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Abstract
Climate change poses grave challenges, de-001
manding widespread understanding and low-002
carbon lifestyle awareness. Large language003
models (LLMs) offer a powerful tool to ad-004
dress this crisis, yet comprehensive evaluations005
of their climate-crisis knowledge are lacking.006
This paper proposes an automated evaluation007
framework to assess climate-crisis knowledge008
within LLMs. We adopt a hybrid approach009
for data acquisition, combining data synthe-010
sis and manual collection, to compile a di-011
verse set of questions encompassing various012
aspects of climate change. Utilizing prompt013
engineering based on the compiled questions,014
we evaluate the model’s knowledge by analyz-015
ing its generated answers. Furthermore, we016
introduce a comprehensive set of metrics to017
assess climate-crisis knowledge, encompass-018
ing indicators from 10 distinct perspectives.019
These metrics provide a multifaceted evalua-020
tion, enabling a nuanced understanding of the021
LLMs’ climate crisis comprehension. The ex-022
perimental results demonstrate the efficacy of023
our proposed method. In our evaluation uti-024
lizing diverse high-performing LLMs, we dis-025
covered that while LLMs possess considerable026
climate-related knowledge, there are shortcom-027
ings in terms of timeliness, indicating a need028
for continuous updating and refinement of their029
climate-related content.030

1 Introduction031

The climate crisis, exacerbated by fossil fuel burn-032

ing, deforestation, and industrial processes, poses033

a grave global threat. Its impacts range from ris-034

ing sea levels to intensified weather events and035

biodiversity loss. Addressing this crisis is urgent,036

prompting widespread efforts to reduce greenhouse037

gas emissions and adopt more sustainable practices038

(Schimanski et al., 2024). In this context, large lan-039

guage models (LLMs) like GPT-4 (OpenAI, 2023)040

can play a vital role in raising awareness and ed-041

ucating the public about the climate emergency.042

LLMs have the potential to reach a global audience 043

and provide accurate, up-to-date information on 044

the causes and consequences of the climate crisis. 045

They can also engage in discussions (Stede and 046

Patz, 2021) with users, answering questions and 047

addressing concerns related to climate change. 048

Existing LLMs have access to a significant 049

amount of information related to the climate crisis, 050

but this knowledge is often underutilized due to the 051

models’ lack of interpretability. Furthermore, the 052

quality of climate crisis-related responses gener- 053

ated by LLMs has not been thoroughly evaluated, 054

which limits their potential to provide valuable 055

insights to researchers, policymakers, and other 056

stakeholders involved in addressing climate issues. 057

Existing methodologies for evaluating LLMs in 058

general domains are inadequate for climate-crisis 059

knowledge. This paper aims to analyze the chal- 060

lenges and opportunities associated with leveraging 061

LLMs for climate crisis knowledge and propose a 062

methodology to extract and assess the quality of 063

this knowledge in an explainable way. Our ap- 064

proach involves eliciting climate crisis knowledge 065

from LLMs through designed prompts and evaluat- 066

ing the quality of this knowledge using comprehen- 067

sive metrics. 068

Extracting climate crisis knowledge from LLMs 069

is a non-trivial task due to limited interpretabil- 070

ity. Our approach aims to improve understanding 071

and evaluation of this knowledge, enabling a more 072

human-interpretable assessment of their capabili- 073

ties. We symbolize the parameter knowledge in 074

the text through elaborately designed prompts. To 075

assess the knowledge accurately, we require a sub- 076

stantial number of relevant questions and answers. 077

We developed a pipeline to generate and curate 078

such questions by combining outputs from LLMs 079

with public datasets. We then utilize LLMs to pro- 080

vide answers to these questions. 081

The second challenge is evaluating knowledge 082

related to the climate crisis. Prior studies have 083
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primarily relied on perplexity to assess generated084

