
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEAS: DETACHED VALUE LEARNING WITH
ACTION SEQUENCE FOR SCALABLE OFFLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) presents an attractive paradigm for train-
ing intelligent agents without expensive online interactions. However, current ap-
proaches still struggle with complex, long-horizon sequential decision making. In
this work, we introduce DEtached value learning with Action Sequence (DEAS),
a simple yet effective offline RL framework that leverages action sequences for
value learning. These temporally extended actions provide richer information than
single-step actions and can be interpreted through the options framework via semi-
Markov decision process Q-learning, enabling reduction of the effective plan-
ning horizon by considering longer sequences at once. However, directly adopt-
ing such sequences in actor-critic algorithms introduces excessive value overesti-
mation, which we address through detached value learning that steers value esti-
mates toward in-distribution actions that achieve high return in the offline dataset.
We demonstrate that DEAS consistently outperforms baselines on complex, long-
horizon tasks from OGBench and can be applied to improve the performance of
large-scale Vision-Language-Action models that predict action sequences, signif-
icantly improving performance in both RoboCasa Kitchen simulation tasks and
real-world manipulation tasks.

1 INTRODUCTION

Offline reinforcement learning (RL) (Lange et al., 2012; Levine et al., 2020) enables learning from
static datasets without online data collection risks, while circumventing expensive expert demon-
strations. However, existing methods mainly focus on short-horizon tasks with dense rewards (Yu
et al., 2020; Fu et al., 2020; Gulcehre et al., 2020; Mandlekar et al., 2021) and fail to scale to com-
plex long-horizon scenarios. Recent attempts using large-scale architectures (Kumar et al., 2023a;b;
Chebotar et al., 2023; Springenberg et al., 2024) show promise, but their effectiveness on complex
tasks remains unexplored.

To address the need for long-horizon evaluation, recent work (Park et al., 2025a;b) has proposed
challenging benchmarks for complex offline RL and demonstrated that reducing the effective plan-
ning horizon (i.e., shortening the time span over which the agent must plan) in both value and policy
learning via n-step TD updates with high n values and hierarchical policies is essential. However,
these approaches rely on goal-conditioned RL with explicit expert-provided goals, which are often
unavailable in practice. For instance, high n values in n-step TD updates introduce increased bias
and bootstrap error in standard RL without explicit goal information (Tsitsiklis & Van Roy, 1996;
Kearns & Singh, 2000; Sutton & Barto, 2018).

These limitations underscore the need for alternative approaches to horizon reduction (reducing the
planning horizon) that work without explicit goal conditioning. One promising direction is leverag-
ing action sequences, which have shown success in behavior cloning (Pomerleau, 1988) for captur-
ing noisy, temporally-relevant distributions in expert demonstrations (Chi et al., 2023; Zhao et al.,
2023). However, existing attempts to use action sequences for RL remain insufficient for achiev-
ing robust horizon reduction. Q-chunking (Li et al., 2025b) has explored using action sequences for
RL, demonstrating their potential for temporally consistent exploration. However, introducing action
sequences to standard actor-critic frameworks causes severe value overestimation (Seo & Abbeel,
2025) due to actors maximizing over potentially erroneous critic estimates with widely spanned
action spaces. This problem is exacerbated in offline RL where distribution shift creates extrapola-
tion errors (Kumar et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020). While CQN-AS (Seo
& Abbeel, 2025) proposes a value-only approach to avoid this issue, it introduces discretization er-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Previous Methods

DEAS (Ours)

Value

Target
Critic

Critic

Policy

⚠
⚠

Value

Target
Critic

Critic

Figure 1: Overview. DEAS is an offline RL framework that learns from action sequences instead of
single actions. Unlike previous methods that couple actor-critic training, our key insight is to train
the critic separately from the policy (detached value learning) using action sequences, which enables
stable learning while avoiding value overestimation. We further enhance stability by combining
distributional RL objectives with IQL and using dual discount factors.

rors that limit performance in complex tasks and cannot leverage expressive policy classes (Wang
et al., 2023; Hansen-Estruch et al., 2023; Park et al., 2025c). For this reason, our research aims
to develop methods that can leverage action sequences for horizon reduction while avoiding value
overestimation and maintaining compatibility with expressive policy architectures.

Our approach We present DEtached value learning with Action Sequence (DEAS), an offline RL
framework that leverages action sequences for scalable value learning in complex tasks. Our method
treats consecutive action timesteps as inputs to the value function, implementing the simplest form
of the options framework (Sutton et al., 1999; Stolle & Precup, 2002). This design provides prin-
cipled horizon reduction analogous to n-step TD updates with temporally extended actions, while
action sequences offer richer information than single-step actions without requiring explicit goal
conditioning. To address the value overestimation challenges inherent in learning value functions
with action sequences in offline RL settings, we employ detached value learning (Kostrikov et al.,
2022) that decouples critic training from the actor, biasing value estimates toward high-return ac-
tions present in the offline dataset. This method is appealing as it can be applied to any expressive
policy architectures including large-scale Vision-Language-Action models (VLAs) without the haz-
ard of value overestimation. Additionally, we propose to incorporate distributional RL (Farebrother
et al., 2024) in value learning to mitigate instability from accumulated bias in multi-step returns.

We validate DEAS through comprehensive experiments on challenging long-horizon tasks from
OGBench (Park et al., 2025a), where standard offline RL methods struggle to achieve meaningful
success rates. Our method consistently outperforms all baselines, demonstrating its effectiveness
on complex tasks. Additionally, we show that DEAS can be used to improve the performance of
VLAs (Bjorck et al., 2025) in hard tasks from RoboCasa Kitchen (Nasiriany et al., 2024) and real-
world manipulation tasks, which significantly improves performance compared to policies trained
solely on expert demonstrations. These results demonstrate DEAS’s practical applicability and po-
tential for scaling offline RL to real-world scenarios.

Contributions We highlight the key contributions of our paper below:
• We present DEAS: DEtached value learning with Action Sequence, a simple yet effective of-

fline RL method that leverages action sequences for training critics and employs detached value
learning with classification loss for stable training.

• We demonstrate that DEAS significantly outperforms baselines on complex, long-horizon tasks
across 30 diverse scenarios in OGBench (Park et al., 2025a).

• We show that DEAS can be used to boost the performance of large-scale VLAs, achieving su-
perior performance on complex tasks from RoboCasa Kitchen (Nasiriany et al., 2024) and real-
world manipulation tasks compared to policies trained solely on expert demonstrations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Offline reinforcement learning Offline RL focuses on learning policies from fixed datasets with-
out further environment interaction (Levine et al., 2020). The main challenge lies in the distributional
shift between the behavior policy and the learned policy, which can lead to value overestimation
and poor performance. Previous work has proposed various approaches including weighted regres-
sion (Peng et al., 2019; Nair et al., 2020; Wang et al., 2020), conservative regularization (Kumar
et al., 2020), behavioral regularization (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Tarasov et al.,
2023; Park et al., 2025c), and in-sample distribution maximization (Kostrikov et al., 2022; Xu et al.,
2023; Garg et al., 2023). Our method builds upon in-sample distribution maximization approaches,
particularly IQL (Kostrikov et al., 2022), extending them to handle action sequences while main-
taining stability by removing the critic update using the actor output. Furthermore, our method has
an advantage in that we can adopt any policy extraction methods for the final policy, making it more
flexible and practical.

