
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEAS: DETACHED VALUE LEARNING WITH
ACTION SEQUENCE FOR SCALABLE OFFLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) presents an attractive paradigm for train-
ing intelligent agents without expensive online interactions. However, current ap-
proaches still struggle with complex, long-horizon sequential decision making. In
this work, we introduce DEtached value learning with Action Sequence (DEAS),
a simple yet effective offline RL framework that leverages action sequences for
value learning. These temporally extended actions provide richer information than
single-step actions, enabling reduction of the effective planning horizon by con-
sidering longer sequences at once. However, directly adopting such sequences
in actor-critic algorithms introduces excessive value overestimation, which we
address through detached value learning that steers value estimates toward in-
distribution actions that achieve high returns in the offline dataset. We demon-
strate that DEAS consistently outperforms baselines on complex, long-horizon
tasks from OGBench and can be applied to enhance the performance of large-
scale Vision-Language-Action models that predict action sequences, significantly
boosting performance in both RoboCasa Kitchen simulation tasks and real-world
manipulation tasks.

1 INTRODUCTION

Offline reinforcement learning (RL) (Lange et al., 2012; Levine et al., 2020) enables learning from
static datasets without incurring online data collection risks, while circumventing the need for ex-
pensive expert demonstrations. However, existing methods primarily focus on short-horizon tasks
with dense rewards (Yu et al., 2020; Fu et al., 2020; Gulcehre et al., 2020; Mandlekar et al., 2021)
and struggle to scale to complex long-horizon scenarios. Recent attempts using large-scale architec-
tures (Kumar et al., 2023a;b; Chebotar et al., 2023; Springenberg et al., 2024) show promise, but
their effectiveness on complex tasks remains unexplored.

To address the need for long-horizon evaluation, recent work (Park et al., 2025a;b) has proposed
challenging benchmarks for complex offline RL and demonstrated that reducing the effective plan-
ning horizon (i.e., shortening the time span over which the agent must plan) in both value and policy
learning via n-step TD updates with high n values and hierarchical policies is essential. However,
these approaches rely on goal-conditioned RL with explicit, expert-provided goals, which are often
unavailable in practice. For instance, high n values in n-step TD updates introduce increased bias
and bootstrap error in standard RL without explicit goal information (Tsitsiklis & Van Roy, 1996;
Kearns & Singh, 2000; Sutton & Barto, 2018).

These limitations underscore the need for alternative approaches to horizon reduction (reducing the
planning horizon) that work without explicit goal conditioning. One promising direction is leverag-
ing action sequences, which have shown success in behavior cloning (Pomerleau, 1988) for captur-
ing noisy, temporally-relevant distributions in expert demonstrations (Chi et al., 2023; Zhao et al.,
2023). However, existing attempts to use action sequences for RL remain insufficient for achieving
robust horizon reduction. Q-chunking (Li et al., 2025b) has explored the use of action sequences for
RL, demonstrating their potential for temporally consistent exploration. However, introducing action
sequences to standard actor-critic frameworks causes severe value overestimation (Seo & Abbeel,
2025) due to actors maximizing over potentially erroneous critic estimates with widely spanned
action spaces. This problem is exacerbated in offline RL where distribution shift creates extrapola-
tion errors (Kumar et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020). While CQN-AS (Seo
& Abbeel, 2025) proposes a value-only approach to avoid this issue, it introduces discretization er-
rors that limit performance in complex tasks and cannot leverage expressive policy classes (Wang

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Previous Methods

DEAS (Ours)

Value

Target
Critic

Critic

Policy

⚠
⚠

Value

Target
Critic

Critic

Figure 1: Overview. DEAS is an offline RL framework that learns from action sequences instead of
single actions. Unlike previous methods that couple actor-critic training, our key insight is to train
the critic separately from the policy (detached value learning) using action sequences, which enables
stable learning while avoiding value overestimation. We further enhance stability by combining
distributional RL objectives and using dual discount factors, which leads to additional improvement.

et al., 2023; Hansen-Estruch et al., 2023; Park et al., 2025c). For this reason, our research aims
to develop methods that can leverage action sequences for horizon reduction while avoiding value
overestimation and maintaining compatibility with expressive policy architectures.

