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ABSTRACT

Image editing has advanced significantly with the introduction of text-conditioned
diffusion models. Despite this progress, seamlessly adding objects to images
based on textual instructions without requiring user-provided input masks re-
mains a challenge. We address this by leveraging the insight that removing ob-
jects (Inpaint) is significantly simpler than its inverse process of adding them
(Paint), attributed to the utilization of segmentation mask datasets alongside in-
painting models that inpaint within these masks. Capitalizing on this realization,
by implementing an automated and extensive pipeline, we curate a filtered large-
scale image dataset containing pairs of images and their corresponding object-
removed versions. Using these pairs, we train a diffusion model to inverse the
inpainting process, effectively adding objects into images. Unlike other editing
datasets, ours features natural target images instead of synthetic ones; moreover,
it maintains consistency between source and target by construction. Addition-
ally, we utilize a large Vision-Language Model to provide detailed descriptions
of the removed objects and a Large Language Model to convert these descriptions
into diverse, natural-language instructions. Our quantitative and qualitative results
show that the trained model surpasses existing models in both object addition and
general editing tasks. To propel future research, we will release the dataset along-
side the trained models.

Add a white buttoned shirt 
 
 
 
 
 
 

Add a big flat TV
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Add steamed milk  
 
 
 
 
 
 
 

Add goggles

Figure 1: Visual Results of the Models Trained with the Proposed Dataset.

1 INTRODUCTION

Image editing plays a central role in the computer vision and graphics communities, with diverse
applications spanning various domains. The task is inherently challenging as each image offers
infinite editing possibilities, each with countless potential outcomes. A particularly intricate editing
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task is seamlessly adding objects to images, which requires not only realistic visuals but also a
nuanced understanding of the global image context, including parameters such as location, scale, and
style. While many solutions require the user to provide a mask for the target object (Li et al., 2023b;
Xie et al., 2023; Rombach et al., 2022; Wang et al., 2023a), recent advancements have capitalized
on the success of text-conditioned diffusion models to enable a mask-free approach (Brooks et al.,
2023; Zhang et al., 2023). Such solutions offer a more convenient and realistic setting; yet, they still
encounter challenges, as demonstrated in Figure 3.

The leading method for such editing, InstructPix2Pix (IP2P) (Brooks et al., 2023), synthesizes a
dataset containing triplets of source and target images alongside an editing instruction as guidance.
Under this guidance, a model is trained to transform source images into target ones. While demon-
strating some success, the model’s effectiveness is bounded by the quality of the synthesized training
data. We address this limitation by introducing an alternative automatic method for creating a large-
scale, high-quality dataset targeted for image object addition. Our approach is grounded in the
observation that adding objects (paint) is essentially the inverse of removing them (inpaint).
Namely, by using pairs of images—ones containing objects and others with objects removed—an
object addition dataset can be established. In practice, we create the dataset by leveraging abundant
images and object masks available in segmentation datasets (Kuznetsova et al., 2020b; Lin et al.,
2014; Gupta et al., 2019) alongside a high-end inpainting model (Rombach et al., 2022). The out-
puts are then used in a reverse manner, with the original images as editing targets and the inpainted
ones as sources. This reversed approach is essential because directly adding objects with an inpaint-
ing model requires object segmentations not present in the images. Our approach offers two key
advantages over IP2P: (i) While IP2P relies on synthetic source and target images, our targets are
real natural images, with source images also being natural outside the typically small edited regions.
(ii) Despite employing techniques such as prompt-to-prompt (Hertz et al., 2022) and Directional
CLIP-based filtering (Gal et al., 2021) to address source-target consistency issues, IP2P often fails
to achieve this. In contrast, our approach inherently maintains consistency by construction.

Mask-based inpainting models have recently shown great success in filling image masks naturally
and coherently (Rombach et al., 2022). However, since these models were not trained specifically
for object removal, their use for this purpose is not guaranteed to be artifact-free, potentially leaving
remnants of the original object, unintentionally creating new objects, or causing other distortions.
Given that the outputs of inpainting serve as training data, these artifacts could potentially impair
the performance of the resulting models. To counteract these issues, we propose a comprehensive
pipeline of varied filtering and refinement techniques. Additionally, we complement the source and
target image pairs with natural language editing instructions by harnessing advancements in mul-
timodal learning (Li et al., 2023a; Dai et al., 2023; Liu et al., 2023; Bai et al., 2023; Ganz et al.,
2023; 2024; Rotstein et al., 2023). By employing a Large Vision-Language Model (VLM) (Wang
et al., 2024b), we generate elaborated captions for the target objects. Next, we utilize a Large Lan-
guage Model (LLM) (Jiang et al., 2023) to cast these descriptions to natural language instructions
for object addition. To further enhance our dataset, we incorporate human-annotated object refer-
ence datasets (Kazemzadeh et al., 2014; Mao et al., 2016) and convert them into adding instructions.
Overall, we combine these sources to form an instruction-based object addition dataset, named PIPE
(Paint by Inpaint Editing). Unprecedented in size, our dataset features approximately 1 million im-
age pairs, spans over 1400 different classes, and includes thousands of unique attributes.

Utilizing PIPE, we train a diffusion model to follow object addition instructions, setting a new stan-
dard for adding realistic image objects, as demonstrated in Figure 1, and as validated across extensive
experiments on multiple benchmarks. Besides quantitative results, we conduct a human evaluation
survey comparing our model to top-performing models, showcasing its improved capabilities. Fur-
thermore, we demonstrate that PIPE can extend beyond mere object addition; by integrating it with
additional editing datasets, we show it significantly improves overall editing results.

Our contributions include:
• Introduction of the Paint by Inpaint framework for image editing.

• Construction of PIPE, a large-scale, high-quality, mask-free, textual instruction-guided
object addition image dataset.

• Demonstration of a diffusion-based model trained with PIPE, achieving state-of-the-art
performance in adding objects to images and enhancing general editing performance.
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Inpaint

LLM

Paint

“Add a dark 
colored skate-
boarding dog”

VLM

“The dog has a 
dark coat and is 
depicted in an 

action-packed pose 
on a skateboard, 

capturing its 
dynamic move-

ment and spirit.”

Figure 2: Paint by Inpaint Framework. Illustration of our two-phase approach: (1) Building
PIPE dataset (blue), which involves: (i) Removing the object utilizing a frozen inpainting model
and the object mask. (ii) Generating addition instructions, demonstrated through the VLM-LLM-
based procedure, where a VLM extracts visual object details and an LLM formulates them into
instructions. (2) Training an editing model (orange), PIPE is employed to train a model to reverse
the inpainting process, thereby adding objects to images.