BC/RL with action sequence Modeling action sequences has been actively investigated in both
imitation learning and RL recently. Recent advances in behavior cloning have shown that action se-
quences naturally emerge from expert demonstrations, capturing temporal dependencies that single-
step actions miss (Chi et al., 2023; Zhao et al., 2023; Black et al., 2025; Bjorck et al., 2025; Intelli-
gence et al., 2025). Several works have attempted to introduce action sequences into RL (Li et al.,
2024; Tian et al., 2025), with Q-Chunking (Li et al., 2025b) being particularly notable for demon-
strating how action sequences can be incorporated into actor-critic frameworks in offline-to-online
RL settings without being constrained to specific policy classes. However, this approach faces fun-
damental challenges: the expanded action space highly increases the risk of value overestimation,
particularly in offline settings where data coverage is limited (Kumar et al., 2019), yet this issue was
not adequately addressed. CQN-AS (Seo & Abbeel, 2025) circumvents this by removing the actor
entirely, but introduces discretization errors that accumulate over multiple levels, severely limiting
performance in complex tasks and preventing use of expressive policy classes (Wang et al., 2023;
Park et al., 2025c). Our approach uniquely combines the benefits of both paradigms: we leverage the
horizon reduction from action sequences while addressing value overestimation through detached
value learning, enabling stable training with any policy architecture.

3 PRELIMINARIES

Problem formulation We consider a Markov Decision Process (MDP) (Sutton & Barto, 2018)
M = (S,A, p, R, ρ0, γ), where S is the state space, A is the action space, R(s, a) : S × A → R
is the reward function, p(s′|s, a) : S × A → ∆(S) is the transition function, ρ0 is the initial state
distribution, and γ is the discount factor. In this paper, we focus on offline reinforcement learning,
where we have access only to a static dataset D = {τ i}Ni=0 containing N trajectories of fixed length
H , where each trajectory τ i = (s0, a0, r0, . . . , sH , aH , rH) represents a sequence of states, actions,
and rewards. The dataset is collected using a data collection policy πD : S → ∆(A), which may be
unknown or suboptimal. Unlike online RL, we cannot interact with the environment during training.
The objective is to learn a policy π : S → ∆(A) that maximizes the expected sum of discounted
rewards Eρ0,π,p [

∑∞
t=0 γ

tR(st, at)] using only this fixed dataset.

Options framework To formalize the idea for flexible temporal abstractions in the RL and MDP,
a Markovian option ω ∈ Ω is defined as a triplet (Iω, πω, βω). Iω ⊆ S is the initiation set, πω
is an intra-option policy, and βω : S → [0, 1] is the termination function. For any MDP M and
any Markovian option ωM defined on M, a decision process that follows only the option can be
configured as an SMDP, which guarantees the existence of a set of optimal policies, denoted as Π∗

ω .
For more detailed explanations and proofs, please refer to Sutton et al. (1999).

Implicit Q Learning (IQL) (Kostrikov et al., 2022) Instead of regularizing the critic with the
actor output, IQL approximates the optimal critic to be maximized only in the region of action
distributions present in the offline dataset with an in-sample expectile regressions. Given a param-
eterized critic Q(st, at; θ), target critic Q(st, at; θ̄), and value network V (st;ψ), the objective for
value learning are defined as:

LV (ψ) = E(st,at)∼D
[
Lτ
2(Q̄(st, at; θ̄)− V (st;ψ))

]
LQ(θ) = E(st,at)∼D

[
(R(s, a) + γV (st+1;ψ)−Q(st, at; θ))

2
]

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Lτ
2(u) = |τ −1(u < 0)|u2 is the expectile loss with expectile parameter τ ∈ [0, 1]. By using

τ > 0.5, Equation 3 penalizes the overestimated value in out-of-distribution actions, letting V and
Q to be only approximated in the region of in-distribution actions.

4 METHOD

We propose DEtached value learning with Action Sequence (DEAS), an offline RL method that
models action sequences for scalable learning. The method consists of: (1) a critic function
Q(st, ot; θ) that estimates expected returns for action sequences at:t+H−1 from state st under
the data collection policy πD, and (2) a flexible policy update mechanism applicable to any pol-
icy π(at:t+H−1; st, ϕ) outputting H-step action sequences. Section 4.1 describes how we integrate
action sequences into SMDP Q-learning for horizon reduction, while Section 4.2 introduces how
DEAS enables stable training through detached value learning, distributional RL, and dual discount
factors. We provide pseudocode in Algorithm 1 and implementation details in Appendix B.

4.1 OPTIONS FRAMEWORK FOR ACTION SEQUENCE RL

Many complex tasks require actions whose effectiveness depends on their position within more
extended action sequences. This happens because tasks involve hidden sub-tasks and timing rela-
tionships that aren’t captured in the current state. For example, in OGBench puzzle or cube tasks,
success requires planning through intermediate steps and keeping actions consistent over time. This
becomes harder in goal-free settings, where agents must learn these patterns from offline data with-
out explicit goal instructions.

To address these challenges, we propose modeling consecutive action sequences as single deci-
sion units within the options framework. We treat each H-step action sequence ot := at:t+H−1 =
{at, at+1, . . . , at+H−1} as an option, which naturally induces a Semi-Markov Decision Process
(SMDP) (Bradtke & Duff, 1994; Feinberg, 1994; Sutton et al., 1999; Baykal-Gürsoy & Gürsoy,
2010) that guarantees the existence of an optimal policy. Specifically, the option ω∗ is defined as:

ω∗ = (Iω∗ , πω∗ , βω∗) = (S, π(ot | st), β∗(st, k))

β∗(st, k) =

{
1 if k = H

0 otherwise

where k denotes the number of steps executed within the current option. This leads to a Q-learning
update rule that extends standard Q-learning (Bradtke & Duff, 1994):

Q(st, ot; θ)←
H−1∑
k=0

γk1R(st, at+k) + γH2 max
o′∈O

Q(st+H , o
′; θ)

where γ1 and γ2 are discount factors for intra-option and inter-option transitions, respectively. This
formulation aggregates rewards over H steps and propagates value estimates across temporally ex-
tended transitions, achieving implicit horizon reduction similar to n-step TD learning (Park et al.,
2025b). It can be readily implemented by sampling H-step segments from the offline dataset and
applying the above update rule.