Our approach We present DEtached value learning with Action Sequence (DEAS), an offline
RL framework that leverages action sequences for scalable value learning in complex tasks. Our
method treats consecutive action timesteps as inputs to the value function to provide more expressive
information than single-step actions. This design provides principled horizon reduction analogous
to n-step TD updates with temporally extended actions, while action sequences offer richer infor-
mation than single-step actions without requiring explicit goal conditioning. To address the value
overestimation challenges inherent in learning value functions with action sequences in offline RL
settings, we employ detached value learning (Kostrikov et al., 2022) that decouples critic training
from the actor, biasing value estimates toward high-return actions present in the offline dataset. This
method is appealing as it can be applied to any expressive policy architectures including large-scale
Vision-Language-Action models (VLAs) without the hazard of value overestimation. Additionally,
we propose to incorporate distributional RL (Farebrother et al., 2024) in value learning to mitigate
instability from accumulated bias in multi-step returns.

We validate DEAS through comprehensive experiments on challenging long-horizon tasks from
OGBench (Park et al., 2025a), where standard offline RL methods struggle to achieve meaningful
success rates. Our method consistently outperforms all baselines, demonstrating its effectiveness
on complex tasks. Additionally, we show that DEAS can be used to improve the performance of
VLAs (Bjorck et al., 2025) in hard tasks from RoboCasa Kitchen (Nasiriany et al., 2024) and real-
world manipulation tasks, which significantly improves performance compared to policies trained
solely on expert demonstrations. These results demonstrate DEAS’s practical applicability and po-
tential for scaling offline RL to real-world scenarios.

Contributions We highlight the key contributions of our paper below:
• We present DEAS: DEtached value learning with Action Sequence, a simple yet effective of-

fline RL method that leverages action sequences for training critics and employs detached value
learning with classification loss for stable training.

• We demonstrate that DEAS significantly outperforms baselines on complex, long-horizon tasks
across 30 diverse scenarios in OGBench (Park et al., 2025a).

• We demonstrate that DEAS can enhance the performance of large-scale VLAs, achieving su-
perior results on complex tasks from RoboCasa Kitchen (Nasiriany et al., 2024) and real-world
manipulation tasks compared to policies trained solely on expert demonstrations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Offline reinforcement learning Offline RL focuses on learning policies from fixed datasets with-
out further environment interaction (Levine et al., 2020). The primary challenge lies in the distri-
butional shift between the behavior policy and the learned policy, which can result in value over-
estimation and suboptimal performance. Previous work has proposed various approaches including
weighted regression (Peng et al., 2019; Nair et al., 2020; Wang et al., 2020), conservative regu-
larization (Kumar et al., 2020), behavioral regularization (Fujimoto et al., 2019; Fujimoto & Gu,
2021; Tarasov et al., 2023; Park et al., 2025c), and in-sample distribution maximization (Kostrikov
et al., 2022; Xu et al., 2023; Garg et al., 2023). Our method builds upon in-sample distribution max-
imization approaches, particularly IQL (Kostrikov et al., 2022), extending them to handle action
sequences while maintaining stability by removing the critic update based on the actor’s output.
Furthermore, our method has the advantage of being adaptable to any policy extraction method for
the final policy, making it more flexible and practical.

