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Abstract

Corporate LLMs are gaining traction for efficient knowledge dissemination and
management within organizations. However, as current LLMs are vulnerable to
leaking sensitive information, it has proven difficult to apply them in settings
where strict access control is necessary. To this end, we design AC-LORA, an
end-to-end system for access control-aware corporate LLM chatbots that main-
tains a strong information isolation guarantee. AC-LORA maintains separate
LoRA adapters for permissioned datasets, along with the document embedding
they are finetuned on. AC-LORA retrieves a precise set of LoORA adapters based
on the similarity score with the user query and their permission. This similarity
score is later used to merge the responses if more than one LoRA is retrieved, with-
out requiring any additional training for LoRA routing. We provide an end-to-end
prototype of AC-LORA, evaluate it on two datasets, and show that AC-LORA
matches or even exceeds the performance of state-of-the-art LoORA mixing tech-
niques while providing strong isolation guarantees. Furthermore, we show that
AC-LORA design can be directly applied to different modalities. AC-LORA is
open-source and is available at https://github.com/huawei-csl/AC-LoRA.

1 Introduction

Multi-modal LLMs are increasingly utilized for search, summarization, and knowledge retrieval,
and are being rapidly adopted in both personal and corporate use cases. Despite their benefits, the
security risks [1, 2] introduced by including sensitive or IP data in training or retrieval-augmented
generation (RAG)[3] threaten the widespread deployment of such tools. Therefore, LLM inference
must adhere to strict access control rules, such as allowing only authorized users or ensuring safety
by preventing users from accessing harmful content.

Gap in prior work. While RAG can fetch new data (grounding the LLM response) with existing
access control methods, it has slower inference due to retrieval from storage media, or the inter-
net [4], diminishing inference performance (latency, memory and accuracy) in long context infor-
mation extraction [5], low accuracy in multi-hop retrieval[6], embedding space collapse [7] due to
high dimensionality, and vulnerable to poisoning attacks [8—10]. A recent study [11] shows that
RAG-based solutions can make models even more unsafe than their non-RAG counterparts. Fine-
tuning adds new task capabilities to base models [12] and can incorporate new knowledge [13]. Not
having to include relevant information in each request’s context achieves lower inference latency.
However, once trained or finetuned, it is challenging to isolate or remove [14] information due to
memorization of training data [15, 16]. Notably, the absence of reliable unlearning techniques[17]
is a significant issue when dealing with proprietary corporate data with strict access control require-
ments. Maintaining isolated models finetuned each on sensitive non-overlapping datasets (n) is also
not feasible due to exponentially increasing (2™) possible permission zones.
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Figure 1: A corporate LLM overview: (a) shows the corporate information and role hierarchy,
highlighting the complexity of managing access control. (b) Shows the expected inference result
combining multiple knowledge domains while adhering to the permission rules, including the hint.

This work. We present AC-LORA, the first end-to-end access control-aware inference serving
system for LLMs with strong access control by construction. AC-LORA compartmentalizes sensi-
tive information by fine-tuning different LoRAs on data from different access control groups (e.g.,
projects or departments). AC-LORA uses a retriever that retrieves a set of the most relevant (al-
lowed) LoRAs, and combines them on top of the base model, based on the input prompt and the
user’s permissions. AC-LORA effectively summarizes information from multiple information do-
mains (cf., Fig. 1 b), while providing helpful guidance to the users in case the access to the document
requires additional permission. Importantly, unlike most existing mixtures of LoRA approaches
[18, 19], AC-LORA requires no additional training. This tackles exponentially increasing (2™) pos-
sible permission zones without requiring the effort of training and the maintenance of an exponential
number of models.

We evaluate AC-LORA on multiple models and datasets and show its adaptability to different
modalities: LLAMA2/3 for text, STABLE-DIFFUSION-V 1-4 for text-to-image, and QWEN2-VL for
text-image-to-text. We compare AC-LORA’s dynamic LoRA mixing mechanism with existing
works [20] using the Flanv2 dataset [21]. AC-LORA achieves competitive performance on all
tasks, matching or outperforming prior works in 8 out of 10 domains. We evaluate AC-LORA
on RepLiQA [22] dataset, which consists of a wide range of knowledge-specific questions across
3591 documents spanning 17 different domains, and wikiarts [23], an image dataset that consists
of 27 different style domains. AC-LORA’s retriever consistently achieves high (> 90%) accuracy
at retrieving the correct fine-tuned adapter (without ever retrieving more than 3 LoRAs). Further,
we highlight that fine-tuned adapters can actively inject domain-specific knowledge. To evaluate
the knowledge augmentation via LoORA mixing, using RepLiQA, we create a dataset by partition-
ing knowledge. We show that AC-LORA not only leverages the information included in individual
LoRAs but can combine knowledge across multiple LoRAs to give a unified answer. AC-LORA’s
time-to-first-token generation latency is lower compared to the RAG due to the shorter context. Ad-
ditionally, we demonstrate that besides text, AC-LORA can extend access control to other modali-
ties: text-to-image and text-image to text.

Our Contribution. In summary, our contributions are the following:

1. Access control-aware inference serving. We present AC-LORA, an efficient end-to-end access
control-aware inference serving system for corporate LLMs.

2. LoRA retrieval and training-free LORA mixing. We design, implement, and evaluate multi-LoRA
retrieval and mixing based on user queries, allowing users to retrieve information across datasets
without the complexity of maintaining exponentially many models.

3. Comparative study. We conduct an in-depth comparative study of existing LoRA mixing and
merging techniques and their effectiveness in corporate access control. We demonstrate the sever-
ity of the information leakage from the LLM memorization. This shows that designing an access
control-aware LLM is critical for the successful adaptation of corporate Al chatbots.

4. Multi-modal demonstration. We demonstrate AC-LORA on text and multi-modal LLMs, and we
show that AC-LORA is effective for practical use-cases.
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2 Motivation, Problem Statement, and Related Works

Besides documentation and code bases, corporate LLMs are trained with employee-specific data
such as meeting records, emails/chat records on project progress, wiki entries, etc. Fig. 1 shows
that information access typically follows the organization hierarchy. Users should only be able to
access their data and the projects they participate in or manage. Naively, organizations can train sep-
arate models with non-overlapping sensitive documents. Maintaining these models is prohibitively
expensive, as an organization with n permission zones has 2™ distinct permission groups.

Challenges with Single Foundation Model Training. A single foundation model trained with
all organizational data is easy to manage but poses security risks. LLMs retain some part of the
training dataset, known as memorization, which can be reproduced or confirmed via membership
inference attacks [24]. In practice, censorship methods are employed to monitor inputs and outputs
to prevent sensitive data leaks. However, studies [25-27] show these mechanisms are often inad-
equate, as attackers can bypass them with jailbreaking [28, 29] and harmless-looking inputs [30—
33]. Information leaks in corporate chatbots [1, 2, 34] threaten Al adoption in such contexts.
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In our 12-gram experiment, the substring leakages from MP and SP above the base model are in CC,
9.9k and 3.7k, and in QC, 15.6k and 4.7k words. From this observation, we conclude that a single
foundation model trained with all sensitive data is detrimental to maintaining information isolation
and safety. Appx. A provides more details on the memorization experiment.

Related Works and Drawbacks. We discuss the drawbacks of several existing techniques.



1. Access-controlled RAG: RAG with access control [45] can allow or deny user access to a docu-
ment. However, retrieving from external sources (storage, the internet) is expensive. Additionally,
retrieving a set of large documents and putting them into context is detrimental to the performance
of the LLMs, as shown by [5], as LLMs often fail to extract relevant information from long con-
text. Too many documents can also lead to inferior performance [46]. Longer context significantly
increases inference time and memory consumption. Recent research shows that RAG can produce
unsafe LLM responses compared to the base model answer [11], fine-tune scores higher in accuracy
compared to RAGs [47], and RAGs are ineffective in multi-hop queries [6].

2. Separate adapters for permission roles: Maintaining separate LoRAs for non-overlapping, per-
missioned datasets is feasible only if all users have a single permission role associated with a single
dataset. Users of multiple permission zones, which reflect the organization’s hierarchical structure,
require fine-tuning new LoRAs with the merged datasets. However, this is prohibitively expensive
as an exponential number of LoRAs (n permission zones lead to O(2™) LoRAs) is needed.

3. Training-free LoORA Mixing: There are two primary existing methods to combine multiple LoRAs
without requiring any trained gating or routing mechanism. One approach is to mix the outputs of
the LoRAs by averaging their results. Given the up and down projection of n LoRAs as A =
{41,...,A,} and B = {By,..., B,}. The average output (Y) for input = from the mixture of
LoRAsis: YV = % Y. BiA;x. Another method produces a new LoRA with merged weights of

the LoRAs as: Wmerged = %ZZ;Z B;A;,Y = Wmergea®. In both cases, the inference accuracy
diminishes severely [44, 48] with increasing number of LoRAs.

