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ABSTRACT

[Industry Challenge Submission] AI and Deep Learning methods
have revolutionized many forecasting applications but have not
achieved widespread adoption in industry for aggregate forecasting.
This paper challenges the Al research community by identifying
three critical capabilities that current Al approaches lack: (1) multi-
variate consistency at scale, (2) explainable and controllable long-
run assumptions, and (3) flexible incorporation of forward-looking
external inputs. We describe a Bayesian state-space framework that
is used in production to address these requirements at a major
e-commerce retailer, where our forecasts influence billions of dol-
lars in spending decisions. By detailing how traditional time series
methods solve these challenges today, we identify concrete opportu-
nities for Al researchers to develop hybrid approaches that combine
the accuracy advantages of modern Al with the explainability and
control benefits of traditional methods.
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1 INTRODUCTION

Al methods have seen wide adoption across a variety of supply
chain forecasting applications, driven by improved accuracy com-
pared to traditional forecasting methodologies. However, adoption
of Al forecasting techniques has been relatively limited in the aggre-
gate forecasting space, e.g., forecasts of total daily volume across
an entire supply chain. Aggregate forecasting (forecasting total
demand across an entire system rather than individual products or
locations) poses unique technical challenges that are currently bet-
ter addressed by traditional methodologies than by Al This paper
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describes these challenges from the perspective of a team that pro-
duces aggregate demand forecasts used for supply chain planning
at a large e-commerce retailer. Our forecasts, which are currently
produced using traditional time series methods, are used by supply
chain planners to determine the optimal amount of capacity to
build, inventory to buy, and labor to hire, accounting for billions
of dollars of expenditure across multiple countries. We have tried
to adopt AI / deep learning forecasting methods in the past, but
have found that while current frontier methodologies are highly
accurate, they cannot achieve the explainability and controllability
that we require in practice. For instance, when a DL model predicts
an unexpected demand spike in six months, supply chain planners
need to understand the underlying drivers, and have the tools to
adjust the forecast if necessary, before making multi-billion dollar
capacity decisions.

We identify three capabilities, beyond accuracy, required for a
forecasting model to achieve business adoption: (1) explainable mul-
tivariate coherency, (2) controllability of forecast assumptions, and
(3) the ability to flexibly condition a forecast on forward-looking
external inputs. We have found that traditional time-series meth-
ods are currently better at achieving these capabilities than AI /
ML methods. Section 2 presents a short example, in the context
of macroeconomic forecasting with public data. Section 3 expands
on these requirements in the supply-chain forecasting use-case,
and reviews related literature. Section 4 makes the challenges pre-
cise by describing our current production framework, which uses
Bayesian state-space methods to achieve the required capabilities.
Section 5 concludes by identifying concrete opportunities for Al /
ML research to build towards "hybrid" forecasting approaches that
maintain the explainability / control of traditional methods while
leveraging the improved accuracy and scalability of AL

2 AN EMPIRICAL EXAMPLE

To fix ideas, and show the challenges we face running aggregate
forecasting models in practice, we consider the problem of forecast-
ing macroeconomic inflation, which is similar to many aggregate
forecasting problems we face in a supply chain context. We use
publicly-available macroeconomic data to estimate a joint forecast
of monthly inflation across 4 segments: Food / Beverage, Housing,
Apparel, and Core CPI. We compare our team’s aggregate supply-
chain forecasting model, a Bayesian state-space factor model we call
Gotham, with Prophet [13], a time-series model commonly used by
practitioners, as well as three recently-released transformer-based
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foundational time-series forecasting models: Chronos [2], Moirai-
MoE [15] [11], and TimesFM [6]. Backtests (described in Appendix
A) show that the models are roughly comparable to each other in
accuracy, with no model dominant across all series.