4.2 DEAS: DETACHED VALUE LEARNING WITH ACTION SEQUENCE

Detached value learning for handling action sequence When the value function is conditioned
on high-dimensional action sequences, the actor can exploit function approximation errors in the
critic, leading to severe value overestimation and unstable learning (Seo & Abbeel, 2025). This oc-
curs because the expanded action space makes it easier for the actor to find actions that the critic
overestimates, particularly in offline RL settings where the critic may not have sufficient data cov-
erage for possible action sequences (Kumar et al., 2019; 2020). To address this, we adopt detached
value learning approaches (Kostrikov et al., 2022; Xu et al., 2023; Garg et al., 2023) that decouple
the actor and critic training, preventing the actor from exploiting critic errors. Specifically, we in-
troduce critic network Q(st, ot; θ) and value network V (st;ψ) to estimate the expected value, and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 DEAS
Required: Offline dataset D, Support range for return vmin, vmax, number of binsm, discount factor γ1, γ2
Initialize parameters ψ, θ, θ̄, ϕ
while not converged do

Sample batch {(st, at:t+H−1, Rt:t+H−1, st+H)} from D
Compute the discounted return of intra option as R̂t:t+H =

∑H−1
k=0 γ

k
1R(st, at+k)

Compute Q̄(s, o; θ̄) and V (s;ψ) using equation (4.2)
▷ Update V Network
Update V (s;ψ) to minimize Equation (1) with Q̄(s, o; θ̄) and V (s;ψ)

▷ Update Q Network
Update Q(s, o; θ) to minimize Equation (2)

▷ Update Actor Network
Update π(s;ϕ) with any type of policy extraction algorithms (e.g., BoN, DPG, AWR, etc.)

Update θ̄ = (1− β) · θ̄ + β · θ
return π(s)

minimize the following losses following IQL (Kostrikov et al., 2022):
LV (ψ) = E(st,ot)∼D

[
Lτ
2(Q̄(st, ot; θ̄)− V (st;ψ))

]
LQ(θ) = E(st,ot)∼D

[
(R̂t:t+H−1 + γH2 V (st+H ;ψ)−Q(st, ot; θ))

2
]

where R̂t:t+H−1 =
∑H−1

k=0 γ1
kR(st, at+k) is the discounted return for the action sequence. This

approach biases the critic toward high-return actions in the offline dataset without the potential of
exploiting critic approximation errors, preventing value overestimation and enabling stable learning
with action sequences.

Distributional RL for enhanced stability The cumulative reward term R̂t:t+H−1 introduces sig-
nificant variance whenH is large. To enhance stability, we extend our framework with distributional
RL (Bellemare et al., 2017; Farebrother et al., 2024), modeling both critic and value networks as
categorical distributions over fixed support [vmin,vmax] discretized into m bins:

Q(s, o; θ) = E [Z(s, o; θ)] Z(s, o; θ) =

m∑
i=1

p̂i(s, o; θ) · δzi p̂i(s, o; θ) =
eli(s,o;θ)∑m
i=1 e

li(s,o;θ)
,

To address scale differences between regression and classification objectives, we maintain IQL’s
weighting scheme but replace regression with classification-based learning:

LV (ψ) = E(st,ot)∼D

[
αt ·

m∑
i=1

p̂i(st;ψ) log p̂i(st, ot; θ̄)

]

αt =

{
τ if Q̄(st, ot; θ̄) ≥ V (st;ψ)

1− τ otherwise,

(1)

LQ(θ) = E(st,at:t+H−1,st+H)∼D

[
m∑
i=1

pi(st;ψ) log p̂i(st, at:t+H−1; θ̂)

]
. (2)

For target probabilities pi, we adopt the truncated normal distribution with mean as Bellman target
(T̂ V)(s, at:t+H−1) =

∑H−1
k=0 γ

k
1 rt+k + γH2 V (st+H ;ψ) and standard deviation σ = 0.75 · (vmax −

vmin/m), inspired by Farebrother et al. (2024).

Dual discount factors To further enhance stability and expressiveness in value estimation, we
employ two separate discount factors: γ1 for intra-option (within action sequence) rewards and γ2
for inter-option (across action sequences) rewards. This dual-discounting scheme enables the value
function to appropriately weigh immediate and future returns, mitigating issues such as value ex-
plosion or collapse that can arise from improper scaling of returns. In our experiments, we observe
that decreasing the intra-option discount factor γ1 and increasing the inter-option discount factor γ2
leads to more stable training, and is critical for stable training especially when the action sequence
becomes longer (see Section 5.3 for the supporting results).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Simulation task examples. We study DEAS on 30 different tasks from OGBench (Park
et al., 2025a) and 4 challenging manipulation tasks from RoboCasa Kitchen (Nasiriany et al., 2024).

Compatible policy methods For obtaining final policy π(s;ϕ), our framework is compatible
with a variety of policy extraction strategies (Park et al., 2024), including weighted behavior
cloning (Peng et al., 2019), deterministic policy gradient (DPG) (Fujimoto & Gu, 2021), best-of-
N sampling (Chen et al., 2023), and flow-matching approaches (Park et al., 2025c). Since value
function training does not require querying the policy, it can be performed independently and the
policy can be updated separately. To prove this, we show the effectiveness of our method with vari-
ous policy extraction methods in our experiments.

5 EXPERIMENTS

We first validate the effectiveness of DEAS through extensive experiments on various complex tasks
in OGBench (Park et al., 2025a). Additionally, to prove that DEAS can be naturally plugged into
large-scale VLAs for practical applications, we evaluate DEAS by fine-tuning GR00T-N1 (Bjorck
et al., 2025) using offline RL methods on 4 hard tasks from RoboCasa Kitchen (Nasiriany et al.,
2024) and also conduct real-world experiments with Franka Emika Research 3 Robot Arm. See
Figure 2 and Figure 4 for task examples used in our experiments.

5.1 OGBENCH EXPERIMENTS

Setup We evaluate on 6 manipulation environments from OGBench (Park et al., 2025a), each
with 5 subtasks. We use datasets ranging from 1M to 100M transitions based on task difficulty.
While OGBench is originally designed for offline goal-conditioned RL, we use its single-task vari-
ants (‘− singletask‘) for reward-maximizing offline RL. For fair comparison, all methods use
identical MLP architectures for actor networks and adopt the same policy extraction approach as
FQL (Park et al., 2025c), which trains a one-step flow-matching actor with BC regularization to
multi-step flow-matching actor, except for CQN-AS which uses specialized value function networks
with discretization. Action sequence length H is set to 8 for scene and puzzle tasks, and 4 for
cube tasks, with n = H is used for n-step FQL. More details about the experimental setup can be
found in Appendix B.1.

Baselines We compare against FQL (Park et al., 2025c), a state-of-the-art offline RL method
using one-step distillation between flow matching models with different denoising steps, and n-
step FQL (Sutton & Barto, 2018), which extends FQL with n-step TD updates for horizon reduc-
tion (Park et al., 2025b). While increasing n increases bias in standard offline RL, DEAS explic-
itly models action sequences while maintaining horizon reduction benefits. We also consider Q-
Chunking (QC) (Li et al., 2025b), which uses action chunking for actor-critic training while keeping
the interaction between actor and critic. For fair comparison with ours, we extensively tune QC-FQL
hyperparameters to achieve performance significantly higher than the original paper. Lastly, CQN-
AS (Seo & Abbeel, 2025), a value-based RL method with action sequence utilizing multi-level
critics with iterative discretization, is included as a baseline.

