sparse attention pattern 519

(such as a sliding window) to reduce computational 520

complexity. Training-free methods such as Unlim- 521

iformer (Bertsch et al., 2023) and InfLLM (Xiao 522

et al., 2024a) performs attentions on subset of to- 523

kens which received the highest attention scores, 524

with the goal of extending the context window of a 525

given language model. In contrast, we leverage pre- 526

vious tokens’ attention scores to select tokens to at- 527

tend to for long-context models, which can already 528

handle sequences with up to 128k tokens. MIn- 529

ference (Jiang et al., 2024) identify head-specific 530

patterns to perform sparse attention, focusing on 531

accelerating the prefilling stage. Similar to ours, 532

SparQ (Ribar et al., 2024) and Quest (Tang et al., 533

2024) achieves decoding time speed-up by attend- 534

ing to subset of tokens. Instead of leveraging the 535

attention patterns of previous tokens, these methods 536

build specialized kernel to approximate attention 537

and identify critical tokens. 538

8 Conclusion 539

We propose RefreshKV, an inference-time method 540

which accelerate long-form generation for long- 541

context input by decoding from a small, dynamic 542

KV cache that is updated based on attention pat- 543

terns of neighboring tokens. Compared to previ- 544

ous work which permanently evict tokens from 545

the context, RefreshKV maintains the full KV 546

cache and alternates between inferencing over the 547

full and small KV cache. We apply our method 548

to two off-the-shelf long-context model and show 549

that our method reduces inference wall-clock time 550

while better preserving performance compared to 551

eviction-based methods on long-form generation 552

tasks. Finally, we show that continued pre-training 553

the model with RefreshKV can further improve 554

the performance-efficiency trade-off. 555

8

Limitations556

Proposed method While we focus on accelerat-557

ing inference speed, our method does not reduce558

memory requirement for using long-context LLMs,559

which can be a bottleneck for certain use cases.560

Our objective is to accelerate decoding for long-561

context models. While our method outperforms562

eviction-based approaches, it still involves a trade-563

off between performance and efficiency. In this564

study, we employ query similarity based dynamic565

schduling to decide when to perform full attention566

and refresh the small KV cache. Future work can567

explore other strategy, such as more exhausively568

tuning the similarity threshold, or setting a different569

threshold per layer.570

Experimental settings We have conducted ex-571

periment with two open-sourced long-context mod-572

els and two evaluation tasks setting. We did not573

test out more language models and other long-574

context benchmarks (An et al., 2023; Karpinska575

et al., 2024) given our limited compute resources.576

For the same reason, our experiment on continued577

pre-training is relatively small scale on a limited578

domain. We have demonstrated the effectiveness579

of refreshing a small KV cache constructed with580

attention scores and use the same size across dif-581

ferent layers. Future work can extend our method582

to refresh smaller cache constructed with different583

strategy, e.g. layer-specific strategies (Yang et al.,584

2024b; Cai et al., 2024). Finally, our method is not585

limited to the language domain. Future work can586

explore applying RefreshKV to other modalities,587

for example, vision transformers.588

References589

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain,590
Prashant Nair, Ilya Soloveychik, and Purushotham591
Kamath. 2024. Keyformer: Kv cache reduction592
through key tokens selection for efficient generative593
inference. Proceedings of Machine Learning and594
Systems, 6:114–127.595

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury596
Zemlyanskiy, Federico Lebr’on, and Sumit K. Sang-597
hai. 2023. Gqa: Training generalized multi-query598
transformer models from multi-head checkpoints.599
ArXiv, abs/2305.13245.600

Chenxin An, Shansan Gong, Ming Zhong, Xingjian601
Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and602
Xipeng Qiu. 2023. L-eval: Instituting standard-603
ized evaluation for long context language models.604
Preprint, arXiv:2307.11088.605

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, 606
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao 607
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, 608
and Juanzi Li. 2023. Longbench: A bilingual, mul- 609
titask benchmark for long context understanding. 610
arXiv preprint arXiv:2308.14508. 611

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 612
2020. Longformer: The long-document transformer. 613
arXiv:2004.05150. 614