However, accuracy is not the primary obstacle Al forecasting
models face in achieving adoption for industrial supply chain fore-
casting applications. To show the importance of explainability and
controllability, we examine forecasts made in Q1 2023, at the height
of the post-pandemic surge in macroeconomic inflation. Figure 1
shows forecasts for Core CPI year-on-year growth across models
made in April 2023. The "traditional" time-series models, Gotham
and Prophet, show a linear continuation of recent trends, which
is easily explicable given the data, though overly conservative in
hindsight. The AI models all predict complex non-linear fluctua-
tions in year-on-year growth (e.g., the sudden uptick in forecasted
growth by Moirai at a six month horizon), which are not obvious
in the historical data. The AI models do not provide any natural
functionality to explain these non-linearities (example, explana-
tions might look like "there is a seasonal increase in YoY growth
rates every June,' or "the YoY growth rate increases in October ’23
because the model views the price level in October ’22 as affected
by a one-off shock"). In our experience in forecasting aggregate
series, human supply chain decision-makers will not accept a fore-
cast with unexplained fluctuations of the type seen in Fig. 1, as
these forecasts inform capital investments and strategic planning
that require clear justification to leadership. Bayesian time-series
models provide the forecaster with the ability to explain a forecast
as a linear combination of interpretable components, and to control
these components through conditioning or adjusting priors; the Al
models we have considered do not support similar functionality.

All of the forecasts in Figure 1 underestimate the speed of the
mean-reversion in CPI that was actually observed in 2023. How-
ever, professional macroeconomic forecasters were able to correctly
capture the pace of this reversion based on their qualitative knowl-
edge of expected Federal Reserve policy. The average respondent
in the Q1 2023 Survey of Professional Forecasters (SPF), conducted
by the Federal Reserve , expected that in 12 months the core CPI
inflation rate would be around 3%. We can use state-space methods
to condition our model’s forecast on this forward-looking estimate.
Figure 2 shows this conditional forecast. We see that the model is
able to statistically integrate this information, and better-predict
the actual path of inflation. Additionally, because our model is a
multivariate factor model, it is able to coherently update its forecast
for Apparel CPI, even though the SPF only gathers expectations
for Core CPL The Apparel forecast shows that conditioning on
qualitative external information can involve trading off short-run
forecast performance (where pure data-driven extrapolation tends
to perform best) against the long-run. We have not identified any
ways of replicating this functionality with AT models.

3 OUR BUSINESS PROBLEM, AND TECHNICAL
CHALLENGES

Our team produces aggregate demand forecasts used for planning
at a large e-commerce platform. Let y; ; be the realized demand for a
segment i on calendar date t. In our application, i segments demand
by product group (e.g., electronics vs. toilet paper), measurement
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Figure 1: Core CPI forecasts across models, made in April
2023.
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Figure 2: Comparison of CPI forecasts made in Q1 2023 be-
tween unconditional Gotham and Gotham conditioned on a
prior for long-run CPI growth based on the Survey of Profes-
sional Forecast consensus estimate as of Q1 2023.

variable (e.g., dollars of revenue ordered vs. number of packages
shipped), and delivery channel (e.g., first-party vs. third-party). We
forecast a vector that contains daily demand values across mul-
tiple segments, for a forecast horizon of multiple years. We face
three major technical challenges, similar to those identified in the
inflation-forecasting example, that are difficult to address with cur-
rent AI/ML methods: (1) the need for multivariate consistency (2) a
requirement that we be able to explain and control major assump-
tions around long-run forecast behavior and (3) a requirement that
we be able to condition our forecast on forward-looking external
inputs.

3.1 Multivariate Consistency

Our forecasts are consumed by multiple agents within the sup-
ply chain planning process. For example, financial planning teams
care about next quarter’s revenue forecast, transportation planning
teams care about average daily demand on a short horizon, and
capacity-planning teams care about peak daily demand multiple
years in the future. To prevent costly misalignments—e.g., bud-
geting for more capacity than we have labor to staff—we need to
ensure that forecasts are jointly coherent across related i. For exam-
ple, forecasts for total revenue and total shipped packages should
reflect a mutually consistent expectation for the underlying growth
of the business. This rules out series-by-series univariate forecast-
ing methodologies such as Prophet [13] or Chronos [2], which do
not allow for any way to enforce coherence across forecasts. Some
Al foundation models, such as Moirai [15], and TimesFM [6], do
support native multivariate forecasting, but they do not provide
any way to enforce restrictions on forecast covariances (e.g, we
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expect revenue growth and units growth to in general be positively
correlated), or explain common drivers.

