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Abstract

Learning the kernel parameters for Gaussian pro-
cesses is often the computational bottleneck in ap-
plications such as online learning, Bayesian opti-
mization, or active learning. Amortizing parameter
inference over different datasets is a promising
approach to dramatically speed up training time.
However, existing methods restrict the amortized
inference procedure to a fixed kernel structure. The
amortization network must be redesigned manu-
ally and trained again in case a different kernel
is employed, which leads to a large overhead in
design time and training time. We propose amor-
tizing kernel parameter inference over a complete
kernel-structure-family rather than a fixed kernel
structure. We do that via defining an amortization
network over pairs of datasets and kernel structures.
This enables fast kernel inference for each element
in the kernel family without retraining the amorti-
zation network. As a by-product, our amortization
network is able to do fast ensembling over kernel
structures. In our experiments, we show drastically
reduced inference time combined with competi-
tive test performance for a large set of kernels and
datasets.

1 INTRODUCTION

Gaussian processes (GPs) are an important class of models
that can be used in a wide range of tasks such as Bayesian
optimization [Snoek et al., 2012, Korovina et al., 2020], ac-
tive learning [Yue et al., 2021, Zimmer et al., 2018, Li et al.,
2022, Bitzer et al., 2023], or regression [Duvenaud et al.,
2013]. Introducing an inductive bias for GPs is achieved by
specifying the kernel structure. For example, smoothness,
nonstationarity or periodicity can be induced very elegantly
by configuring the corresponding kernel.

Learning the kernel parameters is often a major computa-
tional bottleneck and is usually done via marginal likeli-
hood maximization, also called Type-2-ML, or via evidence-
lower-bound maximization (ELBO) in sparse GP’s [Hens-
man et al., 2015]. These methods often require hundreds
of optimization steps to learn the kernel parameters. In Liu
et al. [2020b], this problem is circumvented by using amor-
tized inference [Kingma and Welling, 2014, Rezende et al.,
2014] to predict the kernel parameters via a neural network
in one step. This leads to a dramatic reduction in inference
time for medium-sized datasets.

However, the method of Liu et al. [2020b] defines the amor-
tization only for a fixed kernel structure. Importantly, spec-
ifying the kernel structure is a crucial design choice for
GP’s and is often used to induce prior knowledge of the
task at hand such as smoothness, nonstationarity, linearity
or periodicity. In case a different kernel should be used the
network in Liu et al. [2020b] would need to be redesigned
and retrained, which is a time-consuming and costly task,
considering the vast space of possible kernel structures. We
therefore propose amortizing the kernel inference for GP’s
over the combined space of kernel structures and datasets.

We define an amortization neural network that gets as input
a complete dataset and a symbolical description of the ker-
nel, based on the kernel grammar [Duvenaud et al., 2013],
and outputs the learned kernel parameters. We design the
neural network explicitly to cope with the natural invari-
ances of the underlying spaces. Here, we make use of the
transformer architecture [Vaswani et al., 2017] and its equiv-
ariance properties [Lee et al., 2019]. We empirically show
that our method leads to a drastic decrease in inference time,
while delivering competitive predictive results on real-world
datasets. Additionally, we illustrate the generality of our
method via defining a fast ensembling over kernel struc-
tures that explicitly leverages our architecture. In short, our
contributions are

1. We construct an amortization neural network that is
defined on the combined space of kernel structures
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and datasets. We explicitly incorporate invariances and
equivariances of the underlying spaces in the architec-
ture.

2. We empirically demonstrate the effectiveness of the
amortization over several simulated and real world
datasets and kernel structures.

3. We show the generality of our approach by enabling a
fast ensembling over kernel structures.

We provide accompanying code at https://github.
com/boschresearch/Amor-Struct-GP.

2 BACKGROUND

In the following section we give necessary background in-
formation about Gaussian processes with a focus on the
hyperparameter optimization involved. We start by intro-
ducing the standard technique to hyperparameter inference
for GP’s and will then consider amortized inference over
multiple datasets, as proposed in Liu et al. [2020b]. Finally,
we consider a broad kernel space over which we will define
our proposed combined amortization scheme.

Gaussian processes. Let X ⊂ Rd be the input space
for some d ∈ N. A Gaussian Process defines a distribu-
tion over mappings f : X → R and is fully specified
via a positive-definite kernel function k : X × X → R
and a mean function m : X → R. It is characterized by
the property, that, for any finite selection of input points
X = {x1, . . . , xn} ⊂ X and any n ∈ N, the collection
of function evaluations (f(x1), . . . , f(xn))

⊺ is multivari-
ate Gaussian with mean m(X) := (m(x1), . . . ,m(xn))

⊺

and covariance matrix k(X,X) := [k(xi, xj)]i,j=1,...,n. We
write f ∼ GP(m, k) to denote that the function f is drawn
from a Gaussian process.