Amanda Bertsch, Uri Alon, Graham Neubig, and 615
Matthew Gormley. 2023. Unlimiformer: Long-range 616
transformers with unlimited length input. In Ad- 617
vances in Neural Information Processing Systems, 618
volume 36, pages 35522–35543. Curran Associates, 619
Inc. 620

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu 621
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao 622
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic 623
kv cache compression based on pyramidal informa- 624
tion funneling. CoRR. 625

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao 626
Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan Wang, 627
Yu Sun, Dianhai Yu, and Hua Wu. 2024. NACL: 628
A general and effective KV cache eviction frame- 629
work for LLM at inference time. In Proceedings 630
of the 62nd Annual Meeting of the Association for 631
Computational Linguistics (Volume 1: Long Papers), 632
pages 7913–7926, Bangkok, Thailand. Association 633
for Computational Linguistics. 634

Rewon Child, Scott Gray, Alec Radford, and Ilya 635
Sutskever. 2019. Generating long sequences with 636
sparse transformers. ArXiv, abs/1904.10509. 637

Tri Dao. 2024. FlashAttention-2: Faster attention with 638
better parallelism and work partitioning. In Inter- 639
national Conference on Learning Representations 640
(ICLR). 641

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke 642
Zettlemoyer. 2021. 8-bit optimizers via block-wise 643
quantization. CoRR, abs/2110.02861. 644

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 645
Jiawei Han, and Jianfeng Gao. 2024. Model tells you 646
what to discard: Adaptive KV cache compression for 647
LLMs. In The Twelfth International Conference on 648
Learning Representations. 649

Gemini. 2024. Google. gemini 1.5: Unlocking mul- 650
timodal understanding across millions of tokens of 651
context. arXiv preprint arXiv:2403.05530. 652

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 653
Michael W Mahoney, Yakun Sophia Shao, Kurt 654
Keutzer, and Amir Gholami. 2024. Kvquant: 655
Towards 10 million context length llm inference 656
with kv cache quantization. arXiv preprint 657
arXiv:2401.18079. 658

9

https://api.semanticscholar.org/CorpusID:258833177
https://api.semanticscholar.org/CorpusID:258833177
https://api.semanticscholar.org/CorpusID:258833177
https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2305.01625
https://arxiv.org/abs/2305.01625
https://arxiv.org/abs/2305.01625
https://doi.org/10.18653/v1/2024.acl-long.428
https://doi.org/10.18653/v1/2024.acl-long.428
https://doi.org/10.18653/v1/2024.acl-long.428
https://doi.org/10.18653/v1/2024.acl-long.428
https://doi.org/10.18653/v1/2024.acl-long.428
https://api.semanticscholar.org/CorpusID:129945531
https://api.semanticscholar.org/CorpusID:129945531
https://api.semanticscholar.org/CorpusID:129945531
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2110.02861
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-659
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,660
and Boris Ginsburg. 2024. Ruler: What’s the real661
context size of your long-context language models?662
arXiv preprint arXiv:2404.06654.663

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng664
Ji, and Lu Wang. 2021. Efficient attentions for long665
document summarization. In Proceedings of the 2021666
Conference of the North American Chapter of the667
Association for Computational Linguistics: Human668
Language Technologies, pages 1419–1436, Online.669
Association for Computational Linguistics.670

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,671
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,672
Amir H Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing673
Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-674
ating pre-filling for long-context llms via dynamic675
sparse attention. arXiv preprint arXiv:2407.02490.676

Gregory Kamradt. 2023. Needle in a haystack - pressure677
testing llms, commercially usable llms.678

Marzena Karpinska, Katherine Thai, Kyle Lo, Tanya679
Goyal, and Mohit Iyyer. 2024. One thousand and one680
pairs: A "novel" challenge for long-context language681
models. Preprint, arXiv:2406.16264.682

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat683
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,684
Patrick Lewis, and Deming Chen. 2024. SnapKV:685
LLM knows what you are looking for before gener-686
ation. In The Thirty-eighth Annual Conference on687
Neural Information Processing Systems.688

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,689
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and690
Xia Hu. 2024. Kivi: A tuning-free asymmetric 2bit691
quantization for kv cache. ArXiv, abs/2402.02750.692

Meta. 2024. The llama 3 herd of models. ArXiv,693
abs/2407.21783.694

NLP Team MosaicML. 2023. Introducing mpt-7b: A695
new standard for open-source, commercially usable696
llms.697