4. Training-based LoRA Mixing: To improve the above techniques, MoLE [18] uses a trained gate
to merge the entire output sequence from every MLP layer to combine tasks from every LoRA
expert. The gate merges the output sequences based on the input encountered during the training
phase. The gate parameter size increases linearly with the number of LoRAs and input sequence
size. Like MoE [49], MoELoRA [19] utilizes sparse MoE activation with a trained gate. After every
attention layer, the expert gate diverts a single token (unlike the sequence in MoLE) to an expert
MLP. The routers/gates in MoE models act as load balancers, trained jointly on all experts’ data,
which risks including confidential information, even if an expert is disabled due to the permission
set. Alternatively, the routers can be trained for every possible permission set (O(2")), bringing us
back to the same challenge of training as many LoRAs. This shows that MoE-style LORA mixing
techniques are not directly suitable for strict access control.

Threat Model. AC-LORA assumes that the attacker can remotely access the LLM chatbot and send
unlimited queries, aiming to maximize the retrieval of unauthorized information. They can inject
arbitrary system commands or special tokens into queries and modify documents they can write,
like personal records (corporate email, chat accounts, meeting recordings, etc.), and project data.
We also assume the attacker cannot steal the identity to impersonate a user.

Requirements. Given the above-mentioned problem space, we summarize the following require-
ments for a secure corporate Al chatbot with strict information access control:

—RQ I: Strict access control policy. A user without the proper access rights cannot access restricted
information or bypass the access control through means such as prompt injection.

—RQ 2: Arbitrary permission rules. The model can handle users’ requests with new permission
rules never encountered before, while maintaining the access control policy.

—RQ 3: Efficient update. Information can be added, updated, or deleted with minimal effort.

—RQ 4: Efficiency. Ensuring that all of the above changes can be addressed without adding a
significant number of parameters to the model to avoid a significant increase in inference latency.

3 AC-LORA: Permission-Aware LoRA Retrieval and Mixing

We present AC-LORA: an end-to-end access control-aware LLM inference system. It integrates
LoRA-based retrieval with dynamic LoRA mixing to efficiently support an exponential number of
permission rules, while ensuring users can access all information to which they are authorized.

Main Observation. AC-LORA finetunes and maintains separate LoRAs for different permission
zones. We assume a permission zone consists of projects or topics. We use three open-source
datasets: Flan-v2 [21], RepLiQA [22] for text, and wikiart [23] for multi-modal. Figs. B.1 to B.3
show that topic embedded spaces are separable. Tasks such as anli_r1 and anli_r2 in the Flan-V2



(Fig. B.1) are variants of the same task, and their embeddings overlap. This observation is further
reinforced by the pairwise cosine similarity score depicted in Figs. B.4 and B.5.

Isolated LoRA Fine-tuning and Knowledge Injection. = Our memorization observation
(cf. Sec. 2) suggests that ensuring information isolation between different permissioned data
zones requires fine-tuning on individual, isolated datasets with separate LoRAs (RQ. 1).
The base LLM contains public knowledge,
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ject than the base model with an average of

0.959 grade improvement. Our observation aligns with existing works [13], which evaluate the
effect of knowledge injection using LoRA.

Secure LoRA Retrieval and Similarity-based LoRA Merging. AC-LORA maintains two vector
databases. LORA-DOC EMBED contains the mapping between the LoRA and their corresponding
fine-tuned document embeddings (chunked in 100 tokens). LORA-PERMISSION contains the per-
mission information of the users. Each user (uniquely identified by their User-1ID attribute) is asso-
ciated with an n-dimensional (n LoRAs) vector, where the vector elements denote deny (0) or access
(1) to a specific LoRA. Given a tuple: {query, User-ID} from the user, AC-LORA retrieves a set
of candidate LoRAs based on the cosine similarity between the embeddings of the query and the
training dataset. We denote the set of candidate LoRAs along with their cosine similarity scores as
O. The User-1ID retrieves the permission vector from LORA-PERMISSION. We denote the set of
permissible LoRAs of the given user as P. AC-LORA retrieves and loads the set of relevant LoRAs
L = O NP from LORA-DOC EMBED. The similarity scores of the LoRAs in £ are also passed
to the mix-gate after each MLP layer. Given the LoRAs in £ = {L1, Ly,... Ly} where k < n

and their corresponding normalized similarity score {S1, Sa, ..., Sk}, such that Zle S; =1, then
for a query Q the output for each LoRA in each layer L; € Lis y; = Q(A;B;) (L;’s low rank

components: A;, B;). The final output for each layer is then ) = W + Zf S;y; where W is the
base model weight. Note that the mixing is completely training-free, i.e., the model owner does not
need to retrain it for every possible combination of LoRAs (RQ. 2), and therefore enables faster and
memory-efficient inference (RQ. 4) due to the absence of gate parameters. Not loading any LoRAs
outside the user’s permission also ensures that no sensitive data is leaked (RQ. 1).

Combining Knowledge from LoRAs. Fig. 1 shows that corporate Al chatbots should be able
to combine information from different datasets. The example query “How many cores are in the
CPU?” might have a different answer depending, for example, on the platform or generation. There-
fore, it is important to collect and combine the relevant information across different permission zones
(given the user has the correct access rights). AC-LORA’s similarity-based LoRA merging captures
domain-specific knowledge across non-overlapping permission zones. This knowledge combination
enables AC-LORA to avoid maintaining all possible permission zone LoRAs (RQ. 2).



Answer Hinting. The hint set are determined as H = O — L = O — (O N P). The metadata
of the LoRAs in H are retrieved from LORA-DOC EMBED and given to the user as a hint that
there might be better answers given the queries and how to apply permission for them. This acts as
valuable guidance for the users to apply for the correct permission to further refine their response. A
curious/malicious user can gain knowledge of the possible existence of the information. Disabling
the hint for sensitive LoRAs (e.g., specification of an upcoming product) will prevent AC-LORA
from mentioning the existence of a specific dataset to not-permitted users.

Update Operations. Unlike the majority of existing works on LoRA mixing (see Tab. 1), AC-
LORA is more flexible. To remove a dataset, the model owner must only remove one entry (O(1)
operation) from both the LORA-DoC EMBED and LORA-PERMISSION databases. To modify an
existing permission zone (add/delete/modify), the model owner needs to fine-tune the specific LoRA
with updated data, recompute the embedding of the fine-tune dataset, and update the LORA-DoOC
EMBED vector-DB with the updated LoRA and the document embeddings. This does not affect the
LoRA mixer, as it is only dependent on the individual cosine similarity score of the query and the
document embedding vectors (RQ. 3). Updating the access control vector of the user only requires
updating one entry in LORA-PERMISSION, which is also an O(1) operation.

Summary of the Secure LoRA Retrieval and Merging. The step-by-step process of our proposed
system AC-LORA, depicted in Fig. 4 are: @ The user passes their query and credential information
to the system. First, the query goes to an embedding model to produce a vector embedding. This
embedding is then passed to LORA-DOC EMBED for a top-k similarity search. @ The top-k similar-
ity search produces O: top-k LoRAs along with their cosine similarity scores with the user query. @
The user permission passes as the input to the LORA-PERMISSION that retrieves the set of permitted
LoRAs. @ The permitted LoRAs are then passed to the base model. ® The outputs of the LoRAs
are mixed with the same proportion of the similarity score of ©O. ® The merged model outputs the
main Response, which abides by the strict access control policy in the LORA-PERMISSION. @
The Hint is derived from O based on the non-permitted LoRAs with a higher similarity score.

AC-LORA scaling with number of documents. AC-LORA is independent of the number of
relevant LoRAs. We can summarize the effects into two scenarios: (I) If all relevant documents
are from the same permission domain (e.g., one LoRA), we choose to assign the average similarity
score of the documents to that specific LoRA. (I) If the documents are spread over many permission
domains, we assign the average similarity score of the relevant document to each permission zone,
corresponding to its respective LoORA. In both cases, AC-LORA only calculates the similarity score
for the permission domain if the user has access rights to it. Therefore, unlike RAG, AC-LORA does
not suffer from lower performance (due to increased context size) when retrieving many relevant
documents. However, in a rare scenario, a query from a very high-privilege user (e.g., a CEO) may
require many LoRAs simultaneously. In such a case, the GPU memory will be a bottleneck, and can
be mitigated by using a suitable parallelization strategy, such as pipeline parallelization.

Multi-modalities. AC-LORA extends beyond text-based models. Similar to the text, a tight access
control mechanism is applied to such multi-modal scenarios. Existing work [36] utilizes a mixing of
LoRAs on stable diffusion to enhance the overall image quality when using LoRAs specialized on
partial human features. AC-LORA uses a similar mechanism to train isolated multi-modal LoRAs
based on QWEN2-VT and stable diffusion model: STABLE-DIFFUSION-V 1-4.

4 AC-LORA Evaluation

This section describes AC-LORA’s end-to-end evaluation. We run our experiments on two worksta-
tion GPUs with 48GB GDDR6 VRAM. Additional details regarding the setup and implementation
can be found in Appx. E. This section summarizes the key results of the AC-LORA evaluation.
Further results are discussed in Appx. C.