2 RELATED EFFORTS

2.1 IMAGE EDITING

Image editing has long been explored in computer graphics and vision (Oh et al., 2001; Pérez
et al., 2023). The field has seen substantial advances with the emergence of diffusion-based im-
age synthesis models (Song et al., 2020; Ho et al., 2020), especially with their text-conditioned
variants (Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022b; Nichol et al., 2021). The
application of such models can be broadly categorized into two distinct approaches – mask-based
and mask-free.

Mask-Based Editing. Such approaches formulate image editing as an inpainting task, using a
mask to outline the target edit region. Early diffusion-based techniques utilized pretrained models
for inpainting (Song et al., 2020; Avrahami et al., 2022; Yu et al., 2023; Meng et al., 2021), while
more recent approaches fine-tune the models specifically for this task (Nichol et al., 2021; Saharia
et al., 2022a; Rombach et al., 2022). Inpainting models benefit from the possibility of training
on large-scale image datasets, as they can be trained with any image paired with a random mask.
Various attempts have been made to advance this methodology in different directions (Wang et al.,
2023a; Li et al., 2023b; Xie et al., 2023), but despite this progress, relying on a user-provided mask
makes this setting less preferable in real-world applications.

Mask-Free Editing. This paradigm allows image editing using text and natural language as an
intuitive interactive tool without the need for additional masks. Kawar et al. (Kawar et al., 2023)
optimize a model to align its output with a target embedding text. Bar Tal et al. (Bar-Tal et al.,
2022) introduce a model that merges an edit layer with the original image. IP2P turns mask-free
image editing into a supervised task by generating an instruction-based dataset using Prompt-to-
Prompt (Hertz et al., 2022) and an LLM (Brooks et al., 2023). The Prompt-to-Prompt technique
adjusts cross-attention layers in diffusion models, aligning attention maps between source and tar-
get prompts. These mask-free techniques are distinguished by their ability to perform global edits
such as style transfer. However, they exhibit limitations in local edits, specifically in maintaining
consistency outside the desired edit region. IP2P seeks to address this by utilizing Directional CLIP
loss (Gal et al., 2021) for dataset filtering. Nevertheless, it mitigates the limitation, but only to some
extent. In contrast, our dataset ensures consistency by strictly limiting changes to the intended edit
regions only.

Instructions-Based Editing. A few studies have introduced textual instructions for intuitive,
mask-free image editing without complex prompts (El-Nouby et al., 2019; Zhang et al., 2021). IP2P
facilitates this by leveraging GPT-3 (Brown et al., 2020) to create editing instructions from input
image captions. Following the advancements in instruction-following capabilities of LLMs (Ouyang
et al., 2022; Ziegler et al., 2019), Zhang et al. devise a reward function reflecting user preferences
on edited images (Zhang et al., 2023). Our approach takes a different course; it enriches the class-
based instructions constructed from the segmentation datasets by employing a VLM (Wang et al.,
2023b) to comprehensively describe the target object, and an LLM (Jiang et al., 2023) to transform
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Add a princess

Add a wine bottle

Put some red flowers in the vase

Add a black and white cat sitting on the ground 

Original CLIP-VQGAN Hive IP2P Ours

Add an egg to the photo

Add cake to the table

Add a tie

Add a tall, slender, blue vase with red floral patterns

Original CLIP-VQGAN Hive IP2P Ours

Figure 3: Visual Comparison. Comparison of our model with leading editing models across differ-
ent benchmarks, demonstrating superior fidelity to instructions and precise object addition in terms
of style, scale, and position, while maintaining higher consistency with original images.

the VLM outputs into coherent editing instructions. Our dataset is further enhanced by integrating
object reference datasets (Kazemzadeh et al., 2014; Mao et al., 2016), which are converted into
compositional, rich, and detailed instructions.

2.2 IMAGE EDITING DATASETS

Early editing approaches (Xu et al., 2018; Zhang et al., 2017) used datasets with specific classes
without direct correspondence between source and target images (Lin et al., 2014; Wah et al., 2011;
Nilsback & Zisserman, 2008). Building datasets of natural images and their natural edited versions
in the mask-free setting is infeasible, as it requires two identical images differing solely in the
edited region. Thus, previous works propose synthetic alternatives, with the previously discussed
IP2P’s dataset being one of the most prominent ones. MagicBrush (Zhang et al., 2024) recently
introduced a partially synthetic dataset, which was manually created using DALL-E2 (Ramesh et al.,
2022). While offering more accuracy and consistency, its manual annotation and monitoring limit
its scalability. Inst-Inpaint (Yildirim et al., 2023) leverages segmentation and inpainting models
to develop a dataset focused on object removal, designed to eliminate the segmentation step. We
introduce a high-quality image editing dataset that exceeds the scale of any currently available ones.
Furthermore, our approach, uniquely leverages real images as the edit targets, distinguishing it from
prior datasets consisting of synthetic data.

2.3 OBJECT FOCUSED EDITING

Processing specific objects through diffusion models has gained significant attention in recent re-
search. For instance, various methodologies have been developed to generate images of particular
subjects (Ruiz et al., 2023; Gal et al., 2022a; Chen et al., 2024). Within the editing domain, Wang
et al.(Wang et al., 2023a) concentrate on mask-based object editing, training their model for in-
painting within existing object boundaries, while Patashnik et al.(Patashnik et al., 2023) introduce
a technique for producing diverse variations of such objects. Similar to our work, SmartBrush (Xie
et al., 2023) aims to add objects to images. However, unlike our methodology, it requires an input
mask from the user. Instruction-based methods like IP2P and MagicBrush highlight their capability
to insert image objects, allocating a considerable portion of their dataset for this purpose, for
example, 39% of the MagicBrush dataset is dedicated to this task.

3 PIPE DATASET

As outlined in Section 2, leading mask-free, instruction-following image editing models are trained
on datasets that are either small-scale or synthetic and inconsistent. To enhance the efficacy of these
models, we propose a systematic method to create a dataset that addresses these limitations. The

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Car

Person

(a) Pre-Removal
Abnormal View

(b) Post-Removal
CLIP Consensus

Bread

(c) Post-Removal
Multimodal CLIP

Figure 4: Dataset Filtering Stages. In constructing PIPE, several filtering stages address inpainting
drawbacks. Initially, a pre-removal filter targets abnormal object views due to blur and low quality.
Subsequently, a post-removal inconsistency filter identifies a lack of CLIP consensus among three
inpainting outputs, indicating substantial variance and potential object regeneration. Finally, a post-
removal multimodal CLIP filtering ensures low semantic similarity with the original object name.

devised dataset, dubbed PIPE (Paint by InPaint Edit), comprises approximately 1 million image
pairs accompanied by diverse object addition instructions. Our methodology, illustrated in blue in
Figure 2, unfolds in a two-stage procedure. First, drawing on the insight that object removal is more
straightforward than object addition, we create pairs of source and target images—without and with
objects. Subsequently, we generate a natural language object addition instruction for each pair using
various techniques. In the following section, we describe the proposed pipeline in detail.