Quantitative results As shown in Table 1, DEAS consistently achieves the best performance
across all 6 task categories with various dataset sizes. Comparing FQL and N-step FQL, we ob-
serve that simply increasing the n-step mostly leads to performance degradation due to bias in
standard offline RL, while our detached value learning approach enables stable training with ac-
tion sequences. Notably, DEAS matches or outperforms QC-FQL across all tasks, demonstrating
the effectiveness of our stable value learning in addressing offline RL instability. The method shows
particularly strong performance on tasks requiring long-horizon reasoning like puzzle and the most
challenging tasks (i.e., cube− quadruple), where the benefits of using action sequences are most

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Offline RL results in 6 task categories from OGBench (Park et al., 2025a). We report the
success rate (%) and 95% stratified bootstrap confidence interval over 4 runs. Bold indicates the
values at or above 95% of the best performance. Please refer to Table 8 for the full results.

Task Category #Data FQL N-step FQL QC-FQL CQN-AS DEAS
scene-play-singletask (5 tasks)

1M
50 ±3 36 ±2 73 ±2 1 ±1 76 ±2

cube-double-play-singletask (5 tasks) 14 ±2 4 ±2 41 ±3 2 ±1 48 ±2

puzzle-3x3-play-singletask (5 tasks) 44 ±3 36 ±3 62 ±7 0 ±0 91 ±3

cube-triple-play-singletask (5 tasks) 10M 10 ±3 23 ±2 83 ±4 0 ±0 82 ±5

puzzle-4x4-play-singletask (5 tasks) 32 ±4 19 ±5 69 ±8 0 ±0 82 ±6

cube-quadruple-play-singletask (5 tasks) 100M 17 ±8 36 ±10 45 ±7 0 ±0 64 ±8

1 5 10
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube-double
DEAS (Ours)
QC-FQL
NFQL
FQL

1 5 10
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube triple
DEAS (Ours)
QC-FQL
NFQL
FQL

10 50 100
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube quadruple
DEAS (Ours)
QC-FQL
NFQL
FQL

Figure 3: Agent performance across varying dataset sizes on three representative OGBench (Park
et al., 2025a) tasks, evaluated by success rate (%). Solid lines indicate the mean, while shaded areas
denote the stratified bootstrap confidence intervals over 4 independent runs.

pronounced. CQN-AS shows significantly lower performance, likely due to its direct application of
strong BC regularization on the value function in the presence of predominantly suboptimal data,
along with cumulative errors from iterative discretizations that reduce action precision.

Scaling analysis To further validate the scalability of DEAS, we conduct a scaling analysis on
three representative OGBench tasks with varying dataset sizes. As shown in Figure 3, DEAS consis-
tently outperforms all baselines across all dataset sizes, achieving the highest success rates in every
environment. The method demonstrates robust scaling across different dataset sizes, maintaining
consistent performance gains even with larger datasets. This superior performance validates our ap-
proach of explicitly modeling action sequences while effectively leveraging suboptimal data through
our detached value learning and stable multi-step training.

5.2 VLA EXPERIMENTS

To validate the practical applicability of DEAS, we demonstrate its effectiveness with large-scale
VLAs (Black et al., 2025; Bjorck et al., 2025; GEAR, 2025). These models, trained on internet-scale
diverse datasets with billion-scale parameters, predict much longer action sequences and are widely
used in robotics applications. However, deploying these models typically requires fine-tuning on
task-specific data, which often necessitates collecting expensive expert demonstrations. We design
our experiments to validate whether DEAS can improve VLA performance by effectively utilizing
suboptimal demonstrations alongside limited expert data, potentially reducing the required amount
of costly expert demonstrations. See Appendix B.2 for more details.

5.2.1 ROBOCASA KITCHEN EXPERIMENTS

Setup We employ GR00T-N1.5 (GEAR, 2025) as the backbone VLA. First, we fine-tune the VLA
using 100 expert demonstrations from all 24 RoboCasa Kitchen tasks to verify that we achieve
performance similar to the original GR00T-N1 (Bjorck et al., 2025). From these tasks, we select 4
tasks with the lowest success rates in their respective categories for our offline IL/RL experiments.
We then collect 300 rollouts from the resulting policy and apply various offline IL/RL methods. For
RL methods, we fine-tune the base policy using behavior cloning on both expert demonstrations and
the rollout dataset and use the model as an actor for training critic functions when necessary. For
policy extraction, we adopt best-of-N sampling (Chen et al., 2023; Nakamoto et al., 2024), where
we sample multiple outputs from the policy and select the action sequence with the highest Q-value.
We set H = 16 for all methods, matching GR00T-N1.5’s action chunk size.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: RoboCasa Kitchen evaluation results. We fine-tune GR00T-N1.5 (GEAR, 2025) on 24
RoboCasa Kitchen tasks using 100 expert demonstrations per task. For 4 selected tasks, we col-
lect 300 rollouts and apply offline IL/RL algorithms. Success rates (%) on 50 episodes, aggregated
with 3 seeds. PnPC2M denotes ‘PnPCounterToMicrowave’ and PnPM2C denotes ‘PnPMicrowaveTo-
Counter’. Bold indicates best performance.

† Reproduced performance

Models CoffeeSetupMug PnPC2M PnPM2C TurnOffStove Avg.

Base models
GR00T-N1∗ 2.0 0.0 0.0 15.7 4.4
GR00T-N1.5† 4.7 21.3 7.3 14.7 12.0

Imitation learning
+ Filtered BC 14.7 25.3 14.7 19.3 18.5

Offline RL
+ IQL 23.3 30.0 14.7 12.7 20.2
+ QC 16.0 28.7 14.7 10.7 17.5
+ DEAS (Ours) 28.7 36.0 18.0 18.0 25.2

Baselines We compare against several baselines across both imitation learning and reinforcement
learning paradigms. For imitation learning, we consider Filtered BC, which fine-tunes the base pol-
icy using both expert demonstrations and successful episodes from the rollout data (Oh et al., 2018).
For reinforcement learning, we evaluate IQL, a value-based method that operates on single actions
without requiring policy outputs. For determining action sequence in IQL, we use the very first ac-
tion in the sequence for value estimation. Lastly, we consider Q-Chunking, which employs action
chunking for critic training but relies on action sequences from the VLA.

Results As shown in Table 2, DEAS achieves the highest success rates in 4 out of 5 tasks, with the
remaining task also showing improved performance compared to the base model. While filtered BC
improves performance with simple approaches, but our approach exhibits additional performance
gains by effectively utilizing suboptimal data. While single-step IQL also demonstrates effective-
ness, it shows smaller performance gains across all tasks compared to our approach, due to its lack
of understanding action sequences. Q-chunking shows limited improvement compared to BC-based
approaches, highlighting the advantage of our detached value learning with action sequences.

5.2.2 REAL-WORLD EXPERIMENTS

Setup We further investigate the effectiveness of DEAS in real-world tasks using Franka Emika
Research 3 Robot Arm. We design pick-and-place tasks from the countertop to the bottom cabinet,
with three different objects: peach, milka, and hichew (see Figure 4). For each task, we collect 5
demonstrations, fine-tune GR00T-N1.5, collect 25 rollouts, and apply various offline IL/RL meth-
ods. We evaluate using 20 rollouts per task from 5 different initial points and use the same baselines
as in the RoboCasa Kitchen experiments.

Results In Table 3, DEAS achieves the highest success rates across all three pick-and-place tasks
compared to baselines. The method shows consistent improvements, particularly on challenging ob-
jects like milka (a deformable object) where other approaches struggle. Notably, QC shows degraded
performance compared to the base model, likely due to its instability when using action sequences
with relatively small datasets, while our method shows stable improvement even with limited data.
These results demonstrate that our detached value learning approach effectively transfers from sim-
ulation to real-world robotic tasks and remains stable regardless of the dataset size.