4.1 Methodology

Datasets. In the following, we describe our setup for three different datasets:

1. RepLiQA: RepLiQA (split O cf. Fig. B.2) consists of several small artificial articles covering
various topics, along with multiple question-answer pairs per article. We split it into an 80-20
training-test set, ensuring with stratification that each article is seen at least once in the training
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Figure 4: A high-level overview of AC-LORA showing LORA-DOC EMBED and LORA-
PERMISSION vectorDBs. LoRAs are retrieved and mixed with the base model based on the user’s
query embedding and permission. Relevant and non-permitted LoRAs can be returned as a hint.

set. We finetune 17 LoRAs (with rank » = a = 64), one for each topic, using LLAMA3.1-8B-
INSTRUCT as the base model. As seen in Fig. 3(a), we keep the finetune step size ~ 200 to avoid
overfitting. The training set comprises four data points per question: two with the document and
two without, each pair once with a short and long answer. Including question-only pairs improved
results as it aligns with the test set. To build the embedding database for AC-LORA, we use the
ALL-MNET-BASE-V2 [50] sentence transformer and split the training set for each LoRA into chunks
of 100 tokens, adding the corresponding LoRA as a tag.

2. Flan: FlanV2 contains datasets of 10 task domains (cf. Tab. 2). We use the identical setup of
[44], including the LoRAs shared with parameters (r = 8 and @ = 16). We utilize their test set,
which consists of 50 data points per task. As the training set used for the different LoRAs was not
shared, we constructed one based on the official FlanV2 dataset for the retriever. In particular, we
take the first 30k (or fewer for smaller tasks) samples of each selected task as the training set and
build the database as described above. As in LoRARetriver, we use the BLEU score to evaluate the
translation, ROUGE for the STRUCT-TO-TEXT TASKS, and EXACT MATCH for the rest.

3. WikiArts: We query QWEN2-VL to generate descriptions of the images from the wikiarts [23]
dataset (see Appx. D) to construct the text-embedding for the retrieval. We then finetune STABLE-
DIFFUSION-V 1-4 with the images to generate 27 LoRAs separated by the style attribute.

Combining Knowledge. Combining different LoRAs across different permission zones is impor-
tant for AC-LORA(CH. Sec. 3). Although existing works [18, 20] show that combining LoRAs can
be used to combine tasks from different LoRAs, e.g., translating from English to Spanish and then
from Spanish to German, to answer queries for English to German. However, to our knowledge,
no existing work shows that combining different LoORAs can increase a model’s information recall.
Retrieving more than just a single (best-fitting) LoRA and combining them introduces new infor-
mation and increases the response quality. To demonstrate, we create a dataset (CS-COMBI) from
Cybersecurity News category in RepLiQA. For each text, we ask a reasoning model (DEEPSEEK-
R1-32B) to extract the most (between 3 and 12) relevant facts. We then divide these facts randomly
into two groups. From these two groups, we generate:

1. Context: We ask the model to write a text that exclusively includes the facts given, creating two
new articles with parts of the information missing.

2. Combined QA Pairs: Taking one fact from the first group and one from the second, we ask the
model to generate a question and answer pair that requires both facts to answer.

3. Single QA Pairs: Taking two facts from the same groups, we ask the model to generate a question
and answer pair that requires both facts to answer.

We built one test and two disjoint training sets (with and without context), each containing at
least one question for each context in its corresponding group. We then fine-tune LLAMA3.1-
8B-INSTRUCT for three epochs and produce two LoRAs on these two training sets using different
r (= a) € {4,8,16,32,64,128}. The prompts for extracting facts and additional details are in
Appx. D.
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Figure 5: (a) LoRA retrieval performance in RepLiQA and FlanV2 for different top-k. Left: %
of queries per field for which the correct LORA € the set of retrieved LoRAs. Right: # retrieved
LoRAs. (b) Retrieval of FlanV2 target domains (left) and corresponding retrieved domains (right).

Table 2: AC-LORA evaluation on FlanV2 dataset and comparison with other LoRA approaches.
The baselines are extracted from LoRARetriever [44] for comparison. The best result is bold, while
the second best is underlined.

Task Perfect Selection Selection Fusion Mixture MoE MoE MoE AC-LORA (95%-CI)
IID* OOD* IID* ODD* IID* OOD* Topl Top3 Soft (k=3, fetch_k=10)
Struct to textRouee! 64.0 613 501 494 459 559 504 456 468 479 61.7 (58.2-64.7)
Struct to textRoUee2 39.6 370 266 257 235 300 264 219 229 238 37.0 (33.8-40.3)
Struct to textRoUe! 57.0 545 439 436 403 495 440 398 407 417 54.3(51.1-57.3)
Translation 13.1 128 120 12.2 123 128 122 9.5 105 107 13.6 (11.37-15.45)
Commonsense 62.5 555 460 510 480 615 500 545 520 515 65.0 (58.5-72.0)
Sentiment 90.0 89.5 89.0 790 785 895 905 700 750 745 90.0 (86.0-94.0)
Reading Comp 67.3 517 403 473 450 513 473 487 477 487 55.3 (49.0-60.6)
Closed book QA 45.0 40.0 430 410 375 450 485 405 385 400 39.0 (30.5-43.0)
Coreference 52.0 50.0 460 470 530 63.0 490 61.0 590 570 54.0 (44.0-64.0)
Read.comp.w/commonsense 69.0 69.0 30.0 35.0 19.0 46.0 40.0 31.0 290 29.0 63.0 (49.0-69.0)
Paraphrase 65.5 58.0 455 455 440 565 455 420 385 36.0 63.0 (56.4-69.5)
NLI 723 70.0 60.6 514 538 679 643 503 49.6 483 68.7 (64.2-72.5)

H1ID: access any LoRA for every test sample, encompassing the LoRA specific to the sample’s task. *OOD: for each test sample, the LoRA associated with its
specific task during the retrieval phase is masked.

4.2 Main Results

Retriever Performance. We now discuss our two main results: first, we
demonstrate that our retriever achieves high accuracy in retrieving the correct
LoRA when given a query. As depicted

in Fig. 5(a), with increasing %k (for the top-k . 35 Trale or

retrieved documents), the accuracy of having g 3.0 == AC-LoRA (Perfect Selection) &

the correct LoRA in the set of retrieved Lo- gz 5 1 \*\
RAs approaches one, while keeping the num- 8.0 & TN A== == N e
ber of retrieved LoRAs under 3 for RepLiQA < i

=
e

and 5 for Flan. Fig. 5(b) confirms this by dis-
playing the connection between a query from a
domain (left) and the retrieved LORA domains  (a) AC-LORA inference grades w.r.t to single LoRAs.
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Inferece Results. We now provide AC- £°°

LORA’s inference results. 1. RepLiQA: Dur- %%~ 1 o o8

ing inference, AC-LORA retrieves the rel- © LoRA Rank

evant LoRAs (k= 10) and mixes them (b) Mixed LoRAs grade improvement on CS-COMBI.

based on the cosine similarity with the query.

Fig. 6(a) shows the AC-LORA’s mixed LORA  pjo10 6: AC-LORA evaluation on RepLiQA.
inference grades (judged by GEMMA-3-27B

model), compared to the single finetuned LoRAs (perfect selection) specific for the given query.

AC-LORA performs very close to the perfect selection on most topics, and in some, it exceeds the
perfect selection due to mixing with relevant LoRAs from other domains.
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2. FlanV2: Unlike RepLiQA, for Flan, we follow similar accuracy metrics as state-of-the-art Lo-
RARetriever [44] to evaluate AC-LORA. Tab. 2 shows that AC-LORA matches or exceeds Lo-
RARetriever’s accuracy without requiring any optimization or training for LoORA mixing. More
details are in Appx. C. FlanV2 focuses on different formats (tasks) rather than information. There-
fore, AC-LORA also effectively isolates tasks.

3. Multi-modal: Fig. 7 highlights AC-LORA multi-modal performance where images are generated
using the prompt in Prompt 8 with increasing top-k (k € {1,2,3}) and using (in the retrieval
order) the LoRAs of Ukiyo_e, Impressionism, and Symbolism. Additional multi-modal results are
in Appx. C.4.1.

AC-LORA effectiveness on overlapping knowledge groups. AC-LORA utilizes an off-the-shelf
embedding model to calculate the embedding space and the similarity score. For datasets with
overlapping permission domains, a fine-tuned embedding model can ensure separation. Overlapping
knowledge groups are not detrimental to AC-LORA. If one or more overlapping datasets are not
included in the user’s permitted list, the specific LoORA(s) will not be used to answer the question.
If one or more are permitted, they will be merged based on the similarity score. Anli_rl,r2,r3 in
FlanV2 are very similar and have a large overlapping embedding space.

Combining Knowledge. We fine-tune (cf. sec. 4.1) two LoRAs on disjoint datasets. While a
single LoORA can answer some test questions, most require information from both. In Fig. 6(b), we
illustrate, in blue, the average improvement in answers using both LoRAs compared to the lower-
scoring LoRA, and in orange, the improvement over the higher-scoring LoRA. Although combining
LoRAs improves performance over the weaker one, it generally performs worse than the higher-
performing LoRA. The query still requires both LoRAs to answer, but not with the same weight,
leading the LoRA with less information on the subject to introduce noise. We observe 7.71% of test
queries show improvements over both, and depict a similar behavior to the one described in Fig. 1.
Specific examples of such query-response pairs are provided in Appx. C.2.2.

Effect on Inference Latency. Fig. 8 shows the time to first token generation latency with an in-
creasing number of active LoRAs. We construct a prompt (90 input tokens long) such that with
increasing k, we can retrieve an increasing number of LoRAs (RepLiQA). As a comparison, we
also provide vanilla LLAMA3.1-8B’s latency with 260, 5K, and 10K context sizes to visualize the
effect of an equivalent RAG-like solution that retrieves and sets the entire relevant documents to the
context. This shows AC-LORA is efficient and satisfies RQ. 4.