Forecasts must also be flexibly extensible to new levels of disag-
gregation. For example, given a forecast of demand for electronics
we may need to quickly produce forecasts for electronics manufac-
tured in China vs. those manufactured elsewhere. This requirement
rules out application-specific neural networks, because it is often
not feasible to increase the dimensionality of the model and re-
train the network each time we would like to consider a new layer
of disaggregation. Sequence-based models (e.g., [15]) can address
this concern by "patching” multiple time series together into a
single series, but these approaches have difficulty imposing ex-
act restrictions (e.g., that forecasts for electronics-made-in-China
and electronics-not-made-in-China must collectively sum to the
forecast for electronics), which is essential for decision-making
consistency. A key concern is to ensure that high-level assumptions
(e.g., about overall trends in the demand for electronics) are sensibly
preserved for the disaggregated forecasts.

3.2 Assumption Explainability and Control

Because our aggregate demand forecasts inform irreversible long-
term investments, they must be understood and approved by human
decision makers. This means that we are required to be able to ex-
plain the key economic and business assumptions of our model. For
example, we must be able to answer questions like "what is your
long-run assumption for the third-party share of total sales?" or
"do you assume that recent growth in average sales price is perma-
nent or transitory?" Answering these questions requires producing
a mapping between qualitative statements and the quantitative
forecast produced by our model. There has been substantial aca-
demic research on "explainable Al but most of this has focused on
assessing feature-importance in a cross-sectional classification or
prediction setting. We are unaware of any work that can provide
human-understandable explanations of time-series forecasts.

We are often required to translate feedback on our assumptions
into changes to our forecast. This requires models that are not
just explainable, but controllable. In many cases the consumers
of our forecast have information about future trends or business
initiatives, and want to make sure that our forecast is consistent
with that information. In other cases, we are must perform sce-
nario analyses, to test the forecast’s sensitivity is to different sets
of assumptions. We have found that this requirement prevents us
from directly applying most deep-learning forecasting approaches
(e.g., [14], [9]), which take a "black-box" forecasting approach that
makes it difficult to directly control model assumptions. We note
that some academic work suggests that incorporating human judg-
ment into model-based decisions may not systematically improve
performance (e.g., [1]). However, in an industry context, there are
often specific cases in which a forecast must incorporate judgment
in order to be credible.

3.3 External Conditioning

Finally, we need to ensure that our demand forecasts are consis-
tent with investment and operational plans made by other teams
across the supply chain. This requires a model that can be condi-
tioned on these plans. For example, given a set of potential paths
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for investment in improving delivery speeds, we need to be able
to produce forecasts of demand conditional on each path. This
set of forecasts is an input into the iterative decision process that
ends with a single aligned plan, and a demand forecast conditional
on that plan. We follow a similar process to produce forecasts for
scenarios conditional on macroeconomic outcomes—e.g., a reces-
sion, or an increase in inflation—that are produced by "satellite"
macroeconomic forecasting models.

Achieving this requirement requires a modeling system that is
capable of conditioning forecasts on forward-looking estimates of
"drivers" that are related to our core forecasted variables. However,
this conditioning must be optional: we need to be able to produce
a forecast that does not rely on forward-looking input plans, for
cases where input plans are stale or don’t exist yet. Additionally,
we usually do not have a comprehensive historical record of point-
in-time plans that can be used for training. This rules out including
forward-looking realizations of drivers as exogenous predictors in
a machine-learning model.

4 ACHIEVING BUSINESS REQUIREMENTS
WITH TRADITIONAL TIME-SERIES
METHODS

To make the challenges we face precise, this section describes a mod-
eling framework that meets the business requirements described
above using traditional Bayesian state-space methods. This frame-
work substantially extends the model described in [10], which is
based on Bayesian Vector Autoregression (BVAR) models that have
been used in the macroeconomic literature, as in [7], [12] with a
particular focus on improving forecast scalability and controllabil-
ity using state-space modeling tools. We have used this framework
in production since 2020. We hope to inspire AI / ML research that
can maintain these capabilities, while further improving accuracy
and scalability.