5.3 ABLATION STUDIES AND ANALYSES

We investigate the effect of hyperparameters and various components of DEAS by running experi-
ments on OGBench puzzle-4x4 task.

Effect of action sequence length Table 4a investigates the impact of action sequence length on
performance. When using single-step or two-step action (H = 1, 2), DEAS fails to achieve meaning-
ful performance, confirming the necessity of action sequences for long-horizon tasks. Performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Real-world tasks. We con-
duct pick-and-place tasks from the
countertop to the bottom cabinet with
peach, milka, and hichew.

Table 3: Real-world evaluation results. We report the
success rate (%, over 20 trials per task) on 3 tasks from
5 initial points. Bold indicates the best performance.

Models peach milka hichew Avg.

Base model
GR00T-N1.5 62.0 45.0 85.0 64.0

Imitation learning
+ Filtered BC 76.3 25.0 92.5 64.6

Offline RL
+ IQL 82.5 37.5 78.8 66.3
+ QC 58.8 15.0 45.0 39.6
+ DEAS (Ours) 86.3 53.8 95.0 78.4

H Actor SR
1 512 × 4 21 ±3

2 512 × 4 25 ±5

4 512 × 4 75 ±8

8 512 × 4 88 ±4

16 512 × 4 51 ±4

16 1024 × 4 84 ±4

(a) Action sequence

Critic Value SR
256 × 4 256 × 4 69 ±7

512 × 4 256 × 4 88 ±4

1024 × 4 256 × 4 91 ±4

512 × 4 512 × 4 50 ±4

(b) Critic size

IQL HLG SR
✗ ✓ 75 ±5

✓ ✗ 63 ±6

✓ ✓ 88 ±4

(c) Objectives

γ1 γ2 SR
0.8 0.999 87 ±4

0.9 0.999 88 ±4

0.99 0.999 81 ±5

0.999 0.999 80 ±8

(d) γ1 and γ2

Table 4: Ablation studies. We investigate the effect of (a) action sequence length H , (b) critic and
value model size, (c) training objectives, and (d) separate discount factors γ1 and γ2 for intra-option
and inter-option rewards. SR denotes success rate (%) and default settings are highlighted in gray .
Bold indicates values at or above 95% of the best performance.

improves with longer sequences, but when the sequence length becomes longer than 8, it requires
proportionally larger actor networks to handle the increased action dimensions, suggesting a trade-
off between sequence length and computational efficiency.

Effect of network size Table 4b analyzes the sensitivity to network sizes. For the critic network,
we observe that increasing capacity initially improves performance by better approximating the
value function. For the value function, we find that the network needs sufficient capacity to cap-
ture the complexity of action sequence values, but excessive capacity without proper regularization
causes instability in value estimation, leading to performance degradation.

Effect of training objective In Table 4c, we compare different training objectives for value estima-
tion. We found that using only distributional RL (HLG) (Farebrother et al., 2024) or only standard
regression (IQL) shows limited performance. However, combining detached value learning with
distributional estimation significantly improves results, suggesting both components are crucial for
stable training with action sequences.

Effect of dual discount factors Lastly, we examine the effect of dual discount factors on learning
dynamics in Table 4d. Proper tuning of γ1 (the discount factor for action sequences) is essential for
performance, as it controls the temporal horizon for value estimation within sequences. In this paper,
we use γ1 = 0.9 for all experiments.

6 CONCLUSION

We present DEAS, a simple yet effective offline RL method that leverages action sequences for
scalable learning in complex tasks. By modeling temporally extended actions through the options
framework, DEAS achieves principled horizon reduction via SMDP Q-learning while addressing
value overestimation through detached value learning. Our experiments demonstrate consistent im-
provements over baselines on challenging OGBench tasks and successful application to large-scale
VLAs, showing the practical potential for scaling offline RL to real-world scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. {OPAL}: Offline
primitive discovery for accelerating offline reinforcement learning. In International Conference
on Learning Representations, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI Conference
on Artificial Intelligence, 2017.

Melike Baykal-Gürsoy and K Gürsoy. Semi-markov decision processes. Wiley Encyclopedia of
Operations Research and Management Sciences, 2010.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for gener-
alist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. In Robotics: Science and Systems, 2025.

Steven Bradtke and Michael Duff. Reinforcement learning methods for continuous-time markov
decision problems. In Conference on Neural Information Processing Systems, 1994.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, 2023.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In International Conference on Learning Repre-
sentations, 2023.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025a.

Zengjue Chen, Runliang Niu, He Kong, and Qi Wang. Tgrpo: Fine-tuning vision-language-action
model via trajectory-wise group relative policy optimization. arXiv preprint arXiv:2506.08440,
2025b.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. International
Journal of Robotics Research, 2023.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Ir-
pan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In International
Conference on Machine Learning, 2024.

Eugene A Feinberg. Constrained semi-markov decision processes with average rewards. Zeitschrift
für Operations Research, 1994.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Conference on Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
without entropy. In International Conference on Learning Representations, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

NVIDIA GEAR. Gr00t n1.5: An improved open foundation model for generalist humanoid robots.
https://research.nvidia.com/labs/gear/gr00t-n1_5/, June 2025. Accessed: 2025-09-
09.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A suite of benchmarks for offline reinforcement learning. Conference on Neural Information
Processing Systems, 2020.

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dongchi Huang, Zhirui Fang, Tianle Zhang, Yihang Li, Lin Zhao, and Chunhe Xia. Co-rft: Effi-
cient fine-tuning of vision-language-action models through chunked offline reinforcement learn-
ing. arXiv preprint arXiv:2508.02219, 2025.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. π0.5: a
vision-language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,
2025.

Michael J Kearns and Satinder Singh. Bias-variance error bounds for temporal difference updates.
In Conference on Learning Theory, 2000.

Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Conference
on Neural Information Processing Systems, 2016.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Conference on Neural Information Processing
Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Conference on Neural Information Processing Systems, 2020.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. In International Conference on
Learning Representations, 2023a.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
trials. In Robotics: Science and Systems, 2023b.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, 2012.

11

https://research.nvidia.com/labs/gear/gr00t-n1_5/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, and Gerhard Neumann. Top-erl:
Transformer-based off-policy episodic reinforcement learning. arXiv preprint arXiv:2410.09536,
2024.

Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen
Zhang, Tianxing Chen, Ganqu Cui, et al. Simplevla-rl: Scaling vla training via reinforcement
learning. arXiv preprint arXiv:2509.09674, 2025a.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. In Conference on Robot Learning, 2023.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Conference on Neural Information Processing Systems, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. In Conference on Neural Information Processing Systems, 2023.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. In Conference on Robot Learning,
2024.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. In Robotics: Science and Systems, 2024.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample efficient continuous control. In Con-
ference on Neural Information Processing Systems, 2024.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, 2018.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? In Conference on Neural Information Processing Systems, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In International Conference on Learning Representations, 2025a.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable. In Conference on Neural Information Process-
ing Systems, 2025b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In International Conference on
Machine Learning, 2025c.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Conference on
Neural Information Processing Systems, 1988.