BC/RL with action sequence Adopting action sequence has been actively investigated in both im-
itation learning and RL. Behavior cloning advances show that predicting action sequences captures
temporal dependencies from expert demonstrations that single-step actions miss (Chi et al., 2023;
Zhao et al., 2023; Black et al., 2025; Bjorck et al., 2025; Intelligence et al., 2025). Several works
have introduced action sequences into RL (Li et al., 2024; Tian et al., 2025), with Q-Chunking (Li
et al., 2025b) demonstrating incorporation into actor-critic frameworks in offline-to-online RL with-
out policy class constraints. However, this approach faces fundamental challenges: expanded action
spaces increase value overestimation risk, particularly in offline settings with limited data cover-
age (Kumar et al., 2019), yet this issue remains unaddressed. CQN-AS (Seo & Abbeel, 2025) cir-
cumvents this by removing the actor entirely, but introduces accumulating discretization errors that
severely limit performance in complex tasks and prevent use of expressive policy classes (Wang
et al., 2023; Park et al., 2025c). Our approach uniquely combines both paradigms: we leverage hori-
zon reduction from action sequences while addressing value overestimation through detached value
learning, enabling stable training with any policy architecture.

3 PRELIMINARIES

Problem formulation We consider a Markov Decision Process (MDP) (Sutton & Barto, 2018)
M = (S,A, p, R, ρ0, γ), where S is the state space, A is the action space, R(s, a) : S × A → R
is the reward function, p(s′|s, a) : S × A → ∆(S) is the transition function, ρ0 is the initial state
distribution, and γ is the discount factor. In this paper, we focus on offline reinforcement learning,
where we have access only to a static dataset D = {τ i}Ni=0 containing N trajectories of fixed length
H , where each trajectory τ i = (s0, a0, r0, . . . , sH , aH , rH) represents a sequence of states, actions,
and rewards. The dataset is collected using a data collection policy πD : S → ∆(A), which may be
unknown or suboptimal. Unlike online RL, we cannot interact with the environment during training.
The objective is to learn a policy π : S → ∆(A) that maximizes the expected sum of discounted
rewards Eρ0,π,p [

∑∞
t=0 γ

tR(st, at)] using only this fixed dataset.

Temporal-difference (TD) learning Modern value-based RL approaches usually update a state-
action value function Q : S × A → R to approximate the maximum discounted cumulative reward
by bootstrapping from a successor state:

Q(st, at)← Q(st, at) + α
[
rt + γmax

a′∈A
Q(st+1, a

′)−Q(st, at)
]
.

This one-step update progressively aligns Q with its Bellman target using sampled transitions. For
reducing the bootstraping bias problem in long-horizon tasks, multi-step TD (Tsitsiklis & Van Roy,
1996; Kearns & Singh, 2000; Sutton & Barto, 2018) extends this idea by accumulating rewards over
several steps before bootstrapping while retaining the same basic structure.

Implicit Q Learning (IQL) (Kostrikov et al., 2022) Instead of regularizing the critic with the
actor output, IQL approximates the optimal critic to be maximized only in the region of action
distributions present in the offline dataset with an in-sample expectile regression. Given a param-
eterized critic Q(st, at; θ), target critic Q(st, at; θ̄), and value network V (st;ψ), the objective for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

value learning is defined as:

LV (ψ) = E(st,at)∼D
[
Lτ
2(Q̄(st, at; θ̄)− V (st;ψ))

]
(1)

LQ(θ) = E(st,at,st+1)∼D
[
(R(st, at) + γV (st+1;ψ)−Q(st, at; θ))

2
]

(2)

where Lτ
2(u) = |τ −1(u < 0)|u2 is the expectile loss with expectile parameter τ ∈ [0, 1]. By using

τ > 0.5, Equation (1) applies the higher weight on positive errors than negative errors, so that V
approximates an upper expectile of the in-distribution TD targets. This objective allows V and Q to
be approximated only within the in-distribution region of actions.