Effect on memory. Loading the 8B base model with 17 LoRAs (r = 64) requires ~40GB of mem-
ory without quantization. Similarly, Flan with 48 LoRAs (r = 8) uses only slightly more and still
fits on a single 48GB GPU. These requirements depend on the base model size, LORA configuration
(targeted modules, number of layers, and rank), and the prompt (and context) length. However, par-
allelization techniques such as pipeline parallelization can allow AC-LORA to load more LoRAs.
Additionally, in a memory-constrained environment, one could keep frequently used LoRAs on the
GPU while loading less common ones on demand, trading off a slight latency increase.

5 Discussions

Societal impacts. There are other scenarios where AC-LORA can enforce strict access control
while maintaining high inference quality, besides corporate Al chatbots.



1. Safeguard users from unsafe content (e.g., illegal advice or violent images): One can isolate the
training sets (of the said contents) and finetune separate LoRAs, which could, for example, only be
accessed by authorized personnel (e.g., law enforcement).

2. Foundation models with IP data: As recent reports [51] indicate, unlawful usage of IP data in
training may have severe legal implications; AC-LORA could allow using such data by keeping
it on licensed LoRAs and loading it with the base model for specific users. However, such use
cases require further investigation, and the details of how such systems could be implemented using
AC-LORA are out of the scope of this paper.

3. Bypass content filter: If the content filtering is implemented by model alignment [52], there are
three scenarios in which they could be affected by AC-LORA:

* No LoRAs are retrieved: If the user query does not match any LoRA, none will be retrieved,
and the base model will answer the query. Therefore, the original alignment of the model
remains unchanged.

* LoRA(s) are retrieved: 1t is challenging to ensure model alignment without considering this
during fine-tuning.
» Specific LoRAs for bypassing filters: A set of LoRAs could be specifically fine-tuned to

bypass the content filter (e.g., LoORAs used by law enforcement), making the bypass of the
filter intentional.

However, the broader impact of such a system is complex, requires further analysis, and is beyond
the scope of this paper.

Limitations. We now discuss some of the limitations of AC-LORA.

1. General Limitation of LLMs and finetuning: LLMs perform well on some tasks but have notable
shortcomings like hallucinations, context scaling issues, and limited reasoning abilities. Reasoning
models help address some gaps, like multi-hop reasoning, but major issues persist. Importantly,
AC-LORA relies on LLMs’ capacity to learn and integrate new data during fine-tuning, making its
design agnostic to future advancements in reasoning models, as it is applicable on top.

2. Hinting: The hinting mechanism in Sec. 3 can introduce new attack vectors. Although useful in
specific scenarios, it risks membership-inference-like attacks that could expose confidential data.
We recommend using it cautiously, ideally with LoRAs on non-sensitive datasets.

3. Combining Knowledge: While we have presented a first experiment and dataset suggesting that
different LoORAs can combine knowledge, a more extensive analysis is required to better understand
the extension (and limitation) of such capabilities.

4. Frequent Swapping of LoRAs: We assume that either all LoRAs fit on the devices, or LoORA swap-
ping between inference rounds is minimal. If not, the time to first token increases significantly, as
shown in Fig. C.9. However, we believe this assumption is reasonable. In the improbable worst-case
scenario, where multiple (or all) LoORAs must be loaded in each inference round, performance could,
for example, be improved by reducing the value of k or optimizing the batching algorithm.

5. Multi-Modal: Our evaluation on other modalities serves as a proof of concept rather than a com-
prehensive analysis. A thorough assessment would require more resources, including a new dataset
and more robust evaluation methods, which are beyond the scope of this work (see Appx. C.4).

6 Conclusion

In this paper, we propose AC-LORA, a multi-modal, access-control aware LoRA serving system
that requires no additional training for mixing responses by different LoRAs. AC-LORA is efficient,
can retrieve and mix relevant LoR As based on the user’s query, while maintaining strict organization
information access control policies. AC-LORA evaluation shows that deploying and providing
high-quality responses is practical.
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7 NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the pa-
per’s contribution. AC-LORA ensure access-control-aware LoRA merging to ensure high-
quality response without training any mixing/routing gate. Sec. 2 additionally provides
motivation, the gap in the prior works, and an attacker model that concretely establishes
the scope of this paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: Sec. 5 discusses limitation of AC-LORA in detail.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: This paper does not contain theoretical results. This paper proposes a new
access-control aware inference serving system that we call AC-LORA. We provide exper-
imental proofs in Sec. 4.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
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10.

11.

12.
13.

Answer:[Yes]

Justification: We provide full details in the supplemental data/code on reproducing the
paper.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our supplemental material includes detailed instructions to reproduce the
results of this paper.

Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the evaluation details are discussed in Sec. 4.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the results (where it is applicable), such as Figs. 5(a), 6 and C.2 to C.4
and tabs. 2 and C.1 provide statistical significance.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

[Yes]
Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]
Justification: This paper fully adheres to the NeurIPS Code of Ethics .
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: AC-LORA ensures strict information access control in corporate LLMs.
These LLMs are trained on corporate data and are specifically designed to serve the em-
ployees efficiently and get accurate and helpful information while maintaining strict infor-
mation access control guidelines. In Sec. 5, we discuss how AC-LORA can filter unsafe
responses from Al agents. However, we also consider this specific use case to be out of the
scope of this paper.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: This paper does not include such artifacts.
Licenses for existing assets
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14.

15.

16.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
Justification: Appx. F provides a list of the assets along with their licenses.
New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes] .
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: No experiments in this paper involve human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not require IRB approvals due to no human subject involve-
ment.
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A LLM Memorization Evaluation

We construct an experimental pipeline consisting of several stages: preparing the dataset, fine-tuning
the base model, performing inference, and comparing the model’s predictions against the training
data. In the following sections, we provide a detailed description of each step in the pipeline.

A.1 Dataset Preparation

To create the datasets, we use the arXiv API to download research papers on two topics: confidential
computing (CC) and quantum computing (QC). The specific URLs used to retrieve the papers are
listed in Tab. A.1.

Topic arXiv API URL (documentation: https://info.arxiv.org/help/api/basics.html#using)

Confidential Computing https://export.arxiv.org/api/query?search query=all:confidential+AND+all:computing&max results=500
Quantum Computing https://export.arxiv.org/api/query?search _query=all:quantum+AND+all: computing&max results=500

Table A.1: arXiv API URLs used for data retrieval

After downloading the papers, we filter out the ones published before 2024. Then, we convert the
PDF files into plain text and split the resulting text into smaller chunks. Each chunk is then input into
the LLAMA3.1-8B model, accompanied by a prompt instructing it to generate five question-answer
pairs based on the given text as context:
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USER: Write the questions and corresponding answers, and do not repeat the given context or any
final answer. Generate five questions and their corresponding answers from the given context.
{context}

The final dataset comprises 15,459 question-answer pairs related to confidential computing and
15,466 question-answer pairs related to quantum computing. Finally, both datasets are partitioned
into training and test sets using an 80-20 split.

A.2 Fine-Tuning

The second step of the experimental pipeline involves fine-tuning an LLM for text generation using
LoRA. We follow this approach to assess the extent to which LoRA adapters memorize training data,
i.e., to evaluate how much of the original input is retained within the adapted parameters during fine-
tuning. We load the base model, LLAMA3.1-8B, using 4-bit precision, nested (double) quantization,
with normalized 4-bit quantization type and bfloat16 as the compute data type. We configure the
LoRA adapters with an attention dimension r = 16, scaling factor o = 64, and a dropout probability
0.1.

For the training itself, we adopt the same hyperparameter configuration used in the Stanford Alpaca
project [53], due to the similarity between our datasets and those used in Alpaca — both in terms
of size and structural format (instruction-answer pairs). This also helps to rule out overfitting as a
contributing factor to memorization. We also use the same prompt format as in Alpaca.

Fine-tuning was performed using the same experimental setup described in Sec. 4.

A.3 Inference

In the inference phase, we combine the individual LoRA adapters with the base model and prompt
the fine-tuned models using inputs from the test dataset. In a real-world scenario, the model will
likely encounter prompts that resemble those from the training set. Therefore, we use the test set,
which shares a similar context with the train set since they originate from the same source, but differ
enough to simulate real-world conditions. Our objective is to evaluate the model’s memorization
after fine-tuning, without having direct access to the training set, while still using similar prompts.
We repeat the experiment in three distinct variants.

In the first variant, we apply the greedy search decoding strategy to obtain a single deterministic
prediction per query. These predictions are consistent and can always be reproduced.

In real-world scenarios, attackers can prompt a model as often as they like. Consequently, repeated
prompting can increase the likelihood of the model revealing memorized content, amplifying the
risk of information leakage. We adopt a second experimental variant using the multinomial sampling
decoding strategy to reflect this threat model. Specifically, we modify the default LLAMA3.1-8B
generation configuration by slightly increasing the temperature from 0.6 to 0.7, and setting the top_p
parameter to 1.0 instead of 0.9. This approach enforces more diverse predictions. We prompt the
model three times, generating multiple prediction candidates.