3.1 GENERATING SOURCE-TARGET IMAGE PAIRS

In the initial stage of creating PIPE, we leverage extensive image segmentation datasets. Specif-
ically, we utilize COCO (Lin et al., 2014) and Open Images (Kuznetsova et al., 2020a), enriched
with segmentation mask annotations from LVIS (Gupta et al., 2019). Unifying these datasets results
in 889, 230 unique images with over 1, 400 object classes. We use this diverse corpus for object
removal using a Stable Diffusion (SD) (Rombach et al., 2022) based inpainting model1. This con-
figuration is the underlying reason why constructing PIPE via removal is more straightforward than
via addition. However, since the inpainting model was not trained specifically for object removal,
it can yield suboptimal outcomes, e.g., leaving original object traces or generating new objects. To
address this, we implement a pipeline of pre-removal and post-removal steps.

Pre-Removal. This step filters object segmentation masks, retaining only candidates suitable for
the subsequent object-adding. First, we exclude masks according to their size (too large or too
small) and location (near image borders). Next, we use CLIP (Radford et al., 2021) to calculate
the semantic similarity between segmented objects and their class names, using low values to filter
out abnormal object views (e.g., blurred objects) and non-informative partial views (e.g., occluded
objects). In Figure 4a, we provide an example of a car being filtered due to its small size and blur,
while a person without these characteristics is not (see fig. S9 for more examples). To ensure the
mask fully covers the object, we apply morphological dilation, a crucial step since any unmasked
object parts can lead the inpainting model to regenerate it (Pobitzer et al., 2024).

Object Removal. Given the dilated masks, we remove the objects using the SD inpainting model.
Unlike conventional inpainting objectives, which aim at general image completion, our focus centers
on object removal. To this end, we guide the model with positive and negative prompts designed to
replace objects with non-objects (e.g., background). The positive prompt is set to “a photo of
a background, a photo of an empty place”, while the negative prompt is defined
as “an object, a <class>”, where <class> denotes the object class name. During the
inpainting process, we utilize 10 diffusion steps and generate 3 distinct outputs per input.

Post-Removal. The last part of our removal pipeline involves employing a multi-step process
aimed at filtering and refining the inpainting outputs:

• Removal Verification: For each source image and its three inpainted outputs, we introduce two
mechanisms to assess removal effectiveness. First, we measure the semantic diversity of the
three inpainted candidates’ regions by calculating the standard deviation of their CLIP embed-

1https://huggingface.co/runwayml/stable-diffusion-inpainting
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Add a light-colored 
plastic frisbee 

Add a bus Add a black round hat 
with a flat top

Source            Target Source            Target Source            Target Source            Target

Add a bird closest to 
camera

Figure 5: PIPE dataset Examples. Samples from PIPE using different instruction generation
techniques: class name-based (left), VLM-LLM based (center), and reference-based (right).

dings, a metric we refer to as the CLIP consensus. Intuitively, high diversity (no consensus)
suggests failed object removal, leaving varied non-background object elements, as shown in the
upper row of Figure 4b. Conversely, lower variability (consensus) points to a consistent removal,
increasing the likelihood of an appropriate background, as demonstrated in the bottom row of the
figure. Next, we calculate the CLIP similarity between the inpainted region of each candidate
and the class name of the removed object (e.g., <bread>). This procedure, referred to as mul-
timodal CLIP filtering, is illustrated in Figure 4c. Introducing CLIP consensus and multimodal
CLIP filtering mechanisms enhances the robustness of the object removal process. If multiple
candidates pass all filtering stages, the one with the lowest multimodal CLIP score is selected.
Prior to choosing the CLIP Consensus and Multimodal CLIP filters thresholds, we manually
annotated 500 inpainted images, classifying them as successful or failed removals. We tested
the filters across varying thresholds and plotted the percentage of successful inpainted images
against the percentage of filtered images. As shown in fig. S11 and fig. S12, as the filters become
more aggressive (lower thresholds), the proportion of successful inpainted images increases for
both strategies. This implies that both filtering approaches effectively achieve their aim of fil-
tering out unsuccessful inpainting outputs. We selected thresholds where the slope of successful
inpainting begins to plateau, minimizing the loss of images while maximizing quality.

• Consistency Enforcement: We aim to produce image targets that are consistent with the source
ones. By conducting α-blending between the source and inpainted image using the object mask,
we limit differences to the mask area while ensuring a smooth, natural transition between regions
(see example in fig. S10).

• Importance Filtering: In the final removal pipeline step, we filter out instances where the re-
moved object has marginal semantic importance, as such edits are unlikely to be user-requested.
We use a CLIP image encoder to assess the similarity between source and target images—not
limited to the object region—filtering cases exceeding a manually set threshold.

3.2 GENERATING OBJECT ADDITION INSTRUCTIONS

The PIPE dataset is designed to include triplets of source and target images, along with corre-
sponding editing instructions in natural language. However, the process outlined in Section 3.1 only
produces pairs of images and the raw class name of the object of interest. To address this gap, we
introduce three different strategies for enhancing our dataset with instructions:

Class name-based instructions. We augment raw object classes into object addition instructions
using the format “add a <class>”, leading to simple and concise instructions.

VLM-LLM based instructions. We propose an automatic procedure designed to produce more
varied and comprehensive instructions than those based on class names. Leveraging recent VLM
and LLM advances, we craft instructions using a two-stage process, as illustrated in Figure 2. In
the first stage, we mask out non-object regions and insert the devised image into a VLM, namely
CogVLM2 (Wang et al., 2024b), prompting it to generate a detailed object caption that includes
visual object details and fine-grained attributes. In the second stage, the caption is reformatted into
an instruction using the in-context learning (ICL) capabilities of the LLM. Specifically, we utilize
Mistral-7B3 (Jiang et al., 2023) with 5 ICL examples of the required outputs, prompting it to gen-
erate instructions of varying lengths and complexity. This two-stage process, designed to mitigate
hallucinations frequently encountered with VLMs (Liu et al., 2024), has been empirically validated

2https://huggingface.co/THUDM/cogvlm-chat-hf
3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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Table 1: Datasets Comparison. Review of PIPE with others editing datasets. ✓ signifies fulfill-
ment, ✗ indicates non-fulfillment, and ✓✗ denotes partial fulfillment, where images are real outside
inpainted areas. ”–” means no such images available. ”General Classes” indicates dataset class
diversity.

