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Abstract

Transformer-based models have achieved state-
of-the-art performance on numerous NLP ap-
plications. However, long documents which
are prevalent in real-world scenarios cannot
be efficiently processed by transformers with
the vanilla self-attention module due to their
quadratic computation complexity and limited
length extrapolation ability. Instead of tack-
ling the computation difficulty for self-attention
with sparse or hierarchical structures, in this pa-
per, we investigate the use of State-Space Mod-
els (SSMs) for long document classification
tasks. We conducted extensive experiments
on six long document classification datasets,
including binary, multi-class, and multi-label
classification, comparing SSMs (with and with-
out pre-training) to self-attention-based models.
We also introduce the SSM-pooler model and
demonstrate that it achieves comparable perfor-
mance while being on average 36% more effi-
cient. Additionally our method exhibits higher
robustness to the input noise even in the ex-
treme scenario of 40%.

1 Introduction

Since the emergence of large-scale pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
and GPT3 (Brown et al., 2020), these transformer-
based models have become popular solutions for
many text classification and generation tasks. How-
ever, their benefit is constrained to short-length
inputs when the computation resource is limited be-
cause attention module requires quadratic computa-
tion time and space. More specifically, each token
in a sequence of length N requires pairwise com-
putation with all N tokens, which results in O(N2)
complexity. Such limitation makes transformer-
based models hard to process long sequential data
efficiently. There are many works aiming to im-
prove the performance on Long Document Classi-
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fication for transformers (Dai et al., 2022). One of
the common approaches is to simply truncate long
texts to a pre-defined length, e.g. 512, which makes
pre-trained models to be applicable for them. Some
work demonstrated this technique is not sufficient
for long documents due to the missing of important
information (Dai et al., 2022).

Another sort of technique attempts to reduce
the computation overhead of attention-based sys-
tems. This problem has several relevant solutions,
e.g. Sparse Attention models (Beltagy et al., 2020)
and Hierarchical Attention models (Chalkidis et al.,
2022). One of the important sparse attention meth-
ods is Longformer, which leverages local and
global attention to reduce the computational com-
plexity of the models and increases the input length
up to 4096 tokens. Another popular sparse at-
tention method is BigBird (Zaheer et al., 2020):
besides the global and local attention, it includes
extra random attention modules to attend to a pre-
defined number of random tokens. Apart from
designing sparse attention mechanisms, Hierarchi-
cal Transformers (HAN) like ToBERT (Pappagari
et al., 2019) propose to construct systems on top
of the conventional transformer (Chalkidis et al.,
2022). Basically, the long text is first split into
several chunks less than a fixed number, e.g. 200.
Next, every chunk is encoded by a vanilla trans-
former one by one to form a collection of chunk
representations and then another transformer pro-
cesses the sequence of chuck representations.

Apart from the computation complexity issue,
some works pointed out that the length extrapola-
tion ability of self-attention-based models is quite
limited (Press et al., 2022; Ruoss et al., 2023),
namely, the transformer models perform poorly
during inference if the sequence length of test data
is beyond the sequence length of training data. As
an order-invariant encoding mechanism, the self-
attention-based encoder heavily relies on the Posi-
tion Embedding (PEs) to model input orders, how-



ever, these works demonstrate that the failure of
transformers on long sequence is due to the limited
length generalization ability of these position em-
bedding methods. This also encourages exploring
alternative architectures for the challenge of long
document classification problems.

Recently, Gu et al. (2022) propose modeling
sequential data with state-space models and show
surprisingly good performance on a benchmark
for comparing Transformers over long sequential
data (Tay et al., 2021). However, this benchmark
only consists of one single text classification task.
It is still unclear about the efficacy and efficiency
of state-space models for long document tasks com-
pared to transformer-based models.

In this paper, we aim to fill this gap with a
more comprehensive by conducting extensive ex-
periments and analysis on six long document clas-
sification benchmarks. Besides, we develop an
efficient long document system and show that the
state-space-based models outperform self-attention-
based models (including sparse attention and HAN)
and yield consistent performance across datasets
with much higher efficiency and more robustness
to input noise.