content, but this approach falls short in accurately085

capturing knowledge from a human cognitive per-086

spective. Certain research efforts have resorted to087

human evaluation, an approach that can be both088

costly and time-consuming. Other studies have at-089

tempted to utilize classifiers to grade answers, yet090

these methods prove inadequate for accurately eval-091

uating knowledge pertinent to the climate crisis. To092

address this issue, we propose a method to auto-093

matically evaluate the knowledge of LLMs related094

to the climate crisis by evaluating the quality of095

questions and answers. We first propose 5 metrics096

for evaluating questions (importance, clarity, rel-097

evance, difficulty, and innovation) and another 5098

metrics for evaluating answers (relevance, depth,099

readability, innovation, and timeliness). We lever-100

age high-performing LLMs to score questions and101

answers, then average the scores for comprehensive102

assessment. This integrated approach enhances103

evaluation accuracy and reliability.104

The contributions of this paper are as follows:105

(1) We propose a method to symbolize and as-106

sess the knowledge of climate crisis within LLMs.107

(2) We present an approach to collect questions108

and answers related to the climate crisis and use109

LLMs to automatically evaluate the LLMs’ knowl-110

edge related to the climate crisis.111

(3) We introduce 5 question metrics and 5 an-112

swer metrics for objective scoring. Experimental113

findings validate the effectiveness of our method114

and highlight the limitations of LLMs in this con-115

text.116

2 Related Work117

2.1 Large Language Models for Climate118

Change119

Global climate change is a significant challenge120

that necessitates a multidisciplinary approach. Ar-121

tificial intelligence (AI) and natural language pro-122

cessing (NLP) technologies, such as ChatGPT,123

have potential applications (Kraus et al., 2023) in124

climate research, including model parameteriza-125

tion, data analysis, scenario generation, and evalua-126

tion. These techniques contribute to enhancing the127

accuracy of climate predictions and provide robust128

tools for researchers and policymakers. Machine129

learning (ML) workloads (Rolnick et al., 2022)130

are rapidly growing in importance, but their carbon131

footprint is a concern. Google has managed to keep132

ML training energy use below 15% of total energy133

use over the past three years by implementing best 134

practices. It is suggested that these practices be 135

adopted throughout the ML field to significantly 136

reduce the carbon footprint of model training. The 137

application of LLM technology contributes to accu- 138

rately analyzing the trends and impacts of climate 139

change, providing strong support for sustainable 140

development in the field of ESG (Environment, So- 141

cial, and Governance) (Stammbach et al., 2022), 142

and promoting the achievement of a green and low- 143

carbon future. 144

LLMs, like GPT-3, are widely used in various 145

fields, including entertainment, health, and finance 146

(Zhu, 2023a). However, their performance can 147

be uneven when interacting with different social 148

groups (Vaghefi et al., 2023). Leippold (2023) sug- 149

gest an analytical framework to evaluate fairness 150

in human-AI conversations. By analyzing over 151

20,000 conversations about climate change and the 152

Black Lives Matter movement, they find that GPT- 153

3 performs well when engaging with educational 154

and minority groups regarding viewpoints. These 155

groups not only received accurate and unbiased 156

information but also changed their attitudes and 157

expressed support for related actions after the dia- 158

logue. LLMs have achieved remarkable results in 159

AI, but they still use imprecise language in areas 160

where accuracy is critical, such as climate change. 161

Webersinke et al. (2021) overcome its limitations 162

and improve reliability by treating LLM as a proxy 163

for accessing multiple sources such as Climate- 164

Watch and general Google searches for the latest 165

accurate climate data. 166

Climate change poses a significant threat to hu- 167

man health, and effective, evidence-based policies 168

are needed to mitigate or eliminate these risks. This 169

necessitates the translation of scientific knowledge 170

into policy. To address this challenge, Cheng et al. 171

(2022) propose the development of domain-specific 172

language models for climate and health to cap- 173

ture available knowledge and solve various tasks, 174

such as identifying similarities between climate and 175

health concepts, fact-checking, extracting relation- 176

ships, and generating policy text. Biswas (2023) 177

conducted a study on the application of ChatGPT 178

in climate data analysis, scenario generation, and 179

model evaluation. The research provided valuable 180

tools for both researchers and policymakers. Pat- 181

terson et al. (2022) interviewed GPT-3 on the topic 182

of climate change. Their study highlights the capa- 183

bilities of LLMs but also notes that they can some- 184

times generate incorrect or nonsensical responses, 185
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a phenomenon known as hallucinations. The re-186