Let D = {(xi, yi) ∈ Rd+1, i = 1, . . . , n} be a dataset for
which we want to do regression. The typical modeling as-
sumption for Gaussian process regression presumes a latent
function f ∼ GP(m, kθ) with a Gaussian likelihood, thus,
yi = f(xi) + ϵi with ϵi ∈ N (0, σ2). The kernel is parame-
terized with θ ∈ Θ ⊂ Rp and the complete parameter vector
of the GP, including the likelihood variance σ2, is given with
ϕ = (θ, σ2) ∈ Φ ⊂ Rp+1. An important property of this
model is that the marginal likelihood, marginalized over the
latent function f , can be computed analytically with

p(y|X, θ, σ2) =

∫
p(y|f,X, σ2)p(f |X, θ)df (1)

= N (y;m(X), kθ(X,X) + σ2I).

Inference of the inner parameters, which in this case is the
infinite dimensional function f , can be done analytically.
For the outer hyperparameters θ and σ2 the classical way
of training is maximizing the marginal-likelihood (1), also

called type-2 maximum likelihood. Thus, we want to solve
the following optimization problem

(θ∗, σ
2
∗) = arg max

(θ,σ2)∈Φ
log p(y|X, θ, σ2) (2)

for a given dataset D. The optimization problem is usually
solved via gradient-based optimizers like Adam or L-BFGS.
Each step in the optimizer requires a calculation of the
marginal-likelihood, which scales cubically in n. Further-
more, several hundred optimization steps might be neces-
sary to reach convergence and, depending on the kernel and
dataset, multiple restarts are necessary as the optimization
problem is non-convex and might end up in a local maxima.
In the next section, we will consider an alternative approach
of solving (2) that only requires one forward-pass through
an amortization network.

Parameter amortization. Liu et al. [2020b] presented
an alternative method for learning the GP hyperparameters
based on amortizing the inference over multiple datasets.
In this method, parameter inference for GP’s reduces to a
prediction via an amortization neural network. The amorti-
zation network gψ : D 7→ Θ with weights ψ is defined on
the set of all datasets D meaning that for any n ∈ N and
d ∈ N the dataset D = {(xi, yi) ∈ Rd+1, i = 1, . . . , n}
is part of the input set of the network, thus D ∈ D . The
output-space is the parameter space Θ of the respective
kernel for which amortized inference should be done. In
case of Liu et al. [2020b], the Spectral Mixture Prod-
uct (SMP) kernel is used, which consists of parameters
θj = {{wm,j}Mm=1, {µm,j}Mm=1, {σ2

m,j}Mm=1} in the j-th
dimension for some fixed M . The amortization network is
designed via consecutive transformer blocks such that it
can handle different input sizes and input dimensions of the
respective dataset. The network is trained on a dataset of
(synthetic) datasets {D(l)}Ll=1 ⊂ D via minimization of the
mean average negative marginal likelihood of the datasets.
After training, the network is used for one-shot prediction
of the kernel parameters θ̂ = gψ(D∗) on an unseen dataset
D∗. In Liu et al. [2020b], the kernel structure is fixed to the
one of the SMP kernel. To use it with a different kernel, the
network needs to be redesigned and retrained. For exam-
ple, Rehn [2022] changed the architecture to cope with the
RBF kernel. Our goal is to do amortized inference over the
combined space of datasets and kernel structures, which
drastically reduces redesign and retrain time and enables
fast inference for many existing kernel structures via only
one neural network.

Our amortization network consists of a dataset encoder, that
is inspired by the architecture of Liu et al. [2020b] and a
novel kernel encoder-decoder block that enables amortiza-
tion over the combined input of kernel structure and dataset.
Both blocks are designed to capture the natural invariances
of the underlying structure.

https://github.com/boschresearch/Amor-Struct-GP
https://github.com/boschresearch/Amor-Struct-GP


Kernel space. Our goal is to define an amortization pro-
cedure over a family of kernels. To be more precise, we
consider a family of structural forms of kernels. The basis
for this kernel space is the kernel grammar presented in Du-
venaud et al. [2013]. Here, each kernel structure is expressed
as a symbolic expression S made of base symbols B. The
base symbols might include simple elementary kernels like
the Squared-Exponential kernel represented as the symbol
SE, the linear kernel as LIN or the periodic kernel as PER.
More complex expressions can be formed with multipli-
cation and addition of base kernels/symbols. For example,
one might construct a more complex structural form of a
kernel via the expression SE× LIN + PER. Each expres-
sion S describes a structural form of a kernel - thus, the
mathematical equation that governs the associated kernel k.
The base kernels and therefore the combined expressions
come with parameters θ and thus each expression has its
own associated parameter space ΘS .