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,698
Charlie Blake, Carlo Luschi, and Douglas Orr. 2024.699
SparQ attention: Bandwidth-efficient LLM inference.700
In Proceedings of the 41st International Conference701
on Machine Learning, volume 235 of Proceedings702
of Machine Learning Research, pages 42558–42583.703
PMLR.704

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,705
Baris Kasikci, and Song Han. 2024. Quest: Query-706
aware sparsity for efficient long-context llm inference.707
Preprint, arXiv:2406.10774.708

Together. 2023. Redpajama: an open dataset for training709
large language models.710

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, 711
Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song 712
Han, and Maosong Sun. 2024a. Infllm: Unveiling the 713
intrinsic capacity of llms for understanding extremely 714
long sequences with training-free memory. arXiv. 715

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De- 716
mouth, and Song Han. 2022. Smoothquant: Accurate 717
and efficient post-training quantization for large lan- 718
guage models. ArXiv, abs/2211.10438. 719

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian 720
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song 721
Han. 2024b. Duoattention: Efficient long-context llm 722
inference with retrieval and streaming heads. arXiv. 723

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 724
Han, and Mike Lewis. 2023. Efficient stream- 725
ing language models with attention sinks. ArXiv, 726
abs/2309.17453. 727

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 728
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 729
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 730
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 731
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin 732
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang 733
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin 734
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng 735
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 736
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, 737
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, 738
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin 739
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang 740
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru 741
Zhang, and Zhi-Wei Fan. 2024a. Qwen2 technical 742
report. ArXiv, abs/2407.10671. 743

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin 744
Zhang, and Hai Zhao. 2024b. PyramidInfer: Pyramid 745
KV cache compression for high-throughput LLM 746
inference. In Findings of the Association for Com- 747
putational Linguistics ACL 2024, pages 3258–3270, 748
Bangkok, Thailand and virtual meeting. Association 749
for Computational Linguistics. 750

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Yen 751
Howard, Tianyu Gao, Greg Durrett, and Danqi Chen. 752
2025. Longproc: Benchmarking long-context lan- 753
guage models on long procedural generation. arXiv 754
preprint. 755

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 756
Dubey, Joshua Ainslie, Chris Alberti, Santiago 757
Ontañón, Philip Pham, Anirudh Ravula, Qifan 758
Wang, Li Yang, and Amr Ahmed. 2020. Big 759
bird: Transformers for longer sequences. ArXiv, 760
abs/2007.14062. 761

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang 762
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai, 763
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024a. 764
∞Bench: Extending long context evaluation beyond 765
100K tokens. In Proceedings of the 62nd Annual 766

10

https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https: //github.com/gkamradt/LLMTest NeedleInAHaystack/tree/main.
https: //github.com/gkamradt/LLMTest NeedleInAHaystack/tree/main.
https: //github.com/gkamradt/LLMTest NeedleInAHaystack/tree/main.
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2406.16264
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://api.semanticscholar.org/CorpusID:267413049
https://api.semanticscholar.org/CorpusID:267413049
https://api.semanticscholar.org/CorpusID:267413049
https://api.semanticscholar.org/CorpusID:271571434
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://proceedings.mlr.press/v235/ribar24a.html
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2406.10774
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://api.semanticscholar.org/CorpusID:220831004
https://api.semanticscholar.org/CorpusID:220831004
https://api.semanticscholar.org/CorpusID:220831004
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814

Meeting of the Association for Computational Lin-767
guistics (Volume 1: Long Papers), pages 15262–768
15277, Bangkok, Thailand. Association for Compu-769
tational Linguistics.770

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong771
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-772
dong Tian, Christopher Ré, Clark Barrett, et al. 2024b.773
H2o: Heavy-hitter oracle for efficient generative in-774
ference of large language models. Advances in Neu-775
ral Information Processing Systems, 36.776

Yanli Zhao, Andrew Gu, Rohan Varma, Liangchen Luo,777
Chien chin Huang, Min Xu, Less Wright, Hamid778
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmai-779
son, Can Balioglu, Bernard Nguyen, Geeta Chauhan,780
Yuchen Hao, and Shen Li. 2023. Pytorch fsdp: Expe-781
riences on scaling fully sharded data parallel. Proc.782
VLDB Endow., 16:3848–3860.783