The basic framework

Let y; ; be a log-level variable i (e.g., the log of dollars of revenue
from electronics), observed at a monthly frequency. Let 7 collect a
set of variables that we forecast jointly. We decompose the year-on-
year log-growth, y; s — yi s—12 into three parts: a "trend" component,
g, which controls the average rate of demand growth, a "cyclical”
component, g, which controls transitory fluctuations around this
trend, and level-shock components ¥; ;, /; y—12 which control id-
iosyncratic shocks and time-varying seasonality:

Yit = Yir—12 = Gir + Git + Vit — Yir-12) 1)
The trend component, g, follows a factor structure, in which each
variable i has factor loadings ; x, and each unobserved factor f; ,
follows a random walk. This approach accounts for predictable
variation in growth rates, which is a common feature of many
supply-chain series.

Git =) ik fer @)
k

St = fiep-1+ 1t ®3)
The factor structure imposes long-term coherence across related
variables i through dependence on common factors k. In most of our
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applications we manually specify 4; ; € {—1,0,1} (where 1 and -1
indicate the variable is affected by the factor, and 0 indicates it is not),
to impose judgment about how variables are related. For example,
we might identify a specific f; as representing secular trends in the
demand for clothing, by setting A; . = 1 for all i related to clothing
(potentially including i that correspond to macroeconomic demand
for clothing) and A; ;. = 0 otherwise.

The cyclical component, g, evolves according to a vector autore-
gression (VAR) specification, in which each variable is modeled as
an autoregressive function of the lags of other variables.

P

Git = (Z > B gz-,t_z) + i @
i =1

This allows our model to flexibly capture lead/lag dynamics such as

the tendency for improvements in supply chain metrics to improve

demand in subsequent months.

The level-shock component, i, accounts for time-varying sea-
sonality and idiosyncratic shocks that affect the observed level
of demand but not underlying growth rates. For example during
leap years February will have an additional day, mechanically in-
creasing sales by ~ 3%. ¢ can also account for temporary shocks
that impact demand in a specific month but should not affect the
forward-looking forecast e.g., a demand drop due to an internet
outage.

We estimate and forecast the unobserved states in (1) using
Bayesian state-space methods to sample draws from the poste-
rior of all unobserved states from their distribution conditional on
the input data. A key advantage of our approach is that it allows
for forecasts of the full posterior predictive distribution, and ac-
counts for the uncertainty induced by correlations between the
unobserved states. In many supply-chain planning applications
(e.g., the Newsvendor problem), quantiles of the predictive distri-
bution are more important than point forecasts. The details of the
estimation equation for each state, and the estimation algorithm
we use, are included in Appendix B.

4.1 Achieving multivariate consistency

We use the factor-based trend component g to enforce multivariate
consistency across all i € 7. For example, assume that y; ; mea-
sures aggregate national GDP. If we impose the loadings A1 =1
and Ay; = 0 for all i > 1, then the factor fj ; will represent trends
in GDP growth. For any other variable j (e.g., total sales for our
e-commerce platform), we can impose the assumption that j de-
pends on economic growth by specifying (or estimating) a positive
value for A; . All variables with ;1 > 0 will share a common
exposure to this macroeconomic growth factor, and all forecasts
will be aligned with a single forecast for GDP growth. This helps
enforce coherency in revisions: following a positive forecast error
in y1,¢, the model will revise its estimate for fi ; upwards, which
will simultaneously increase the forecast for all related j. This con-
sistency improves model explainability and is difficult to achieve
with modern multivariate Al approaches, in which the response
of the forecast of j to a positive surprise in i is usually a complex
non-linear function that is difficult to constrain.