The kernel grammar in Duvenaud et al. [2013] considers
all possible algebraic expressions of the base kernels. We
consider a subset of the kernel grammar that leads to a rich
kernel space on the one hand and one that can be easily
represented in a neural network on the other hand.

First, we define a set of base symbols B which consists
of a set of elementary kernels like SE,LIN and PER and
its two-gram multiplications like SE × LIN, SE × PER
and LIN × PER. This is a similar symbol set as used in
Simpson et al. [2021]. All base symbols are defined on
single dimensions, and we denote the concrete dimension
via an index, e.g. SEi for the Squared-Exponential kernel on
dimension i and summarize the sets of indexed base symbols
to B(i). Our kernel space is then defined as an addition of
base symbols within the dimension and a multiplication
over dimensions: S =

∏d
i=1

∑Ni

j=1 Si,j with Si,j ∈ B(i).
For example, the following kernel would be part of the
complete kernel space:

Multiplication over dimensions︷ ︸︸ ︷
(SE1 × LIN1︸ ︷︷ ︸

symbol of B

+ SE1)

︸ ︷︷ ︸
Addition within dimension

× (SE2 + PER2) . (3)

We denote the complete kernel space with K. This kernel
space contains popular kernels like the ARD-RBF kernel
with

∏d
i=1 SEi or the d-dimensional periodic kernel with∏d

i=1 PERi. Additionally, kernels that act differently on
different dimensions are included in the kernel space.

Depending on the kernel expression, the parameter space
ΘS can vary significantly in dimensionality. For example,
the ARD-RBF kernel S =

∏d
i=1 SEi on dimension d con-

tains one lengthscale and variance1 parameter per dimen-
1We use the parameterization of the base kernels from the

kernel grammar Duvenaud et al. [2013]. Here each base kernel in
each dimension has its own variance.

sion, such that ΘS ⊂ R2d. The d-dimensional periodic
kernel S =

∏d
i=1 PERi contains an additional feature spe-

cific period parameter such that ΘS ⊂ R3d. Thus, being
able to deal with different sizes of parameter spaces will be
important for our proposed amortization scheme.

3 METHOD

We propose amortizing the kernel inference for GP’s over
the combined space of datasets and kernel structures. This
enables fast inference for many kernels, as well as fast en-
sembling. For this, we construct an amortization network
(D ,K) ∋ (D,S) 7→ gψ(D,S) ∈ ΘS ∪ R+ that maps from
the combined space of datasets D and kernel structures K
to the parameter space of the GP with respective kernel
ΘS ∪ R+. The trained network is then used to one-shot pre-
dict GP parameters (θ̂S , σ̂2) = gψ(D∗,S) of the specified
kernel structure S for an unseen datasetD∗. We denote with
ψ the (trainable) parameters of the amortization network. In
the following subsections, we describe the architecture of
the network and the learning procedure of gψ .

3.1 ARCHITECTURE

The model gets as input a dataset D = {(xi, yi) ∈
Rd+1|i = 1, . . . , n} where n ∈ N is the number of dat-
apoints and d ∈ N is the number of input dimensions.
Additionally, the model receives the kernel expression S
as input. As S is a multiplication over dimension-wise
sub-expressions Si, we can represent the expression S
as a sequence of its sub-expressions [S1, . . . ,Sd]. Simi-
larly, we can decompose the expressions in each dimen-
sion into a sequence of base symbols. Thus, we repre-
sent/store the expression as a sequence of sequences of

base symbols
[
[B

(i)
1 , . . . , B

(i)
Ni

]|i = 1, . . . , d;B
(i)
j ∈ B

]
.

We encode each base symbol via one-hot-encoding such
that the sub-expression in each dimension Si is repre-
sented via a sequence of vectors Vi = [v

(i)
1 , . . . , v

(i)
Ni

] with

v
(i)
j ∈ R|B|. The whole expression is then represented via
VS = [V1, . . . ,Vd].

Our architecture consists of three main parts, the dataset en-
coder gD, that takes as input the dataset D and returns a se-
quence of dimension-wise embeddings hD = [h1, . . . ,hd],
a kernel encoder-decoder gk(hD,VS) that gets as input a se-
quence of sequences of encoded base symbols [V1, . . . ,Vd]
and the dataset embeddings [h1, . . . ,hd] and outputs a
transformed sequence of sequences of kernel embeddings
[V1, . . . ,Vd] and finally an output layer that maps the kernel
embeddings to the respective parameter space of the base
kernels.