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia784
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli785
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir786
Radev. 2021. QMSum: A new benchmark for query-787
based multi-domain meeting summarization. In Pro-788
ceedings of the 2021 Conference of the North Amer-789
ican Chapter of the Association for Computational790
Linguistics: Human Language Technologies, pages791
5905–5921, Online. Association for Computational792
Linguistics.793

A Appendix794

A.1 Implementation details795

Compatibility with Flash Attention FlashAt-796

tention (Dao, 2024) substantially improves the ef-797

ficiency of standard attention computation. It re-798

duces data movements on GPU by directly produc-799

ing the output for the attention blocks without stor-800

ing the O(L2) attention matrix. However, we rely801

on these attention scores to select the top K tokens802

during the full attention steps and construct our803

partial KV cache Cp (lines 9-10 of Algorithm 2).804

To make our method compatible with Flash Atten-805

tion, we implement an extra step to re-compute the806

attention score at the full attention step. As we do807

not perform full attention at every generation step,808

this does not introduce significant overhead. For809

methods that require accessing attention score (e.g.810

H2O), we apply the same procedure to make them811

compatible with Flash Attention.812

Baseline Settings For StreamingLLM, we follow813

the original paper and maintain a cache with 4 sink814

tokens and K - 4 recent tokens. For H2O, we set the815

heavy hitter size and recent cache size to be K/2816

each following (Zhang et al., 2024b). For SnapKV,817

we set the observation window size to 1 and the818

kernel size to 7 for both RefreshKV and SnapKV819

Dataset # Example # In # Out

RULER 1.3K 32K <30
QMSum 100 10K 0.1K
GovReport 100 10K 0.7K
NovelSumm 103 100K 1.0K
HTML To TSV (0.5K) 50 18K 0.5K
HTML To TSV (1K) 50 35K 1.6K
HTML To TSV (2K) 50 38K 4.6K
Chain of Keys 100 22K 50

Table 6: Dataset statistics. We report the number of
tokens for both the input context and output generation
for each dataset, as well as total number of examples.

following Li et al. (2024). We apply the same 820

aggregation method (max over all query heads) for 821

SnapKV and H2O for the GQA models. 822

Continued pretraining We randomly sample a 823

subset of 200k sequences from the Arxiv split of 824

RedPajama dataset6 and filter out sequences with 825

less than 8192 tokens We train Llama-3.1-8B for 826

one epoch with a global batch size of 64 and a 827

learning rate of 5e-6. We use 20 warm-up steps 828

and a linear schedule with 0 weight decay. We 829

use the AdamW Optimizer. We use Fully Sharded 830

Data Parallel (Zhao et al., 2023) and 8-bit opti- 831

mizer (Dettmers et al., 2021) to improve training 832

efficiency. Training is done on 4 H100 80 GB 833

GPUs. 834

A.2 Memory and time requirement 835

comparison 836

Table 7 compares the memory and attention com- 837

pute requirements of RefreshKV with baselines. 838

We report the memory required to store the KV 839

cache for the L input tokens, and attention com- 840

pute required to generate the next T tokens.7 We 841

set our partial cache to be the same size as the com- 842

plete cache of the eviction-based methods. Under 843

this setting, RefreshKV requires larger KV cache 844

memory compared to eviction-based baselines, but 845

similar to vanilla attention (L + K vs L, where 846

K << L). However, our decoding latency is on 847

par with the baselines. Our efficiency depends on 848

two sets of hyperparameters – the partial cache 849

size K, and QC stride and s, which determines 850

how often full attention is performed. By setting 851

K << L and a large S, we can achieve wall clock 852

times similar to KV eviction-based baselines. 853

6https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T

7The KV memory requirements also increases with T . We
do not account for this in the table.

11

https://api.semanticscholar.org/CorpusID:258297871
https://api.semanticscholar.org/CorpusID:258297871
https://api.semanticscholar.org/CorpusID:258297871
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T

Vanilla H2O StreamingLLM SnapKV RefreshKV (Ours)

Memory L K K K L+K
Time T × L T ×K T ×K T ×K T × L

S
+ T ×K

Table 7: Comparing memory (KV cache size for L input tokens) and time (attention computation for generating the
next T tokens) of RefreshKV and baselines. We denote S as stride and use the same KV cache size (K) for the
partial cache for our method and complete cache for eviction-based baselines.