Younggyo Seo and Pieter Abbeel. Coarse-to-fine q-network with action sequence for data-efficient
robot learning. In Conference on Neural Information Processing Systems, 2025.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch,
Thomas Lampe, Philemon Brakel, Sarah Maria Elisabeth Bechtle, Steven Kapturowski, Roland
Hafner, Nicolas Heess, and Martin Riedmiller. Offline actor-critic reinforcement learning scales
to large models. In International Conference on Machine Learning, 2024.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, 2002.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.

Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähenbühl. Ript-vla: Interactive post-training for
vision-language-action models. arXiv preprint arXiv:2505.17016, 2025.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. In Conference on Neural Information Process-
ing Systems, 2023.

Dong Tian, Ge Li, Hongyi Zhou, Onur Celik, and Gerhard Neumann. Chunking the critic: A
transformer-based soft actor-critic with n-step returns. arXiv preprint arXiv:2503.03660, 2025.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Conference on Neural Information Processing Systems, 1996.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, 2017.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representa-
tions, 2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. In Conference on Neural Information Processing Systems, 2020.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regulariza-
tion. In International Conference on Learning Representations, 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2020.

Hongyin Zhang, Zifeng Zhuang, Han Zhao, Pengxiang Ding, Hongchao Lu, and Donglin Wang.
Reinbot: Amplifying robot visual-language manipulation with reinforcement learning. arXiv
preprint arXiv:2505.07395, 2025.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
arXiv preprint arXiv:2411.19309, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Robotics: Science and Systems, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE WORK

While DEAS demonstrates significant improvements over existing offline RL methods, several lim-
itations and opportunities for future research remain. First, our current approach uses fixed action
sequence lengths across different tasks, but the optimal sequence length varies significantly depend-
ing on task complexity. Future work should investigate adaptive mechanisms that can dynamically
adjust action sequence lengths based on task requirements, potentially through adopting hierarchical
policies (Kulkarni et al., 2016; Vezhnevets et al., 2017; Nachum et al., 2018). Second, while DEAS
shows promising results on individual tasks, scaling to large-scale unified value functions remains
a critical challenge for real-world deployment. DEAS currently trains reward models on 3-4 tasks
simultaneously, but practical applications require learning from hundreds or thousands of diverse
tasks. Future research should focus on developing scalable architectures and training procedures
that can handle massive multi-task datasets while maintaining sample efficiency and avoiding catas-
trophic forgetting. Third, our method relies on distributional RL with fixed support ranges (vmin,
vmax) and discretization parameters, which can significantly impact performance. The sensitivity to
these hyperparameters limits the method’s robustness across different domains and reward scales.
Future work should develop more robust frameworks that can automatically adapt to different reward
distributions or provide principled ways to set these parameters.

B IMPLEMENTATION AND TRAINING DETAILS

B.1 OGBENCH EXPERIMENTS

Tasks We evaluate our method on 6 UR5 Robot Arm manipulation environments from OG-
Bench (Park et al., 2025a), each with 5 subtasks. All tasks are state-based, and goal-free setup.
For each task, the observation space consists of the proprioceptive state of the UR5 Robot Arm,
and low-dim state vector informing the target object state and position. The action space consists
of the cartesian position of UR5 robot arm, gripper yaw, and gripper open/close. For substituting
goal-conditioned environment to standard function, we use the simple semi-sparse reward function,
which is defined as the negative number of uncompleted subtasks in the current state, following Park
et al. (2025a). For all tasks, the maximum episode length is set to 1000.

Implementation details We implement our method on top of the open-source implementation of
FQL (Park et al., 2025c) 1. Unless otherwise mentioned, we largely follow the training/evaluation
setup and network architecture from Park et al. (2025c) and Park et al. (2025b). For training value
network, we use the smaller size network compared to critic network for all experiments, which
shows the best performance, and we use the doubled size of network for the critic network. For cube
experiments, we use BRO (Nauman et al., 2024) for additional regularization between relatively
small range of returns in value function training. For selecting vmin and vmax for distributional RL,
we use two procedures: 1) data-centric: compute return distribution from the dataset and select 1%
and 99% quantiles with 20% padding, and 2) universal: compute theoretical bounds using reward
range [rmin, rmax], horizon L, option length H , and discount factors γ1, γ2. For SMDP with K =
L/H options, the theoretical bounds are:

vmin = rmin
1− γH2
1− γ2

1− γK1
1− γ1

(3)

vmax = rmax
1− γH2
1− γ2

1− γK1
1− γ1

(4)

where γ1 and γ2 denote option-level and action-level discount factors, respectively.

Training and evaluation For the training dataset, we use the open-sourced 1M/100M play
dataset released by Park et al. (2025a) 2, where the dataset is collected by open-loop, non-Markovian
scripted policies with temporally correlated noise. As 100M dataset consists of 100 separate files
with 1M transitions for each, we use the first 10 files sorted by name for 10M dataset. We train

1https://github.com/seohongpark/fql
2https://github.com/seohongpark/ogbench

14

https://github.com/seohongpark/fql
https://github.com/seohongpark/ogbench

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

our method and baselines for 1M (1M data) / 2.5M (10M/100M data) gradient steps. For selecting
BC coefficient α for policy extraction, we first normalize the Q loss as in Fujimoto & Gu (2021)
and sweep the value from {0.1, 0.3, 1, 3, 10} and choose the best one for each task and baseline,
except cube− double, where we follow the hyperparameter used in Li et al. (2025b). For evalua-
tion, we report the average success rates across the last three evaluation epochs (800K, 900K, 1M
for 1M dataset, 2.3M, 2.4M, 2.5M for 10M/100M dataset) following Park et al. (2025c) and Park
et al. (2025b). For checking additional hyperparameters used in our experiments, please refer to
Section B.3.

Baselines For reporting results from FQL and n-step FQL, we use the implementation from Park
et al. (2025c). For Q-Chunking, we re-implement the code from Li et al. (2025b) 3 in our codebase.
We found that simply increasing discount factor γ leads to significant performance improvement
for Q-Chunking, so we use the discount factor to be same with γ2 for value function training. For
implementing CQN-AS, we use the original implementation released by the authors from Seo &
Abbeel (2025) 4 and integrate OGBench related codes on top of the codebase. Originally, CQN-AS
is designed to apply auxiliary BC loss only on expert demonstrations, but considering the dataset
distribution of OGBench tasks with nearly no success rollouts, we modify the BC loss on the subop-
timal data as well (Fujimoto & Gu, 2021; Park et al., 2025c; 2024), where no significant difference
with the original implementation. As the reward scale for OGBench is highly different according to
the domain, we normalize the reward scale to be in [−1, 0], and use vmin and vmax as −200 and 0,
respectively. For levels and bins, we use 5 (level) and 9 (bins) for all experiments.

Computing hardware For all OGBench experiments, we use a single NVIDIA RTX 3090 GPU
with 24GB VRAM and it takes about 2 hours for training the small model (used for 1M dataset) and
about 8 hours for training the large model (used for 10M/100M dataset).