We design the different parts of the architecture to cope with
several symmetries. Similar to Liu et al. [2020b], our net-



Figure 1: a) Illustration of the full amortization network, which gets as input the dataset D and a kernel expression S
decomposed in a sequence of sequences of base symbols and outputs the kernel hyperparameters θ in the respective
parameter space ΘS . b) The main layer used in the Kernel-Encoder-Decoder. It gets as input a sequence of vectors and a
context vector and outputs a transformed sequence of vectors. The context vector enters the MLP layer.

work is permutation invariant to the shuffling of the dataset
elements. Furthermore, the dataset encoder and the kernel
encoder-decoder are equivariant to the permutation of input
dimensions. Incorporating these symmetries enables gener-
alization to datasets with sizes and input dimensions that
were not present in the training phase. Lastly, the final out-
put is invariant to a shuffling of the base symbols in each
dimension, which is important as the sequences describe ad-
ditions. The prediction of the network is thus not dependent
on the order in which the additions are represented in S.

We present the single parts of the architecture in the follow-
ing paragraphs and an overview in Figure 1 a).

Dataset-Encoder. The dataset encoder takes as input the
dataset D and returns a sequence of dimension embeddings
[h1, . . . ,hd]. We utilize the encoder part of the Transformer
architecture without positional encoding [Vaswani et al.,
2017, Lee et al., 2019] in multiple parts of our architecture
and refer to it as a Transformer block. Each block maps a
sequence of vectors to a sequence of transformed vectors
[a1, . . . , a1] ← Transformer([a1, . . . , a1]) using multiple
multi-head-self-attention layers [Vaswani et al., 2017]. We
consecutively apply Transformer blocks to different hidden
embeddings to construct a sequence of dimension embed-
dings [h1, . . . ,hd] with hi ∈ R2h. It involves the following
steps:

1. The dataset is divided into dimension-wise sequences
[(x

(i)
j , yj)]

n
j=1 where x(i)j is the i-th dimension of point

xj .

2. Each sequence [(x(i)j , yj)]
n
j=1 is mapped element-wise

via a linear layer to construct a sequence of embeddings

per dimension [h
(i)
1 , . . . , h

(i)
n ] with h(i)j ∈ Rh.

3. Each sequence [h
(i)
j ]nj=1, i = 1, . . . , d is given to a

Transformer block (shared over the d sequences) that
outputs a transformed sequence [h

(i)
j ]nj=1.

4. So far, each datapoint was only able to attend to
other datapoints inside its dimension. In a next step,
we create per datapoint embeddings via mean ag-
gregation hj = MeanAGG([h

(1)
j , . . . , h

(d)
j ]) leading

to a sequence of datapoint embeddings [hj ]
n
j=1 with

hj ∈ Rh.

5. The datapoint embeddings are put into a Transformer
block to form a transformed sequence of datapoint
embeddings [h1, . . . , hn].

6. In order to construct embeddings per dimension again,
we append the datapoint embedding to the sequences of
embeddings of step 3, thus h(i)j ← Concat(hj , h

(i)
j )

which results in sequences [h(i)1 , . . . , h
(i)
n ] with h(i)j ∈

R2h.

7. Each updated sequence [h
(i)
1 , . . . , h

(i)
n ], i = 1, . . . , d

is again given to a (shared) Transformer block that
outputs a transformed sequence [h

(i)
1 , . . . , h

(i)
n ].

8. In order to get dimension embeddings, we aggre-
gate the sequence via mean aggregation to hi =

MeanAGG([h
(i)
1 , . . . , h

(i)
n ]) leading to a sequence of

dimension embeddings [hi]di=1 with hi ∈ R2h.

9. The sequence of dimension embeddings [hi]
d
i=1 is

again put through a Transformer block to get a se-
quence of dimension embeddings [hi]di=1 that contains
shared information across dimensions.



The encoder is very similar to the one in Liu et al. [2020b].
The only difference are the steps 3. to 6. We incorporate
these steps to prevent the permutation invariance to shuffling
in the seperated sequences [(x(i)j , yj)]

n
j=1, which can lead

to pathologies (see Appendix C). Our encoder is still invari-
ant to a shuffling of the dataset elements and permutation
equivariant to a shuffling of the input dimensions. We give
rigorous proofs in Appendix C.

Kernel-Encoder-Decoder. The kernel encoder-decoder
block is meant to translate the structure of the kernel given
through VS = [V1, . . . ,Vd] into transformed embeddings
VS = [V1, . . . ,Vd] that incorporate the information of the
dataset and the global information about the kernel structure.
These embeddings can be used to predict kernel parameters
of the base symbols that are associated with each embedding
element v(i)j . We call the block encoder-decoder, as the
global structure of the expression S needs to be encoded
and then, using the information of the global structure and
the dataset, each embedding of base symbols v(i)j needs to
be decoded into a vector that contains information about the
kernel parameters of the base symbol/kernel.