searchers will focus on strategies to prevent such187

hallucinations, making the models more reliable188

through techniques like reinforcement learning (Ti-189

wari et al., 2021), and exploring the potential appli-190

cations of GPT-3 in finance (Caldecott et al., 2022;191

Zhu, 2022a) and other relevant domains.192

2.2 Large Language Models for Human193

Evaluation194

Large Language Models achieve controllability195

through human feedback mechanisms and fine-196

tuning the model to match human preferences.197

However, this approach has limitations, includ-198

ing complexity and instability. To address these199

challenges, Rafailov et al. (2023) proposed an algo-200

rithm called Direct Preference Optimization (DPO).201

DPO accurately optimizes the constrained reward202

maximization problem in a single stage by estab-203

lishing a mapping between the reward function and204

the optimal policy. The application of LLMs in the205

medical field has sparked widespread discussion.206

However, they face challenges such as the potential207

spread of misinformation and the risk of data ma-208

nipulation. Reddy (2023) evaluates the regulatory209

mechanisms that should be in place when applying210

LLMs to healthcare, as well as methods for assess-211

ing their performance and practical value. These212

efforts aim to ensure public trust in these models.213

Wang et al. (2023) highlight that large language214

models, including GPT-4, exhibit biases in assess-215

ing the quality of responses generated by different216

models. By altering the sequence of responses217

within a context, it is possible to manipulate the218

evaluation outcomes to favor one model over others.219

To address this issue, they developed a calibration220

framework that incorporates three straightforward221

and effective strategies: multi-evidence calibration,222

balanced position calibration, and human cycle cal-223

ibration. These methods help to reduce evaluation224

bias and align the results more closely with human225

judgment.226

KoLA (Yu et al., 2023) is a meticulously crafted227

knowledge-centric evaluation benchmark designed228

to assess the capabilities of LLMs. The bench-229

mark features a four-tiered classification system230

for knowledge-related abilities (Zhu et al., 2023),231

which emulates human cognition. Additionally, it232

incorporates data from Wikipedia and other sources233

that are regularly updated. KoLA employs an234

evaluation methodology that utilizes both standard235

scores and self-comparison indicators. The authors236

evaluated 21 open-source and commercial LLMs 237

and conducted a thorough analysis of their find- 238

ings. Chiang and Lee (2023) investigated whether 239

large language models could serve as a substitute 240

for human evaluation. The study compared the use 241

of LLMs and human evaluators in assessing text 242

quality for two natural language processing tasks. 243

The findings indicate that the evaluation outcomes 244

generated by LLMs align with those provided by 245

human experts. The researchers discovered that the 246

results from LLM evaluations remained consistent 247

across different formats of task instructions and 248

were deemed stable and reliable. The paper further 249

discusses the limitations and ethical implications 250

of using LLMs for assessment purposes. 251

3 Approach 252

We formalize the climate crisis knowledge eval- 253

uation task. Given a set of climate crisis ques- 254

tions X(q) = {x(q)1 , x
(q)
2 , ...} and answers X(a) = 255

{x(a)1 , x
(a)
2 , ...}, we use LLMs as evaluators to gen- 256

erate responses based on predefined metrics, which 257

reflect the knowledge contained within the model. 258

Unlike previous work, the innovation of this paper 259

is that we propose an automatic LLM inference 260

framework that evaluates the climate-crisis knowl- 261

edge of LLMs from 10 different perspectives. The 262

overview framework is shown in Figure 1. The 263

timeline includes data acquisition, prompt engi- 264

neering, question evaluation, response generation, 265

and response evaluation. These modules can be 266

processed in parallel. In this section, we first intro- 267

duce the acquisition of Climate Crisis Questions 268

and Answers, followed by an introduction to the 269

Climate Crisis Knowledge Evaluation. 270

3.1 Acquisition of Climate-Crisis Q&A 271

Dataset 272

Our proposed method for acquiring a large num- 273

ber of questions about the climate crisis involves 274

a two-step process: question generation and ques- 275

tion selection. Initially, we used the Llama2-70B 276

(Touvron et al., 2023) model to generate 100,000 277

questions. This model has advanced language un- 278

derstanding and generation capabilities, enabling 279

the creation of a diverse range of questions that 280

cover various aspects of the climate crisis. After 281

generating the questions, we perform a thorough 282

classification and labeling process to facilitate effi- 283

cient analysis and processing of the questions. 284

Following our initial selection, we conducted an 285

3



Figure 1: The schematic diagram of the proposed cli-
mate crisis knowledge evaluation framework