2 Background and Methodology

2.1 State Space Model
In this section, we briefly introduce a recent long
dependency modeling method utilizing State-space
models to encode sequential data (Gu et al., 2022).
The state-space model is defined by the following
equations, which map the 1-dimensional continu-
ous input signal u(t) to an N-dimensional hidden
state x(t), and this hidden state is then projected to
a 1-dimensional output y(t):

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), (1)

where A,B,C,D are trainable parameters. A
discrete sequence, like text, can be regarded as
discretized data sampled from a continuous signal
with a step size ∆, and the corresponding SSM in
the recurrence manner is:

hk = Ahk−1 +Bxk,

yk = Chk +Dxk,

A = (I −∆/2 ·A)−1(I +∆/2 ·A), (2)

where A is the discretized state matrix and
B,C,D share the similar formulas. The SSM can
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Figure 1: The illustration of the architecture of the State-
Space-Pooler model.

also be rewritten in a linear convolution manner
facilitating the encoding speed.

K = (CB,CAB, ...,CA
L−1

B),

yk =

k∑
j=0

(CA
j
B) · xk−j , (3)

where K ∈ RL is defined as the SSM kernel.
Given an input sequence x = {x1, . . . , xL} ∈ RL,
the corresponding outputs y = {y1, . . . , yL} ∈ RL

of the convolution y = K ∗ x can be computed
efficiently in O(L logL) time with the Fast Fourier
Transform (FFT) (Cormen et al., 2009).

The computational complexity of the SSM algo-
rithm is O(L logL) in convolution mode, which
enables it to process significantly longer input se-
quences with the same hardware resources com-
pared to the attention mechanism O(L2). This re-
sults in a substantial reduction in information loss
from the input side. Next, instead of relying on
a limited number of global attention mechanisms
to capture long-term dependencies in sparse atten-
tion models, the SSM model is designed to model
long sequences as dynamic systems. By utilizing
a Hurwitz state matrix A (Goel et al., 2022; Gu
et al., 2023), it preserves long-term dependency in-
formation in a high-dimensional state. Such states
enable SSM models strong ability to capture long
dependency information.



Table 1: Test Performance on six LDU datasets with or without pre-training. We found SSM-based models achieve
significant improvement over self-attention-based methods.

w/o pre-training

Models ECtHR Hyperpartisan 20News EURLEX BOOK AMZ Avg.

Transformer (6layer) 58.7 89.5 73.4 62.1 46.0 35.9 60.9
Longformer (6layer) 62.2 90.3 76.9 62.9 47.3 40.4 63.3
S4 64.4 93.8 76.2 72.6 49.7 44.9 66.9

S4-pooler 64.2 93.8 76.1 72.0 48.0 44.2 66.4

w/ pre-training

Models ECtHR Hyperpartisan 20News EURLEX BOOK AMZ Avg.

BERT 71.7 91.8 84.7 73.2 58.2 51.1 71.8
BERT+random 72.8 89.3 85.0 73.3 59.2 56.8 72.7
BERT+textrank 73.5 91.2 84.7 72.9 58.9 56.9 73.0
Longformer 81.5 93.7 83.4 71.5 58.5 56.4 74.2
HAN 77.2 89.5 85.5 69.6 57.3 54.6 72.3
H3 82.9 94.0 85.9 76.7 60.9 57.9 76.4

H3-pooler 82.1 94.2 84.1 76.4 60.5 57.7 75.8

2.2 SSM-based Systems

In practice, recent SSM-based systems, e.g. S4 (Gu
et al., 2022; Goel et al., 2022) are built up with
a block as shown on the left of Figure 1. This
block shares a similar structure as the self-attention
module with pre-Layer Normalization (Ioffe and
Szegedy, 2015; Ba et al., 2016) but replaces the
multi-head attention with a discretized state-space
model. The Structured State Space sequence model
(S4) (Gu et al., 2022) utilizes this structure and
leverages the Cauchy kernel method to simplify
the kernel computation of SSM. Building on this
idea, Hungry Hungry Hippo (H3) (Dao et al., 2022)
extends the mechanism by including an additional
gate and a short convolution obtained via a shift
SSM to improve the language modeling ability of
SSM-based systems.