Though equation (1) can model multiple variables, the number
of parameters required to estimate the VAR component § grows

Gubha, Jang, Tambalotti

quadratically with the number of variables, creating computational
challenges when scaling to thousands of series. In order to scalably
expand the number of series we forecast, while maintaining con-
sistency, we employ a hierarchical approach. Let {x;} with j € J
be a set of variables which segment a "top-level" variable y;: for
example, if y; is worldwide log electronics revenue, x; may be log
electronics revenue for products manufactured in country j. We
use (1) to model y;, and use an analogous approach to recursively
model xj; — yis:

(je = yie) = (ie—12 = Yie-12) = Gy, + G + (Uf, = V5 -12) (5)

Substituting (1) shows that this two-step formulation is equivalent
to the forecasting equation

Xjt=Xjt-12 = Git +G; it +G; o+ Wit —Yie—12) + (¥, =V 1 1)

(6)
which shows that conditioning on y; ; enforces consistency between
the factor structure driving 7 and forecasts of variables in J. This
lets us express the forecast of x; as coherent with all the forecasts
for all variables in 7, through its dependence on y;.

"Top-down" forecasting, in which we start by forecasting impor-
tant aggregates and recursively apply our model to forecast finer
granularities, allows us to condition out the idiosyncratic noise
generated by disparate components of complex systems, and fo-
cus on the variation most relevant for strategic decision-making.
However, the top-down nature of our approach implies that the
forecast of x; can never influence the forecast of y;. We believe that
Al technologies could help automatically identify cases in which
we would like to relax this restriction (e.g., when shocks to x; ; are
fast-growing enough to be material to y;; in the future, but not
large enough to show up in the direct forecast of y; ;), and estimate
optimal forecast adjustments.

4.2 Achieving assumption-level explainability /
control

A key advantage of our framework is that it provides an intuitive
decomposition of growth rates into a permanent component g;
and a transitory component §. We use the state-space setting of
our model to expose these states as observable variables. This lets
us use the smoothed estimates of states at each point in time to
explain the model’s forecasts by attributing fluctuations in growth
to permanent vs. transitory components.

We can use state-space conditioning to modify this attribution
in response to human feedback. For example, assume that we see
growth for series i increase rapidly from a steady-state of 10% to
50% at time ¢. The model will usually attribute most of the accelera-
tion to g;; (because sudden large changes in growth rates typically
don’t persist in historical data) and project that growth rates will
mean-revert back to a long-run average of 10%. However, in some
cases we may know that the increase in growth was driven by a
policy change, or a new initiative, which is expected to be persistent.
We can view this as applying a prior that the permanent trend com-
ponent of growth at ¢ should be close to 50%. We add a synthetic ob-
servation to the state space of the form g; ; = log(1.50) + N (0, Ul.z’t)
where 2 controls the informativeness of our prior. The model will
flexibly balance this prior against the trends estimated in the data
to arrive at a balanced posterior. The state-space smoother will
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update its forecast of the underlying factors driving g; ; based on
this prior, and so will consistently adjust the forecast for all i € 7.

We also use priors to flexibly impose long-run restrictions or
dynamics on our forecasts. For example, we may believe that the
new policy will boost growth for 1-2 years, but that on a 5-year
horizon growth rates will converge back to 10%. In this case we
could add another synthetic observation, of the form g s+60 =
log(1.10) + N (0, Ui2,t+60) to impose this prior—this is similar to the
approach we took with SPF expectations in the inflation-forecasting
example. We have found that this approach works well in practice,
but requires substantial manual work and subject-matter expertise.
We believe there is an opportunity for research on how Al / LLM
methods can automatically transform qualitative feedback from
non-technical stakeholders into quantitative priors.

4.3 Achieving external conditioning

We can also use synthetic observations within the state space to
flexibly condition our state space on forecasts produced by other
models. To fix ideas, assume that y; is a vector of demand variables
(e.g., revenue across multiple product types) and that z; is a "driver”
variable, e.g., the average number of days it takes for a customer to
receive their order. In general, demand will increase as z; improves
(e.g., shorter delivery times typically lead to higher conversion
rates), and the model will estimate this relationship. However z; is
a complex function of supply chain investments, labor dynamics,
network topology, etc., and is likely to be modeled by dedicated
teams to determine an investment plan that corresponds to a pro-
jected trajectory (or "glidepath") z;. Our challenge is to produce a
"baseline" forecast for z;, and then update this baseline to produce
a forecast consistent with the glidepath.

