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Abstract
Protein language models have become an increas-
ingly popular tool across various biological tasks,
from variant effect prediction to novel sequence
generation. However, state-of-the-art models of-
ten have up to billions of parameters. Such large
model architectures restrict usage to groups with
the necessary compute infrastructure or necessi-
tate the use of cloud computing, incurring sub-
stantial costs and raising data privacy concerns.
In this work, we investigate a ternary protein lan-
guage model, which uses low-precision weights
to reduce model size, energy demand, and com-
putational requirements, making it suitable for
operation on edge devices such as laptops. This
addresses privacy concerns by ensuring data re-
mains on-device and eliminates the costs asso-
ciated with cloud services. We train a ternary
protein language model and benchmark it against
ESM-2 (8M) using the ProteinGym benchmark,
demonstrating that our model achieves compara-
ble performance while being more suitable for
edge deployment. A discussion is provided on
ways to improve the ternary model to outperform
ESM-2 in terms of accuracy.

1. Introduction
Protein language models (pLMs) have gained widespread
popularity for their use in various biological tasks, from
protein variant prediction (Cheng et al., 2023) to protein
optimization (Hie et al., 2023). pLMs learn an expressive
representation of protein sequences through their extensive
pre-training regime on unlabelled sequences, which can be
leveraged for downstream tasks.

In natural language processing (NLP), neural scaling laws
(Hoffmann et al., 2022) describe the relationship between
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model size and performance. Similar scaling laws have
been identified for pLMs (Hesslow et al., 2022), showing
that increased model size often leads to increased model
performance. Consequently, increasingly large pLMs have
been developed, with the largest version of ESM2, a masked
pLM, having 15 billion parameters (Lin et al., 2023).

However, larger models have high memory requirements
and lower throughput. This poses a barrier to the use of
large foundation models by academic groups and smaller
companies that may not have access to the GPU clusters
required to run these large models, and the high costs associ-
ated with cloud computing can be prohibitive. Additionally,
the use of cloud computing also introduces privacy concerns
if handling confidential and/or regulated data, a common
concern in biomedical research. The energy demands of
larger models also contribute to increased environmental
impact, further highlighting the need for more efficient and
accessible solutions. Thus, there is a need to develop more
efficient pLMs that can be run on lower-resourced ‘edge’
devices, such as laptops. Models run on edge devices are
also private by default, as the data never leaves the local
device.

One approach to achieving greater efficiency is by reducing
the precision of model weights, compared to the 16-bit float-
ing points commonly used to store pLM weights. At the
more extreme end, binary (Wang et al., 2023) and ternary
(Ma et al., 2024) precision auto-regressive natural language
models have been investigated and shown to have competi-
tive performance with the 16-bit equivalents, while having
up to a 21.7 times lower energy cost and 3.55 smaller GPU
memory footprint.

In this work, we investigate training an encoder-only pLM
using a ternary architecture and benchmark it against ESM-
2 using ProteinGym (Notin et al., 2023). Given the limited
compute available, we train an 8M parameter model. Our
results show competitive performance and stable training
of the ternary architecture but the model accuracy does
not match ESM-2. However, based on the work of Me et
al. (2024), we can expect the ternary model to outperform
ESM-2 once model size is scaled up.
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2. Low Precision Models
Model quantization has become an active area of research
in the field of natural language models due to the increasing
size of model architectures. Quantization involves reduc-
ing the precision of model weights, typically from 16-bit
floating-point numbers to lower-bit representations. One
popular approach is post-training quantization of models
trained in 16-bit precision down to low-bit models for infer-
ence. However, this often leads to performance degradation
and has not been extended below 4-bits. An alternative and
promising strategy is to train models from scratch with re-
duced precision. BitNet, introduced by (Wang et al., 2023),
showed that binary quantization {-1, 1} of transformer lin-
ear layers provided competitive performance to the 16-bit
equivalent. Binary quantization is particularly appealing as
it means the matrix multiplication within the linear layers
consists of only addition operations, significantly decreas-
ing energy costs. This was expanded in “BitNet b1.58” to
ternary quantization {-1, 0, 1}, which increased model per-
formance while maintaining the energy-saving benefits of
binary precision (Ma et al., 2024). The introduction of a
0 value allows the model to more effectively filter out un-
needed neurons. The difference in performance between the
ternary and 16-bit precision model was found to decrease
as the model size scaled, reaching equivalence at 3 billion
parameters. For the same performance, the ternary model
was 2.71 times faster, used 3.55 times less GPU memory,
and used 21.7 times less energy.

