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ABSTRACT

The linear representation hypothesis is the informal idea that semantic concepts
are encoded as linear directions in the representation spaces of large language
models (LLMs). Previous work has shown how to make this notion precise for
representing binary concepts that have natural contrasts (e.g., {male,female})
as directions in representation space. However, many natural concepts do not have
natural contrasts (e.g., whether the output is about an animal). In this work, we
show how to extend the formalization of the linear representation hypothesis to
represent features (e.g., is animal) as vectors. This allows us to immediately
formalize the representation of categorical concepts as polytopes in the represen-
tation space. Further, we use the formalization to prove a relationship between
the hierarchical structure of concepts and the geometry of their representations.
We validate these theoretical results on the Gemma and LLaMA-3 large language
models, estimating representations for 900+ hierarchically related concepts using
data from WordNet.1

1 INTRODUCTION

Understanding how high-level semantic meaning is encoded in the representation spaces of large
language models (LLMs) is a fundamental problem in interpretability. A particularly promising
avenue is the linear representation hypothesis (e.g., Mikolov et al., 2013; Elhage et al., 2022; Nanda
et al., 2023; Gurnee & Tegmark, 2024; Park et al., 2024). This is the informal hypothesis that
semantic concepts are represented linearly in the representation spaces of LLMs. To assess the
validity of this hypothesis, and systematically build tools on top of it, we must make precise what it
means for a concept to be linearly represented, and understand how semantics are encoded in (the
geometry of) the representation spaces.

Focusing on the final softmax layer, Park et al. (2024) give a formalization for the case of binary
concepts that can be defined by counterfactual pairs of words. For example, the concept male ⇒
female is formalized using the counterfactual pairs {(“man”, “woman”), (“king”, “queen”), . . . }.
They prove that such binary concepts have a well-defined linear representation as a direction in the
representation space. They further connect semantic structure and representation geometry by show-
ing that, under a suitable inner product, causally separable concepts that can be freely manipulated
(e.g., male⇒ female and french⇒ english) are represented by orthogonal directions.

However, this formalization is limited: many natural concepts cannot be defined by counterfactual
pairs of words. For example, simple binary features (e.g., is animal) or categorical concepts
(e.g., {mammal,bird,reptile,fish}) do not admit such formalizations. Additionally, it is
not clear how semantic relationships beyond causal separability are encoded in the representation
space. In particular, we are interested in this paper in understanding how hierarchical relationships
between concepts are encoded in the representation space. That is, what is the relationship between
the representations of animal, mammal, and dog?

In this paper, we extend the linear representation hypothesis as follows:

1. We show how to move from representations of binary concepts as directions to representa-
tions as vectors. As a straightforward consequence, this allows us to represent categorical

1Code is available at github.com/KihoPark/LLM Categorical Hierarchical Representations.
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(a) Pictorial depiction of the representation of hierarchically related concepts. 

(b) Hierarchy is encoded as orthogonality in Gemma. (c) Categorical concepts are represented as polytopes in Gemma.

Figure 1: In the representation spaces of LLMs, hierarchically related concepts (such as plant⇒
animal and mammal ⇒ bird) live in orthogonal subspaces, while categorical concepts are rep-
resented as polytopes. The top panel illustrates the structure; the bottom panels show the measured
representation structure in the Gemma LLM. See Section 5 and Appendix A for details.

concepts (e.g., {mammal,bird,reptile,fish}) as polytopes where each vertex is the
vector representation of one of the elements of the concept (e.g., is bird).

2. Using this result, we show that semantic hierarchy between concepts is encoded geometri-
cally as orthogonality between representations, in a manner we make precise.

3. Finally, we empirically validate these theoretical results on the Gemma (Mesnard et al.,
2024) and LLaMA-3 (Dubey et al., 2024) LLMs. To that end, we extract concepts from
the WordNet hierarchy (Miller, 1995), estimate their representations, and show that the
geometric structure of the representations aligns with the semantic hierarchy of WordNet.

The final structure is remarkably simple, and is summarized in Figure 1.

2 PRELIMINARIES

We begin with some necessary background.

2.1 LARGE LANGUAGE MODELS

For the purposes of this paper, we consider a large language model to consist of two parts. The first
part is a function λ that maps an input text x to a vector λ(x) in a representation space Λ ≃ Rd.
This is the function given by the stacked transformer blocks. We take λ(x) to be the output of the
final layer at the final token position. The second part is an unembedding layer that assigns a vector
γ(y) in an unembedding space Γ ≃ Rd to each token y in the vocabulary. Together, these define a
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sampling distribution over tokens via the softmax distribution:

P(y | x) = exp(λ(x)⊤γ(y))∑
y′∈Vocab exp(λ(x)

⊤γ(y′))
. (2.1)

We note that the results that follow rely on the duality between the embedding and unembedding
spaces, and the softmax link between them. Accordingly, we do not address the “internal” structure
of the LLMs. However, we are optimistic that a clear understanding of the softmax geometry will
shed light on this as well.

2.2 CONCEPTS

We formalize a concept as a latent variable W that is caused by the context X and causes the output
Y . That is, a concept is a thing that could—in principle—be manipulated to affect the output of the
language model. In the particular case where a concept is a binary variable with a word-level coun-
terfactual, we can identify the variable W with the counterfactual pair of outputs (Y (0), Y (1)).
Concretely, we can identify male ⇒ female with (Y (0), Y (1)) ∈R {(“man”, “woman”),
(“king”, “queen”), (“he”, “her”), . . . }. We emphasize that the notion of a concept as a latent variable
that affects the output is more general than the counterfactual binary case.

Given a pair of concept variables W and Z, we say that W is causally separable with Z if the
potential outcome Y (W = w,Z = z) is well-defined for all w, z. That is, two variables are
causally separable if they can be freely manipulated—e.g., we can change the output language and
the sex of the subject freely, so these concepts are causally separable.

2.3 CAUSAL INNER PRODUCT AND LINEAR REPRESENTATIONS

We are trying to understand how concepts are represented. At this stage, there are two distinct
representation spaces: Λ and Γ. The former is the space of context embeddings, and the latter is
the space of token unembeddings. We would like to unify these spaces so that there is just a single
notion of representation.

Park et al. (2024) show how to achieve this unification via a “Causal Inner Product”. This is a par-
ticular choice of inner product that respects the semantics of language in the sense that the linear
representations of (binary, counterfactual) causally separable concepts are orthogonal under the in-
ner product. Their result can be understood as saying that there is some invertible matrix A and
constant vector γ̄0 such that, if we transform the embedding and unembedding spaces as

g(y)← A(γ(y)− γ̄0), ℓ(x)← A−⊤λ(x) (2.2)

then the Euclidean inner product in the transformed spaces is the causal inner product, and the Riesz
isomorphism between the embedding and unembedding spaces is simply the usual vector transpose
operation. We can estimate A as the whitening operation for the unembedding matrix. Following
this transformation, we can think of the embedding and unembedding spaces as the same space,
equipped with the Euclidean inner product.2

Notice that the softmax probabilities (eq. (2.1)) are unchanged for any A and γ̄0, so this transfor-
mation does not affect the model’s behavior. The vector γ̄0 defines an origin for the unembedding
space, and can be chosen arbitrarily. We give a particularly convenient choice below.