We address this challenge with state-space conditioning. Once
we include z; in 7, we can generate synthetic observations that set
z; = Z; for all available future dates. We can compare the forecast of
y; conditional on Zz; to the unconditional forecast of y; in order to
estimate the fraction of demand impact attributable to the glidepath.
This is similar to the approach used in the macroeconomic policy
literature for scenario analysis and the study of policy interventions
e.g., [5], [4]. We also use the forecast of z; from the unconditional
run as an "implied forecast,’ to evaluate the reasonability of the
provided glidepath.

5 OPPORTUNITIES FOR AI RESEARCH

Based on our experience producing aggregate forecasts in industry,
we believe there are several opportunities to use Al methods to im-
prove forecast accuracy, and enable "hands-off-the-wheel" scalable
forecasting. However, we believe that it is unlikely Al methods will
be able to entirely replace traditional approaches, given the diffi-
culty of addressing explainability and controllability requirements
discussed above. We believe that AI methods can complement cur-
rent methodologies, as part of a "hybrid" forecasting approach that
integrates Al components within a traditional state-space frame-
work.

First, we believe there is an opportunity to use unsupervised Al
methods to discover the factor structure that relates variables to
each other. In order to achieve multivariate consistency, we need to
reduce the dimensionality of the trend-forecasting component of
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our model, from an arbitrarily-large number of forecasted variables
to a small number of dominant factors. In order to make our factors
controllable, we set factor loadings 4; ;. € {~1,0, 1} using human
judgment. For example, we may define a "clothing" factor by set-
ting loadings to 1 for all time series related to demand for clothing.
We have found that automated dimension-reduction methods (e.g.,
principal-components analysis) produce factors that do not have
an explainable interpretation. We also need to use human judg-
ment to define the hierarchy we use for the recursive hierarchical
forecasting approach described in 4.1. There are opportunities to
use LLM / AI methods to automate this process, by using semantic
/ contextual information about what each series index i actually
represents to generate hierarchies and factor loadings. For example,
an agentic LLM system could use qualitative business documents
to learn that clothing, electronics, and food, are the most impor-
tant product segments in a given country, identify factors for each
segment, and assign each modeled time series a loading on these
factors.

LLM-based methods can also help explain and control forecast
assumptions. While our statistical framework allows the modeler
to construct sophisticated mappings between qualitative business
assumptions and quantities within the state space, analyzing and
manipulating these mappings requires substantial subject-matter
expertise. An SME needs know how to translate business questions
(e.g., "what is your current assumption for the long-run inflation
rate") into queries about specific states within the state space. Run-
ning scenarios to evaluate the impact of perturbing assumptions
(e.g., "what would our forecast look like if inflation goes back to
6%?") requires configuring the priors that encode these assumptions
in the model. We believe there is an opportunity for LLM-driven
agentic systems to learn how to translate natural-language ques-
tions from non-technical business users into API calls that can be
used to manipulate the statistical forecasting system. This would
reduce dependence on statisticians/modelers and improve hands-
off-the-wheel automation.

Finally, we see an opportunity to use Al / deep-learning meth-
ods to account for seasonality with a more sophisticated approach
than traditional statistical methods such as modeling year-on-year
growth rates, or using Fourier basis terms. Many of the series we
forecast have similar seasonal patterns, which can be determined
from qualitative context: for example, we might expect computers,
stationary, and clothing, to all exhibit similar back-to-school season-
ality patterns. We believe that Al methods can help us determine
these seasonal commonalities at scale, by collapsing qualitative
text-based context about a time series into an embedding vector
that can be used to determine seasonal similarity between time
series. This embedding vector can then be used as input into a
state-space model.

In conclusion, we see many opportunities for AI methods to im-
prove the automation and customization of production supply chain
forecasts. This will require close integration with legacy statistical
forecasting systems, in order to maintain forecast explainability,
coherency, and control. We believe that Al can help scale sophisti-
cated forecasting models while reducing reliance on subject-matter
experts, and look forward to seeing the research community address
this challenge.
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Gotham Prophet Chronos Moirai-MoE TimesFM
Core 0.310 0.319 0.395 0.315 0.379
Apparel 1.265 1.920 1.396 1.323 1.265
Food & Beverage 0.723 0.911 0.772 0.491 0.540
Housing 0.372 0.360 0.463 0.340 0.467

Table 1: Mean absolute percentage error across forecasts of
monthly CPI components at a forecast horizon of < 6 months,
from 2012-2024.