4 METHOD

We propose DEtached value learning with Action Sequence (DEAS), an offline RL method that
models action sequences for scalable value learning. Our approach consists of two key components:
(1) a critic Q(st,at; θ) that estimates expected returns for H-step action sequence at := at:t+H−1

from state st under the data collection policy πD, and (2) a flexible policy update mechanism ap-
plicable to any policy π(at; st, ϕ) that outputs H-step action sequences. Section 4.1 describes how
we extend temporal with action sequences, while Section 4.2 introduces how DEAS enables stable
training through detached value learning, distributional RL, and dual discount factors. We provide
pseudocode in Algorithm 1 and additional details in Appendix B.

4.1 TD LEARNING OVER ACTION SEQUENCES

Complex tasks require coordinated action sequences where each action’s effectiveness depends on
its context within the sequence. For instance, in OGBench puzzle or cube tasks, success depends
on planning through multiple intermediate steps and maintaining consistent actions over extended
periods. These temporal dependencies and hidden sub-tasks are not captured by current state repre-
sentations, making it challenging for agents to learn effective policies. The challenge becomes even
greater in goal-free settings, where agents must discover these sequential patterns from offline data
without explicit goal instructions.

To address this challenge, we formalize temporally extended decisions by treating each fixed-length
H-step action sequence as a single decision unit. Given the underlying MDP M, we consider an
state-action value functionQ(s,a) over H-step sequence of actions at := (at, at+1, . . . , at+H−1) ∈
AH . Executing at from state st means applying the primitive actions in order, collecting the dis-
counted return

R̃(st,at, γ) := E

[
H−1∑
k=0

γkR(st+k, at+k)

∣∣∣∣∣ st,at
]
, (3)

and transitioning to a successor state st+H . Our TD updates are then performed directly onQ(st,at)

using R̃(st,at, γ) as the multi-step target, i.e., standard TD learning applied to sequence actions in
AH . This formulation is equivalent to considering decision-making at every H-th time step with
temporally extended actions.

For updating Q(s,a), we can use the following TD learning objective that extends standard Q-
learning (Bradtke & Duff, 1994; Sutton et al., 1999):

Q(st,at)← Q(st,at) + α

[
R̃(st,at, γ1) + γH2 max

a′∈AH
Q(st+H ,a

′)−Q(st,at)

]
where γ1 is used to construct the H-step return within a sequence, while γ2 discounts across
sequence-level decision points. This formulation aggregates rewards over H steps and propagates
value estimates across temporally extended transitions, achieving horizon reduction similar to n-
step TD learning (Park et al., 2025b) while guaranteeing unbiased value estimates for the H-step
rewards (Li et al., 2025b).

4.2 DEAS: DETACHED VALUE LEARNING WITH ACTION SEQUENCE

Detached value learning for handling action sequence Action sequences introduce challenges
for value function approximation, as the expanded action space makes it harder for the critic to esti-
mate Q-values accurately. Meanwhile, the actor can exploit regions where the critic makes prediction

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 DEAS
Required: Offline dataset D, Support range for return vmin, vmax, number of binsm, discount factor γ1, γ2
Initialize parameters ψ, θ, θ̄, ϕ
while not converged do

Sample batch {(st,at, Rt:t+H−1, st+H)} from D
Compute the discounted return of H-step action sequence R̃(st,at, γ) using Equation (3)
Compute Q̄(s,a; θ̄) and V (s;ψ) using Equation (6)
▷ Update V Network
Update V (s;ψ) to minimize Equation (7) with Q̄(s,a; θ̄) and V (s;ψ)

▷ Update Q Network
Update Q(s,a; θ) to minimize Equation (8)

▷ Update Actor Network
Update π(s;ϕ) with any type of policy extraction algorithms (e.g., BoN, DPG, AWR, etc.)