In this unified space, the linear representation of a binary concept W ∈R {0, 1} is defined as:

Definition 1. A vector ℓ̄W is a linear representation of a binary concept W if for all contexts ℓ, and
all concept variables Z that are causally separable with W , we have, for all α > 0,

P(W = 1 | ℓ+ αℓ̄W ) > P(W = 1 | ℓ), and (2.3)

P(Z | ℓ+ αℓ̄W ) = P(Z | ℓ). (2.4)

That is, the linear representation is a direction in the representation space that, when added to the
context, increases the probability of the concept, but does not affect the probability of any off-target

2We are glossing over some technical details here; see Park et al. (2024) for details.
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concept. The representation is merely a direction because αℓ̄W is also a linear representation for any
α > 0 (i.e., there is no notion of magnitude). In the case of concepts corresponding to counterfactual
pairs of words, this direction can be shown to be proportional to the “linear probing” direction, and
proportional to g(Y (1))− g(Y (0)) for any counterfactual pair Y (1), Y (0) that differ on W .

3 GENERAL CONCEPTS AND HIERARCHICAL STRUCTURE

Our high-level strategy will be to build up from binary concepts to more complex structure. We
begin by defining the basic building blocks.

Binary and Categorical Concepts The most general concept we address in this paper is a cat-
egorical concept, which refers to any concept corresponding to a categorical latent variable. This
includes binary concepts as a special case. We consider two kinds of binary concept: binary features
and binary contrasts. A binary feature W ∈R {not w,is w} is an indicator of whether the output
has the attribute w. For example, if the feature is animal is true, then the output will be about an
animal. A binary contrast a⇒ b ∈R {a, b} is a binary variable that contrasts two specific attribute
values. For example, the variable mammal ⇒ bird is a binary contrast. In the particular case
where the binary contrast can correspond to counterfactual pairs of words (e.g., male⇒ female),
the concept matches the definition used in Park et al. (2024).

Hierarchical Structure The next step is to define what we mean by a hierarchical relation between
concepts. To that end, to each attribute w, we associate a set of tokens Y(w) that have the attribute.
For example, Y(mammal) = {“ dog”, “ cats”, “ Tiger”, . . . }. Then,

Definition 2. A value z is subordinate to a value w (denoted by z ≺ w) if Y(z) ⊆ Y(w). We
say a categorical concept Z ∈R {z0, . . . , zn−1} is subordinate to a categorical concept W ∈R
{w0, . . . , wm−1} if there exists a value wZ of W such that each value zi of Z is subordinate to wZ .

For example, the binary contrast dog ⇒ cat is subordinate to the binary feature {is mammal,
not mammal}, and the binary contrast parrot ⇒ eagle is subordinate to the categorical
concept {mammal, bird, fish}. On the other hand, dog ⇒ eagle is not subordinate to
bird ⇒ mammal, and bird ⇒ mammal and live in house ⇒ live in water are not
subordinate to each other.

Linear Representations of Binary Concepts Now we return to the question of how binary con-
cepts are represented. A key desideratum is that if ℓ̄W is a linear representation, then moving the
context embedding in this direction should modify the probability of the target concept in isolation.
If adding ℓ̄W also modified off-target concepts, it would not be natural to identify it with the tar-
get concept W . In Definition 1, this idea is formalized by the requirement that the probability of
causally separable concepts is unchanged when the representation is added to the context.

We now observe that, when there is hierarchical structure, this requirement is not strong enough to
capture ‘off-target’ behavior. For example, if ℓ̄animal captures the concept of animal vs not-animal,
then moving in this direction should not affect the relative probability of the output being about a
mammal versus a bird. If it did, then the representation would actually capture some amalgamation
of the animal and mammal concepts. Accordingly, we must strengthen our definition:

Definition 3. A vector ℓ̄W is a linear representation of a binary concept W if

P(W = 1 | ℓ+ αℓ̄W ) > P(W = 1 | ℓ), and (3.1)

P(Z | ℓ+ αℓ̄W ) = P(Z | ℓ), (3.2)

for all contexts ℓ, all α > 0, and all concept variables Z that are either subordinate to or causally
separable with W . Here, if W is a binary feature for an attribute w, then W = 1 denotes W = is w.

Notice that, in the case of binary contrasts defined by counterfactual pairs, this definition is equiva-
lent to Definition 1, because such variables have no subordinate concepts.
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4 REPRESENTATIONS OF COMPLEX CONCEPTS

We now turn to how complex concepts are represented. The high-level strategy is to show how to
represent binary features as vectors, show how geometry encodes semantic composition, and then
use this to construct representations of complex concepts.

4.1 VECTOR REPRESENTATIONS OF BINARY AND CATEGORICAL CONCEPTS

To build up to complex concepts, we need to understand how to compose linear representations of
binary features. At this stage, the representations are only directions in the representation space—
they do not have a natural notion of magnitude. In particular, this means we cannot use vector
operations (such as addition) to compose representations. To overcome this, we now show how to
associate a magnitude to the linear representation of a binary feature. The key is the following result,
which connects binary feature representations and word unembeddings:

Theorem 4 (Magnitudes of Linear Representations). Suppose there exists a linear representation
(normalized direction) ℓ̄W of a binary feature W for an attribute w. Then, there is a constant bw > 0
and a choice of unembedding space origin γ̄w

0 in eq. (2.2) such that{
ℓ̄⊤W g(y) = bw if y ∈ Y(w)
ℓ̄⊤W g(y) = 0 if y ̸∈ Y(w). (4.1)

Further, if there exist d attributes {w0, . . . , wd−1} such that the linear representations of the bi-
nary features for these attributes are linearly independent, we can choose a canonical origin γ̄0 in
eq. (2.2).

All proofs are given in Appendix B.

The theorem says that, if a (perfect) linear representation of the animal feature exists, then every
token having the animal attribute has the same dot product with the representation vector; i.e., “cat”
is exactly as much animal as “dog” is. If this weren’t true, then increasing the probability that the
output is about an animal would also increase the relative probability that the output is about a dog
rather than a cat. In practice, such exact representations are unlikely to be found by gradient descent
in LLM training. Rather, we expect ℓ̄⊤W g(y) to be isotropically distributed around bw and 0, with
variances that are small compared to bw (so that animal and non-animal words are well-separated.)

With this result in hand, we can define a notion of vector representation for binary features:

Definition 5. We say that a binary feature W for an attribute w has a vector representation ℓ̄w ∈ Rd

if ℓ̄w satisfies Definition 3 and ∥ℓ̄w∥2 = bw in Theorem 4. If the vector representation of a binary
feature is not unique, we say ℓ̄w is the vector representation that maximizes bw.