Method Agg Llama-3.1-8B Qwen-2-7B

Vanilla - 2.22/7.07 2.33/8.26
RefreshKV First 2.34/7.43 2.49/8.78
RefreshKV Mean 2.32/7.40 2.47/8.73
RefreshKV Max 2.32/7.40 2.47/8.72

Table 8: Results comparing different methods to ag-
gregate attention scores for GQA models. We experi-
ment with taking the attention score of the first query
head, the average and max attention scores of the query
heads in the same group to select topK KV cache. For
StreamingLLM and RefreshKV, we set K = 1/8L and
stride as 10.

A.3 Attention score aggregation for models854

with GQA855

We report language modeling results with differ-856

ent aggregation methods across attention scores of857

query heads in the same group for models with858

Grouped Query Attention in Table 8. We see that859

aggregating over the attention score of the entire860

group works better than using attention score of861

one of the head, with taking the max slightly out-862

performing mean.863

A.4 Tuning s for query similarity schedule864

To choose a similarity threshold s for the dynamic865

schedule, we run RefreshKV on a held-out set of866

50 examples from the Book split of the RedPajama867

dataset. We evaluate on QC stride of {5, 10} with868

threshold s of {0.80, 0.85, 0.90, 0.95} for Llama-869

3.1-8B and Qwen2-7B.870

Table 9 reports the results of different settings871

for perplexity and decoding time measured on one872

A100 machine with batch size of 1. We can see873

that for Llama-3.1-8B, setting a threshold of 0.85874

achieves similar performance for both stride com-875

pared to 0.90 and 0.95. In contrast the performance876

of Qwen2-7B continues to increase going from877

threshold of 0.80 to 0.95. Therefore, we set the878

threshold to 0.85 for Llama-3.1-8B and 0.95 for879

Qwen2-7B.880

Method QC stride s Book PPL Time

Llama-3.1-8B
Vanilla - - 6.70 7.54
RefreshKV 5 0.80 6.92 6.42
RefreshKV 5 0.85 6.86 6.64
RefreshKV 5 0.90 6.88 7.01
RefreshKV 5 0.95 6.88 7.53
RefreshKV 10 0.80 6.95 6.37
RefreshKV 10 0.85 6.96 6.52
RefreshKV 10 0.90 6.96 6.54
RefreshKV 10 0.95 6.95 7.07

Qwen-2-7B
Vanilla - - 7.44 9.11
RefreshKV 5 0.80 7.86 6.50
RefreshKV 5 0.85 7.80 6.64
RefreshKV 5 0.90 7.73 6.91
RefreshKV 5 0.95 7.66 7.14
RefreshKV 10 0.80 7.95 6.37
RefreshKV 10 0.85 7.87 6.41
RefreshKV 10 0.90 7.84 6.62
RefreshKV 10 0.95 7.82 6.67

Table 9: Results of different similarity threshold s on the
held-out set of the Book dataset across two QC stride.

A.5 Effective stride 881

We plot the effective stride across layers for Llama- 882

3.1-8B and Qwen2-7B in Figure 4 for the three 883

tasks reported in Table 3. 884

Leveraging query similarity enables dynamic 885

strides across layers for both models. We observe 886

distinct pattern for the two models, with Llama-3.1- 887

8B having a larger stride in the first few layer and 888

Qwen2-7B in the middle layer. We also observe 889

slightly different patterns for different tasks, show- 890

ing that our method enables flexible scheduling 891

based on the context. 892

A.6 Chain-of-key task set-up 893

Task set-up The model is provided with a 894

long lists of keys, each of which contains W 895

number of words, for instance: apricot-waggish 896

where W = 2. The model is tasked to gen- 897

erate a sequence which consists of a list of 898

T keys from the context, such that the first 899

word of the next key is the last word of the 900

current key. For example: waggish-fishery, 901

12

Eff
ec

tiv
e

st
rid

e

Layer

Figure 4: Effective stride across layer for Llama-3.1-8B (similarity threshold=0.85) and Qwen2-7B (similarity
trheshold=0.95) in three datasets. We sample 10 examples from each dataset to esimate the effective stride.