additional review to eliminate questions that were286

irrelevant or duplicates. We established a set of287

rules to guide this process, which was fully auto-288

mated with no human intervention. To ensure the289

quality of the questions, we improved their qual-290

ity through the following steps: (1) Removal of291

overlapping questions: Through semantic analysis,292

we identified redundant questions and employed an293

embedding-based question retrieval method to re-294

tain only unique questions, effectively eliminating295

duplicates based on a defined threshold, as shown296

in equation (1). (2) Climate crisis relevance assess-297

ment: We conducted a relevance analysis of each298

question to ensure its practical significance and299

value in the context of the climate crisis, leveraging300

keyword occurrence.301

αi,j =
h
(q)
i

T
h
(q)
j

||h(q)i || · ||h(q)i ||
i, j ∈ m, i ̸= j (1)302

where h
(q)
i ∈ Rd is determined using equation (2).303

h
(q)
i = Fencoder(x

(q)
i |Θ) (2)304

where Fencoder(·) is is a language model for gener-305

ating embeddings (Xiao et al., 2023). Θ represents306

the parameters of the model. x(q)i is the sequence307

of text in the question.308

After processing these questions, we obtained 309

a valuable collection of 19,241 high-quality ques- 310

tions related to the climate crisis, about 5% of this 311

data came from an external dataset. Since LLMs 312

are pre-trained with the next token prediction task, 313

as shown in equation (3), we subsequently lever- 314

aged Llama2-70B to generate corresponding an- 315

swers for each question (Zhu et al., 2021). Our 316

two-stage methodology effectively facilitated the 317

accumulation of a substantial number of question- 318

answer pairs. 319

p(x) =

n∏
i=1

p(wi|wi−1, ..., w1,Θ) (3) 320

where x is the input text and wi represents the i-th 321

token. Θ is the model parameter. In the following, 322

we introduce a novel methodology for assessing 323

knowledge about the climate crisis. Our approach 324

aims to establish an objective and precise criterion 325

for evaluating questions and answers related to this 326

critical topic, leveraging the capabilities of multiple 327

LLMs. 328

3.2 Evaluation of Climate-Crisis Knowledge 329

Figure 2: An illustration of utilizing multiple LLMs
to automatically evaluate a question-answer pair in the
context of climate change

We use multiple LLMs to generate scores for 330

the questions, as shown in Figure 2. To allow the 331

model to evaluate the responses from various as- 332

pects, we developed several prompt templates (Zhu, 333

2023b) for questions and answers, including dif- 334

ferent types of questions, so that the model can be 335

evaluated from multiple perspectives. For instance, 336

4



the prompt might be: "Please assess the importance337

of the above question: How valuable is this ques-338

tion to the user? Can it help users express their339

needs and confusion?" or "Please rate the clarity340

of the above questions: Is the question clear and341

easy to understand?" In this way, the model can342

rate each question and answer based on its learned343

knowledge.344

To evaluate the quality of the questions, we eval-345

uate them from the following aspects: (1) Impor-346

tance of the problem: How valuable is this problem347

to the user? Can it help users express their needs348

and confusion? (2) Clarity of the question: Is the349

question clear and understandable at a glance? (3)350

Relevance of the question: Is the question closely351

related to the topic? (4) Question difficulty: Is the352

question too difficult or too easy for users to under-353

stand or too simple to interest users? (5) Innovation354

of the question: Is the question novel and can it355

inspire users to think?356

To evaluate the quality of answers, we evaluate357

the following aspects: (1) Relevance of the answer:358

Does the answer accurately answer the user’s ques-359

tion and can it solve the user’s needs? (2) Depth360

of answer: Does the answer provide enough detail361

so that users can fully understand and apply the362

information? (3) Answer readability: Is the answer363

written in plain language and clearly formatted for364

users to read and understand? (4) Innovation of the365

answer: Does the answer provide unique insights366

or solutions that will help users achieve better re-367

sults on similar problems? (5) Timeliness of the368

answer: Is the content of the answer up-to-date and369

able to adapt to changing circumstances and needs?370

We use the model to automatically score the371

metrics mentioned above. For the question, we use372

equation (4).373

x
(r)
i,j = Fdecoder(< x

(q)
i ; [pre](q);m

(q)
j ; [suf ](q) >)

(4)
374

where the prefix and suffix of the template are de-375

noted as [pre](q) and [suf ](q), respectively. The376

j-th metric for question evaluation is represented377

as m(q)
j . The LLM is denoted as Fdecoder(·). The378

concatenation operation is represented as <;>.379

For the answer, we use equation (5). Then we380

can get the generation content as the candidate data.381

Finally, we extract the model scores from the data382

using information extraction methods.383

x
(r)
i,j = Fdecoder(< x

(q)
i ;x

(a)
i ; [pre](a);m

(a)
j ; [suf ](a) >)