Dataset Real Source Real Target General # #
Images Images Classes Images Edits

Oxford-Flower Nilsback & Zisserman (2008) ✓ ✓ ✗ 8,189 8,189
CUB-Bird Wah et al. (2011) ✓ ✓ ✗ 11,788 11,788
EditBench Wang et al. (2023a) ✓✗ – ✓ 240 960
InstructPix2Pix Brooks et al. (2023) ✗ ✗ ✓ 313,010 313,010
MagicBrush Zhang et al. (2024) ✓ ✓✗ ✓ 10,388 10,388

PIPE ✓✗ ✓ ✓ 889,230 1,879,919

as effective and is inspired by research demonstrating that breaking down tasks into specific model
roles enhances LLMs performance (Wang et al., 2024a). Further details of this procedure are pro-
vided in the supplementary materials.

Manual Reference-based Instructions. To enrich our dataset with additional nuanced,
compositional object details, we utilize three object reference datasets: RefCOCO, Ref-
COCO+ (Kazemzadeh et al., 2014), and RefCOCOg (Mao et al., 2016). We transform the references
into instructions using the template: “add a <object reference>”, where “<object
reference>” is replaced with the dataset’s object description.

Incorporating these diverse approaches produces 1, 879, 919 different realistic object addition in-
structions, encompassing both concise and detailed editing scenarios. Examples from PIPE using
these diverse approaches are presented in Figure 5 and the appendix. In Table 1, PIPE is compared
with other image editing datasets. It sets a new benchmark in image and editing instruction count
by a significant margin. Notably, it is the only dataset offering real target images and class diversity.

4 MODEL TRAINING

We detail the methodology used to train an image editing model using the proposed dataset, as il-
lustrated in orange in Figure 2. We leverage the SD 1.5 model (Rombach et al., 2022) for both its
architecture and initial weights. This text-conditioned diffusion model incorporates a pre-trained
variational autoencoder and a U-Net (Ronneberger et al., 2015), which is responsible for the diffu-
sion denoising within the latent space of the former. We denote the model parameters as θ, the noisy
latent variable at timestep t as zt, and the corresponding score estimate as eθ. Similar to SD, our
editing process is conditioned on a textual instruction encoding cT through cross-attention which in-
tegrates text encodings with visual representations. We employ classifier-free guidance (CFG) (Ho
& Salimans, 2022) to enhance alignment between the output image and the instruction encoding cT .
Contrary to SD, which generates a completely new image, our method involves editing an existing
one. Thus, similarly to IP2P, we condition the diffusion process not only on cT but also on the
input image, denoted as cI . Liu et al. (Liu et al., 2022) demonstrated that a diffusion model can
be conditioned on multiple targets, adapting CFG accordingly. Using CFG necessitates modeling
both conditional and unconditional scores. To facilitate this, during training we set cT = ∅ with
probability p = 0.05 (no text conditioning), cI = ∅ with p = 0.05 (no image conditioning), and
cI = ∅, cT = ∅ with p = 0.05 (no conditioning). During inference, using CFG, we compute the
following score estimate considering both the instruction and the source image,

ẽθ(zt, cI , cT ) = eθ(zt,∅,∅)
+ sT · (eθ(zt, cI ,∅)− eθ(zt,∅,∅))
+ sI · (eθ(zt, cI , cT )− eθ(zt, cI ,∅)) , (1)

where sT and sI represent the CFG scales for the textual instruction and the source image, respec-
tively. Further implementation details and hyperparameters are provided in the appendix.

5 EXPERIMENTS

Image editing can yield countless different valid outcomes, making its evaluation a significant chal-
lenge. To address this, we perform a diverse array of experiments. Given that PIPE is primarily
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designed for object addition, we initially focus our experiments on this task before extending its
application to general editing (in Section 6). We quantitatively and qualitatively compare our model
with top-performing methods, complemented by an in-depth detailed human evaluation survey. Ad-
ditionally, in the appendix, we include an ablation study of the VLM-LLM pipeline.

5.1 EXPERIMENTAL SETTINGS

We consider three benchmarks to evaluate our model’s capabilities in object addition – (i) PIPE test
set: 750 images from the COCO validation split, generated using the pipeline outlined in Section 3.
(ii) OPA (Liu et al., 2021): An object placement assessment dataset that includes source and target
images, along with objects to be added. (iii) MagicBrush (Zhang et al., 2024): A partially synthetic
image editing benchmark comprising training and testing sets. To evaluate object addition, we
automatically filter the dataset for this task (details in the appendix), resulting in a 144 edits subset.

5.2 QUANTITATIVE EVALUATION

We compare our model with leading image editing models, including Hive (Zhang et al., 2023),
IP2P (Brooks et al., 2023), VQGAN-CLIP (Crowson et al., 2022), SDEdit (Meng et al., 2021),
Null-Text-Inversion (Mokady et al., 2023), Pix2PixZero (Parmar et al., 2023) and Edit-Freindly
DDPM (Huberman-Spiegelglas et al., 2024). For evaluating objects additions, we use the standard-
ized metrics from MagicBrush (Zhang et al., 2024). These metrics compare edited outcomes to
ground-truth targets using both model-free (L1 and L2 distances) and model-based (CLIP (Radford
et al., 2021) and DINO (Caron et al., 2021) embedding cosine distances) measures. Model-free met-
rics penalize global changes affecting non-object regions, while model-based approaches evaluate
overall semantic similarity. When the edited target caption is available, we use CLIP-T (Ruiz et al.,
2023) to measure its alignment with the edited image. To complement our evaluation, we adopt the
recently proposed Conditional Maximum Mean Discrepancy (CMMD) metric (Jayasumana et al.,
2024). Like the popular Fréchet Inception Distance (FID) (Heusel et al., 2017), this metric mea-
sures the distributional distance between groups of images. However, unlike FID, CMMD uses
CLIP embeddings and works effectively with a reduced number of samples, enabling us to measure
distribution distances for small datasets like MagicBrush. To further demonstrate the superiority of
our model, we adopt a measure utilized by (Brooks et al., 2023). This measure, using changing
image guidance scales (sI ), plots a graph of two metrics of the edited outcome, both independent
of a ground-truth target image: (i) CLIP similarity with the input image. (ii) Directional CLIP
similarity (Gal et al., 2022b), which evaluates changes between source-target image embeddings
and source-target text caption embeddings. This plot presents a trade-off between preserving the
original content and achieving the desired edits.

PIPE Test Results. We evaluate our model against instruction-following models, Hive and IP2P,
using the PIPE held-out test set and report the results in Table 3. Our model significantly surpasses
the baselines in L1 and L2 metrics, confirming its high consistency, and exhibits a higher level of
semantic resemblance to the target ground truth image, as reflected in the CLIP-I and DINO scores.

OPA Results. In Table 4, we evaluate our model on the OPA dataset. As demonstrated in the table,
our approach achieves the highest performance across all evaluated metrics.