In the third variant, we apply the greedy search decoding strategy again, but this time using only the
base LLAMA3.1-8B model, without combining it with any LoRA adapters. This helps isolate the
contribution of the LoRA adapters, allowing us to assess how much newly introduced knowledge is
memorized by the adapters versus what the base model retains.

A.4 Prediction Evaluation

The final stage involves a quantitative measurement of LLM memorization by comparing each gen-
erated prediction from the prediction set P against each entry in the corresponding model’s training
dataset S. Unlike previous work that relies on concepts such as eidetic memory [54] and adversarial
compression [55] to define and measure LLM memorization, our work aims to quantify memoriza-
tion using simple string comparison techniques directly.

We compare each prediction p € P against each question-answer pair s € S from the corresponding
model’s training dataset by searching for all the common substrings between p and s. Importantly,
we treat p and s as sequences of words (rather than characters), where tokens are defined by whites-
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/QUESTION: What is the relationship between the entropy\

gain and the trace of the logarithm of the map F ?
ANSWER: The entropy gain of a map F under a
completely positive map F is related to the trace of the
@ESTION: How is entropy gain related to the trace 0\ logarithm of the map F by AS(F) 2 tr(F log F).
the logarithm of a quantum channel ? \ /
PREDICTION: The entropy gain is directly related to the / \
trace of the logarithm of the map F which is a measure
of the amount of information gained through the QUESTION: What is the meaning of HX ?
application of F Specifically the entropy gain can be
expressed as the difference between the logarithmic ANSWER: HX represents the entropy of a random
map and the logarithmic map after the application of F variable X which is a measure of the amount of
which is given by the trace of the logarithm of the map information that X contains
F This relationship between the entropy gain and the
trace of the logarithm of the map F is a key result in the \ /
context of quantum channels as it provides a useful / \
measure of the amount of information gained through QUESTION: What is the distance measure used in the
w—: application of the channel / quantum kernel ?
ANSWER: The distance measure used in the quantum
kernel is the fidelity between two encoding states which
is given by the trace of the product of the two encoding
\states /

Figure A.1: An example of a prediction generated by the quantum computing LoRA using the
greedy search decoding strategy (left) and training set entries whose segments are contained within
the prediction (right). The highlighted text indicates matching sequences with length greater than or
equal to n = 8 words. The prediction has an absolute memorization score of 43 and a relative score
of 0.387.

pace separation. We further enforce a minimum substring length n, measured in consecutive words,
to ensure that only meaningful overlaps are considered in the analysis. We repeat the experiment for
n € {8,12,15,18}.

For this purpose, we generalize the Longest Common Substring (LCS) Suffix Tree algorithm [56],
to search not only for the longest common substring, but also for all common substrings between
two strings [57]. We additionally adapt the algorithm to include only the substrings of length greater
than or equal to n words.

This process results in a set of | S| overlapping intervals for each prediction p, where each range cor-
responds to the overlap with a specific training example s. To quantify memorization, we aggregate
the intervals across all s € S to compute a global overlapping interval — the union of all sequences
within p that are directly and exactly memorized from the training set. We then compute two mem-
orization scores for each prediction: an absolute score, defined as the total number of memorized
words within the global interval, and a relative score, calculated as the ratio of captured words to
the total number of words in the prediction. Fig. A.1 shows an example of a prediction alongside
training set entries whose segments are memorized verbatim. In the case of multinomial sampling,
where we generate three predictions per test query, we additionally aggregate the global intervals
from all three predictions. We avoid double-counting when merging the intervals, such as when a
captured substring from one prediction is partially or entirely contained within a longer overlapping
substring from another. We then compute the cumulative absolute score based on the total number
of memorized words within the merged interval.

It is important to note that finding all common substrings of two strings is prohibitively expensive,
with time complexity of O(m + n), where m and n are the lengths of the two strings. Due to the
number of experiments, the size of the training and test datasets, and the lengths of the generated
predictions, the comparison stage required significant computational resources. The whole process
took over 15 days to complete when executed in parallel across seven nodes.

B Dataset Embedding

Figs. B.1 to B.3 show the embedding space for FlanV2, RepliQA, and wikiart dataset respectively.
As mentioned previously, ALL-MNET-BASE-V2 [50] was used to generate the dataset embeddings.
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Figure B.2: Embedding space of the RepliQA [22] Dataset.

Appx. B and fig. B.5 additionally show the pairwise cosine similarity of these three datasets. To cal-
culate the cosine similarities between each pair of topics in a dataset, we first calculate the centroid
of all document embeddings in a topic. This embedding centroid is then used as the representative
embedding for the specific topic and is used to derive the pair-wise cosine similarity.

C Additional AC-LORA Results

In the following subsection, we will provide more detailed results from AC-LORA evaluation.

C.1 Flan

In Tab. C.1 we showcase the full comparison to [44] on Flan-v2. Similarly to the briefer version, we
can see that AC-LORA matches or outperforms other methods in most tasks. Unlike the results on
RepLiQA, if the wrong LoRA is retrieved, the output format will (in some cases, drastically) change
and thus receive a worse exact match score, even if the content of the answer is correct. Given the
nature of AC-LORA, it is unsurprising that its performance is poorer on tasks evaluated by exact
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(a) Domain grouped (b) Tasked grouped - The thickness shows
the frequency of the connection.

Figure C.1: Actual retrieved LoRAs for given domain or task.

match. This is due to its vulnerability to additional retrieved LoRAs, where retrieving the correct
LoRA and irrelevant ones can sufficiently lower the exact match score. In general, AC-LORA
consistently retrieves at least one LoRA that belongs to the same domain, though this is not always
exclusive for certain domains. As illustrated in Fig. C.1, for queries originating from domains such
as CLOSED_BOOK QA and COMMONSENSE, AC-LORA occasionally retrieves LoRAs from other
domains. This is intuitive, given that these domains have less distinct boundaries compared to other
tasks. If the primary goal of AC-LORA were to retrieve LoRAs based on the task, rather than
knowledge, performance in these cases could be improved by emphasizing the requested format
more during retrieval.

One can notice a similar behavior in Fig. C.2 and Fig. C.3, where we show an extensive version
of Fig. 5. The plots show the results with increasing threshold (horizontally) and fetch_k parameter
(vertically). The threshold indicates that LoRAs with a retrieved average similarity score lower than
the given threshold are disregarded. The threshold does not significantly affect the results, except
for thresholds higher than 0.5, where we start to retrieve fewer, if any, LoRAs, and thus also not
the correct one. On the other hand, fetching more documents has a minimal impact on the results.
While the plots per task (instead of per domain) are a bit noisier, they show a similar trend. The
worst-performing one is mnli_mismatched, which is not surprising, as we have not included it in
our database (since the entire idea of this task is to see how it performs out of distribution to the
matched ones), and therefore cannot be retrieved. In the event that we consider mnli_matched as
the correct LoRA in this case, we achieve, for example, a 92% accuracy for the mnli_mismatched
queries with hyperparameters k = 10, fetch_k = 200, and threshold = 0.0. Similarly, the task arc_easy
and arc_challenge, or anli_{r1,r2,r3}, whose accuracy increases when considering any of the options
as correct.

C.2 RepLiQA

In Fig. C.4 we present a more detailed version of the plot presented in Fig. 5. The plots show the
results with increasing threshold (horizontally) and increasing fetch_k parameter (vertically). Simi-
larly to Flan, one can see that the fetch_k parameter does not appear to affect the results significantly.
At the same time, once we increase the threshold to 0.5, retrieval results degrade significantly as this
leads AC-LORA to disregard often all retrieved LoRA. We show the actual retrieved LoRAs per
domain and their frequency in Fig. C.5.

C.2.1 Hinting

To evaluate the Hinting mechanism described in Sec. 3 we run AC-LORA once by masking (not
permitting) the LoRA of the corresponding topic and once with all permissions if there has been a

24



Table C.1: Full comparison with LoRARetriver.