Update θ̄ = (1− β) · θ̄ + β · θ
return π(s)

errors, leading to value overestimation and unstable learning (Seo & Abbeel, 2025). To address this,
we adopt detached value learning (Kostrikov et al., 2022; Xu et al., 2023; Garg et al., 2023) that
decouples actor and critic training, introducing a critic Q(st,at; θ) and a value V (st;ψ) networks
following IQL (Kostrikov et al., 2022):

LV (ψ) = E(st,at)∼D
[
Lτ
2(Q̄(st,at; θ̄)− V (st;ψ))

]
(4)

LQ(θ) = E(st,at)∼D

[
(R̃(st,at, γ1) + γH2 V (st+H ;ψ)−Q(st,at; θ))

2
]
, (5)

This approach steers the critic toward high-return action sequences in the offline dataset without
the potential of exploiting critic approximation errors, preventing value overestimation and enabling
stable value learning even with longer action sequences. In Appendix E, we provide the theoretical
proof of extending action sequences in detached value learning without loss of generality.

Distributional RL for enhanced stability Even with detached value learning, the cumulative
reward term R̂t:t+H−1 could introduce significant variance when H is large. To enhance stability,
we extend our framework with distributional RL (Bellemare et al., 2017; Farebrother et al., 2024),
modeling both critic and value networks as categorical distributions over fixed support [vmin,vmax]
discretized into m bins:

Q(s,a; θ) = E [Z(s,a; θ)] Z(s,a; θ) =

m∑
i=1

p̂i(s,a; θ) · δzi p̂i(s,a; θ) =
eli(s,a;θ)∑m
i=1 e

li(s,a;θ)
, (6)

where p̂i denotes the predicted probabilities for location zi. V (s;ψ) is computed similarly, by con-
ditioning only on the state s. To address scale differences between regression and classification
objectives, we maintain IQL’s weighting scheme but replace regression with classification-based
learning:

LV (ψ) = E(st,at)∼D

[
αt ·

m∑
i=1

p̂i(st;ψ) log p̂i(st,at; θ̄)

]

αt =

{
τ if Q̄(st,at; θ̄) ≥ V (st;ψ)

1− τ otherwise,

(7)

LQ(θ) = E(st,at,st+H)∼D

[
m∑
i=1

pi(st;ψ) log p̂i(st,at; θ)

]
. (8)

For target probabilities pi, we adopt the truncated normal distribution with mean as Bellman target
(T̂ V)(s,at) =

∑H−1
k=0 γ

k
1 rt+k+γ

H
2 V (st+H ;ψ) and standard deviation σ = 0.75·(vmax−vmin/m),

inspired by Farebrother et al. (2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Simulation task examples. We study DEAS on 30 different tasks from OGBench (Park
et al., 2025a) and 4 challenging manipulation tasks from RoboCasa Kitchen (Nasiriany et al., 2024).

Dual discount factors To further enhance stability and expressiveness in value estimation, we
employ two separate discount factors: γ1 for rewards within H-step action sequences and γ2 for
the summation across sequence-level decision points. This dual-discounting scheme enables the
value function to appropriately weigh immediate and future returns, mitigating issues such as value
explosion or collapse that can arise from improper return scaling. In our experiments, we observe
that decreasing γ1 and increasing γ2 lead to more stable training and are critical for performance
improvement, especially as the action sequence lengthens (see Section 5.4 for supporting results).

Compatible policy methods For obtaining final policy π(s;ϕ), our framework is compatible
with a variety of policy extraction strategies (Park et al., 2024), including weighted behavior
cloning (Peng et al., 2019), deterministic policy gradient (DPG) (Fujimoto & Gu, 2021), best-of-
N sampling (Chen et al., 2023), and flow-matching approaches (Park et al., 2025c). Since value
function training does not require querying the policy, it can be performed independently, and the
policy can be updated separately. To demonstrate this, we illustrate the effectiveness of our method
using various policy extraction methods in our experiments.

5 EXPERIMENTS

We first validate the effectiveness of DEAS through extensive experiments on various complex, long-
horizon tasks in OGBench (Park et al., 2025a). Additionally, to prove that DEAS can be naturally
plugged into large-scale VLAs for practical applications, we evaluate DEAS by fine-tuning GR00T
N1.5 (NVIDIA, 2025) using offline RL methods on 4 hard tasks from RoboCasa Kitchen (Nasiriany
et al., 2024) and also conduct real-world experiments with Franka Emika Research 3 Robot Arm.
See Figure 2 and Figure 4 for task examples used in our experiments.