MagicBrush Results. We evaluate our model on the MagicBrush test subset, which includes source
and target prompts in addition to instructions. This allows us to compare our performance not
only with instruction-following models like Hive and IP2P but also with prompt-based models like
VQGAN-CLIP and SDEdit. As presented in Table 2, our model achieves the best results in most
target image similarity metrics (L1, CLIP-I, DINO and CMMD). The target prompts also allow us
to compare the CLIP-T metric. While our model surpasses most methods in this metric, VQGAN-
CLIP significantly outperforms it. This result is expected as the latter maximizes an equivalent
objective during the editing process. Although some methods outperform ours in CLIP-T, they
fall behind in other metrics. To highlight our model’s superior balance between consistency with
the original image and following the instruction, we present comparisons in fig. 6. As shown, our
method outperforms all others in this tradeoff. Following (Zhang et al., 2024), we also fine-tuned our
model on the object-addition training subset of MagicBrush and compared it against the similarly
fine-tuned IP2P, with our model exceeding IP2P in all metrics.
Evaluations across the benchmarks show our model consistently outperforms competitors, affirming
not only its high-quality outputs but also its robustness and adaptability across varied domains.
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Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑ CMMD↓

VQGAN-CLIP Crowson et al. (2022) .211 .078 .670 .507 .484 .862
SDEdit Meng et al. (2021) .168 .057 .765 .572 .325 .539
Null-Text-Inversion Mokady et al. (2023) .072 .017 .877 .817 .299 .303
Pix2PixZero Parmar et al. (2023) .086 .024 .846 .750 .294 .322
EF-DDPM Huberman-Spiegelglas et al. (2024) .110 .030 .844 .716 .328 .342
Hive Zhang et al. (2023) .095 .026 .846 .782 .297 .353
IP2P Brooks et al. (2023) .100 .031 .860 .766 .289 .363
Ours .072 .025 .900 .852 .302 .301

Fine-tune on MagicBrush

IP2P Zhang et al. (2024) .077 .028 .902 .867 .306 .352
Ours .067 .023 .910 .897 .308 .298

Table 2: Results on MagicBrush Top: Our model and various baselines tested on the MagicBrush
test set subset. Bottom: Our model and IP2P fine-tuned on MagicBrush and tested on the subset.
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Figure 6: Consistency-Instruction Trade-off
on MagicBrush Subset.

Table 3: Results on PIPE Test Set.
Methods L1↓ L2↓ CLIP-I↑ DINO↑ CMMD↑

Hive .088 .021 .849 .754 .232
IP2P .098 .027 .861 .753 .142
Ours .057 .014 .945 .903 .060

Table 4: Results on OPA.
Methods L1↓ L2↓ CLIP-I↑ DINO↑ CMMD↑

Hive .126 .041 .802 .670 .481
IP2P .109 .035 .806 .647 .467
Ours .084 .027 .848 .735 .360

5.3 QUALITATIVE EXAMPLES

Fig. 3 qualitatively compares our model with other top-performing models across several datasets.
The results illustrate how the proposed model, in contrast to competing approaches, seamlessly adds
synthesized objects into images naturally and coherently, while maintaining consistency with the
original images before editing. Furthermore, the examples, along with those in Figure 1, demon-
strate our model’s ability to generalize beyond its training classes, successfully integrating items
such as a ”princess” and ”buttoned shirt”. Additional examples are provided in the appendix.

5.4 QUALITATIVE EVALUATION

To complement the quantitative analysis, we conduct a human evaluation survey, comparing our
model to IP2P. To this end, we randomly sample 100 images from the Conceptual Captions
dataset (Sharma et al., 2018) and request human annotators to provide reasonable addition instruc-
tions. Next, we perform the edits using both models and request a different set of human evaluators
to review their success. We adopt the queries from (Zhang et al., 2024) and ask evaluators to as-
sess two aspects: alignment faithfulness between results and edit requests, and the output’s general
quality and consistency. Overall, we collected 1, 833 individual responses from 57 different human
evaluators, all participants from a pool of random internet users. To minimize biases and ensure
an impartial evaluation, they completed the survey unaware of the research goals. We quantify edit
faithfulness and output quality using two metrics: (i) overall global preference measured in percent-
age and (ii) aggregated per-image preference in absolute numbers (summed to 100). The results
in Table 5 showcase a substantial preference by human observers for our model’s outputs in both
following instructions and image quality. On average, the global preference metric indicates that our
model is preferred approximately 72.6% of the time. Additional survey details are provided in the
supplementary materials. An additional human evaluation against hive is presented in table S8.

6 LEVERAGING PIPE FOR GENERAL EDITING

We explore the application of our dataset in the broader context of image editing, extending its use
beyond merely object addition. We combine the IP2P general editing dataset with PIPE and use it

9
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Table 5: Human Evaluation. Comparison of our model with IP2P on edit faithfulness and quality.
“Overall” represents the total vote percentage. “Per-image” quantifies the number of images where
a model’s outputs were preferred.

Methods Edit faithfulness Quality
Overall [%] Per-image Overall [%] Per-image

IP2P 26.4 28 28.5 31
Ours 73.6 72 71.5 69

Table 6: General Editing Results on MagicBrush
Test Set. Model performance Evaluation on the
Full General Editing MagicBrush test set. The
model, trained on the combined PIPE and IP2P
dataset and fine-tuned on the MagicBrush training
set, surpasses the previously top-performing fine-
tuned IP2P, demonstrating the potential of PIPE
for enhancing general editing performance.

Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

IP2P .112 .037 .842 .745 .291
IP2P FT .082 .032 .896 .845 .301
Ours+IP2P FT .074 .026 .906 .866 .303

Figure 7: General Editing Consistency-
Instruction Trade-off. Trade-off between
consistency to input image (Y-axis) and edit
adherence (X-axis), with text guidance fixed
at 7 and varying image guidance [1, 2.5].
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to train an editing diffusion model, following the procedure outlined in Section 4. For evaluation,
we utilized the entire MagicBrush test set, comparing our model against the IP2P model, both with
and without MagicBrush fine-tuning. Diverging from the object addition concentrated approach, the
model is fine-tuned using the full MagicBrush training set. To ensure fairness and reproducibility,
all models were run with the same seed. Evaluations were conducted using the script provided
by (Zhang et al., 2024), and the official models were employed with their recommended inference
parameters. As illustrated in Table 6, our model sets new state-of-the-art scores for the general
editing task, surpassing the current leading models. As presented in Figure 7, our fine-tuned model
surpasses the current leading IP2P fine-tuned model, demonstrating higher image consistency for
the same directional similarity values. The results collectively affirm that the PIPE dataset can be
combined with any editing dataset and improve overall performance. In the appendix, we provide a
qualitative visual comparison, showcasing the enhanced capabilities of the new model, not limited
to object addition, as well as similar plots for the object addition subset used in Section 5.