fishery-mosquito, mosquito-perfume,902

perfume-panda, panda-juice for T = 5. We903

provide an example input in Table 11.904

Data generation We first generate a list of En-905

glish words. We then pair each word with another906

word to form a list of keys. We ensure that for907

each key k1 in the context, there exists exactly one908

other key k2 that satisfies the constraint (i.e. the909

first word of k2 is the last word of k1). The keys910

are randomly shuffled in the context.911

Evaluation We evaluate correctness of the gener-912

ated output by the length of a valid chain, divided913

by T . A valid chain needs to satisfy two criteria:914

(a) all the key must be in the context and (b) the915

first word of the current key must be the last word916

of the previous key. We provide example outputs917

and their correctness score in Table 12.918

A.7 Results on LongProc tasks with short919

inputs920

Task set-up We report results on 4 more tasks921

from LongProc (Ye et al., 2025): Path Traver-922

sal, Travel Planning, Countdown and Theory-923

of-mind tracking. These tasks consist of input924

with less than 10K tokens. While Path Traver-925

sal consists of a version with 12K input tokens,926

we exclude it from our main results as none of the927

open sourced models are able to perform the task in928

vanilla setting. We report results on 50 samples for929

each task. We set K = 1/8L for RefreshKV and930

baselines.931

Evaluation We follow evaluation practice of the932

original paper (Ye et al., 2025). For Countdown933

Method Stride 0.5K 2K 8K Aggregated

Llama-3.1-8B

Vanilla 43 31 23 33
Streaming 4 1 0 2
SnapKV 0 0 0 0
H2O 0 0 0 0
Refresh QC=5 31 15 4 17
Refresh QC=10 16 7 1 8

Qwen-2-7B

Vanilla 36 22 15 24
Streaming 10 3 0 5
SnapKV 0 0 0 0
H2O 0 0 0 0
Refresh QC=5 20 6 3 10
Refresh QC=10 14 2 1 6

Table 10: Breakdown of HTML tasks based on output
length.

and Travel Planning, we report correctness of the 934

final solution using rule-based validators. For Path 935

Traversal and ToM Tracking, we report accuracy. 936

Results Results of RefreshKV and baseline 937

methods are in Table 13. We observe similar trend 938

as the HTML to TSV task – Most of the base- 939

lines fail completely on the task. RefreshKVwith 940

QC = 5 recovers 50% and 60% performance 941

of full attention for Llama-3.1-8B and Qwen2-7B 942

respectively. 943

A.8 Detailed RULER results 944

We follow the suite of evaluation tasks introduced 945

in (Hsieh et al., 2024), which consists of the 13 946

tasks.8 We refer the readers to Hsieh et al. (2024) 947

8https://github.com/hsiehjackson/RULER

13

https://github.com/hsiehjackson/RULER

Input

“You are given many keys composed of a few words. Your task is to generate a chain of 10 keys such that the
first word of the current key is the last word of the previous key. Separate the keys with comma. Example:
waggish-fishery, fishery-mosquito, mosquito-perfume, perfume-panda, panda-juice, juice-willow, willow-bronco,
bronco-creditor, creditor-bathhouse, bathhouse-woman. You must generate keys that are in the context. DO NOT
REPEAT THE EXAMPLE.
Context:Name of key: toga-roommate
Name of key: appetiser-cenario
Name of key: normalization-tacit
Name of key: intensity-ping
Name of key: innate-cummerbund
Name of key: tentacle-lining [...omitted...]
Name of key: breath-yielding
Name of key: schema-festive
You are given many keys composed of a few words. Your task is to generate a chain of 10 keys such that the first
word of the current key is the last word of the previous key. Separate the keys with comma.You must generate
keys that are in the context. Chain of ten keys:”

Table 11: Example input for the chain-of-key task where W = 2 and T = 10.