To constrain linear layer weights to {-1, 0, 1} (Ma et al.,
2024) used a quantization function that scales the weight ma-
trix by its average absolute value and then rounds each value
to the nearest integer among {-1, 0, 1}. The quantization
function W is defined as follows:

W̃ = RoundClip
(

W

γ + ϵ
,−1, 1

)
(1)

Here, the RoundClip function is defined as:

RoundClip(x, a, b) = max(a,min(b, round(x))) (2)

The scaling factor γ is calculated as the average absolute
value of the weight matrix:

γ =
1

nm

∑
ij

|Wij | (3)

Where: W is the weight matrix, W̃ is the quantized weight
matrix, γ is the scaling factor, ϵ is a small constant to pre-
vent division by zero, round(x) rounds x to the nearest
integer, a and b are the clipping boundaries, set to -1 and 1
respectively.

The rest of the architecture is identical to the regular trans-
former encoder architecture used in ESM2 (Lin et al., 2023).
The linear layers in the encoder are simply replaced by the
ternary quantized version defined above.

3. Methods
3.1. Model Architecture

For our initial study, we modified the smallest available
ESM-2 model with 8 million parameters (Lin et al., 2023).
We followed the methodology of Ma et al. (2024) by im-
plementing ternary precision of weights in all linear layers,
apart from the embedding and language modeling head lay-
ers. We used the same Uniref50 (Suzek et al., 2015) dataset
and train/validation splits as ESM2.

3.2. Training

Following the work of Frey et al. (2024), we trained a
‘crammed’ model, in which training is restricted to 24 GPU
hours, allowing for quick iteration and benchmarking. The
crammed model uses a reduced context length of 512 which
allows for a much larger batch size. For hyper-parameter
tuning, we used a random search around the parameters
used by Frey et al. (2024), see Appendix A.1 for the hyper-
parameters used to train “Crammed Ternary ESM2 (8M)”.
As found by Ma et al. (2024), we saw stability at higher
learning rates for the 1-bit architecture compared to mixed
precision models, with an optimal learning rate of 5E-3.
We observed the reported S-shaped loss curve with a sharp
decrease in loss towards the end of training (Figure 1).

We also performed initial training of a ternary model for the
same number of epochs as ESM-2 (8M) (”Ternary ESM2
(8M)”), but, we were only able to train for 6 out of 15 epochs
due to time and compute constraints.

All training was performed on NVIDIA A100 80GB GPUs
using PyTorch and HuggingFace Transformers.

4. Results
We evaluated our ternary model using ProteinGym, which
provides a large set of benchmarks for protein fitness pre-
diction. We used the 217 deep-mutational scan datasets for
zero-shot fitness prediction across various protein classes
and functional tasks, providing a rigorous assessment of
model performance. For our baseline, we used the ESM2
(8M) results provided by ProteinGym. We also trained and
evaluated a ”Crammed ESM2 (8M)” model using the hyper-
parameters and procedure described in (Frey et al., 2024)
with the standard ESM2 architecture.

Table 1 shows the average Spearman correlation across
DMS datasets for the ternary and baseline models. Ternary
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Figure 1. Training loss curve of the crammed baseline ESM2 (8M)
model and ternary ESM2. The ternary model shows a characteristic
”S-shaped” loss curve with a sudden decrease in loss towards the
end of training.

ESM2 achieves an average Spearman correlation of 0.181,
making it competitive with ProtGPT2 and UniRep (Fig-
ure 2). The baseline ESM2 (8M) model had a 25% higher
Spearman correlation than the Ternary ESM2 model, which
was found to be statistically significant at the 5% confidence
level (see Appendix A.2 for details). However, the base-
line model also had roughly double the compute budget of
the ternary model. The crammed models provide a fairer
test, as both the ternary and baseline model had the same
compute budget. Here, the baseline ”Crammed ESM2” only
outperformed the ”Crammed Ternary ESM2” by 15% and
furthermore, this difference was not statistically significant.