The main building block is the Kernel-Encoder-Block as
shown in Figure 1 b). This block maps a context vector c ∈
Rl and a sequence of vectors [v1, . . . , vM ] with vj ∈ Rh to a
transformed sequence of vectors [v1, . . . , vM ] with vj ∈ Rh.
It first applies self-attention to the sequence, followed by
a concatenation of the context vector to the input of the
element-wise multi-layer-perceptron (MLP) layer. Given a
context vector c, this layer is permutation-equivariant to a
shuffling of the sequence.

The Kernel Encoder-Decoder consists of the following
steps:

1. Each sequence of base kernel embeddings per dimen-
sion [v

(i)
1 , . . . , v

(i)
Ni

] is given to a (shared) stack of
Kernel-Encoder-Block layers with the dataset embed-
ding of the respective dimension hi as context vector.
The output is a transformed sequence [v

(i)
1 , . . . , v

(i)
Ni

].

2. So far, only the information of the base kernels along
one dimension is shared. Thus, we form dimension-
wise kernel embeddings via mean aggregation to vi =

MeanAGG([v
(i)
1 , . . . , v

(i)
n ]) leading to the sequence

[v1, . . . ,vd] with vi ∈ Rh. Each element in the se-
quence is an embedding of the kernel inside dimension
i.

3. To form a shared (global) representation of the ker-
nel, we put the sequence of dimension-wise kernel
embeddings to a Transformer block and receive a
transformed sequence of dimension-wise kernel em-
beddings [v1, . . . ,vd].

4. Finally, we apply again a (shared) stack of Kernel-
Encoder-Block layers to the base kernel embeddings

per dimension [v
(i)
1 , . . . , v

(i)
Ni

] with extended context
vector ci = Concat(hi,vi) such that the shared ker-
nel representation as well as the dataset encoding are
part of the context. This gives us the final sequence of
kernel embeddings per dimension [v

(i)
1 , . . . , v

(i)
Ni

].

Output-Layer. The final part of the architecture is the
prediction head for the kernel parameters. For a given ex-
pression S , this layer has as output space the corresponding
parameters space ΘS . It gets as input the kernel embed-
dings per dimension [v

(i)
1 , . . . , v

(i)
Ni

] of the Kernel Encoder-
Decoder. Each embedding v(i)j is associated with one base-

symbolB(i)
j and each base-symbol has its own, fixed param-

eter space Θ
B

(i)
j

, like for example ΘSE ⊂ R2. We therefore
realize the final mapping to ΘS via mapping each symbol
related embedding v(i)j ∈ Rh to the respective parameter
space of the base-symbol. We do this via separate MLP
blocks for each base-symbol (more details in Appendix C).

In order to get an end-to-end amortization network, we also
need a prediction for the likelihood variance. The variance
depends on the kernel choice and the dataset. Thus, we form
global embeddings of the kernel, via mean aggregation of all
kernel embeddings per dimension [v

(i)
1 , . . . , v

(i)
Ni

], and of the
dataset via mean aggregation of the dimension embeddings
[h1, . . . ,hd]. We concatenate both global embeddings and
use an MLP block to predict the noise variance.

In summary, our network predicts the kernel parameters and
noise variance for a given dataset D and expression S:

(θ̂S , σ̂
2) = gψ(D,S). (4)

It accounts for the natural invariances/equivariances of the
respective spaces, which we elaborate in Appendix C.

Computational complexity of one forward pass. One
prediction of the kernel parameters via one forward pass
scales with O(n2 + d2 + l2) where n is the number of
datapoints and d the number of dimensions in the input
dataset D and l = max(N1, . . . , Nd) is the maximum num-
ber of symbols of the kernel sub-expressions Si in the dimen-
sions i = 1, . . . , d. This follows directly from the quadratic
complexity (in the sequence length) of the multi-head-self-
attention layer. This complexity could be reduced via the
usage of sparse attention layers [Child et al., 2019].

3.2 TRAINING PROCEDURE

Our objective is to train a general purpose prediction net-
work g(D,S) that can act on, in principle, all (medium-
sized) datasets and all expressions S in the described kernel
space. To conquer this challenge with enough data, we train
our network purely on simulated datasets. We reflect the va-
riety of inputs via sampling pairs (Dl,Sl) from a broad dis-
tributions (Dl,Sl) ∼ p(D,S). Given a dataset of sampled



Figure 2: In a) each column contains a ground truth function (red-line) drawn from a GP with kernel S and hyperparameter
ϕ∗S . Noisy datapoints from the ground truth function are shown in green. The upper row shows the resulting predictive
distribution with predicted GP parameters ϕ̂S = gψ(D,S) and the lower row shows the predictive distribution with ground
truth hyperparameter ϕ∗S . In b) we show boxplots of the RMSE and NLL scores measured on 200 unseen, simulated
dataset-kernel pairs (D̃l,Sl) for our method and for a GP with Type-2-ML inference. The datasets are sampled from the
same distribution as used for training.

dataset-kernel pairs {(Dl,Sl)}Ll=1, we utilize the average
mean negative marginal-likelihood

L(ψ, {(Dl,Sl)}Ll=1) (5)

= − 1

L

L∑
l=1

1

|Dl|
log p

(
yl

∣∣∣∣Xl, (θl, σ
2
l ) = gψ(Dl,Sl)

)
as loss-function. This reflects our goal to train a network
that resembles the marginal-likelihood optimization of the
kernel hyperparameters for a given kernel structure and a
given dataset.