(5)
384

where the prefix and suffix of the template are de- 385

noted as [pre](a) and [suf ](a), respectively. The 386

j-th metric for answer evaluation is represented as 387

m(a). 388

Then we manually check the model scores 389

through random sampling. We found that the 390

model’s evaluation of the quality of generated re- 391

sponses is highly consistent with that of humans. 392

We also discovered some potential problems. In 393

some cases, the model may misunderstand the in- 394

tent of the instruction, resulting in an invalid re- 395

sponse. Additionally, because the model is trained 396

on a massive amount of cross-domain text data, it 397

may not fully understand certain aspects of the cli- 398

mate crisis or questions of a metaphorical nature. 399

To address these issues, we can further fine-tune 400

the LLMs in the future to improve their ability to 401

understand complex questions and answers. 402

We anticipate that this methodology will foster 403

a deeper comprehension of climate crisis-related 404

issues among individuals and offer a fair and un- 405

biased evaluation criterion. In practical scenarios 406

(Zhu, 2022b), when users submit questions or an- 407

swers, LLMs will seamlessly process them and 408

assign a corresponding score, without human inter- 409

vention, using predefined prompt templates. This 410

not only empowers the system to deliver insight- 411

ful answers but also assesses the quality of the 412

information, ultimately assisting users in grasping 413

the gravity of climate crisis-related topics. By em- 414

ploying carefully crafted prompt templates, our ap- 415

proach guarantees an objective and precise evalua- 416

tion of climate crisis-related questions and answers, 417

thus contributing significantly to heightening pub- 418

lic awareness and encouraging greater participation 419

in the fight against climate change. 420

4 Experiments 421

4.1 Dataset 422

We curated a comprehensive climate-crisis QA 423

dataset that encompasses a vast array of questions 424

and answers about climate change. This dataset 425

boasts a total of 19,241 samples, of which 95% 426

of the questions were intelligently generated us- 427

ing the Llama2-70B model. The remaining 5% of 428

questions were carefully sourced from pertinent 429

information gathered from the internet, including 430

the "Reddit Climate Change Dataset" that captures 431

discussions about climate change on Reddit up to 432

September 1, 2022. This dataset comprises 620,908 433

posts and 4,600,698 comments. To ensure the qual- 434
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ity and relevance of our dataset, we employed a435

rigorous two-step processing method to eliminate436

any overlapping content and enhance its relevance.437

The answers within this dataset are also automati-438

cally generated by the Llama2-70B model.439

4.2 Hyper-parameters440

We employ several high-performing LLMs for eval-441

uation, with the temperature parameter set to 0.5442

for all models, and a maximum length of 2048.443

We set do_sample to false to ensure reproducibil-444

ity of results. For Llama2-70b, we use top_k =445

250, top_p = 1, and repetition_penalty = 1. For446

Baichuan2-13b, we set top_k = 5, top_p = 0.85,447

and repetition_penalty = 1.05. For the remaining448

models, we adhere to their default configurations.449

The experimental environment consists of an In-450

tel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz451

with 256G of memory, and 8 RTX 3090 (24G)452

GPUs.453

4.3 Evaluation454

We assess the quality of questions and answers455

utilizing LLMs, which assign a rating on a scale456

ranging from 0 to 10. A higher score signifies supe-457

rior quality in each respective aspect. Specifically,458

we employ 5 distinct metrics to evaluate questions459

and another set of 5 metrics to evaluate answers.460

4.4 Question Quality Evaluation461

The following models were adopted to assess the462

quality of questions.463

The ChatGLM3-6B model (Zeng et al., 2022) is464

built upon the GLM architecture and employs an au-465

toregressive blank infilling training approach. This466

training method equips the model to handle com-467

plex scenarios with ease, including tasks like tool468

invocation (function call), code execution (code469

interpreter), and Agent-related tasks.470

Mistral-7B (Jiang et al., 2023) uses grouped-471

query attention and sliding-window attention, and472

it employs a byte-fallback BPE tokenizer. The473

model is designed to strike a balance between effi-474

ciency and performance by creating a lightweight475

architecture.476

Zephyr-7B (Tunstall et al., 2023) is based on the477

Mistral-7B model and employs the direct prefer-478

ence optimization (DPO) training approach.479

The Baichuan2-13B model (Yang et al., 2023)480

is trained on a high-quality corpus of 2.6 trillion481

tokens. The model employs ALiBi linear bias tech-482

nology to enhance computational efficiency effec- 483

tively. 484

The Yi-34B model (01.AI, 2023) is based on the 485

Llama model architecture and has been trained on 486

both Chinese and English data. It uses approxi- 487

mately 3T-sized tokens and supports long-context 488

technology. 489

Llama2-70B (Touvron et al., 2023), as proposed 490

by Meta, is an open-source model architecture that 491

has been trained using reinforcement learning with 492

human feedback (RLHF). This training methodol- 493

ogy is designed to align the model’s behavior with 494

human preferences, ensuring both its usefulness 495

and safety. 496

Figure 3: Visualization of question quality evaluation,
with circles closer to the center indicating lower overall
scores assigned by the model