We have now moved from representations as directions to representations as vectors. Definition 5
and Theorem 4 give a simple way of composing binary features into binary contrasts:

Corollary 6 (Binary Contrasts Are Vector Differences of Binary Features). Let w0 ⇒ w1 be a
binary contrast, and suppose there exist vector representations ℓ̄w0

and ℓ̄w1
for each attribute w0

and w1. Then, the difference ℓ̄w1
− ℓ̄w0

is a linear representation ℓ̄w0⇒w1
in the sense of Definition 3.

We can also apply ordinary vector space operations to construct representation of categorical con-
cepts, e.g., {mammal,reptile,bird,fish}. There is now a straightforward way to define the
representation of such concepts:

Definition 7. The polytope representation of a categorical concept W = {w0, . . . , wk−1} is the
convex hull of the vector representations of the elements of the concept.3

In Appendix D, we state and prove a generalization of Corollary 6 to categorical concepts (which
proves Corollary 6 itself).

3In Appendix C, we prove that the polytope representation for a “natural” categorical concept is a simplex.
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Figure 2: Hierarchical semantics are encoded as orthogonality in the representation space (The-
orem 8). The plots show the projection of the unembedding vectors onto 2D subspaces:
span{ℓ̄animal, ℓ̄mammal} (left; (a)), span{ℓ̄animal, ℓ̄bird−ℓ̄mammal} (middle; (b)), and span{ℓ̄animal−
ℓ̄plant, ℓ̄bird− ℓ̄mammal} (right; (c)). Gray points indicate all 256K tokens in the vocabulary, and the
colored points are the tokens in Y(w). The blue and red vectors are used to span the 2D subspaces.

4.2 HIERARCHICAL ORTHOGONALITY

Now, we turn to the question of how hierarchical relationships between concepts are encoded in the
representation space. The core intuition is that manipulating the “animal” concept should not affect
relative probabilities of the “mammal” and “bird” concepts, so we might expect the representations
of animal and mammal ⇒ bird to be orthogonal. The following result formalizes this intuition
by connecting the vector and semantic structures. The result is illustrated in Figure 2.

Theorem 8 (Hierarchical Orthogonality). Suppose there exist the vector representations for all the
following binary features. Then, we have that

(a) ℓ̄w ⊥ ℓ̄z − ℓ̄w for z ≺ w;

(b) ℓ̄w ⊥ ℓ̄z1 − ℓ̄z0 for Z ∈R {z0, z1} subordinate to W ∈R {not w,is w};

(c) ℓ̄w1
− ℓ̄w0

⊥ ℓ̄z1 − ℓ̄z0 for Z ∈R {z0, z1} subordinate to W ∈R {w0, w1}; and

(d) ℓ̄w1
− ℓ̄w0

⊥ ℓ̄w2
− ℓ̄w1

for w2 ≺ w1 ≺ w0.

Together, Definition 7 and Theorem 8 give the simple structure illustrated in Figure 1: hierarchical
concepts are represented as direct sums of polytopes. This direct sum structure is immediate from
Theorem 8. We emphasize that all of the results—involving differences of representations—are only
possible because we have vector representations (mere directions would not suffice).

5 EXPERIMENTS

We now turn to empirically testing the theoretical results. Here, we present our empirical results on
the Gemma-2B model (Mesnard et al., 2024).4 In Appendix F, we further present empirical results
on the LLaMA-3-8B model (Dubey et al., 2024), for which our findings are largely analogous.

5.1 SETUP

Canonical Representation The results in this paper rely on transforming the representation spaces
so that the Euclidean inner product is a causal inner product, aligning the embedding and unembed-
ding representations. Following Park et al. (2024), we estimate the required transformation as:

g(y) = Cov(γ)−1/2(γ(y)− E[γ]) (5.1)

where γ is the unembedding vector of a word sampled uniformly from the vocabulary. Centering by
E[γ] is a reasonable approximation of centering by γ̄0 defined in Theorem 4 because this makes the
projection of a random g(y) on an arbitrary direction close to 0. This matches the requirement that
the projection of a word onto a concept the word does not belong to should be close to 0.

4Code is available at github.com/KihoPark/LLM Categorical Hierarchical Representations.
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Figure 3: Vector representations exist for most binary features in the WordNet noun hierarchy. For
each synset w (indexed on the x-axis) we estimate the vector representation ℓ̄w using a train subset of
the vocabulary Y(w). The plot shows the projections (g(y)⊤ℓ̄w)/∥ℓ̄w∥22 of train (green), test (blue),
and random (orange) words on estimated vector representations for each WordNet feature, using
either the original (left) or shuffled (right) unembeddings. Our theory predicts that this value should
be close to 1 when y has the target feature, and close to 0 when it does not. The thick lines present
the mean of the projections for each feature and the error bars indicate the standard deviation. As
predicted, the projections of test words are near 1, and random words near 0 (left plot). Further, this
structure does not hold when using the shuffled control without natural semantics (right plot).

WordNet We define a large collection of binary concepts using WordNet (Miller, 1995). WordNet
organizes English words into a hierarchy of synsets, where each synset is a set of synonyms. The
WordNet hierarchy is based on word hyponym relations, and reflects the semantic hierarchy of
interest in this paper. We take each synset as an attribute w and define Y(w) as the collection of all
words belonging to any synset that is a descendant of w. For example, the synset mammal.n.01 is
a descendant of animal.n.01, so both Y(mammal.n.01) and Y(animal.n.01) contain the
word “dog”. We collect all noun and verb synsets, and augment the word collections by including
plural forms of the nouns, multiple tenses of each verb, and capital and lower case versions of each
word. We filter to include only those synsets with at least 50 words in the Gemma vocabulary. This
leaves us with 593 noun and 364 verb synsets, each defining an attribute.

For space, we report results on the noun hierarchy here and defer the verb hierarchy to Appendix F.

Estimation via Linear Discriminant Analysis Now, we want to estimate the vector representa-
tion ℓ̄w for each attribute w. To do this, we make use of vocabulary setsY(w). Following Theorem 4,
the vector associated to the concept w should have two properties. First, when the full vocabulary is
projected onto this vector, the words in Y(w) should be well-separated from the rest of the vocabu-
lary. Second, the projection of the unembedding vectors for y ∈ Y(w) should be approximately the
same value. Equivalently, the variance of the projection of the unembedding vectors for y ∈ Y(w)
should be small. To capture these requirements, we estimate the directions using a variant of Linear
Discriminant Analysis (LDA), which finds a projection minimizing within-class variance and max-
imizing between-class variance. Formally, we estimate the vector representation of a binary feature
W for an attribute w as

ℓ̄w =
(
g̃⊤wE(gw)

)
g̃w, with g̃w =

Cov(gw)
†E(gw)

∥Cov(gw)†E(gw)∥2
, (5.2)

where gw is the unembedding vector of a word sampled uniformly from Y(w) and Cov(gw)
† is

a pseudo-inverse of the covariance matrix. We estimate the covariance matrix Cov(gw) using the
Ledoit-Wolf shrinkage estimator (Ledoit & Wolf, 2004), because the dimension of the representation
spaces is much higher than the number of samples.