Sampling distribution. We sample (D,S) using the fol-
lowing scheme (we give a sketch here, details on the utilized
distributions/priors can be found in Appendix A). First, we
draw the number of input-dimensions d and datapoints n.
Given d we draw a kernel expression S, where we draw
the subexpressions Si independently of each other. Each
subexpression can have a different number of base symbols.
Each base-symbol/base-kernel comes with a prior on its
hyperparameters. In order to generate a dataset D that stems
from the induced prior in function space of S, we sample
from the hyperparameter prior θ ∼ pS(θ) with θ ∈ ΘS . We
use broad Gamma priors for the kernel parameters. Next,
we draw the input set X = {x1, . . . , xn} uniformly from
[0, 1]d. Finally, we draw the observations from the GP via
y ∼ N (0, kS,θ(X,X) + σ2I), where σ2 ∼ p(σ2).

When constructing the pair (D,S), we distinguish two
modes. The first mode is that D is sampled from the in-
duced prior of S - we refer to this mode as the positive
sample. For the second mode, we sample D using a differ-
ent expression S̃ - we refer to this mode as the negative
sample. The reason for these two modes is that we cannot
assume that only datasets from the induced prior of S will

be used as input to the prediction network. There will always
be a misspecification of the kernel.

Training parameters. During training, we sample each
batch {(Dl,Sl)}Ll=1 of size L on-the-fly from the sampling
distribution p(D,S). This enables processing a huge cor-
pus of dataset-kernel pairs. We employ RAdam [Liu et al.,
2020a] as optimizer with a constant lengthscale.

Noise variance fine-tuning. The noise level is a crucial
property of a dataset and determines the predictive perfor-
mance significantly. We therefore do a dedicated fine-tuning
phase after the initial training phase of minimizing the nega-
tive marginal-likelihood L(ψ, {(Dl,Sl)}Ll=1) in (5). We do
the fine-tuning via minimizing the extended loss

αL(ψ, {(Dl,Sl)}Ll=1) + β
1

L
∥σ∗

1:L − σ̂1:L∥22, (6)

where we additionally regularize the prediction of the noise-
variances σ̂1:L ∈ RL+ to be close to the known ground-truth
noise-variances σ∗

1:L ∈ RL+. Importantly, we only draw
positive samples (Dl,Sl). We call this step a fine-tuning
step, as we only do it on significantly fewer datasets than in
the first phase. We observe a major increase in robustness
of the noise-prediction on real-world datasets. In Appendix
B we show the impact of the fine-tuning.

4 RELATED WORK

Amortized inference with fixed kernel structure. Our
method extends the work of Liu et al. [2020b] to enable
amortization over the combined space of datasets and kernel
structures. Compared to Liu et al. [2020b] our network is
not restricted to a single kernel, meaning that practitioners



Figure 3: In a) the RMSE scores of each method are shown for held-out test datapoints. For each dataset several kernels
{S(1), . . . ,S(m)} are evaluated where each bar shows the median RMSE value and the error-bars show the 20th and 80th
percentiles of the RMSE scores of the different kernels. In b) the corresponding ratios of inference times to our method is
shown in log-scale.

can insert any kernel structure S from our space and can
utilize the amortization network out of the box for parameter
inference via ϕ̂S = gψ(D,S). From a software perspective,
we can view the work of Liu et al. [2020b] as an emulation
of the inference functionality of a typical GP framework for
a fixed kernel through a large neural network. Our method
enlarges this emulation further via rendering the kernel con-
figurable directly in the neural network.

Amortized model selection. In Simpson et al. [2021] an
amortized structure selection is proposed. Here, the kernel
structure S itself is predicted as a sequence of tokens via
an amortization network g(D). After selecting S the hyper-
parameters of the kernel needs to be trained via maximum
likelihood. Our method complements their method, as after
taking care that the kernel spaces are identical, one might
use our method to predict the kernel parameters of the se-
lected kernel structure. This would amortize the full pipeline
of kernel selection and hyperparameter optimization.