5.1 OGBENCH EXPERIMENTS

Setup We evaluate on 6 manipulation environments from OGBench (Park et al., 2025a), each with
5 subtasks. We use datasets ranging from 1M to 100M transitions based on task difficulty. While
OGBench is originally designed for offline goal-conditioned RL, we use its single-task variants
(‘singletask′) for reward-maximizing offline RL. For fair comparison, all methods use identical
MLP architectures for actor networks and adopt the same policy extraction approach as FQL (Park
et al., 2025c), except for CQN-AS, which uses value function networks as the actor itself through
discretization. Action sequence length H is set to 8 for scene and puzzle tasks, and 4 for cube
tasks, with n = H is used for n-step FQL. More details about the experimental setup can be found
in Appendix B.1.

Baselines We compare against FQL (Park et al., 2025c), a state-of-the-art offline RL method
using one-step distillation between flow matching models with different denoising steps, and n-
step FQL (Sutton & Barto, 2018), which extends FQL with n-step TD updates for horizon reduc-
tion (Park et al., 2025b). While increasing n increases bias in standard offline RL, DEAS explic-
itly models action sequences while maintaining horizon reduction benefits. We also consider Q-
Chunking (QC) (Li et al., 2025b), which uses action chunking for actor-critic training while keeping
the interaction between actor and critic, while DEAS uses detached value learning. For fair compar-
ison with ours, we extensively tune QC-FQL hyperparameters to achieve higher performance than
the original paper. Lastly, CQN-AS (Seo & Abbeel, 2025), a value-based RL method with action
sequence utilizing multi-level critics with iterative discretization, is included as a baseline.

Quantitative results As shown in Table 1, DEAS consistently achieves the best performance
across all 6 task categories with various dataset sizes. Comparing FQL and N-step FQL, we ob-
serve that simply increasing the n-step mostly leads to performance degradation due to bias in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Offline RL results in 6 task categories from OGBench (Park et al., 2025a). We report the
success rate (%) and 95% stratified bootstrap confidence interval over 4 runs. Bold indicates the
values at or above 95% of the best performance. Please refer to Table 9 for the full results.

Task Category #Data FQL N-step FQL QC-FQL CQN-AS DEAS
scene-play-singletask (5 tasks)

1M
50 ±3 36 ±2 73 ±2 1 ±1 76 ±2

cube-double-play-singletask (5 tasks) 14 ±2 4 ±2 41 ±3 2 ±1 48 ±2

puzzle-3x3-play-singletask (5 tasks) 44 ±3 36 ±3 62 ±7 0 ±0 91 ±3

cube-triple-play-singletask (5 tasks) 10M 10 ±3 23 ±2 83 ±4 0 ±0 82 ±5

puzzle-4x4-play-singletask (5 tasks) 32 ±4 19 ±5 69 ±8 0 ±0 82 ±6

cube-quadruple-play-singletask (5 tasks) 100M 17 ±8 36 ±10 45 ±7 0 ±0 64 ±8

1 5 10
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube-double
DEAS (Ours)
QC-FQL
NFQL
FQL

1 5 10
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube triple
DEAS (Ours)
QC-FQL
NFQL
FQL

10 50 100
Dataset Size (M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

cube quadruple
DEAS (Ours)
QC-FQL
NFQL
FQL

Figure 3: Agent performance across varying dataset sizes on three representative OGBench (Park
et al., 2025a) tasks, evaluated by success rate (%). Solid lines indicate the mean, while shaded areas
denote the stratified bootstrap confidence intervals over 4 independent runs.

standard offline RL, while our detached value learning approach enables stable training with ac-
tion sequences. Notably, DEAS matches or outperforms QC-FQL across all tasks, demonstrating
the effectiveness of our stable value learning in addressing offline RL instability. The method shows
particularly strong performance on tasks requiring long-horizon reasoning like puzzle and the most
challenging tasks (i.e., cube− quadruple), where the benefits of using action sequences are most
pronounced. CQN-AS shows significantly lower performance, likely due to its direct application of
strong BC regularization on the value function in the presence of predominantly suboptimal data,
along with cumulative errors from iterative discretizations that reduce action precision.