7 LIMITATIONS

Despite the impressive results produced by our model, several limitations remain. First, while our
data curation pipeline improves robustness during the removal phase, it is not entirely error-free.
Additionally, the model struggles with significant changes occurring far from the object but are
affected by it. For instance, it handles nearby effects, like TV shadows (see fig. 1 and fig. S14),
but struggles with larger shadows or distant reflections, as seen in the center images of fig. S14.
Similarly, object-object interactions are not always accurately handled (see the right images in the
figure). These challenges stem from the dataset construction, as our method minimizes alterations
outside the near-object region. Future work could explore inpainting both the object and distant
regions influenced by it. We hope our work inspires future research to address these limitations.

8 DISCUSSION

In this work, we introduce the Paint by Inpaint framework, which identifies and leverages the fact
that adding objects to images is fundamentally the inverse process of removing them. Building
on this insight, by harnessing the wealth of available segmentation datasets and utilizing a high-
performance mask-based inpainting model, we present PIPE, an object addition dataset. Unlike
other mask-free, instruction-following editing datasets, PIPE is both large-scale and features con-
sistent and natural editing target images. We demonstrate that training a diffusion model on the
dataset leads to state-of-the-art performance in instruction-based image editing, proving the value of
the PIPE dataset in achieving consistent and realistic image edits.
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APPENDIX

A ADDITIONAL MODEL OUTPUTS

In continuation of the demonstrations seen in Figure 1, we further show a variety of object additions
performed by our model in Figure S8. The editing results showcase the model’s ability to not
only add a diverse assortment of objects and object types but also to integrate them seamlessly into
images, ensuring the images remain natural and appealing.

Add books 
 
 
 
 
 
 

Add noise canceling headphones
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Add happy golden retriever dogs

 
 
 
 
 
 
 
 

Add pink flowersAdd pancakes
 
 
 
 
 
 

Add a flying eagle
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Add a flowing river  
 
 
 
 
 
 
 

Add green grapes 
 
 
 
 
 
 
 

Add a king’s cape

Figure S8: Additional Object Addition Results of the Proposed Model. The first two rows show-
case outcomes from the model trained only with the PIPE dataset. The last row presents results
from the same model after fine-tuning on the MagicBrush training set, as detailed in Section 5.2.

B PIPE DATASET

B.1 CREATING SOURCE-TARGET IMAGE PAIRS

We offer additional details on the post-removal steps described in Section 3.1. The post-removal
process involves assessing the CLIP similarity between the class name of the removed object and
the inpainted area. This assessment helps evaluate the quality of the object removal, ensuring no
objects from the same class remain. To measure CLIP similarity for the inpainted area only, we
counter the challenge of CLIP’s unfamiliarity with masked images by reducing the background’s
influence on the analysis. We do this by adjusting the background to match the image’s average color
and integrating the masked area with this unified background color. A dilated mask smoothed with
a Gaussian blur is employed to soften the edges, facilitating a more seamless and natural-looking
blend.

To complement the CLIP score similarity, we introduce an additional measure that quantifies the
shift in similarity before and after removal. Removals with a high pre-removal similarity score,
followed by a comparatively lower yet significant post-removal score are not filtered, even though
they exceed the threshold. This method allows for the efficient exclusion of removals, even when
other objects of the same class are in close spatial proximity.
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Figure S9: Pre-Removal Filtered Examples. Left: Ob-
jects with non-informative view and low CLIP Object
similarity. Right: Extremely small and large objects,
unsuitable for our dataset.

Figure S10: Consistency Enforcement
Examples. From left to right: original im-
age, inpainted dog image, inpainted image
after alpha blending.
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for varying Thresholds
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Figure S12: Multimodal CLIP Filtering
Success for varying Thresholds

B.2 VLM-LLM BASED INSTRUCTIONS

Using a VLM and an LLM, we convert the class names of objects from the segmenta-
tion dataset into detailed natural language instructions (Section 3.2). Initially, for each
image, we present the masked image (featuring only the object) to CogVLM with the
prompt: “Accurately describe the main characteristics of the <class
name>. Use few words which best describe the <class- name>”. This
process yields an in-depth description centered on the object, highlighting key attributes such as
shape, color, and texture. Subsequently, this description is provided to the LLM along with human-
crafted prompts for In-Context Learning (ICL), to generate succinct and clear instructions. The
implementation of the ICL mechanism is detailed in Table S7.

Furthermore, we enrich the instructions by including a coarse language-based description of the
object’s location within the image, derived from the given mask. To accomplish this, we split the
image into a nine-section grid and assign each section a descriptive label (e.g., top-right). This
spatial description is then randomly appended to the instruction with a 25% probability during the
training process.

B.3 INTEGRATING INSTRUCTION TYPES

As detailed in Section 3.2, we construct our instructions using three approaches: (i) class name-
based (ii) VLM-LLM based, and (iii) manual reference-based. These three categories are then
integrated to assemble the final dataset. The dataset includes 887,773 instances each from Class
name-based and VLM-LLM-based methods, with an additional 104,373 from Manual reference-
based instructions.

B.4 ADDITIONAL EXAMPLES

In Figure S13, we provide further instances of the PIPE dataset that complement those in Figure 5.

C IMPLEMENTATION DETAILS

As noted in Section 4, the training of our editing model is initialized with the SD v1.5 model. Con-
ditions are set with cT = ∅, cI = ∅, and both cT = cI = ∅ occurring with a 5% probability
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Table S7: In-Context Learning Prompt. (Top) We provide the model with five examples of cap-
tions and their corresponding human-annotated responses. (Bottom) We introduce it with a new
caption and request it to provide an instruction.