Selection

Fusion

Mixture

Task/Llama27b Perfect MoE MoE MoE SME- Adapter LoRa AC-LORA (95%-CI)
Selection IID OOD IID OOD 1IID OOD Topl Top3 Soft AR Soup Hub (k=3, fetch_k=10)
Struct to Text
WebNLGRovee! 712 67.0 539 494 454 578 539 451 476 49.1 511 39 325 69.8 (65.7-75.2)
WebNLGRoee2 50.6 445 300 259 241 335 294 226 258 261 279 0.9 17.3 48.4 (42.2-55.8)
WebNLGRoe! 64.4 609 49.1 455 41.0 523 496 400 419 433 454 39 31.1 61.9 (56.8-67.6)
DARTReuee! 71.7 679 584 563 534 632 600 554 563 569 600 3.3 40.0 72.5 (66.6-76.1)
DARTRevee2 49.1 458 349 323 306 366 354 303 31.0 308 330 1.3 20.1 49.1 (42.4-55.0)
DARTRoue! 64.6 61.1 524 503 479 563 524 497 508 502 548 33 35.2 64.0 (58.7-69.6)
E2ENLGRoue! 66.1 658 593 622 572 660 587 529 540 553 532 4.2 50.1 66.1 (62.0-70.3)
E2ENLGRovee 40.0 394 341 347 320 388 321 269 276 288 275 2.4 26.3 39.6 (35.6-43.5)
E2ENLGRevee! 56.7 557 502 527 49.1 569 49.0 451 450 470 451 42 422 56.4 (52.5-60.6)
CommonGen®*'¢*"! 46.9 447 290 299 277 365 290 290 293 30.1 276 6.6 19.8 38.3(30.9-44.0)
CommonGenRU¢e2 18.8 183 73 9.9 72 111 86 7.7 7.1 9.3 8.4 0.0 6.9 11.1(6.7-16.2)
CommonGen®U¢*! 42.5 405 240 258 233 327 248 244 251 263 243 6.6 18.0 34.8(28.2,40.4)
Translation
Paracrawl-enes 243 242 203 229 223 228 221 180 188 195 216 45 16.4 26.3 (19.0-33.6)
WMT’ 16-tren 32 3.1 2.6 35 33 3.7 2.6 35 32 34 32 0.0 2.0 3.4(0.2-8.3)
WMT’ 16-ruen 10.8 104 98 9.2 93 11.0 108 6.2 7.8 83 73 0.0 4.8 11.3 (6.0-17.2)
WMT’16-deen 18.9 187 203 179 188 188 187 116 140 147 16.6 1.1 114 17.9 (12.1-24.5)
WMT’ 16-fien 6.5 6.5 7.0 72 7.1 73 7.8 6.2 6.2 6.1 6.5 0.7 43 7.7 (2.6-12.9)
WMT’ 16-roen 13.9 140 123 128 133 131 122 9.8 10.7  10.1 10.3 0.3 8.0 15.1 (9.4-20.7)
WMT’ 14-enfr 16.5 16.1 169 17.7 18.0 178 18.0 159 173 17.1 16.4 35 152 17.9 (12.2-21.9)
WMT’ 16-csen 10.7 94 7.0 6.1 6.2 8.3 5.8 4.7 6.3 6.3 6.3 0.8 6.1 9.7 (5.4-13.8)
Commonsense
StoryCloze 72.0 62.0 420 720 680 84.0 580 740 700 700 68.0 62.0 48.0 86.0 (76.0-96.0)
PIQA 46.0 460 320 340 360 380 340 400 38.0 380 360 38.0 0.0 44.0 (31.9-58.0)
COPA 86.0 740 680 780 700 80.0 680 720 700 720 70.0 56.0 22.0 80.0 (72.0-92.0)
HellaSwag 46.0 400 420 20.0 18.0 440 400 320 300 260 260 28.0 0.0 50.0 (36.0-64.0)
Sentiment
SST-2 98.0 980 960 740 780 960 940 560 680 660 660 74.0 0.0 98.0 (94.0-100.0)
Yelp 98.0 940 940 960 960 98.0 98.0 8.0 90.0 860 84.0 80.0 0.0 98.0 (90.0-100.0)
IMDB 96.0 96.0 960 920 820 96.0 960 760 80.0 800 84.0 80.0 0.0 96.0 (90.0-100.0)
sentiment140 68.0 700 700 540 580 680 740 620 620 66.0 620 60.0 2.0 68.0 (56.0-80.0)
READING Comp.
MultiRC 68.0 52.0 38.0 440 440 48.0 440 540 520 500 480 40.0 6.0 60.0 (46.0-72.0)
SQuADv2 62.0 56.0 12.0 300 200 220 160 240 240 260 220 16.0 0.0 34.0 (24.0-50.0)
SQuADv1 68.0 66.0 68.0 640 640 620 680 680 70.0 660 66.0 54.0 4.0 56.0 (42.0-70.0)
OBQA 82.0 68.0 580 640 600 780 660 620 640 660 60.0 40.0 0.0 70.0 (56.0-80.0)
BoolQ 84.0 60.0 600 680 700 80.0 760 740 680 760 70.0 72.0 6.0 84.0 (74.0-94.0)
drop 40.0 8.0 6.0 140 120 180 140 10.0 8.0 8.0 8.0 220 0.0 28.0 (14.0-38.0)
CLOSED-BOOK QA
Q 18.0 160 100 160 140 160 100 120 120 120 4.0 12.0 0.0 10.0 (2.0-18.0)
ARC-e 50.0 56.0 700 540 560 66.0 820 580 580 600 58.0 48.0 0.0 64.0 (46.0-74.0)
ARC-c 46.0 420 46.0 340 340 50.0 46.0 460 420 420 420 24.0 0.0 38.0 (24.0-48.0)
TriviaQa 66.0 46.0 460 60.0 46.0 480 56.0 460 42.0 46.0 240 42.0 4.0 44.0 (26.0-54.0)
COREFERENCE
DPR 54.0 50.0 500 560 600 68.0 560 640 600 620 62.0 46.0 2.0 54.0 (40.0-66.0)
WSC 50.0 50.0 420 380 460 58.0 420 58.0 58.0 520 54.0 40.0 0.0 54.0 (40.0-68.0)
READ. COMP. W/ COMMONSENSE
CosmosQa 68.0 340 46.0 320 500 460 440 460 440 380 14.0 6.0 72.0 (58.0-82.0)
record 70.0 70.0 260 240 60 420 340 180 120 140 8.0 14.0 0.0 54.0 (32.0-62.0)
PARAPHRASE
Paws Wiki 90.0 640 400 440 420 560 460 560 50.0 480 540 60.0 2.0 78.0 (66.0-88.0)
QQP 74.0 740 680 66.0 60.0 800 580 500 40.0 36.0 28.0 54.0 0.0 74.0 (62.0-86.0)
MRPC 60.0 58.0 580 600 62.0 60.0 58.0 420 440 400 420 60.0 2.0 60.0 (44.0-74.0)
STSB 38.0 36.0 160 120 120 300 20.0 200 200 200 140 12.0 0.0 40.0 (26.0-54.0)
NLI
CB 88.9 800 622 778 578 86.7 667 689 644 689 622 55.6 13.3 77.8 (62.2-86.6)
WNLI 70.0 68.0 460 440 500 60.0 540 560 560 420 440 52.0 0.0 62.0 (50.0-78.0)
ANLI-r1 50.0 50.0 50.0 40.0 420 40.0 420 400 400 360 38.0 38.0 24.0 44.0 (30.0-60.0)
ANLI-r2 46.0 46.0 460 320 360 460 460 400 360 380 320 46.0 20.0 42.0 (26.0-54.0)
ANLI-r3 46.0 420 380 380 400 440 500 280 320 340 380 40.0 24.0 46.0 (26.0-54.0)
MNLI-m 88.0 840 88.0 620 660 800 880 480 540 500 56.0 76.0 0.0 78.0 (66.0-92.0)
MNLI-mm 92.0 900 940 640 820 880 900 480 480 50.0 60.0 84.0 2.0 90.0 (84.0-98.0)
SNLI 96.0 84.0 840 560 580 90.0 920 540 520 540 540 82.0 0.0 96.0 (90.0-100.0)
QNLI 94.0 940 260 460 480 740 380 560 560 540 60.0 70.0 0.0 78.0 (64.0-88.0)
RTE 52.0 62.0 720 540 580 70.0 760 640 580 560 64.0 80.0 22.0 74.0 (62.0-86.0)
Table C.2: Mapping index for Figs. 3(b) and 6(b) to RepLiQA domain.
Index 1 2 3 4 5 6 7 8
Domain Regional Folklore =~ Local Health  Local Environ- ~ Neighborhood — Local Sports ~ Local Technology =~ Local Arts Cybersecurity
and Myths and Wellness ~ mental Issues Stories and Activities and Innovation and Culture News
Index 9 10 11 12 13 14 15 16 17
- Small and . - .
. Local Politics . Local Econom; Local Educat- . Compan; Regional Cuisine  Incident
Domain and Governance Medium Local News and Market Y ion Systems News Stories Poligicsy z‘;;nd Recipes Report

Enterprises
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Figure C.2: Flan-V2 task retrieval grouped per domain.

hint in the masked run. In Fig. C.6 we present the results. As one can see, on average, the hinted
LoRA can improve the answer given by AC-LORA.

C.2.2 Combining Knowledge

QUESTION: What are two significant contributions Dr. Chase has made to Al-powered cyberse-
curity?

REFERENCE ANSWER: On October 15, 2023, Dr. Chase presented her groundbreaking work
on Al-powered cybersecurity at the Chicago Cyber Security Summit. Additionally, in Novem-
ber 2023, her Al-powered security system detected an attempted zero-day vulnerability exploit
against a financial institution in Chicago before it could cause significant damage.

LoRAI1: Dr. Chase has developed an Al-powered cybersecurity platform that uses machine
learning algorithms to detect and respond to cyber threats in real-time. Additionally, she has
introduced a new cybersecurity curriculum at the university level, which includes topics such as
Al ethics and security protocols.
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Figure C.3: Flan-V2 task retrieval.

LoORAZ2: Dr. Chase has contributed to the development of Al-powered cybersecurity by creating
a framework that integrates machine learning and human expertise to detect and respond to cyber
threats. Additionally, she has demonstrated the effectiveness of Al in detecting and mitigating
cyber attacks, showcasing its potential to revolutionize the field.

LoRA12: Dr. Chase has developed an Al system capable of detecting and neutralizing cyber
threats in real-time, and she has also created an Al-powered cybersecurity platform that uses
machine learning to predict and prevent cyber attacks.