B.2 VLA EXPERIMENTS

Computing hardware For all VLA experiments, we use NVIDIA A100 80GB GPUs. Fine-tuning
GR00T-N1.5 takes about 4 hours for 100 expert demonstrations and successful rollouts. For training
DEAS and baselines, it takes about 10 hours with the same data, as we use a larger batch size.

B.2.1 ROBOCASA KITCHEN EXPERIMENTS

Task RoboCasa Kitchen (Nasiriany et al., 2024) is a simulation environment with a mobile
manipulator attached to a Franka Panda robot arm in household kitchen environments. Among
24 atomic tasks provided by the environment, we select 4 challenging tasks (CoffeeSetupMug,
PnPMicrowaveToCounter, PnPMicrowaveToMicrowave, PnPMicrowaveToStove) that require
relatively long-horizon and delicate manipulation with small grasping part, which is demonstrated
by the low success rate of the base model. For perception, camera images from 3 different view-
points (left front, right front, wrist), proprioceptive states including position/velocities of joint/base,
and natural language instructions, are provided. For reward function, we use the pre-defined success
detector in the environment, and use the sparse reward function where the reward is 1 if the task is
completed, and 0 otherwise.

Details on VLAs We implement our method and baselines on top of the open-source implementa-
tion of GR00T-N1.5 (GEAR, 2025) 5. As our code is based on an earlier version of GR00T-N1.5, we
conduct experiments without introducing future tokens to the action expert modules. For fine-tuning
GR00T-N1.5, we use a batch size of 32 and train for 30K steps using AdamW (Loshchilov & Hutter,
2019) optimizer with learning rate 1× 10−4 and cosine annealing schedule.

Implementation details As an input for the value function, we first use the proprioceptive states
from the robot including joint position/angle, base position/orientation for the mobile manipulator.
For providing information on target objects to the value function, we use the encoded representa-
tion of 3 different camera views and task instructions from the VLM backbone. For value/critic

3https://github.com/ColinQiyangLi/qc
4https://github.com/younggyoseo/CQN-AS
5https://github.com/NVIDIA/Isaac-GR00T

15

https://github.com/ColinQiyangLi/qc
https://github.com/younggyoseo/CQN-AS
https://github.com/NVIDIA/Isaac-GR00T

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Initialization points used for pick-and-place tasks.

network architecture, we use the same hyperparameter used for 100M dataset experiments. We
use universal support type for distributional RL. For selecting action candidates with value func-
tion, we first sample N = 10 candidates from the policy. For selecting final actions, we try either
1) greedy sampling with highest Q-value or 2) inspired by Nakamoto et al. (2024), sampling the
action from a categorical distribution obtained by temperature controlled softmax over Q-values:
at ∼ Softmax(Q(st,a1)

β , . . . , Q(st,aN)
β) with temperature β = 1 and report the best result for each

task.

Training and evaluation For expert demonstrations, we randomly sample 100 expert demonstra-
tions using the publicly available dataset generated by MimicGen (Mandlekar et al., 2023). For
training DEAS and baselines, we use a batch size of 64 and train for 30K steps using Adam opti-
mizer with a learning rate of 3 × 10−4. For collecting rollouts, we use randomized environments
using object instance set A. For each task, we evaluate the model performance across 50 trials on
five distinct evaluation scenes with 3 different evaluation seeds, totaling 150 rollouts. To test gener-
alization capabilities, we evaluate the policy only on unseen object instances.

B.2.2 REAL ROBOT EXPERIMENTS

Hardware platform We use Franka Research 3, a 7-DoF robotic arm for our experiments. For
visual perception, we utilize the dual camera with Intel RealSense D435i: a camera attached to the
column next to the robot base to provide a global view, and a wrist-mounted camera for a close-
range view. Teleoperated demonstrations are collected using an Oculus Quest 2, and we log time-
synchronized RGB images, joint states, and gripper width for data collection. Demonstrations are
recorded at 15 Hz.

Task We evaluate the model performance on pick-and-place tasks from the countertop to the bot-
tom cabinet, with three different objects: peach, milka, and hichew. Each object has different
properties: peach is a rigid object with relatively larger size that is easy to occlude, milka is a
deformable object with relatively smaller size that is easy to deform, and hichew is a hard object
requiring precise grasping due to its small width. For collecting demonstrations, we use different
initialization points (center, top, bottom, left, right) and collect one demonstration for each position.
See Figure 5 for the initialization points used in our experiments. For accurate value function esti-
mation, we manually label the reward function for each task. Specifically, we split the task into 4
stages: 1) moving to the countertop, 2) picking up the object, 3) moving to the target position, and
4) placing the object. For each stage, we label the reward function as 1 if the task is completed, and
0 otherwise, and we set the reward function as the negative number of uncompleted stages following
Park et al. (2025a).

Implementation details Unless otherwise mentioned, we follow the same implementation details
as in RoboCasa Kitchen experiments. For selecting vmin and vmax, we use universal approach. For
selecting final actions, we use N = 50 candidates from the policy and use the same procedure for
selecting the final action as in RoboCasa Kitchen experiments.

B.3 HYPERPARAMETERS

We list the hyperparameters used in our OGBench experiments in Tables 5 and 6. For the BC coef-
ficient α used for policy extraction, please refer to Table 7.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: DEAS hyperparameters for OGBench experiments.

Hyperparameter Value
Gradient steps 1M (1M dataset), 2.5M (10M/100M dataset)
Optimizer Adam (Kingma, 2015)
Learning rate 0.0003
Batch size 256 (1M dataset), 1024 (10M/100M dataset)
Actor MLP size [512, 512, 512, 512] (1M dataset)

[1024, 1024, 1024, 1024] (10M/100M dataset)
Critic MLP size [256, 256, 256, 256] (1M dataset)

[512, 512, 512, 512] (10M/100M dataset)
Value MLP size [128, 128, 128, 128] (1M dataset)

[256, 256, 256, 256] (10M/100M dataset)
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Layer normalization True
Target network update rate 0.005
Discount factor γ1 0.9
Discount factor γ2 0.995 (cube), 0.999 (scene, puzzle)
Support range type data-centric (cube), universal (scene, puzzle)
Flow steps 10
Critic ensemble size 2
Action sequence length H 4 (cube), 8 (scene, puzzle)
Expectile κ (DEAS) 0.9 (1M dataset), 0.95 (10M/100M dataset)
Double Q aggregation min(Q1, Q2)
Policy extraction hyperparameters Table 7

Table 6: Baseline hyperparameters for OGBench experiments.

Hyperparameter Value
Critic MLP size [512, 512, 512, 512] (1M dataset)

[1024, 1024, 1024, 1024] (10M/100M dataset)
Discount factor γ (FQL, n-step FQL) 0.99
Discount factor γ (QC-FQL) 0.995 (cube), 0.999 (puzzle)
Horizon reduction factor n 4 (cube), 8 (puzzle)
Policy extraction hyperparameters Table 7

Levels (CQN-AS) 5
Bins (CQN-AS) 9
C51 - vmin,vmax (CQN-AS) -200, 0

Table 7: Policy extraction hyperparameters for OGBench experiments. Note that we apply Q-
Normalization (Fujimoto & Gu, 2021) for actor loss, except cube-double tasks.