[USER]: Convert the following sentence into a short image addition instruction:
¡caption 0¿.
Use straightforward language and describe only the ¡class name 0¿.
Ignore surroundings and background and avoid pictorial description.
[ASSISTANT]: ¡example response 0¿
...
[USER]: Convert the following sentence into a short image addition instruction:
¡caption 4¿.
Use straightforward language and describe only the ¡class name 4¿.
Ignore surroundings and background and avoid pictorial description.
[ASSISTANT]: ¡example response 4¿

[USER]: Convert the following sentence into a short image addition instruction:
¡new caption¿.
Use straightforward language and describe only the ¡new class name¿.
Ignore surroundings and background and avoid pictorial description.
[ASSISTANT]:

Add a a yellow, slightly 
wrinkled lemon at the 

top right

Add a lady in the left side 
with a black jacket

Add a right horse

Source            Target Source            Target Source            Target Source            Target

Add a medium-sized, brown 
dog with a calm expression 

at the center right

Add a slender silver 
fish with a yellow  

tail at the left

Add car at the top Add a person wearing a  
helmet, a gray jacket,  blue jeans 

and holding a mobile phone

Source            Target Source            Target Source            Target Source            Target

Add a person

Figure S13: Additional PIPE Datasets Examples.

each. The input resolution during training is adjusted to 256, applying random cropping for varia-
tion. Each GPU manages a batch size of 128. The model undergoes training for 60 epochs, utilizing
the ADAM optimizer. It employs a learning rate of 5 · 10−5, without a warm-up phase. Gradient
accumulation is set to occur over four steps preceding each update, and the maximum gradient norm
is clipped at 1. Utilizing eight NVIDIA A100 GPUs, the total effective batch size, considering the
per-GPU batch size, the number of GPUs, and gradient accumulation steps, reaches 4096 (128·8·4).
For the fine-tuning phase on the MagicBrush training set (Section 5.2), we adjust the learning rate to
10−6 and set the batch size to 8 per GPU, omitting gradient accumulation, and train for 250 epochs.

C.1 MAGICBRUSH SUBSET

To initially focus our analysis on the specific task of object addition, we applied an automated
filtering process to the MagicBrush dataset. This process aims to isolate image pairs and associated
instructions that exclusively pertained to object addition. To ensure an unbiased methodology, we
applied an automatic filtering rule across the entire dataset. The filtering criterion applied retained
instructions explicitly containing the verbs ”add” or ”put,” indicating object addition. Concurrently,
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Add a yellow umbrellaAdd a big flat TV Add a wide long dress Add a cap

Figure S14: Limitations. Left: Successful shadow generation near the object. Center: Failures in
generating shadows or reflections when distant from the object. Right: Failure in changing hand
posture and maintaining the original one.

instructions with ”remove” were excluded to avoid object replacement scenarios, and those with the
conjunction ”and” were omitted to prevent cases involving multiple instructions.

C.2 EVALUATION

In our comparative analysis in Section 5.2, we assess our model against leading instruction-following
image editing models. To ensure a fair and consistent evaluation across all models, we employed a
fixed seed (0) for all comparisons.

Our primary analysis focuses on two instruction-guided models, IP2P (Brooks et al., 2023) and
Hive (Zhang et al., 2023). For IP2P, we utilized the Hugging Face diffusers model and pipeline4,
adhering to the default inference parameters. Similarly, for Hive, we employed the official imple-
mentation provided by the authors5, with the documented default parameters.

Our comparison extends to models that utilize global descriptions: VQGAN-CLIP (Crowson et al.,
2022) Null-Text-Inversion (Mokady et al., 2023), Pix2PixZero (Parmar et al., 2023), Edit-Freindly
DDPM (Huberman-Spiegelglas et al., 2024) and SDEdit (Meng et al., 2021). These models were
chosen for evaluation within the MagicBrush dataset, as global descriptions are not available in
both the OPA and our PIPE dataset. For VQGAN-CLIP6, Null-Text-Inversion7 and Edit-Freindly
DDPM8, we used the official code base with the default hyperparameters. For SDEdit9 and
Pix2PixZero10, we used the image-to-image pipeline of the Diffusers library with the default pa-
rameters.

We also evaluated our fine-tuned model against the MagicBrush fine-tuned model, as documented
in (Zhang et al., 2024). Although this model does not serve as a measure of generalizability, it
provides a valuable benchmark within the specific context of the MagicBrush dataset. For this
comparison, we employed the model checkpoint and parameters as recommended on the official
GitHub repository of the MagicBrush project11. In Figure S15 and Figure S16, we provide additional
qualitative examples on the tested datasets to complement the ones in Figure 3. We further assess
the model’s performance on the MagicBrush subset using the same CLIP Image similarity versus
Directional CLIP similarity measure, as explained in Section 6. We plot this measure to compare
the IP2P model with our model in Figure S17 and the MagicBrush fine-tuned models in Figure S18.
As shown in both comparisons, our models present a better trade-off between consistency with the
input image and adherence to the edit instruction, achieving higher consistency with the instruction
for the same similarity to the input image.

4https://huggingface.co/docs/diffusers/training/instructpix2pix
5https://github.com/salesforce/HIVE
6https://github.com/nerdyrodent/VQGAN-CLIP
7https://github.com/google/prompt-to-prompt/blob/main/null_text_w_ptp.

ipynb
8https://github.com/inbarhub/DDPM_inversion
9https://huggingface.co/docs/diffusers/en/api/pipelines/stable_

diffusion/img2img
10https://huggingface.co/docs/diffusers/main/en/api/pipelines/pix2pix_

zero
11https://github.com/OSU-NLP-Group/MagicBrush
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Add a green and white passenger train

Add a white tethered cow

Original Hive IP2P Ours

Add a zebra

Add a parking meter

Original Hive IP2P Ours

Figure S15: Visual Comparison of the Proposed Model on PIPE Test Set. The visual evaluation
highlights the effectiveness of our method against other leading models on the PIPE test set. Our
model excels in adhering closely to specified instructions and accurately generating objects in terms
such as style, scale, and location.

Put a skateboard on the wall.

Add a car driving out of the garage

Add a mascot

Original CLIP-VQGAN Hive IP2P Ours

Put a cup of coffee on the background.

Original CLIP-VQGAN Hive IP2P Ours

Figure S16: Visual Comparison of the Proposed Model on MagicBrush Test Subset. Our method
versus leading models within the MagicBrush object addition test subset. It illustrates our model’s
superior generalization across varied instructions and datasets, outperforming the other approaches.
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Figure S17: Model Consistency-Instruction
Trade-off: Trade-off between consistency
with the input image (Y-axis) and edit adher-
ence (X-axis) for IP2P and our model on the
MagicBrush test subset. Text guidance is fixed
at 7, and image guidance ranges from 1 to 2.5.
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Figure S18: Finetuned-Model Consistency-
Instruction Trade-off: Trade-off between con-
sistency with the input image (Y-axis) and edit
adherence (X-axis) for IP2P and our model, both
fine-tuned on the MagicBrush training set and
tested on its test subset. Text guidance is fixed
at 7, and image guidance ranges from 1 to 2.5.
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D HUMAN EVALUATION

While quantitative metrics are important for evaluating image editing performance, they do not fully
capture human satisfaction with the edited outcomes. To this end, we conduct a human evaluation
survey, as explained in Section 5.4, comparing our model with IP2P and hive (table S8). Following
(Zhang et al., 2024), we pose two questions: one regarding the execution of the requested edit
and another concerning the overall quality of the resulting images. Figure S19 illustrates examples
from our human survey along with the questions posed. Overall, our method leads to better results
for human perception. Interestingly, as expected due to how PIPE was constructed, our model
maintains a higher level of consistency with the original images in both its success and failure cases.
For example, in the third row of Figure S19, while IP2P generates a more reliable paraglide, it fails
to preserve the original background.