2.3 State-Space-Pooler

To further improve the system efficiency, we pro-
pose a modification of the system architecture
which imposes a progressive reduction of the in-
put length for deeper layers. Figure 1 depicts our
system architecture. The model progressively con-
structs the representation from the token level to-
ward the final representation level. By inserting a
max pooling layer between each SSM block, the
model at each level automatically extracts the im-
portant information between nearby inputs and re-
duces the input length to half of the previous layer,
which further accelerates the speed of training and
inference. The final representation of the long se-

quence level is computed with the average of the
last layer and then is fed to a fully-connected dense
layer with softmax or sigmoid function to output
the prediction probability for multi-class or multi-
label problems, respectively.

3 Experiments

In this section, we present our experimental setup
and results for multiple datasets.

3.1 Long Document Understanding (LDU)
Dataset. We first evaluated the effectiveness and
efficiency on six commonly-used long text clas-
sification datasets including Book (Bamman and
Smith, 2013), ECtHR (Chalkidis et al., 2021), Hy-
perpartisan (Kiesel et al., 2019), 20News (Lang,
1995), EURLEX (Chalkidis et al., 2019) and Ama-
zon product reviews (AMZ) (He and McAuley,
2016). For the AMZ dataset, we randomly sam-
pled product reviews longer than 2048 words from
the Book category. We report accuracy for binary
and multi-class classification tasks (Hyperpartisan,
20News, and AMZ) and macro-F1 for the rest of
the multi-label classification problems. The de-
tailed dataset statistics are included in Appendix
A.

Baselines. We compare our methods with Trans-
former (Vaswani et al., 2017), Longformer and
S4 with and without pre-training. More specifi-
cally, for models without pre-training, we compare
6-layer S4 and S4-pooler models (11m parame-
ters) with 6-layer Transformer (70m parameters)



and Longformer models (99m parameters). For
models with pre-trained checkpoints1, we choose
BERT-base with truncated input length and its two
variants BERT-random and BERT-textrank (Park
et al., 2022), we choose one sparse attention model:
Longformer (Beltagy et al., 2020) and one hierar-
chical transformer model (HAN): ToBERT (Pappa-
gari et al., 2019). The detailed model settings and
hyperparameters are included in Appendix B.

Results. Table 1 shows the results of different
methods on six commonly used long text classifi-
cation datasets. Among the models without pre-
training, the Transformer models perform more
poorly than all other models by a large margin (3%
- 6%). S4 and S4-pooler perform significantly bet-
ter than Transformer and Longformer models on all
datasets except for 20news, which is probably be-
cause the average length of this dataset is relatively
short. On average, S4 and S4-pooler outperform
the Longformer by 3.4% and 3.1%, respectively.
For models fine-tuned with pre-trained checkpoints,
although the BERT models with truncated inputs
improve a lot compared to transformers without
pre-training, they still underperform other methods,
which indicates the necessity of processing longer
text for this task. Again, the H3 and H3-pooler
models give better performance on average. Be-
sides, the S4-pooler and H3-pooler models demon-
strate comparable performance to the correspond-
ing original systems with around 36% training time
reduction. We discuss the training time in the anal-
ysis section.

4 Discussion

In this section, we investigate the training effi-
ciency, the impact of different down-sampling
structures and the robustness to input noise of SSM-
based models.

4.1 Time Analysis

Figure 2 shows the training time of different mod-
els on a single Nvidia V100 GPU for one epoch 2.
The maximum input length is set to 512 for trans-
former models and 4096 for Longformer, S4, and
S4-pooler models. All models use the same batch
size of 16 and layer number of 6. SSM-based mod-
els have a significant advantage in training effi-

1Our experiments were conducted with Huggingface
toolkit (https://github.com/huggingface/transformers).

2The experiments of SSM models are adapted from
(https://github.com/HazyResearch/safari).