As can be seen from the results in Table 1, the 497

model evaluation results suggest that the quality of 498

questions is highest concerning topic relevance but 499

lowest concerning question difficulty. This means 500

that integrating multiple LLMs can produce more 501

credible results for climate-crisis knowledge. 502

As shown in Figure 3, the curve closer to the out- 503

side indicates a higher overall score for the model. 504

Zephyr-7B gives the highest overall score of ques- 505

tion quality, while Mistral-7B and Yi-34B give the 506

lower overall score of question quality. This means 507

that different models have different standards for 508

knowledge about the climate crisis, and we tend to 509

choose models with more stringent standards. 510
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Table 1: Question quality evaluation scores (0-10) across 5 dimensions

Models Importance Clarity Relevance Difficulty Innovation

ChatGLM3-6B 8.37 8.47 8.56 6.27 8.28
Mistral-7B 8.25 7.80 9.06 6.77 8.36
Zephyr-7B 9.95 9.98 9.97 6.45 9.45

Baichuan2-13B 8.70 9.00 8.37 7.60 8.79
Yi-34B 8.84 8.64 9.75 6.78 7.18

Llama2-70B 8.72 8.33 8.79 7.15 8.00

Average 8.81 8.85 9.13 6.84 8.34

Table 2: Answer quality evaluation scores (0-10) across 5 dimensions

Models Relevance Depth Readability Innovation Timeliness

ChatGLM3-6B 9.92 8.42 8.82 8.73 8.39
Mistral-7B 8.67 8.98 9.00 8.55 8.22
Zephyr-7B 9.98 9.89 9.95 9.75 9.95

Baichuan2-13B 8.73 8.41 8.48 8.23 6.65
Yi-34B 9.65 9.00 9.22 7.54 8.17

Llama2-70B 9.11 9.10 9.35 8.97 9.12

Average 9.34 8.97 9.14 8.63 8.42

4.5 Answer Quality Evaluation511

As can be seen from the results in Table 2, the512

model evaluation results suggest that the quality of513

the answers is the highest in terms of relevance, but514

is low in terms of question timeliness. This means515

that LLMs can understand climate crisis knowl-516

edge and are accustomed to generating relevant517

responses, but contain insufficient timely informa-518

tion.519

As shown in Figure 4, the curve closer to the520

outside indicates a higher overall score for the521

model. Among the models evaluated, Zephyr-7B522

gives the highest overall score for answer quality,523

while Baichuan2-13B gives a lower overall score524

for answer quality. We can find that different mod-525

els have different sensitivity to the timeliness of526

answers.527

4.6 Computing Efficiency Analysis528

We compare LLMs and conduct experiments us-529

ing 4-bit quantization to ensure optimal efficiency.530

We evaluate model performance using 10 different531

prompts and set a maximum sequence length of532

2048.533

As shown in Table 3, ChatGLM3-6B has the534

fastest inference speed, while Llama2-70B has the535

lowest speed. Due to the high GPU memory needs,536

Figure 4: Visualization of answer quality evaluation,
with circles positioned closer to the center indicating
lower overall scores assigned by the model
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we averagely split different layers of Llama2-70B537

to 8 GPUs, so it has extra time consumption to538

communicate among PCIe GPUs. Mistral-7B and539

Zephyr-7B perform poorly compared to similarly540

sized models. For the GPU memory consumption,541

we found that Llama2-70B has the best GPU mem-542

ory utilization efficiency (0.51GB/1B). ChatGLM3-543

6B has the worst memory utilization efficiency544

(0.80GB/1B).545

Table 3: Efficiency of Inference for Various LLMs

Models Time (S) Memory (GB)