5.2 WORDNET HIERARCHY IS LINEARLY REPRESENTED

Existence of Vector Representations for Binary Features The first question is whether vector
representations of binary features exist. To evaluate this, for each synset w in WordNet we splitY(w)
into train words (70%) and test words (30%), fit the LDA estimator to the train words, and examine
the projection of the unembedding vectors for the test and random words onto the estimated vector
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Table 1: Adding the linear representation of the parent concept to context embeddings does not affect
the logit differences between token pairs in a child concept, and it substantially affects those in the
parent concept. For each parent-child pair of binary concepts (w0 ⇒ w1, z0 ⇒ z1), we first add the
normalized linear representation ℓ̄W = ℓ̄w1 − ℓ̄w0 to the context embeddings. Then, we show the
change in logit difference log P(y1 | ℓ)

P(y0 | ℓ) between the pairs (y0, y1) ∈ Y(w0)×Y(w1) (parent; top row)
and (y0, y1) ∈ Y(z0) × Y(z1) (child; bottom row). Notice that, for any context x and any tokens
y0 and y1, adding a linear representation ℓ̄W for a binary contrast W = w0 ⇒ w1 manipulates the
logit difference between the tokens from ℓ(x)⊤(g(y1) − g(y0)) to (ℓ(x) + ℓ̄W )⊤(g(y1) − g(y0)),
which implies the change in logit difference between the tokens is ℓ̄⊤W (g(y1)− g(y0)), irrespective
of ℓ(x). We show the mean and standard deviation of the change in logit differences over all token
pairs.

W = parent0 ⇒ parent1 & Z = child0 ⇒ child1 Change in Logit Differences

W = plant.n.02 ⇒ animal.n.01 5.1265± 1.1731
Z = mammal.n.01 ⇒ reptile.n.01 −0.0600± 1.2190

W = fluid.n.02 ⇒ solid.n.01 9.8296± 1.1099
Z = crystal.n.01 ⇒ food.n.02 0.3770± 1.5410

W = scientist.n.01 ⇒ contestant.n.01 14.4222± 0.9458
Z = athlete.n.01 ⇒ player.n.01 −0.1545± 1.1426

representation. The left plot in Figure 3 shows the mean and standard deviation of the projections,
divided by the magnitude of each estimated ℓ̄w. Following Theorem 4, if a vector representation
exists for an concept, we would expect the values on the test set to be close to 1, and the values
for random words to be close to 0. We see that this is indeed the case, giving evidence that vector
representations do exist for these features.

As a baseline, the right plot in Figure 3 shows the same analysis but with the unembedding vectors
randomly shuffled. In this case, the test projections are close to 0, which indicates that there are no
linear representations. Thus, the existence of the linear representations in the original unembeddings
relies on the underlying semantic structure.

Intervention Next, we validate that adding the estimated linear representations of a binary contrast
changes the target concept without changing other off-target concepts, as required by Definition 3.
Table 1 shows the mean and standard deviation of the changes in the logit differences between the
pairs from parent or child binary contrasts, after adding the normalized linear representations of the
parent binary contrast to context embeddings. The results show that the logit differences change
significantly for the target concept, while the off-target concept changes very little.

Relationship Between the Vector Representations of Binary Features We now turn to exam-
ining whether the similarity between the vector representations of binary features reflects their se-
mantic relation. The direct sum structure predicts that concepts that are close in semantic hierarchy
should have similar vector representations. For example, mammal and bird are close in the hyponym
graph because they share a common parent (animal). Our theory predicts that ℓ̄bird and ℓ̄mammal
share a common component ℓ̄animal (the representation for “bird” is the representation for “animal”
plus an orthogonal component, and similarly for mammal). This implies that the cosine similarity
between ℓ̄mammal and ℓ̄bird should be substantial.

In Figure 4, we show the shortest distance between each feature in the (undirected) WordNet noun
hyponym graph in the left panel and the cosine similarity between the estimated vector representa-
tions ℓ̄w in the middle panel. It is clear that, as predicted, the cosine similarity reflects the WordNet
structure. As a control, we apply the same analysis after randomly shuffling the embeddings and
show the resulting cosine similarities in the right panel. Here, direct parent-child (or grandparent-
grandchild) relationships are still reflected in the cosine similarity because the shuffled embeddings
still respect set inclusion (the words assigned to “mammal” are still a subset of those assigned to
“animal”). However, sibling relationships are not reflected once the semantic structure is removed
by the shuffling. In this case, the representations of siblings are effectively pairs of random vectors,
and are nearly orthogonal as we would expect in a high dimensional space.
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Figure 4: Hierarchical semantics in WordNet are linearly represented in Gemma-2B. The left
heatmap shows pairwise shortest distance matrix between features in the noun hierarchy graph as
(1 + min distance)−1 (higher values indicate closeness, such as in child-parent or sibling relation-
ships). The middle heatmap shows the cosine similarity between the vector representations ℓ̄w. As
predicted, this similarity reflects the WordNet structure. The right heatmap is a control where the
embeddings are randomly shuffled (removing semantic structure). In this case, nearly everything
is orthogonal, as expected in high-dimensional space (set inclusion relationships remain due to the
estimation procedure). In Appendix F, we include zoomed-in versions of these heatmaps.
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Figure 5: WordNet noun hierarchy is encoded in the orthogonal structure predicted by statement (a)
in Theorem 8. We plot the cosine similarity between a child-parent vector and a parent vector
for each feature in the hierarchy (blue). As predicted, this value is close to 0. The left plot uses
all data for representation estimation, and the right plot uses only 70% independently selected for
each synset. We include baselines where a randomly selected feature is used as the parent (orange)
and where the embeddings are shuffled (green) as controls for the possibility that the orthogonality
is a simple byproduct of high-dimensional geometry, or of the set inclusion relationships used in
estimation—see main text for details. See Appendix F for an analogous plot for statement (d).

Hierarchical Orthogonality Finally, we evaluate the prediction that hierarchical relations are en-
coded orthogonally as predicted in Theorem 8. Figure 5 shows the cosine similarity ℓ̄parent and
ℓ̄child − ℓ̄parent for the WordNet features. As predicted, this value is close to 0 (blue curve).

Now, a challenge here is that in high dimensional spaces even random vectors are nearly orthogonal.
So, it may be difficult to differentiate whether orthogonality reflects semantic structure or is merely a
consequence of nearly everything being orthogonal in high dimensions. As a control, we also show
the cosine similarity when the parent vector is the representation of a randomly selected feature
(orange). In this case, the cosine similarity is far from 0, suggesting that the observed orthogonality
is not merely a byproduct of the high-dimensional geometry.

We also include another baseline that estimates the cosine similarity between the child-parent vector
and the parent vector for each feature using shuffled unembeddings (green). In the left plot, we see
that we still have orthogonality, which could suggest that the orthogonality is a consequence of the
set inclusion relations in WordNet (rather than actual semantic structure).5 To test this, in the right
plot we estimate the representations using only 70% of the tokens, independently selected for each

5In Appendix G, we explain why set inclusion (before train/test split) leads to orthogonality.
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synset. This breaks the set inclusion. In this case, we see the orthogonality is preserved for the
original unembeddings, but is broken for the shuffled unembeddings. Note that a cosine of −0.2 is
highly nontrivial in a high-dimensional space. This suggests the orthogonality does indeed reflect
the semantic structure.