C.3 Mixing all LoRAs
The primary advantage of using only the relevant LoRAs instead of just mixing all permissible ones

is the reduction of inference latency. However, we also observed an average grade improvement of
0.066 (95% interval: (-0.00748, 0.138)) over mixing all possible LoRAS for the RepliQA dataset.
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Figure C.4: RepliQA retrieval.

This effect could come from several factors; we suspect it’s primarily due to the relatively high rank
used with a relatively small dataset. We expect that the AC-LoRA improvement will increase further
as the number of LoRAs increases. Flanv2, however, behaves differently. Since Flanv2 is primarily
finetuned to influence output format, mixing all Flan LoRAs significantly degrades performance.
This is evident in Tab. C.3, which shows the improvement of AC-LORA over the mixing of all Flan
LoRAs.

C.4 Multi-Modal

In the following we present some additional information about our setup for the stable diffusion
experiments and show some additional results. We then briefly provide some information regarding
the capabilities to use AC-LORA also with other modalities, such as text-image to text.

In general, we view the results presented in this section as more of a proof of concept rather than
a comprehensive evaluation. A more thorough analysis would require significantly more resources
to accurately assess the capabilities of the base model and the specific contributions made by the
finetuning. To ensure a fair and precise evaluation, one would need to create a new dataset (to
guarantee that the base model has not previously been trained on it). However, even with this step,

28



\ssues

o
o“a\\o
o

E
5 o
\
< € & &
% g 5 S
\ = & &
2 z o \1
% o] ! >/
s 2 - E &
%y, % 8 g &’
Y- [ <) [5] S
“4 AP = < oS
3N
%, G%) O O 3’
/;7%,\ O
®
& o
. O o
0
LTS \»
M0s,, <
" Py
g,
O stories
. orhood’
Ne\ghb
MSN_M!JHDQSJSC{AO(:
ORegional C
Uising and
L Recipes
d/ e,_,o’\o Vs
oo A
— QW 0,
oo ca(/v
oV S
N
/{Zpo
> %
¢ s r)C) O C‘;‘\/
P $ O < Q‘%
& § g 3 %,
N < 8 o z
L) / 2 \ g,
v 1 z X
9 I 3 ¢
3 @ \ \@
Fe o ® 3
o F > %
I & 3
) ‘o
3 [
Q =
! A
E ®
5
[ ]
j73
@

Figure C.5: Actual retrieved LoRAs for given domain. The thickness shows the frequency of the
connection.

Table C.3: Improvement of AC-LoRA over just mixing all FlanV2 LoRAs
Task

Improvement

Struct to text (rouge-1)
Struct to text (rouge-2)
Struct to text (rouge-1)

34.64 (31.95, 37.19)
26.94 (23.97, 30.17)
30.64 (28.02, 33.64)

Translation 9.76 (8.22, 11.43)
Commonsense 65.50 (58.50, 72.50)
Sentiment 90.00 (85.50, 94.00)
Reading Comprehension 54.67 (49.32, 60.00)
Closed book QA 36.50 (30.00, 43.00)
Coreference 54.00 (44.00, 64.00)
Read.comp.w/commonsense  59.00 (49.97, 68.00)
Paraphrase 63.00 (56.00, 69.50)
NLI

68.28 (64.44, 72.32)
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Figure C.6: RepliQA evaluation once with the expected LoRA masked and once with it if part of
the Hint.

evaluating the model would remain challenging, as images are inherently more difficult to grade
than text. Given these considerations, we believe such an in-depth evaluation is beyond the scope of
this work.

C.4.1 Stable Diffusion

We trained different LoORA models on the different styles in (WikiArts[23]). For this, we asked
QWEN2-VL to generate a generation prompt given the image, the style, and the artist. From these
prompts and the images, we fine-tune STABLE-DIFFUSION-V 1-4 on each of the 27 styles, using rank
and alpha 16, learning rate 1e-04, and utilizing the diffusers Huggingface library. We then use the
generated prompts to build our embeddings for the retriever.

Fig. C.7 shows six example AC-LORA image generation along with their generation prompts and
the corresponding retrieved (and mixed) LoRAs.

C.4.2 Text-Image to Text (Qwen2-VL)

We evaluate AC-LORA also on text-image to text models. We finetune 10 LoRAs using QWEN2-
VL-7B-INSTRUCT. Starting from the MMSci dataset [58], we create 10 smaller datasets (5k data
points each) as shown in Tab. C.4. We show the retrieval results in Fig. C.8. We describe how we
embed the text and image for the retrieval mechanism in Appx. E.

C.5 Latency

In Sec. 4 we provide our evaluation result of the AC-LORA’s time to first token generation with
an increasing number of active LoRAs (i.e., isolated permission zones). However, this assumes that
the LoRAs and the base model are already loaded into the device’s memory (such as the GPU).
This is a valid assumption, as switching the model frequently can adversely affect token generation,
specifically the latency to first token generation. We evaluate the worst-case scenario, where every
user query requires the LoRAs to be loaded into the device memory from scratch. Fig. C.9

D Templates

D.1 Knowledge Combination

As described in Sec. 4.1 we built our own dataset starting from RepLiQA split O to showcase
the capabilities of combining LoRAs to combine knowledge. Starting from all the documents of
the CYBERSECURITY NEWS category, we ask deepseek-r1:32b to extract the most relevant facts
using the following prompt:
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(a) “A dog in style of Da Vinci” - LoRAs: Early Re-
naissance’, 'Mannerism Late Renaissance’, ’North-
ern Renaissance’

(b) “draw a dog by Picasso” -
LoRAs: Symbolism’, ’Expressionism’, ’Cubism’

[

(d) “please generate a rococo dog” - LoRAs: 'Ro-
coco’

(e) “Please generate an image of a dog as if van gogh (f) “a dog by Schiele” -
would have drawn it” - LoRAs: ’Realism’, "Post Im- LoRAs: "Rococo’, "Pop Art’,
pressionism’ ’Romanticism’

Figure C.7: AC-LORA STABLE-DIFFUSION-V1-4.
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Table C.4: Composition of the different training-sets starting from the MMSci [58] dataset.

LoRA Subject Number of datapoints
Ecology 3051
. Biogeochemistry 466
environmental Hydrology 119
carthscience Solid Earth sciences 1022
Environmental sciences 342
Biochemistry 1326
chemistry Chemical biology 279
chemicalsciences Chemistry 1249
Materials science 2146
Optics and photonics 645
. . Materials science 2896
engineering Nanoscience
technologicalinnovation and technology 1047
Energy science
and technology 160
Engineering 252
Neuroscience 3400
neuroscience Anatorny 302
svcholo Physiology 1096
psy gy Neurology 121
Psychology 81
Microbiology 1511
. . Oncology 209
b1ome§1cal Immunology 1665
healthsciences Diseases 1240
Pathogenesis 375
Risk factors 913
socialsciences ]sa(;lc\?arl():c?:;ncti 2127
globaldevelopment Social sciences 1559
Business and industry 156
Developing world 245
. Computational biology
c((j)rrt'lput.atlonal and bioinformatics 3295
atasciences Systems biology 1705
Ecology 2184
aericulture Evolution 1069
l'g . Plant sciences 1366
ifesciences Zoology 365
Agriculture 16
Biochemistry 1729
enomics Molecular biology 1485
8 Stem cells 337
biotechnology Genetics 994
Biotechnology 455
Physics 3287
space Space physics 25
h sicglsciences Optics and photonics 1216
phy Solid Earth sciences 383
Astronomy and 89

planetary science
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4.5+ MMSCi Dataset
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Figure C.8: AC-LORA retrieval results for MMSci based dataset (Tab. C.4) for fetch k=10 and
threshold=0.0

Z /'/.
c 40 ./.

9] o«

i} o

(o] N

+— ./

- _ o

7 20 e

£ -

o ./'/

+~ P

(0] T T T T T T

£ 2 5 7 10 12 15
= Number of LoRAS loaded

Figure C.9: Time to first token generation latency for a 64-token input query where are all the LoRAs
are loaded from scratch to device memory.

[ SYSTEM: You are an expert analyzer. Given a text, extract the main (distinct) facts in a concise
manner as a list, separated by *\n*’. Each fact must be fully self-contained, meaning it should
make complete sense on its own without requiring any context from the original text or other
extracted facts. \n* Always explicitly state the subject and object—never use pronouns (e.g., he,
she, they, it) when a clear noun can be used instead. \n* Do not assume or infer any information
that is not explicitly stated in the text. \n* Each fact must stand alone—no fact should depend on
a previous one to be understood. \n* Keep facts as concise, accurate, and clear as possible while
maintaining completeness. There should always be an even number of facts (between 2 and 10).
USER: {extracted document}

We then divide randomly the generated facts into two groups LORA-1 and LORA-2. From these, we
generate one new article for each using the following prompt:

SYSTEM: You are an expert writer. Given a list of facts, write a coherent and well-structured text
that includes only the provided facts—nothing more, nothing less. Ensure the text is readable,
logically structured, and flows naturally while maintaining clarity and conciseness. Do not add
any additional information or interpretation beyond the given facts.

USER: List of facts: fact_1 \n ... \n fact_n

From this we now generate two different types of question and answer pairs.