A BACKTEST DETAILS

To support the empirical example in Section 2, we ran a horse-race
back-test in which we compared the modeling framework described
in Section 4 (named Gotham) with Prophet [13], a Bayesian time-
series model commonly used by practitioners, as well as three
recently-released transformer-based foundational time-series fore-
casting models: Chronos [2], Moirai-MoE [11] [15], and TimesFM
[6].

We focus on forecasting non-seasonally-adjusted Consumer
Price Index (CPI) values across four segments: Apparel!, Food &
Beverage?, Housing®, and Core CPI*. We retrieved data from FRED,
which is maintained by the Federal Reserve Bank of St. Louis.

For all considered models, we use base / default settings, with no
application-specific fine-tuning. Gotham was developed for supply-
chain forecasting using aggregate data from our e-commerce plat-
form, and is not specifically tuned or designed for inflation forecast-
ing. Because the inflation data is publicly-available macroeconomic
data, it is likely included in the training corpus of the foundational
models, so we view back-test results for those models as a lower
bound for true out-of-sample accuracy.

We run rolling back-tests for CPI forecasts from January 2011
through October 2024, starting on the first month of each quarter.
We evaluate accuracy series-by-series pooled across all forecast hori-
zons < 6 months. We use data starting January 1990 as context for
all models. We run multivariate forecasts for Gotham, Moirai-Moe,
and TimesFM, and univariate forecasts for Chronos and Prophet
(which do not support multivariate forecasting).

Table 1 shows our results. We see that Gotham and Moirai-
MOoE are the best-performing models, but that no model dominates
the others across all forecasted series. This is not surprising—as
[3] show, foundational time-series models perform well at low-
frequency macroeconomic forecasting tasks, but do not consis-
tently outperform traditional time-series models such as Gotham
or Prophet.

1U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers:
Apparel in US. City Average [CPIAPPNS], retrieved from FRED, Federal Reserve Bank
of St. Louis; https://fred.stlouisfed.org/series/ CPIAPPNS, May 25, 2025.

2U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: Food
and Beverages in U.S. City Average [CPIFABNS], retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/CPIFABNS, May 25, 2025.

3U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers:
Housing in U.S. City Average [CPTHOSNS], retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/CPTHOSNS, May 25, 2025.

4U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All
Items Less Food and Energy in U.S. City Average [CPILFENS], retrieved from FRED,
Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CPILFENS, May 25,
2025.
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Challenges in Achieving Explainability & Control with Supply Chain Forecasts

B MODEL ESTIMATION DETAILS

Define growth rates g; = y; — yr—12 € R™ and shock component
Yy = Si& where S; € R/ are user-specified covariates such as
seasonal dummies, jump indicators, and step functions whose con-
tributions ¢ € R/ are unknown.

Let S; = S — St—12. We can rewrite the estimation equations in
state space form. In Durbin and Koopman [8] notation,
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The primary controls involve setting priors on the unobserved

trend g;. By augmenting the observation equation 7 with a sec-

ond set of rows for the latent trend §;, we gain the ability to

set priors with synthetic noisy observations. If we have priors

Git ~ N(pit, Uiz’t) for the following collection of targeted series
and dates 7 = {(ix, tx)}, then we set

gi,t = pir and Zfi(i, i) = ait if (i,t) € T,
git =nanand 3J(i,i) =0  otherwise.

More generally, we can apply priors to arbitrary linear com-
binations of the state vector Ca; with a similar augmentation to
the observation equation. We can also asymptotically recover the
unobserved case with uninformative priors by taking Giz’ ;= .

The model is estimated using standard Bayesian state space
methods, involving alternating Gibbs steps between sampling full
conditionals of parameters 0|, y, and sampling states from the
Kalman simulation smoother «|6, y.
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