ChatGLM3-6B 26.66 4.80
Mistral-7B 179.09 5.37
Zephyr-7B 325.14 5.33

Baichuan2-13B 44.12 11.79
Yi-34B 70.39 19.48

Llama2-70B 709.63 36.20

4.7 Case Study546

We use the question "Can you provide any tips547

for reducing waste and lowering my carbon emis-548

sions when traveling?" as an example to assess the549

responses of the evaluation models.550

As shown in Table 4 located in the Appendix,551

each of the models adopted is capable of provid-552

ing high-quality responses. Among them, Yi-34B553

stands out for offering the most comprehensive sug-554

gestions, while Llama2-70B is known for providing555

a response that is both concise and effective.556

5 Conclusion557

This paper introduces an automated framework558

for evaluating the climate-crisis knowledge of559

LLMs. Our proposed approach assesses climate-560

crisis knowledge based on the quality of symbol-561

ized questions and their corresponding answers.562

The evaluation process is crafted to be both ro-563

bust and comprehensive, encompassing a two-stage564

question acquisition strategy and an answer gen-565

eration procedure. Furthermore, we have devised566

an automated evaluation methodology along with567

a comprehensive set of metrics, including 5 for568

question evaluation and 5 for answer evaluation.569

Experimental findings indicate that our approach570

holds significant value in assessing LLMs’ knowl-571

edge pertaining to climate change.572

The primary contribution of this paper is the573

proposal of an automated framework to evaluate574

climate-crisis knowledge in LLMs, without re- 575

liance on human intervention. Looking forward, we 576

aim to leverage this technique in the development 577

of an online climate crisis knowledge system that 578

utilizes our methodologies to provide users with 579

real-time, expert-level Q&A services. Our research 580

introduces novel concepts and methodologies that 581

address challenges in the field of climate crisis, 582

thereby enriching the research and applications of 583

AI in this critical domain. 584
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Table 4: Comparison of responses from different models

Models Response

ChatGLM3-6B 当然可以，以下是一些减少浪费和降低碳排放的旅行建议：
1. 选择环保的交通工具：选择公共交通工具、自行车或步行，而不是自驾或飞机。火车和巴士通常比飞机更环保，尤其是长途旅行。
2. 飞行时选择直飞航班：直飞航班通常比转机航班更环保，因为它们减少了燃料消耗和碳排放。
3. 优化旅行计划：提前规划行程，避免不必要的绕路和重复旅行，减少碳足迹。
4. 住宿选择：选择环保型酒店或民宿，这些地方通常采取措施减少能源消耗和浪费。
5. 自带餐食：避免经常在外就餐，而是自带食物和饮料，这样可以减少一次性餐具的使用。
6. 减少一次性用品的使用：尽量避免使用一次性物品，如塑料袋、瓶子和餐具。携带可重复使用的物品，如水壶、餐具和购物袋。
7. 回收和节约资源：在住宿和旅行时，尽量回收利用废弃物，并节约用水和用电。
8. 支持环保旅行：选择参加环保旅行团或活动，这些活动通常会考虑对环境的影响。
9. 购买碳抵消：如果必须乘坐飞机等高排放交通工具，可以考虑购买碳抵消，以补偿碳排放。
10. 分享行程：如果可能，与其他人分享行程，这样可以减少整体碳足迹。
记住，每次旅行都会对环境产生影响，但通过采取上述措施，您可以减少对环境的影响，并帮助保护我们的地球。

Mistral-7B Sure, here are some tips for reducing waste and lowering your carbon emissions when traveling:
1. Pack light: Try to pack only what you need for your trip. This will reduce the amount of weight you need to carry, which will in turn reduce your carbon emissions.
2. Use reusable containers: Instead of using disposable plastic bags or containers, bring your own reusable containers for food and other items. This will reduce waste
and save money.
3. Bring your own water bottle: Instead of buying bottled water, bring your own reusable water bottle. This will reduce waste and save money.
4. Use public transportation: Instead of renting a car or taking taxis, use public transportation to get around. This will reduce your carbon emissions and save money.
5. Stay in eco-friendly accommodations: Look for accommodations that are eco-friendly, such as hotels that use renewable energy sources or have recycling programs.
6. Eat locally: Instead of eating at chain restaurants, try to eat locally. This will reduce your carbon emissions and support the local economy.
7. Use reusable bags: Instead of using plastic bags, bring your own reusable bags for shopping and other activities. This will reduce waste and save money.
8. Use energy-efficient electronics: Bring energy-efficient electronics, such as a portable charger and a laptop with a long battery life. This will reduce your energy
consumption and save money.
By following these tips, you can reduce your waste and lower your carbon emissions when traveling.

Zephyr-7B Certainly! Here are some tips for reducing waste and lowering your carbon emissions when traveling:
1. Pack light: The more you pack, the more fuel is needed to transport your luggage. Pack only the essentials and avoid overpacking.
2. Choose eco-friendly accommodations: Look for accommodations that prioritize sustainability, such as those with green certifications, solar panels, or recycling
programs.
3. Use reusable water bottles and bags: Bring a reusable water bottle and bag to avoid using single-use plastics. Many destinations have water refill stations, so you
can fill up your bottle for free.
4. Eat local and seasonal: Eating locally sourced and seasonal foods reduces the carbon footprint of transportation and supports the local economy.
5. Use public transportation: Use public transportation, such as buses, trains, and subways, instead of renting a car. This reduces your carbon emissions and saves you
money.
6. Offset your carbon emissions: Consider offsetting your carbon emissions by investing in carbon-reducing projects, such as reforestation or renewable energy.
7. Support sustainable tourism: Choose activities that prioritize sustainability, such as nature walks, bike tours, and cultural experiences.
8. Reduce water usage: Turn off the tap when brushing your teeth, take shorter showers, and reuse towels to reduce water usage.
9. Support local businesses: Support local businesses, such as small shops and restaurants, to reduce the carbon footprint of transportation and support the local
economy.
10. Educate yourself: Learn about the local culture and environment to better understand the impact of your actions and make informed decisions.
Remember, every small action can make a big difference in reducing waste and lowering your carbon emissions when traveling.