Single-LoRA QA: These questions and answers should be answerable only by one LoRA. We take
two facts from the same set (either LORA-1 or LORA-2) and their corresponding generated articles,
and ask the model to generate a question and answer pair that is only answerable when knowing
both facts. To do this, we use the following prompt:

SYSTEM: You are an expert question generator. Given two facts and a context, create a question
and answer pair where the answer requires both facts to be answerable.\n \n - Clearly name
the subject and object in both the question and answer.\n- Do not infer any information that is
not explicitly stated in the facts or the Context.\n- Do not add any additional explanation—only
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provide the question and answer.
USER: context: {context_loran}\n fact_1: {fact_1_lora_n}\n fact_2:{fact 2 lora_n}

where n is either 1 or 2.

Combined-LoRA QA: In this case, we take one fact from each set (one from LORA-1 and one
from LORA-2) and both generated articles and ask the model to generate a question and answer pair
which is only answerable when knowing both facts. To do this, we use the following prompt:

SYSTEM: You are an expert question generator. Given two facts, and two contexts create a ques-
tion and answer pair where the answer requires both facts to be answerable.\n \n- Clearly name
the subject and object in both the question and answer.\n- Do not infer any information that is
not explicitly stated in the facts or the Contexts.\n- Do not add any additional explanation - only
provide the question and answer.

USER:  context_1:{context_lora_1}\n context_2:{context_lora2}\n fact_1:{fact_lora_1}\n
fact_2:{fact _lora 2}”

We then review the cases in which the question and answer pair were not in the correct format, which
occurred in very few cases (< 10). Afterwards, we create two training sets (one for each LoRA) and
one test set. In each training set, we include:

* 250 single-LoRA questions of the corresponding set, once with and once without context
(i.e., 500 data points). We also ensure here that each context generated appears at least
once in this set.

* 140 single-LoRA questions of the corresponding set without context.

So, in total, each of the training sets contains 640 data points. The test set comprises all the combined
LoRa questions and the remaining single-L.oRa questions (a total of 1,065 data points).

We use Prompt 9 to grade our evaluation.

D.2 WikiArts

We use QWEN2-VL-7B-INSTRUCT to generate two-generation prompts for each image in the
WikiArts dataset [23]. For this, we input the image and the following prompt:

Given the style, a genre, the artist which we try to reproduce and an image please write **two**
generation prompt for the given image. It should be one or two sentences per prompt. Do
*only* write the prompts, separate them always only by a new line ("\n’).\n Style:{style},
Genre:{genre}, Artist:{artist}

We use these prompts for both finetuning the model and for building the vector database for later
retrieving the correct LoRA.

For the images displayed in Fig. 7 we use the following prompt:

[ a serene Buddhist temple on a mountain path, captured in peaceful brushwork™ ]

D.3 Grading
D.3.1 Flan

We use the same grading functions from Zhao et al. [44] to evaluate our results, to ensure compara-
bility. Therefore, we evaluated it using the BLEU score from the Natural Language Toolkit [59] and
the Rouge score from the Rouge Python package.

D.3.2 RepLiQA

To evaluate the different experiments on the RepLiQA dataset, we use GEMMA-3-27B to give each
generated answer a grade between 1 and 5.

The prompt we use is the following:
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Table E.1: Hyperparameters used to finetune RepLiQA LoRAs

Hyperparameter Values
base model meta-llama/Llama-3.1-8B-Instruct
epochs 3
per_device_train_batch_size 4
gradient_accumulation_steps 8
learning_rate le-4
lora_alpha 64
r 64
lora modules o_proj, k_proj, gate_proj, down_proj, v_proj, q_proj, up_proj

Table E.2: Number of datapoints used for building the vector base for different tasks.

- mnli . _ story  glue arc arc  openbook All other
Task anlixl cb  rte matched wnli dpr wse  copa cloze mrpc challenge easy qa Tasks
# Datapoints 15k 500 8k 3k 1.9k 3.8k 1.6k 1.7k 55k 12k 3k 7.2k 15k 30k

SYSTEM: Evaluate how well the Generated Answer matches the Reference Answer or the de-
tailed reference answer for the given Query. Be strict: Names, dates, and specific details must be
exact to be correct. Additional facts that are not in the Reference Answer do not affect the score
unless they contradict the Reference Answer, in which case the score should decrease. If a name,
date, or key fact is incorrect, the score must be 1, regardless of other details. Assign a score from
1 to 5 based on accuracy, completeness, and relevance: 5 = Identical meaning, all details correct.
4 = Mostly correct, with only minor wording variations but the same meaning. 3 = Partially
correct, with some missing or incorrect details. 2 = Weak relevance, with significant errors or
omissions. 1 = Incorrect or unrelated. Input Format: Query: query \n Reference Answer: ref-
erence_answer \n Generated Answer: generated_answer \n Output Format: Explanation: [Brief
reason for the score] Score: [1-5]

USER: Query: {query}\n Reference Answer: {reference_answer} \n Generated Answer:
{generated_answer}

In case we have two reference answers, for example, for most of our RepLiQA experiments, we also
add the long reference answer in addition to the reference answer as ‘detailed reference answer* to
the prompt.

E Implementation detail

E.1 Evaluation Setup

We run our experiments on two workstation GPUs, each with 10752 processing cores, 48GB
GDDR6 VRAM. (384-bit bus and 768 GB/s memory bandwidth), and a 38.7 TFLOPS single preci-
sion performance. The GPU is connected to a host (2x x86 44-core CPU with 256 GB RAM) over
a PCle 4.0.

E.2 Finetuning
E.2.1 RepLiQA

For language models, we use unsloth [60] to fine-tune the different LoORAs as the library is faster and
saves memory compared to the base implementation. We finetune the 17 LoRAs for the RepLiQA
dataset with the hyperparameters displayed in Tab. E.1.

For the knowledge injection experiments displayed in Fig. 3(a) for cybersecurity, we maintain the
same hyperparameters and only adjust the values for alpha and rank. Also, we fine-tune it for 10
epochs and save the LoRA at every epoch to study overfitting.
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E.2.2 FlanV2

As mentioned before, we did not fine-tune the FlanV2 LoRAs as we use the one made available
by the authors from [44]. As they only focused on formats, they finetuned their LoRAs by only
targeting the v_proj and q_proj modules.

E.2.3 WikiArts

To finetune the different WikiArts LoRAs, we use the Huggingface diffusers library [61]. We set
rank and alpha both to 16.

E.2.4 Retriever

We utilize the LangChain [62] library to implement most of our retrieval process, and its FAISS [63]
implementation serves as our vector store.

E.2.5 Building the database

Text.

As the training set for FlanV2 used for the different LoORAs was not shared, we constructed one
based on the official FlanV2 dataset for the retriever. In particular, we take the first 30k (or fewer for
smaller tasks) samples of each selected task as the training set. The exact number of datapoints per
task is shown in Tab. E.2 For WikiArts, we generate prompts for the different images in the training
set and use these for the database. For RepLiQA, we used a first version of the training set, with
only two entries per data point: one with and one without context.

We then use SENTENCETRANSFORMERSTOKENTEXTSPLITTER and the embedding model ALL-
MNET-BASE-V2 [50] to split the files into chunks of 100 tokens and create the FAISS vector store
by adding the created documents.

Text-Image.

We embed each text and image together using the multi-modal embedding model INFGRAD/-
JASPER _EN_VISION_LANGUAGE_V1 [64]. We initiate a SENTENCETRANSFORMER with this
model.

E.2.6 Retrieving and Hinting

We use the similarity_search_with_score_by_vector function to retrieve the most likely LoRAs for
text-image inputs and similarity_search_with_score for only-text queries.

We use the filter function to enforce access control, retrieving only the embeddings with the allowed
LoRAs in the metadata.

The Hinting mechanism is implemented as two database queries, once with the filter function and
once without.

E.3 LoRA Mixing

We patch the PEFT library to enable the mixing. We mainly modified the forward function for the
Linear LoRA layers.

F List of Assets

The following is a list of assets, along with their licenses (and sources, linked) that we use in this
paper.

RepliQA dataset: CC BY 4.0

* Flan V2 dataset: Apache License Version 2.0, January 2004
* Wikiart dataset: BSD 3-Clause License

* MMSci dataset: CC BY 4.0
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https://huggingface.co/datasets/ServiceNow/repliqa
https://github.com/google-research/FLAN/blob/main/LICENSE
https://github.com/cs-chan/ArtGAN/blob/master/LICENSE
https://github.com/Leezekun/MMSci?tab=readme-ov-file

Meta Llama: META LLAMA 3 COMMUNITY

Google Gemma: Open source

Qwen models: royalty-free limited license

all-mpnet-base-v2: Apache License Version 2.0, January 2004
langchain: MIT

PEFT: Apache License Version 2.0, January 2004
Stable-diffusion: CreativeML Open RAIL-M, August 22, 2022
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https://www.llama.com/llama3/license/
https://ai.google.dev/gemma/terms
https://huggingface.co/Qwen/Qwen2-72B/blob/main/LICENSE
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/langchain-ai/langchain/blob/master/LICENSE
https://github.com/huggingface/peft/blob/main/LICENSE
https://github.com/CompVis/stable-diffusion/blob/main/LICENSE
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