6 DISCUSSION AND RELATED WORK

We set out to understand how semantic structure is encoded in the geometry of representation space.
We have arrived at an astonishingly simple structure, summarized in Figure 1. The key contributions
are moving from representing concepts as directions to representing them as vectors (and polytopes),
and connecting semantic hierarchy to orthogonality.

Related Work The results here connect closely to the study of linear representations in language
models (e.g., Mikolov et al., 2013; Pennington et al., 2014; Arora et al., 2016; Elhage et al., 2022;
Burns et al., 2022; Tigges et al., 2023; Nanda et al., 2023; Moschella et al., 2022; Li et al., 2023;
Gurnee et al., 2023; Wang et al., 2023; Jiang et al., 2024; Park et al., 2024). In particular, Park et al.
(2024) formalize the linear representation hypothesis by unifying three distinct notions of linearity:
word2vec-like embedding differences, logistic probing, and steering vectors. Our work relies on
this unification, and just focuses on the steering vector notion. Our work also connects to work
aimed at theoretically understanding the existence of linear representations. These include early
work on word2vec-style embedding models (Arora et al., 2016; Gittens et al., 2017; Arora et al.,
2018; Ethayarajh et al., 2018; Frandsen & Ge, 2019; Allen & Hospedales, 2019) as well as dynamic
topic models (Blei & Lafferty, 2006; Rudolph et al., 2016). Jiang et al. (2024) connect the existence
of linear representations in LLMs to the implicit bias of gradient descent. In this paper, we do not
seek to justify the existence of linear representations, but rather to understand their structure if they
do exist. Though, by empirically estimating vector representations for thousands of concepts, we
add to the body of evidence supporting the existence of linear representations. Elhage et al. (2022)
also empirically observe the formation of polytopes in the representation space of a toy model, and
the present work can be viewed in part as giving an explanation for this phenomenon.

There is also a growing literature studying the representation geometry of natural language (Mimno
& Thompson, 2017; Reif et al., 2019; Volpi & Malagò, 2021; Li et al., 2020; Chen et al., 2021;
Chang et al., 2022; Liang et al., 2022; Jiang et al., 2023; Wang et al., 2023; Park et al., 2024;
Valeriani et al., 2024). In terms of hierarchical structures, existing work focuses on connections
to hyperbolic geometry (Nickel & Kiela, 2017; Ganea et al., 2018; Chen et al., 2021; He et al.,
2024). We do not find such a connection in LLMs, but it is an interesting direction for future work
to determine if more efficient LLM representations could be constructed in hyperbolic space. Jiang
et al. (2023) hypothesize that very general ”independence structures” are naturally represented by
partial orthogonality in vector spaces (Amini et al., 2022). The results here confirm and expand on
this hypothesis in the case of hierarchical structure in language models.

Implications and Future Work The results in this paper give a foundational understanding the
structure of representation space in language models. Of course, the ultimate purpose of foundations
is to build upon them. One immediate direction is to refine the attempts to interpret LLM structure
to explicitly account for hierarchical semantics. As an example, there is currently significant in-
terest in using sparse autoencoders to extract interpretable features from LLMs (e.g., Cunningham
et al., 2023; Bricken et al., 2023; Kissane et al., 2024; Braun et al., 2024). This work searches for
representations in terms of distinct binary features. Concretely, it hopes to find features for, e.g.,
animal, mammal, bird, etc. Based on the results here, these representations are strongly co-linear,
and potentially difficult to disentangle. On the other hand, a representation in terms of ℓ̄animal,
ℓ̄mammal − ℓ̄animal, ℓ̄bird − ℓ̄animal, etc., will be cleanly separated and equally interpretable. Fun-
damentally, semantic meaning has hierarchical structure, so interpretability methods should respect
this structure. Understanding the geometric representation makes it possible to design such methods.

In a separate, foundational, direction: the results in this paper rely on using the canonical repre-
sentation space, and we estimate this using the whitening transformation of the unembedding layer.
However, this technique only works for the final layer representation. It is an important open ques-
tion how to make sense of the geometry of internal layers.
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Figure 6: Categorical concepts are represented as polytopes. The plots show the projection of the
unembedding vectors on the 3D subspaces: span{ℓ̄mammal, ℓ̄bird, ℓ̄fish} (left) and span{ℓ̄bird −
ℓ̄mammal, ℓ̄fish − ℓ̄mammal, ℓ̄reptile − ℓ̄mammal} (right). The gray points indicate all 256K tokens
in the vocabulary, and the colored points are the tokens in Y(w). The left plot further shows the
orthogonality between the triangle and the projection of ℓ̄animal (black arrow).

A VISUALIZATION OF animal

As a concrete example for visualizations, we examine the theoretical predictions for the famil-
iar concept animal. However, the categories in WordNet are not the most intuitive; for ex-
ample, the subcategories under textttanimal.n.01 include terms like “chordate”, “aquatic verte-
brate”, “invertebrate” instead of more familiar categories such as “fish”, “amphibian”, or “in-
sect”. This makes it challenging to gather tokens corresponding to clear, high-level concepts
{mammal,bird,fish,reptile,amphibian,insect}. Therefore, we generated two sets
of tokens Y(animal) and Y(plant) using ChatGPT-4 (OpenAI, 2023), and manually in-
spected them. Y(animal) is further divided into six sets of tokens for each subcategory
{mammal,bird,fish,reptile,amphibian,insect}.
Figure 2 illustrates the geometric relationships between various representation vectors. The main
takeaway is that the semantic hierarchy is encoded as orthogonality in the manner predicted by
Theorem 8. The figure also illustrates Theorem 4, showing that the projection of the unembedding
vectors for y ∈ Y(w) is approximately constant, while the projection of y ̸∈ Y(w) is zero.

Figure 6 illustrates that the representation of a categorical concept is a polytope. and the projection of
unembedding vectors onto the subspace for the polytope are concentrated on each vertex as predicted
in Corollary 10. The left plot also shows that, as predicted, the polytope for {fish, mammal,
bird} is orthogonal to the vector representation of animal.