Output Score

impossible-crawdad, crawdad-vehicle, vehicle-uncertainty,
uncertainty-welfare, welfare-outrigger, outrigger-historical,
historical-gator, gator-hugger, hugger-debris, debris-precious

1 (fully correct)

annoying-pentagon, pentagon-fit, fit-waggish, waggish-fishery,
fishery-mosquito, mosquito-perfume, perfume-panda, panda-juice,
juice-willow, willow-bronco

0.2 (correct up to the
second key)

impossible-crawdad, crawdad-vehicle, vehicle-uncertainty,
welfare-outrigger, outrigger-historical, historical-gator,
gator-hugger, hugger-debris, debris-precious,
uncertainty-welfare

0.3 (correct up to the
third key)

Table 12: Example output for the chain-of-key task where W = 2 and T = 10 and their score. Keys that are not in
the context are highlighted in red.

for detailed description and examples of each task948

and Appendix B for the exact tasks configurations.949

We group them based on the types:950

• Single NIAH An NIAH-styled task with one951

key and one value to retrieve. We include three952

variations of the task with different types of key,953

value and haystack.954

• Multi-key NIAH An NIAH-styled task with dis-955

tracting keys. We include three variations of956

the task with different types of key, value and957

haystack.958

• Multi-value NIAH An NIAH-styled task with959

multiple values corresponding to the key.960

• Multi-query NIAH An NIAH-styled task with961

multiple queries, each corresponding to a distinct962

key.963

• Variable Tracking A NIAH-styled task that re-964

quires tracing through multiple hops.965

• Common word extraction and Frequent word 966

extraction require extracting the words based on 967

the pattern in a list of words. Common word ex- 968

traction expects a list of 10 most common words 969

while frequent word extractions expect a list of 3 970

frequent words. 971

• Question Answering A task that requires an- 972

swering a question given a set of documents. We 973

include two variations of the tasks, corresponding 974

to two question answering datasets. 975

Per-task results We report detailed performance 976

of RULER subtasks in Table 14, grouped by task 977

type. For both models, the best baselines (SnapKV) 978

achieves comparable results as RefreshKV for tasks 979

with short-form outputs, such as Single NIAH. 980

However, for tasks that require longer outputs, 981

such as Multi-key and Multi-value NIAH, Re- 982

freshKV outperform all the baselines. 983

14

Method stride Path Traversal ToM Tracking Countdown Travel Planning

Llama-3.1-8B
Vanilla - 17 40 67 62
StreamingLLM - 0 0 0 0
H2O - 0 0 0 2
SnapKV - 1 0 12 0
RefreshKV QC=5 5 14 44 38
RefreshKV QC=10 1 5 42 18

Qwen-2-7B
Vanilla - 7 12 11 48
StreamingLLM - 2 0 6 0
H2O - 2 0 6 0
SnapKV - 0 0 14 2
RefreshKV QC=5 3 6 14 26
RefreshKV QC=10 2 2 10 4

Table 13: Performance on long-context tasks with short outputs from LongProc benchmark for LLaMA-3.1-8B-
Instruct and Qwen-2-7B-Instruct.

Method niah_single multi_key multi_query multi_value fwe vt cwe qa

Llama-3.1-8B
Vanilla 100 98 99 99 93 99 65 61
H2O 7 7 6 6 78 38 39 34
Streaming 8 13 13 13 93 12 4 42
SnapKV 99 60 98 99 83 99 44 63
RefreshKV(QC=5) 100 91 98 99 81 99 44 60
RefreshKV(QC=10) 100 67 97 99 81 99 44 59

Qwen-2-7B
Vanilla 100 90 75 87 84 86 27 50
H2O 5 8 5 3 84 2 17 30
Streaming 8 11 13 12 80 15 14 39
SnapKV 69 51 54 43 81 87 27 50
RefreshKV(QC=5) 99 79 70 85 70 87 27 50
RefreshKV(QC=10) 97 54 63 67 80 87 27 49

Table 14: Detailed performance of RULER subtasks with L = 32K. For non-vanilla methods, we set the K = 1/8L.

15

	Introduction
	RefreshKV for Long-Form Generation with Long-Context LLMs
	Background and Setting
	Methodology and Implementation

	Experiment Setup
	Results
	Language Modeling
	Downstream Tasks

	Ablation Studies
	Adaptive stride vs. Fixed stride
	Impact of full attention steps

	Continued Pre-training with RefreshKV
	Related Work
	Conclusion
	Appendix
	Implementation details
	Memory and time requirement comparison
	Attention score aggregation for models with GQA
	Tuning s for query similarity schedule
	Effective stride
	Chain-of-key task set-up
	Results on LongProc tasks with short inputs
	Detailed RULER results