Task FQL α n-step FQL α QC-FQL α DEAS α

scene 3 1 3 3
cube-double 300 100 300 300.0
puzzle-3x3 3 1 1 3
cube-triple 3 1 1 1
puzzle-4x4 3 1 1 3
cube-quadruple 3 1 1 1

C EXTENDED RELATED WORK

Hierarchical RL and Options Framework Some Hierarchical RL works seek to address the
challenges of long-horizon and sparse-reward tasks by reducing the effective horizon through learn-
ing value functions that consume multi-step actions (Kulkarni et al., 2016; Vezhnevets et al., 2017;
Nachum et al., 2018; Ajay et al., 2021), usually combined with bi-level architectures. Among them,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Options framework (Sutton et al., 1999; Stolle & Precup, 2002; Bacon et al., 2017) introduces for-
malization of higher-level actions that persist for multiple time steps with variable initiation/termi-
nation conditions, effectively reducing the planning horizon and facilitating more efficient learning.
Our approach leverages the options perspective by treating action sequences as primitive options, en-
abling horizon reduction and improved value propagation without task-specific knowledge, explicit
goal conditioning, or manual sub-task specification.

Reinforcement learning with VLAs Recent efforts have applied RL to VLA training (Zhang
et al., 2024; Chen et al., 2025a; Zhang et al., 2025; Guo et al., 2025; Tan et al., 2025; Chen et al.,
2025b; Li et al., 2025a), but most focus on on-policy online RL, which requires expensive interac-
tions and cannot reuse transitions. A key limitation is that existing methods use single-step value
functions Q(s, a) for value learning, despite modern VLAs being designed to predict action se-
quences (Black et al., 2025; Bjorck et al., 2025; Intelligence et al., 2025). This mismatch between
single-step value learning and multi-step action prediction limits the effectiveness of RL with VLAs.
The most related work is CO-RFT (Huang et al., 2025), which applies chunked offline RL to VLA
training, but differs from our approach in three key aspects: (1) CO-RFT uses actor-critic meth-
ods (Nakamoto et al., 2023) with single-step value functions while DEAS uses detached value
learning with action sequences, (2) CO-RFT relies on human teleoperated expert demonstrations
while we use small expert sets with large suboptimal rollouts, and (3) CO-RFT requires sophisti-
cated transformer architectures while DEAS achieves improvements with simple MLP networks.

D FULL EXPERIMENTAL RESULTS

We include the full experimental results in OGBench experiments in Table 8.

Table 8: Full offline RL Results in 30 OGBench tasks. ∗ indicates the default task in each environ-
ment. We report the success rate (%) and 95% stratified bootstrap confidence interval over 4 runs.

Task #Data FQL N-step FQL QC-FQL CQN-AS DEAS
scene-play-singletask-task1-v0 100 ±0 100 ±0 99 ±0 2 ±1 99 ±1

scene-play-singletask-task2-v0 50 ±7 4 ±3 99 ±1 1 ±1 97 ±1

scene-play-singletask-task3-v0 1M 95 ±2 78 ±5 64 ±8 0 ±0 75 ±6

scene-play-singletask-task4-v0∗ 3 ±2 0 ±0 68 ±1 0 ±0 65 ±5

scene-play-singletask-task5-v0 0 ±0 0 ±0 35 ±7 0 ±0 45 ±6

cube-double-play-singletask-task1-v0 46 ±4 17 ±3 68 ±4 7 ±1 76 ±3

cube-double-play-singletask-task2-v0∗ 10 ±2 1 ±0 47 ±8 1 ±1 51 ±8

cube-double-play-singletask-task3-v0 1M 9 ±2 1 ±1 40±6 0 ±1 47 ±4

cube-double-play-singletask-task4-v0 1 ±1 0 ±0 8±1 1 ±1 8 ±1

cube-double-play-singletask-task5-v0 2 ±1 3 ±1 44±3 0 ±0 57 ±3

puzzle-3x3-play-singletask-task1-v0 100 ±0 89 ±3 97 ±1 1 ±2 100 ±0

puzzle-3x3-play-singletask-task2-v0 19 ±4 40 ±10 81 ±12 0 ±0 94 ±5

puzzle-3x3-play-singletask-task3-v0 1M 15 ±2 14 ±3 50 ±11 0 ±0 91 ±3

puzzle-3x3-play-singletask-task4-v0∗ 35 ±4 23 ±3 31 ±4 0 ±0 91 ±3

puzzle-3x3-play-singletask-task5-v0 47 ±4 13 ±3 50 ±11 0 ±0 96 ±2

cube-triple-play-singletask-task1-v0 31 ±14 17 ±5 100 ±0 0 ±0 98 ±1

cube-triple-play-singletask-task2-v0∗ 9 ±3 91 ±4 92 ±2 0 ±0 95 ±2

cube-triple-play-singletask-task3-v0 10M 12 ±5 0 ±0 92 ±2 0 ±0 88 ±3

cube-triple-play-singletask-task4-v0 0 ±1 0 ±0 59 ±7 0 ±0 45 ±7

cube-triple-play-singletask-task5-v0 2 ±1 0 ±0 74 ±4 0 ±0 87 ±5

puzzle-4x4-play-singletask-task1-v0 54 ±4 28 ±5 66 ±17 0 ±0 92 ±8

puzzle-4x4-play-singletask-task2-v0 24 ±3 2 ±1 80 ±16 0 ±0 42 ±7

puzzle-4x4-play-singletask-task3-v0 10M 36 ±4 42 ±7 69 ±22 0 ±0 99 ±1

puzzle-4x4-play-singletask-task4-v0∗ 22 ±2 28 ±3 70 ±17 0 ±0 88 ±4

puzzle-4x4-play-singletask-task5-v0 22 ±4 3±2 61±19 0 ±0 89 ±6

cube-quadruple-play-singletask-task1-v0 79 ±6 70 ±9 79 ±7 0 ±0 92 ±5

cube-quadruple-play-singletask-task2-v0∗ 0 ±0 97 ±2 63 ±7 0 ±0 100 ±0

cube-quadruple-play-singletask-task3-v0 100M 6±3 1 ±1 33 ±7 0 ±0 62 ±9

cube-quadruple-play-singletask-task4-v0 0 ±0 13 ±5 38 ±7 0 ±0 31 ±7

cube-quadruple-play-singletask-task5-v0 0 ±0 0 ±0 12 ±6 0 ±0 35 ±10

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs) in preparing this manuscript. LLMs were
employed solely to refine writing quality, including grammar correction, vocabulary suggestions,
and typographical checks. All substantive ideas, analyses, and conclusions in this paper are entirely
the work of the authors

19

	Introduction
	Related Work
	Preliminaries
	Method
	Options framework for action sequence RL
	DEAS: DEtached value learning with Action Sequence

	Experiments
	OGBench Experiments
	VLA Experiments
	RoboCasa Kitchen Experiments
	Real-world Experiments

	Ablation Studies and Analyses

	Conclusion
	Limitations and Future Work
	Implementation and Training Details
	OGBench Experiments
	VLA Experiments
	RoboCasa Kitchen Experiments
	Real Robot Experiments

	Hyperparameters

	Extended Related Work
	Full Experimental Results
	Use of Large Language Models