B PROOFS

B.1 PROOF OF THEOREM 4

Theorem 4 (Magnitudes of Linear Representations). Suppose there exists a linear representation
(normalized direction) ℓ̄W of a binary feature W for an attribute w. Then, there is a constant bw > 0
and a choice of unembedding space origin γ̄w

0 in eq. (2.2) such that{
ℓ̄⊤W g(y) = bw if y ∈ Y(w)
ℓ̄⊤W g(y) = 0 if y ̸∈ Y(w). (4.1)

Further, if there exist d attributes {w0, . . . , wd−1} such that the linear representations of the bi-
nary features for these attributes are linearly independent, we can choose a canonical origin γ̄0 in
eq. (2.2).
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Proof. For any y1, y0 ∈ Y(w) or y1, y0 ̸∈ Y(w), let Z be a binary concept where Y(Z = 0) = {y0}
and Y(Z = 1) = {y1}. Since Z is subordinate to W , eq. (3.2) implies that

logitP(Y = y1 | Y ∈ {y0, y1}, ℓ+ ℓ̄W ) = logitP(Y = y1 | Y ∈ {y0, y1}, ℓ) (B.1)

⇐⇒ ℓ̄⊤W (g(y1)− g(y0)) = ℓ̄⊤WA(γ(y1)− γ(y0)) = 0 (B.2)

where A is the invertible matrix in eq. (2.2). This means that ℓ̄⊤WAγ(y) is the same for all y ∈ Y(w),
and it is also the same for all y ̸∈ Y(w).
Furthermore, for any y1 ∈ Y(w) and y0 ̸∈ Y(w), eq. (3.1) implies that

logitP(Y = y1 | Y ∈ {y0, y1}, ℓ+ ℓ̄W ) > logitP(Y = y1 | Y ∈ {y0, y1}, ℓ) (B.3)

⇐⇒ ℓ̄⊤W (g(y1)− g(y0)) = ℓ̄⊤WA(γ(y1)− γ(y0)) > 0. (B.4)

Thus, by setting b0w = ℓ̄⊤WAγ(y) for any y ̸∈ Y(w), and bw = ℓ̄⊤WAγ(y1)− ℓ̄⊤WAγ(y0) > 0 for any
y1 ∈ Y(w) and y0 ̸∈ Y(w), we get{

ℓ̄⊤WAγ(y) = b0w + bw if y ∈ Y(w)
ℓ̄⊤WAγ(y) = b0w if y ̸∈ Y(w). (B.5)

Then, we can choose an origin as
γ̄w
0 = b0wA

−1ℓ̄W (B.6)
satisfying eq. (4.1).

On the other hand, if there exist d attributes {w0, . . . , wd−1} such that the linear representations
ℓ̄W0

, . . . , ℓ̄Wd−1
of the binary features W0, . . . ,Wd−1 for these attributes are linearly independent,

then the linear system

ℓ̄⊤Wi
Aγ̄0 = b0wi

for i = 0, . . . , d− 1 (B.7)

has a unique solution γ̄0. We can choose this vector as the canonical origin γ̄0 in eq. (2.2), ensuring
that eq. (4.1) is satisfied.

B.2 PROOF OF THEOREM 8

Theorem 8 (Hierarchical Orthogonality). Suppose there exist the vector representations for all the
following binary features. Then, we have that

(a) ℓ̄w ⊥ ℓ̄z − ℓ̄w for z ≺ w;

(b) ℓ̄w ⊥ ℓ̄z1 − ℓ̄z0 for Z ∈R {z0, z1} subordinate to W ∈R {not w,is w};

(c) ℓ̄w1
− ℓ̄w0

⊥ ℓ̄z1 − ℓ̄z0 for Z ∈R {z0, z1} subordinate to W ∈R {w0, w1}; and

(d) ℓ̄w1
− ℓ̄w0

⊥ ℓ̄w2
− ℓ̄w1

for w2 ≺ w1 ≺ w0.

Proof. (a) For ℓ̄w and ℓ̄z where z ≺ w, by Theorem 4, we have
(ℓ̄z − ℓ̄w)

⊤g(y) = bz − bw if y ∈ Y(z)
(ℓ̄z − ℓ̄w)

⊤g(y) = 0− bw = −bw if y ∈ Y(w) \ Y(z)
(ℓ̄z − ℓ̄w)

⊤g(y) = 0− 0 = 0 if y ̸∈ Y(w).
(B.8)

When w \ z denotes an attribute defined by Y(w) \ Y(z), ℓ̄z − ℓ̄w can change the target
concept w\z ⇒ z without changing any other concept subordinate or causally separable to
the target concept. Thus, ℓ̄z − ℓ̄w is the linear representation ℓ̄w\z⇒z . This concept means
not z⇒ is z conditioned on w, and hence it is subordinate to w.

Therefore, ℓ̄w is orthogonal to the linear representation ℓ̄w\z⇒z = ℓ̄z − ℓ̄w by the property
of the causal inner product. If they are not orthogonal, adding ℓ̄w can change the other
concept w \ z ⇒ z, and it is a contradiction.

(b) By the above result (a), ℓ̄⊤w(ℓ̄z1 − ℓ̄w) = ℓ̄⊤w(ℓ̄z0 − ℓ̄w) = 0. Therefore, ℓ̄⊤w(ℓ̄z1 − ℓ̄z0) = 0.
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w0 w1 w2

w2

w0 w1

Figure 7: Illustration of the case k = 3 in the proof of Proposition 9.

(c) Let’s say that w1 is wZ defined in Definition 2. The binary contrast z0 ⇒ z1 is subordinate
to the binary feature for the attribute w0. By the property of the causal inner product, ℓ̄w0

is orthogonal to the linear representation ℓ̄z0⇒z1 = ℓ̄z1 − ℓ̄z0 (by Corollary 10). Then, with
the above result (b), we have (ℓ̄w1

− ℓ̄w0
)⊤(ℓ̄z1 − ℓ̄z0).

(d) By the above result (a), we have
∥ℓ̄w1

− ℓ̄w0
∥22 = ∥ℓ̄w1

∥22 − ∥ℓ̄w0
∥22

∥ℓ̄w2 − ℓ̄w1∥22 = ∥ℓ̄w2∥22 − ∥ℓ̄w1∥22
∥ℓ̄w2

− ℓ̄w0
∥22 = ∥ℓ̄w2

∥22 − ∥ℓ̄w0
∥22.

(B.9)

Then,

∥ℓ̄w1
− ℓ̄w0

∥22 + ∥ℓ̄w2
− ℓ̄w1

∥22 (B.10)

= ∥ℓ̄w1∥22 − ∥ℓ̄w0∥22 + ∥ℓ̄w2∥22 − ∥ℓ̄w1∥22 (B.11)

= ∥ℓ̄w2
∥22 − ∥ℓ̄w0

∥22 (B.12)

= ∥ℓ̄w2 − ℓ̄w0∥22. (B.13)

Therefore, ℓ̄w1 − ℓ̄w0 is orthogonal to ℓ̄w2 − ℓ̄w1 .

C NATURAL CATEGORICAL CONCEPTS AS SIMPLICES

Polytopes are quite general objects. Definition 7 also includes representations of categorical vari-
ables that are semantically unnatural, e.g., {dog,sandwich,running}. We would like to make
a more precise statement about the representation of “natural” concepts. One possible notion of a
“natural” concept is one where the model can freely manipulate the output values. The next propo-
sition shows such concepts have particularly simple structure:

Proposition 9 (Categorical Concepts are Represented as Simplices). Suppose that {w0, . . . , wk−1}
is a collection of k mutually exclusive attributes such that for every joint distribution
Q(w0, . . . wk−1) there is some ℓi such that P(W = wi | ℓi) = Q(W = wi) for every i. Then,
the vector representations ℓ̄w0

, . . . , ℓ̄wk−1
form a (k−1)-simplex in the representation space. In this

case, we take the simplex to be the representation of the categorical concept W = {w0, . . . , wk−1}.