If pLMs follow the same trend as observed in NLP LMs, we
would expect the performance difference between ternary
and 16-bit models to decrease as model size scales, as well
as an increasing model compression ratio. It would be
interesting to see if this holds for pLMs too.

Even if the performance of ternary models are not able to
fully match that of 16-bit models, given the performance
we have already shown they could still serve as a valuable
tool for pre-screening sequences. The significantly reduced
inference cost and energy usage of ternary models make
them well-suited for initial screening of large databases of
sequences. By using a ternary model to pre-filter sequences
before passing them through a more computationally ex-
pensive 16-bit precision model, the overall computational
burden and associated environmental and financial costs can
be significantly reduced.

Model Avg. Spearman SD

ESM2-8M 0.226 0.019
Crammed ESM2-8M 0.192 0.019
Ternary ESM2-8M 0.181 0.019
Crammed Ternary ESM2-8M 0.166 0.020

Table 1. Average Spearman Correlation on ProteinGym Zero-Shot
Tasks. ESM2-8M values were obtained from the results submitted
to ProteinGym. Crammed ESM2-8M and Ternary ESM2-8M
values were obtained from our experiments.

Figure 2. Spearman correlation for a selection of pLMs on the Pro-
teinGym Zero-Shot benchmark. Error bars represent the standard
deviation of the mean Spearman correlation, estimated by boot-
strapping with 10,000 samples.

5. Conclusion
We presented initial work on applying ternary precision to
pLMs. We showed that a ternary precision implementa-
tion of ESM2 achieves competitive performance with the
baseline model, despite the small architecture size. This
highlights the opportunities of applying ternary precision to
pLMs, providing significant reductions in inference costs
and environmental impact. Given the work of Ma et al.
(2024), we would expect the performance of the ternary
precision model to scale with model size and match that of
the full precision ESM-2 while having faster inference time,
significantly lower energy consumption and lower mem-
ory requirements. This also opens up the opportunity to
apply low-precision techniques to other costly biological
models such as inverse folding (Hsu et al., 2022) and struc-
ture prediction models (Abramson et al., 2024) to deliver
performance gains to these areas as well.
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A. Appendix
A.1. Model Hyperparameters

All models were trained using a weight decay of 0.01, bf16 mixed precision, and the AdamW optimizer. The crammed
models were able to use a much larger batch size due to the decreased memory requirements from the lower context length.

Hyperparameter Crammed ESM Crammed Ternary ESM2 Ternary ESM2

Warmup steps 1,000 1,000 20,000
Total steps 50,000 50,000 15 epochs
Learning Rate 1E-3 5E-3 4E-3
Batch size 256 256 32
Gradient accumulation steps 8 8 32
Context Length 512 512 1,024

Table 2. Model hyperparameters for Crammed ESM, Crammed Ternary ESM2, and Ternary ESM2.

A.2. Statistical Testing

Table 3 shows the results of the one-tailed Z-tests comparing the mean Spearman correlation of ESM2 vs Ternary ESM2 on
the ProteinGym DMS benchmark. The alternative hypothesis (H1) for each test states that the mean Spearman correlation of
the baseline ESM2 model is greater than the Ternary ESM2 model. The mean Spearman correlation standard deviation
for each model was estimated using bootstrapping with 10,000 samples, as implemented in ProteinGym. The results show
that the ESM2 (8M) model’s performance is significantly better than that of the Ternary ESM2 (8M) model at the 5% level.
In comparison, there is no significant difference between the Crammed ESM2 (8M) and Crammed Ternary ESM2 (8M)
models.

Alternative Hypothesis (H1) Z-score p-value Significant at 5% level

µESM2 > µTernary 1.67 0.047 Yes
µCrammedESM2 > µCrammedTernary 0.94 0.17 No

Table 3. Results of one-tailed Z-tests comparing the mean Spearman correlations (µ) of ESM2 (8M) vs. Ternary ESM2 (8M) and
Crammed ESM2 (8M) vs. Crammed Ternary ESM2 (8M) on the ProteinGym benchmark.
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