Baichuan2-13B Sure, here are some tips to reduce waste and lower your carbon emissions when traveling:
1. Use public transportation or carpooling instead of renting a car. This will not only save you money but also reduce your carbon footprint.
2. Bring reusable water bottles, coffee mugs, and shopping bags. Avoid using single-use plastic items as much as possible.
3. Book accommodation that has eco-friendly practices like energy efficiency and water conservation.
4. Eat locally sourced food while traveling. This reduces the need for transportation and minimizes waste.
5. Choose accommodations with energy-efficient lighting and appliances. This will help in reducing energy consumption.
6. Minimize your use of air conditioning and heating. Wear layers of clothing to regulate your body temperature.
7. Unplug chargers and devices not in use. This will help in reducing energy consumption.
8. Consider staying at an eco-friendly hotel or resort that uses renewable energy sources.
9. Use energy-efficient devices like LED lights and energy-saving appliances.
10. Support local businesses and cultural activities. This will help in promoting sustainable tourism.

Yi-34B Yes, there are several tips to reduce waste and lower carbon emissions when traveling:
1. Plan Your Trip Carefully:
Choose modes of transportation that have lower carbon emissions, such as trains or buses over flying, especially for shorter distances.
Combine multiple destinations into one trip to reduce the number of flights taken.
2. Use Public Transportation:
Opt for local buses, trains, or subways instead of renting a car or using taxis.
3. Ride Sharing:
Use carpooling or ridesharing services to reduce the number of vehicles on the road.
4. Eco-Friendly Accommodations:
Choose hotels or hostels that have eco-friendly practices, such as energy-efficient lighting, water-saving devices, and recycling programs.
5. Bring Your Own Gear:
Bring your own reusable water bottle, coffee mug, and cutlery to reduce the use of single-use items.
6. Pack Lightly:
Travel with only what you need to reduce the weight and volume of your luggage, which can lower fuel consumption for planes and vehicles.
7. Offset Your Carbon Footprint:
Consider investing in carbon offsets to compensate for the emissions you produce during your trip.
8. Eat Locally and Seasonally:
Support local farmers and reduce the carbon footprint associated with food transportation by eating locally sourced and seasonal produce.
9. Shop Wisely:
Avoid buying items that require a lot of packaging or that will end up in the trash.
10. Leave No Trace:
If you’re camping or hiking, follow the leave-no-trace principles, which include packing out all your trash and being mindful of the environment.
11. Travel Off-Peak:
Avoid traveling during peak seasons when possible, as fewer travelers mean less environmental impact.
12. Be Mindful of Water Usage:
Limit your water usage, especially in places where water is scarce.
By following these tips, you can help minimize your environmental impact while traveling and contribute to a more sustainable tourism industry. Remember that every
little bit helps, and by making small changes, you can make a big difference.

Llama2-70B certainly! Here are some tips for reducing waste and lowering your carbon emissions while traveling:
1. Pack lightly: The more you pack, the more fuel is used to transport your belongings. Try to limit yourself to only the essentials and avoid checking a bag if possible.
2. Use public transportation: Instead of renting a car or taking taxis, use public transportation to get around. Not only is it more environmentally friendly, but it’s also a
great way to experience the local culture.
3. Bring a reusable water bottle: Instead of buying bottled water, bring a reusable water bottle and fill it up at a water fountain or filtered water station.
4. Avoid single-use plastics: Refuse single-use plastics like straws, bags, and utensils. Instead, opt for reusable alternatives like metal straws, cloth bags, and bamboo
utensils.
5. Choose eco-friendly accommodations: Look for hotels, hostels, and vacation rentals that have implemented sustainability practices such as using solar power,
reducing water waste, and recycling.
6. Reduce food waste: Plan your meals in advance and try to avoid ordering too much food. Also, consider choosing local, seasonal ingredients which have a lower
carbon footprint.
7. Offset your carbon emissions: Consider offsetting your carbon emissions from your flight by investing in carbon offset projects that reduce greenhouse gas emissions
elsewhere, such as reforestation or renewable energy projects.
I hope these tips help you reduce your impact on the environment while traveling!
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