Proof. If we can represent arbitrary joint distributions, this means, in particular, that we can change
the probability of one attribute without changing the relative probability between a pair of other
attributes. Consider the case where k = 3, as illustrated in Figure 7. If ℓ̄w0

, ℓ̄w1
, ℓ̄w2

are on a line,
then there is no direction in that line (to change the value in the categorical concept) such that adding
the direction can change the probability of w2 without changing the relative probabilities between
w0 and w1. However, if ℓ̄w0 , ℓ̄w1 , ℓ̄w2 are not on a line, they form a triangle. Then, there exists a line
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that is toward ℓ̄w2
and perpendicular to the opposite side of the triangle. Now adding the direction

ℓ̃ can manipulate the probability of w2 without changing the relative probabilities between w0 and
w1. That is, for any α > 0 and context embedding ℓ,{

P(W = w2 | ℓ+ αℓ̃) > P(W = w2 | ℓ), and
P(W=w1 | ℓ+αℓ̃)

P(W=w0 | ℓ+αℓ̃)
= P(W=w1 | ℓ)

P(W=w0 | ℓ) .
(C.1)

Therefore, the vectors ℓ̄w0 , ℓ̄w1 , ℓ̄w2 form a 2-simplex.

This argument extends immediately to higher k by induction. For each i ∈ {0, . . . , k − 1}, there
should exist a direction that is toward ℓ̄wi

and orthogonal to the opposite hyperplane ((k − 2)-
simplex) formed by the other ℓ̄wi′ ’s. Then, the vectors ℓ̄w0

, . . . , ℓ̄wk−1
form a (k − 1)-simplex.

D SUBSPACES FOR CATEGORICAL CONCEPTS

By Theorem 4, polytope representations have the following property:

Corollary 10 (Polytope Representations). Let W = {w0, . . . , wk−1} be a categorical concept, and
suppose there exist vector representations ℓ̄wi

for the binary features of each attribute wi (their con-
vex hull is the polytope representation of W ). Let L̄ =

[
ℓ̄w1
− ℓ̄w0

, . . . , ℓ̄wk−1
− ℓ̄w0

]
∈ Rd×(k−1)

and let C(L̄) be its column space. Then, there exist some vectors τwi
∈ C(L̄), for each i, such that{∏

L̄ g(y) = τwi
if y ∈ Y(wi)∏

L̄ g(y) = 0 if y ̸∈ ∪k−1
i=0 Y(wi),

(D.1)

where
∏

L̄ = L̄(L̄⊤L̄)†L̄⊤ is the projection matrix onto C(L̄), and (L̄⊤L̄)† denotes a pseudo-
inverse of the matrix.

Proof. By Theorem 4, for i = 1, . . . , k − 1, we have∏
L̄

g(y) = L̄(L̄⊤L̄)†L̄⊤g(y) = L̄(L̄⊤L̄)†
[
0, . . . , 0, b2wi

, 0, . . . , 0
]⊤

:= τwi (D.2)

for any y ∈ Y(wi). Similarly, we have∏
L̄

g(y) = L̄(L̄⊤L̄)†L̄⊤g(y) = L̄(L̄⊤L̄)†
[
−b2w0

, . . . ,−b2w0

]⊤
:= τw0 (D.3)

for any y ∈ Y(w0), while∏
L̄

g(y) = L̄(L̄⊤L̄)†L̄⊤g(y) = L̄(L̄⊤L̄)† [0, . . . , 0]
⊤
= 0 (D.4)

for any y ̸∈ ∪k−1
i=0 Y(wi). Therefore, we have eq. (D.1) with some constant vectors τwi .

In words, the unembeddings of tokens for the same attribute share the same projections on the
subspace spanned by the differences between the vector representations. Therefore, adding any
vector in the subspace C(L̄) to the context embedding changes the probability of the target concept
W = {w0, . . . , wk−1} without changing any other concept subordinate to or causally separable with
the target concept. Finally, note that Corollary 10 implies Corollary 6.

E EXPERIMENT DETAILS

We employ the Gemma-2B version of the Gemma model (Mesnard et al., 2024), which is accessible
online via the huggingface library. Its two billion parameters are pre-trained on three trillion
tokens. This model utilizes 256K tokens and 2,048 dimensions for the representation space.

We always use tokens that start with a space (‘\u2581’) in front of the word, as they are used for
next-word generation with full meaning. Additionally, like WordNet data we use, we include plural
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Figure 8: Subtree in WordNet noun hierarchy for descendants of animal.
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Figure 9: Zoomed-in Heatmaps of the subtree for animal in Figure 8.

forms, and both capital and lowercase versions of the words in Y(animal) and Y(plant) for
visualization in Appendix A.

In the WordNet synset data, each content of the synset mammal.n.01 indicates that ”mammal”
is a word, ”n” denotes ”noun,” and ”01” signifies the first meaning of the word. In the WordNet
hierarchy, if a parent has only one child, we combine the two features into one. Additionally, since
the WordNet hierarchy is not a perfect tree, a child can have more than one parent. We use one of
the parents when computing the ℓ̄w − ℓ̄parent of w.

Lastly, we use the vector representations estimated by the non-split collection of tokens for Figure 2,
Table 1, Figure 4, Figure 6, Figure 14, and Figure 18.

F ADDITIONAL RESULTS

Zooming in on a Subtree of Noun Hierarchy As it is difficult to understand the entire WordNet
hierarchy at once from the heatmaps in Figure 4, we present a zoomed-in heatmap for the subtree
(Figure 8) for the feature animal in Figure 9. The left heatmap displays the shortest distance
between the nodes of the subtree in Figure 8. The middle heatmap shows that the cosine simi-
larities between the vector representations ℓ̄w reflect the child-parent or sibling relationships. The
right heatmap demonstrates that the vector representations estimated by shuffled unembeddings only
reflect the set inclusion relationships, and other pairs have cosine similarities close to 0.

Additional Results on Hierarchical Orthogonality Analogous to Figure 5, we validate the state-
ment (d) in Theorem 8. Figure 10 shows that a child-parent vector and a parent-grandparent vector
for each feature estimated by the original unembedidngs (blue) are orthogonal. The random par-
ent and grandparent vectors (orange) make the cosine similarity not close to 0, suggesting that the
orthogonality is not merely a byproduct of the high-dimensional space.
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Figure 10: WordNet noun hierarchy is encoded as the orthogonal structure predicted by statement (d)
in Theorem 8. The cosine similarity between a child-parent vector and a parent-grandparent vector
for each feature in the hierarchy estimated by original (blue) and shuffled (green) unembedding
vectors with the whole (left) and training (right) set of tokens. Another baseline (orange) is the
cosine similarity with random parent and grandparent vectors.
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Figure 11: Comparison of projection of train (green), test (blue), and random (orange) words on
estimated mean vector for each WordNet feature, from the original unembeddings (left) and the
shuffled unembeddings (right). The value for each word y is (g(y)⊤ℓ̄w)/∥ℓ̄w∥22 that we expect to
be 1 when y has the target feature. The x-axis indices denote all features in the noun hierarchy.
The thick lines present the mean of the projections for each feature and the error bars indicate the
standard deviation. The features are ordered by the hierarchy.