Kernel grammar. Our input space is based on the kernel
grammar in Duvenaud et al. [2013]. The kernel grammar is
part of a greater research line called the Automatic Statis-
tician [Duvenaud et al., 2013, Lloyd et al., 2014, Bitzer
et al., 2022], which tries to infer interpretable GP models
and dataset description from data in an automatic way. Our
work can be used to enhance the GP parameter inference for
each GP representation in the search procedure.

Hypernetworks. Our method can be seen as a hypernet-
work [Ha et al., 2017] for Gaussian process models. Usually,
a hypernetwork predicts neural network weights from some
sort of input. The input can be a hyperparameter [Lorraine
and Duvenaud, 2018] or a latent representation of a layer
[Ha et al., 2017]. Notably, Knyazev et al. [2021] proposed

a hypernetwork to predict the neural network weights for a
fixed dataset with a description of the architecture as input,
which can be seen as a related task compared to ours in the
neural network world. We note that our method predicts
Gaussian process hyperparameters rather than neural net-
work weights and amortizes over the combined space of
datasets and kernel descriptions.

Prior-Fitted-Networks. In Müller et al. [2022] a method
called Prior-Fitted-Networks (PFN) is proposed. Here a
transformer is used to form an end-to-end prediction from
a dataset D and a test point x∗ to a predictive distribution
p(y∗|x∗,D) of a given prior. The difference to our approach
is two-fold. Firstly, we predict a full GP via inferring its
parameters. A PFN predicts only slices of the predictive
distribution. Secondly, we render the prior configurable via
making the kernel configurable. In this way, practitioners
can include prior knowledge of the task at hand.

5 EXPERIMENTS

In the following section, we empirically analyze our amor-
tization scheme on regression benchmarks and compare
against common methods to do GP inference. First, we
illustrate the prediction capabilities on toy datasets. Subse-
quently, we analyze the learning behavior and the perfor-
mance on real-world datasets. In the last subsection, we
analyze ensembling as a possible plug-and-play extension
of our method.

Experimental setting. We train our amortization network
on a stream of mini-batches of size L = 128 for a total of
9 million dataset-kernel pairs (Dl,Sl) in the initial training
phase. We continue the training with the noise-variance
fine-tuning phase, which is performed over 200.000 dataset-



Table 1: Average RMSE values over 20 train/test splits for each dataset using our method (GP-Amortized) equipped with
an RBF kernel and using AHGP-SE-ARD. Marked values (*) are significantly smaller measured via a two-sample t-test
(α = 0.025).

RMSE Energy Concrete Airfoil Airline PowerPlant Yacht Wine

GP-Amortized 0.0830 0.3635 *0.4484 0.2866 0.2467 0.0606 0.9287
AHGP-SE-ARD 0.0800 0.3755 0.5965 0.2722 0.2459 0.0602 *0.7962

kernel pairs. In both phases, we utilize SE,LIN and PER
and its 2-gram multiplications like, e.g. SE× LIN as base-
symbols and simulate datasets of size n ∈ [10, 250] and
input dimension d ∈ [1, 8]. Further training details can be
found in Appendix A.

Performance on simulated data. We evaluate the final
amortization network gψ via its inference capabilities on un-
seen datasets D̃. Each unseen dataset D̃ is splitted into train-
ing D̃train and test dataset D̃test and we evaluate for a given
kernel expression S the predictive performance of the final
GP with predicted hyperparameters ϕ̂S = gψ(D̃train,S)
on D̃test. We give example predictive distributions on sim-
ulated datasets in Figure 2 a). We observe that our amorti-
zation network leads to accurate predictive distributions -
notably only via evaluating a neural network to predict the
kernel parameters. We add several more prediction plots
in Appendix B, including plots with misspecified kernels,
small datasets and more complex kernels.

Furthermore, we show test-RMSE and test-NLL scores of
200 unseen, simulated dataset-kernel pairs (D̃l,Sl) in Fig-
ure 2 b) for our method and for a GP with Type-2-ML
hyperparameter inference. The datasets are sampled from
the same distribution as used for the initial training phase.
We observe that our method leads to very similar RMSE
and NLL scores compared to Type-2-ML inference. This
illustrates the quality of the predicted hyperparameters. In
Appendix B, we analyze the predictive performance of both
approaches for different number of training datapoints.

Regression benchmarks. Our main evaluation consid-
ers seven real-world datasets. We split each dataset into a
training and test set (we set ntrain = 500 for all datasets
except the smaller datasets Airline and Yacht, details in
Appendix A) and evaluate the predictive performance over
a set of m = 24 kernels {S(1), . . . ,S(m)} that are drawn
randomly. We compare against the standard way of GP hy-
perparameter inference via Type-2-ML. We consider three
versions of Type-2-ML two with a single run from initial
parameters where we optimize via Adam [GP-ML] and
via L-BFGS [GP-ML (L-BFGS)] and one with 10 random-
ized restarts optimized with Adam [GP-ML (multi-start)].
For GP-ML and GP-ML (multi-start), we maximize the
marginal likelihood via Adam with lr = 0.1 for 150 itera-
tions and early-stop once the loss is converged. Furthermore,

we compare against Sparse-Variational GP (SVGP) Hens-
man et al. [2015], where we use I = 0.5n inducing points.
For more details see Appendix A.