Methods
Edit faithfulness Quality

Overall Per Overall Per-
[%] image [%] image

Hive 25.9 21 24.8 22
Ours 74.1 79 75.2 78

Table S8: Human Evaluation against Hive.
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Add a 
black and 

orange 
pencil

Add green 
sunglasses

Reference                                   A                                                    B

Add a 
yellow-
green 
parrot

Add an 
orange 
frisbee

Add a 
bottle of 

wine

Guidelines:  
Compare the edit instruction with the actual changes made in the edited images. Select one edit that 
most accurately and consistently implements the edit instruction.

Guidelines:
Select one edited image that exhibits the best image quality. (Some aspects you may consider, such as 
the preservation of visual fidelity from the original image seamless blending of edited elements with the 
original image, and the overall natural appearance of the modifications, etc.)

Add a 
paraglide

Reference                                   A                                                    B

Figure S19: Human Evaluation Examples. Examples of the qualitative survey against IP2P along-
side the response distribution (our method in red and the baseline in blue). The examples include
both successful and failed cases of our model. The first three top examples correspond with a ques-
tion focused on the edit completion, and the three bottom ones on the resulting image quality.
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E INSTRUCTIONS ABLATION

We examine the impact of employing our VLM-LLM pipeline, detailed in Section 3.2, for gen-
erating natural language instructions. The outcomes of the pipeline, termed ”long instructions”,
are compared with brief, class name-based instructions (e.g., “Add a cat”), referred to as ”short
instructions”. In Table S9, we assess a model trained on the PIPE image pairs, comparing its per-
formance when trained with either long or short inputs. The models are evaluated on MagicBrush
subset. As expected, training with long instructions leads to improved performance on MagicBrush.
This demonstrates that training with comprehensive instructions generated by our VLM-LLM mech-
anism benefits at inference time. In addition to quantitative results, we provide qualitative results
of both models in Figure S20. As illustrated, the model trained with long instructions shows supe-
rior performance in interpreting complex instructions that include detailed descriptions and location
references, such as ”Let’s add a black bear to the stream”.

Short
Instructions

Long
Instructions

Short
InstructionsOriginal Long

Instructions

Add red Mercedes-Benz bus with a large front  
windshield and an extended rear section

Original

Let's add a black bear to the stream. 

Figure S20: Instructions Ablation Examples. Qualitative comparison of model performance when
trained on ’short’ template-based instructions versus ’long’ instructions generated through our VLM-
LLM pipeline. Models trained on the latter exhibit superior performance in interpreting complex
instructions and closely aligning object additions with editing requests.

Train Instructions Type L1 ↓ L2 ↓ CLIP-I ↑ DINO↑ CLIP-T ↑
Short Instructions 0.083 0.028 0.900 0.856 0.300
Long Instructions 0.072 0.025 0.900 0.852 0.302

Table S9: Instructions Ablation Analysis. A quantitative comparative analysis of model perfor-
mance, comparing training on ’short’ class-based instructions to ’long’ instructions generated using
the VLM and LLM pipeline. This analysis was performed on MagicBrush subset. The results
demonstrate that training with VLM-LLM-based instructions significantly enhances performance,
thereby confirming its effectiveness.
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F GENERAL EDITING

As detailed in Section 6, the model, trained on the combined IP2P and PIPE dataset, achieves new
state-of-the-art scores for the general editing task. In Figure S21, we present a visual comparison that
contrasts our model’s performance with that of a model trained without the PIPE dataset. The results
not only underscore our model’s superiority in object additions but also demonstrate its effectiveness
in enhancing outcomes for other complex tasks, such as object replacement.

We further analyze this model by testing its performance not on the entire MagicBrush dataset as in
Section 6, but on the ’addition only’ subset (discussed in Appendix C.1) and its complementary ’not
addition’ subset. The experiments are performed under the same configuration as Section 6. Results
for the addition subset and the complementary subset are presented in Table S10. In both subsets,
our model outperforms the other models, indicating that although our dataset focuses on adding
instructions, the inclusion of a large amount of high-quality editing data enhances performance for
general editing tasks as well.

IP2P
FT

PIPE + IP2P 
FT 

IP2P
FTOriginal PIPE + IP2P 

FT Original

Let the toilet bowl have a lid.

Let’s add a drawing of a girl to the wall.

Add drawing to the refrigerator

Replace the dove with an owl.

Make the drinks blue.

What if he was with a backpack?

Have there be a model posing next to the sheep

Make the bust a fire truck.

Figure S21: Visual Comparison on General Editing Tasks. The contribution of the PIPE dataset
when combined with the IP2P dataset for general editing tasks, as evaluated on the full MagicBrush
test set. The comparison is between a model trained on these merged datasets and a model trained
solely on the IP2P dataset, with both models fine-tuned on the MagicBrush training set. The
results demonstrate that, although the PIPE dataset focuses solely on object addition instructions, it
enhances performance across a variety of editing tasks.
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Addition Subset Non-Addition Subset
Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑ L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

IP2P .100 .031 .860 .700 .289 .114 .038 .839 .742 .290
IP2P FT .077 .028 .902 .867 .306 .083 .032 .895 .841 .300
Ours + IP2P FT .069 .024 .913 .889 .308 .075 .027 .905 .862 .303

Table S10: Global Editing Performance on Addition and Non-Addition MagicBrush Subsets.
Evaluation of our global editing model performance on both the add and complementary non-add
instruction subsets of MagicBrush. The model, trained on the combined PIPE and IP2P datasets and
fine-tuned on the MagicBrush training set, surpasses IP2P and the fine-tuned IP2P models in both
subsets.

G SOCIAL IMPACT AND ETHICAL CONSIDERATION

Using PIPE or the model trained with it significantly enhances the ability to add objects to im-
ages based on textual instructions. This offers considerable benefits, enabling users to seamlessly
and quickly incorporate objects into images, thereby eliminating the need for specialized skills or
expensive tools. The field of image editing, specifically the addition of objects, presents potential
risks. It could be exploited by malicious individuals to create deceptive or harmful imagery, thus
facilitating misinformation or adverse effects. Users are, therefore, encouraged to use our findings
responsibly and ethically, ensuring that their applications are secure and constructive. Furthermore,
PIPE, was developed using a VLM (Wang et al., 2023b) and an LLM (Jiang et al., 2023), with
the model training starting from a SD checkpoint (Rombach et al., 2022). Given that the models
were trained on potentially biased or explicit, unfiltered data, the resulting dataset may reflect these
original biases.
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