Similar to the findings in Figure 5, the shuffled unembedding vectors (green) reflect the set inclusion
relationships, and the cosine similarities are close to 0. When we violate the set inclusion by using
only the 70% training set of tokens, the right plot in Figure 10 shows that the cosine similarities from
shuffled (green) unembeddings are much smaller, while those from original (blue) unembeddings are
still close to 0. This indicates that the hierarchical orthogonality is not a trivial consequence of the
set inclusion, but rather reflects the semantic hierarchy.

The Mean Estimator for the Vector Representation Has High Variance The mean vector
E(gw) can serve as an estimator for the vector representation ℓ̄w. However, Figure 11, which is
analogous to Figure 3, shows that the projections of train and test words onto the mean vector have
larger variances. Therefore, the LDA direction (eq. (5.2)) would be a more appropriate estimator for
the vector representation.

Geometry of Hierarchical relations on the Euclidean Inner Product In this paper, we trans-
form the representation spaces to use the causal inner product. However, what if we employ the
naive Euclidean inner product instead? To address this, we estimate the vector representations for
the WordNet noun hierarchy estimated from the original Gemma unembedding vectors through cen-
tering alone, without applying whitening (which is necessary for the causal inner product). This
approach still preserves the Euclidean inner product. Then, Figure 12 shows that the hierarchi-
cal orthogonality is not satisfied in the Euclidean inner product space, as evidenced by the cosine
similarities not being close to 0.
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Figure 12: WordNet noun hierarchy is not encoded as the orthogonal structure when we use the
naive Euclidean inner product, whereas it is encoded as orthogonality in the causal inner product.
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Figure 13: Vector representations exist for most binary features in the WordNet verb hierarchy.

WordNet Verb Hierarchy In the same way as for the noun hierarchy, we estimate the vector
representations for the WordNet verb hierarchy. Analogous to Figure 3, Figure 13 shows that the
vector representations exist for most binary features in the WordNet verb hierarchy. Analogous to
Figure 4, Figure 14 shows that the hierarchical semantics in WordNet are encoded in the Gemma
representation space. Analogous to Figure 5 and Figure 10, Figure 15 and Figure 16 show that
the hierarchical orthogonality is encoded in the Gemma representation space for the WordNet verb
hierarchy.

WordNet Noun Hierarchy encoded in LLaMA-3 Model We also validate the theoretical pre-
dictions in the LLaMA-3-8B model (Dubey et al., 2024) in the same way as for the Gemma model.
The vector representations for most binary features in the WordNet noun hierarchy exist in the
LLaMA-3 model (Figure 17). The hierarchical semantics in WordNet are encoded in the LLaMA-3
representation space (Figure 18). Lastly, the hierarchical orthogonality is encoded in the LLaMA-3
representation space for the WordNet noun hierarchy (Figure 19 and Figure 20).

G WHY DOES SET INCLUSION GIVE THE ORTHOGONALITY?

The left panel of Figure 5 shows that the cosine similarity between the child-parent vector
and the parent vector is also close to 0 when they are estimated by the shuffled unembedding
vectors. One of the possible explanations for this phenomenon is that the set inclusion rela-
tionships (and the estimating process) give the orthogonality. For example, the set inclusion
between the collections Y(z) = {dog,sandwich,running} for a child z and Y(w) =
{dog,sandwich,running,France,scientist,diamond} for a parent w can make the
child-parent vector and the parent vector orthogonal.

Since the LDA-based vector representation estimated by eq. (5.2) is similar to the mean vector
E(gw), we briefly derive the orthogonality using the mean vector as the vector representation.
Suppose that a1, . . . , aNa , b1, . . . , bNb

i.i.d.∼ N (0, Id), which may correspond to the (centered and
whitened) shuffled unembeddings. Here, ai’s are for the child z, and both ai’s and bi’s are for the par-
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Figure 14: WordNet verb hierarchy is encoded in Gemma representation space.
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Figure 15: WordNet verb hierarchy is encoded as the orthogonal structure predicted by statement (a)
in Theorem 8.

ent w. Then, the parent vector is vw = 1
Na+Nb

(
∑

ai+
∑

bi), and the child vector is vz = 1
Na

∑
ai.

We know that a1, . . . , aNa , b1, . . . , bNb
are mutually orthogonal and ∥ai∥2 = ∥bi∥2 = d with high

probability. Therefore, we have

(vz − vw)
⊤vw = (G.1)

=

(
Nb

Na(Na +Nb)

∑
ai −

1

Na +Nb

∑
bi

)⊤ (
1

Na +Nb

∑
ai +

1

Na +Nb

∑
bi

)
(G.2)

=
Nb

Na(Na +Nb)2
(
∑

ai)
⊤
∑

ai −
1

(Na +Nb)2
(
∑

bi)
⊤
∑

bi (G.3)

=
Nb

Na(Na +Nb)2
(Nad)−

1

(Na +Nb)2
(Nbd) (G.4)

= 0 (G.5)

with high probability.

In words, the orthogonality between the child-parent vector and the parent vector can be derived
from the set inclusion relationships. We can say that the set inclusion is the hierarchical relation
as defined in Definition 2, but natural semantic hierarchy is our main focus in this paper. In this
context, the right panel of Figure 5 shows that the violation of the set inclusion relationships makes
the cosine similarity not close to 0, suggesting that semantic hierarchy is encoded as orthogonality.

21



Published as a conference paper at ICLR 2025

0 20 40 60 80 100
1.00

0.75

0.50

0.25

0.00

0.25

cos( w parent of w, parent of w grandparent of w), Whole set

0 20 40 60 80 100
1.00

0.75

0.50

0.25

0.00

0.25

cos( w parent of w, parent of w grandparent of w), Training set

Binary Features in WordNet Hierarchy
Original Unembeddings Shuffled Unembeddings Original Unembeddings + Random Parent and Grandparent

Figure 16: WordNet verb hierarchy is encoded as the orthogonal structure predicted by statement (d)
in Theorem 8.
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Figure 17: Vector representations for most binary features in the WordNet noun hierarchy exist in
the LLaMA-3 model.
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Figure 18: WordNet noun hierarchy is encoded in LLaMA-3 representation space.
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Figure 19: In LLaMA-3 representation space, WordNet noun hierarchy is encoded as the orthogonal
structure predicted by statement (a) in Theorem 8.
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Figure 20: In LLaMA-3 representation space, WordNet noun hierarchy is encoded as the orthogonal
structure predicted by statement (d) in Theorem 8.
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