Eurlex Ecthr Case Books 20news AMZ
Datasets

102

103

104

Tr
ai

ni
ng

 T
im

e 
(s

ec
on

ds
)

Training Time for 1 Epoch
Transformer
Longformer
S4
S4-pooler

Figure 2: The training time comparison of 4 methods on
five datasets. All models are trained on a single Nvidia
V100 GPU for one epoch.

Table 2: Ablation study of different pooling structures.

Models AMZ ECtHR EURLEX Book

S4 44.9 64.4 72.6 49.7

S4-pooler-1-2 44.2 64.2 72.0 48.0
S4-pooler-1-3 44.6 64.0 69.4 47.8
S4-pooler-1-5 43.7 64.2 71.8 47.4

S4-pooler-2-2 43.1 63.4 72.3 49.1
S4-pooler-2-3 44.2 63.1 71.5 50.3
S4-pooler-2-5 39.9 64.2 70.3 49.7

ciency compared to transformer and longformer
models. Even with an 8 times greater maximum in-
put length, S4 and S4-pooler models only took 42%
and 27% of the training time of transformer, respec-
tively. They also only took around 8% and 13%
of the longformer’s training time. By introducing
pooling layers, the training time of the S4-pooler
is reduced to 64% of S4 models on average.

4.2 Ablation Analysis

The pooling layer down-samples the input gradu-
ally, hence reducing the computation cost. More-
over, it changes the resolution of the input sequence
by choosing different window sizes on different lay-
ers. We conducted experiments to investigate the
impact of the hierarchical structures of S4-pooler
models. S4-pooler-x-y refers to placing the pool-
ing layer on every x layer with window size y. The
results are averaged over three random seeds. The
performance of different tasks is influenced by the
hierarchical structures. For example, enlarging the
down-sampling ratio from 2 to 5 decreases the per-
formance of AMZ, while having less impact on the
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Figure 3: The performance of S4 and S4-pooler models
on ECtHR datasets under different noise levels.

ECtHR task.

4.3 Robustness Analysis

Next, we analyze the robustness of SSMs to in-
put noise. We conduct experiments on the ECtHR
dataset under different input noise rates ρ. More
specifically, we randomly mask out ρ percent of
inputs and train S4 and S4-pooler models with the
noisy data. Figure 3 shows the results of two mod-
els. We can see the performance of S4 drops much
faster than S4-pooler model with the increasing
percentage of noise. This is reasonable because
the S4-pooler system has max-pooling layers and
imposes a stronger information extraction effect.

5 Conclusion

In this work, we conduct a comprehensive evalua-
tion of the SSM-based models and show their su-
periority over self-attention-based models on long
document classification tasks in terms of perfor-
mance and training time. We further propose an ef-
ficient SSM-based system by imposing input length
reduction for deeper layers and show our method
performs on par with the original SSM models
while greatly improving time efficiency.

Limitations

The model we proposed only focuses on the clas-
sification of long documents, therefore, it may be
extended to other NLP tasks, like long document
Question Answering tasks. Furthermore, we con-
centrated on English datasets during the evaluation.
In the future, we plan to extend it to more tasks and
languages.
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Table 3: Dataset statistics of LDU datasets.

Dataset # class max train dev test

ECtHR 33 46,712 9,000 1,000 1,000
Hyper 2 5,538 516 64 65
20News 20 30,602 10,182 1,132 7,532
EURLEX 4,721 4,443 45,000 6,000 6,000
BOOK 227 14,165 10,230 1,279 1,279
AMZ 5 18,282 3,880 485 485

1e-5 for one run of each baseline model and se-
lected the best learning rate for the model. For the
Transformer and Longformer trained from scratch,
we used the BERT-base and Longformer-base and
truncated them to be 6 layers without using the pre-
trained checkpoints. For all methods, we set the
maximum epoch to 20 and selected the best model
based on the performance metric on the dev set or
the checkpoint of the last epoch. We reported the
average results on the test set over three different
seeds. For Experiments with S4, we followed the
recommended setting (Gu et al., 2022). For H3
models, we used H3-125M which has a similar
model scale as BERT-base and Longformer-base
models.