In Figure 3 a), we show the resulting test-RMSE scores
of the respective method. Here, the black bars correspond
to percentiles of the RMSE scores of the set of different
kernels {S(i)}mi=1. We observe that our methods leads to
comparable predictive performance to Type-2-ML. Impor-
tantly, we observe in Figure 3 b) that our proposed method
leads to a major decrease in inference time for a diverse set
of kernels {S(i)}mi=1. This goes so far that for certain kernel
structures our method is 800 times faster than Type-2-ML
with restart. We show NLL scores in Appendix A.

Comparison to AHGP. We further compare against
AHGP on a fixed kernel. We note that for any new ker-
nel structure the method of Liu et al. [2020b] needs to be
redesigned and retrained - rendering it less flexible than our
method. We investigate the performance differences on the
ARD-RBF kernel, which is part of our considered kernel
space. Here, we use the adapted version of the AHGP archi-
tecture to the RBF kernel presented in Rehn [2022] (AHGP-
SE-ARD). We trained AHGP-SE-ARD on the same data dis-
tribution as our method for 9 million datasets and configured
the architecture to have approximately the same capacity
(see Appendix A for details). For evaluation/inference on a
dataset D̃ we equip our method with the ARD-RBF kernel
as input, thus ϕ̂ = gψ(D̃,

∏d
i=1 SEi). We show mean test-

RMSE scores on the real-world datasets for both methods in
Table 1. It can be seen that on five out of seven datasets the
performance of both method is very similar - indicating that
amortization over kernel structures does not induce signif-
icant performance drops compared to using a fixed kernel.
On Airfoil our method is significantly better and on Wine
the AHGP-SE-ARD method. We think that this difference
might eventually vanish with more datasets in the training
phases.

Fast ensembling. Our method offers a general inference
machine for GP hyperparameters over a structured kernel
space. This can be utilized to construct ensembles in a
computationally efficient way. We construct a Bayesian-
Model-Average (BMA) over a set of kernel structures
{S(1), . . . ,S(m)} , where we use the predicted marginal
likelihood values as ensemble weights (see Appendix A). In



Figure 4: Fast ensembling. a) Predictive distribution resulting from a fast ensemble of five kernel structures (in blue). In red,
we show the predictive means of the single GP’s. b) RMSE and inference time ratios for the fast ensembling based on our
amortization model (error bars of standard amortization are over the same 24 kernels that are in the ensemble). c) Ratios of
inference time between batch and non-batch ensembling shown over different dataset sizes.

4 a) we show an example of the fast ensembling over five
kernel structures. Importantly, we observe a high diversity in
the predictive mean functions, which is a desirable property
for an ensemble. In 4 b) we show the predictive performance
of the fast ensemble over the set of 24 kernels and compare
it to the range of predictive scores of the non-ensemble pre-
dictions (we show the three datasets that had the biggest
diversity of RMSE scores over kernels). Furthermore, we
compare against an ensemble, with Type-2-ML inferred GP
parameters. Firstly, we observe that ensembling results in
the expected performance gain over standard predictions and
secondly, we see that our method offers a drastic speed-up
compared to the conventional method.

Importantly, our architecture is particularly tangled to pro-
cess this kind of ensembles over kernel structures, as it
only needs to process the dataset-encoder once and can pro-
cess multiple kernels in a batch through the kernel-encoder-
decoder. This leads to an additional speed-up for inferring
ensembles that can be seen in Figure 4 c).

Limitations. We note that predicting kernel parameters in-
stead of optimizing them also has limitations. In particular,
our method tends to favor conservative predictive distri-
butions with broader prediction intervals out-of-data (see
Appendix B). While this is often beneficial, it might not be
desired, for example for extrapolation tasks with the peri-
odic kernel where our method favors explaining the data
via the lengthscale of the periodic kernel rather than the
periodicity (see qualitative analysis in Appendix B).

6 CONCLUSION

In this work, we proposed an amortization scheme for the
hyperparameters of Gaussian process models. The main
novelty is to amortize over the combined space of datasets
and kernel structures. Our proposed amortization network is
explicitly designed to cope with the respective symmetries
of this task. In our experiments, we show a drastic speed-up
in inference time for diverse kernel structures. At the same

time, we show that our method can predict kernel parameters
that lead to competitive predictions on real world data.
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