Scaling analysis To further validate the scalability of DEAS, we conduct a scaling analysis on
three representative OGBench tasks with varying dataset sizes. As shown in Figure 3, DEAS consis-
tently outperforms all baselines across all dataset sizes, achieving the highest success rates in every
environment. The method demonstrates robust scaling across different dataset sizes, maintaining
consistent performance gains even with larger datasets. This superior performance validates our ap-
proach of explicitly modeling action sequences while effectively leveraging suboptimal data through
our detached value learning and stable multi-step training.

5.2 VLA EXPERIMENTS

To validate the practical applicability of DEAS, we demonstrate its effectiveness with large-scale
VLAs (Black et al., 2025; Bjorck et al., 2025; NVIDIA, 2025). These models, trained on internet-
scale diverse datasets with billion-scale parameters, predict much longer action sequences and are
widely used in robotics applications. However, deploying these models typically requires fine-tuning
on task-specific data, which often necessitates collecting expensive expert demonstrations. We de-
sign our experiments to validate whether DEAS can improve VLA performance by effectively uti-
lizing suboptimal demonstrations alongside limited expert data, potentially reducing the required
amount of costly expert demonstrations. See Appendix B.2 for more details.

5.2.1 ROBOCASA KITCHEN EXPERIMENTS

Setup We employ GR00T N1.5 (NVIDIA, 2025) and π0 (Black et al., 2025) as the backbone
VLA. First, we fine-tune the VLA using 100 expert demonstrations from all 24 RoboCasa Kitchen
tasks to verify that we achieve performance similar to public GR00T N1 (Bjorck et al., 2025). From
these tasks, we select 4 tasks with the lowest success rates in their respective categories for our
offline IL/RL experiments. We then collect 300 rollouts for each task from the resulting policy and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: RoboCasa Kitchen evaluation results by backbone. We evaluate VLAs on 4 RoboCasa
Kitchen tasks. DEAS is applied on top of different backbones (GR00T N1.5 and π0), showing con-
sistent performance gains over imitation learning and other offline RL baselines.

(a) GR00T backbone
∗ Result from Bjorck et al. (2025) † Reproduced performance

Models CoffeeSetupMug PnPC2M PnPM2C TurnOffStove Avg.

Reference model
GR00T N1∗ 2.0 0.0 0.0 15.7 4.4

Base model
GR00T N1.5† 4.7 21.3 7.3 14.7 12.0

Imitation Learning
+ Filtered BC 14.7 25.3 14.7 19.3 18.5

Offline RL
+ IQL 23.3 30.0 14.7 12.7 20.2
+ QC 16.0 28.7 14.7 10.7 17.5
+ DEAS (Ours) 28.7 36.0 18.0 18.0 25.2

(b) π0 backbone

Models CoffeeSetupMug PnPC2M PnPM2C TurnOffStove Avg.

Base model
π0

† 20.0 11.3 10.0 8.0 12.3

Imitation Learning
+ Filtered BC 30.7 16.7 14.7 10.0 18.0

Offline RL
+ DEAS (Ours) 37.3 15.3 19.3 15.3 21.8

apply various offline IL/RL methods. For RL methods, we fine-tune the base policy using behavior
cloning on both expert demonstrations and the rollout dataset and use the model as an actor for
training critic functions when necessary. For policy extraction, we adopt best-of-N sampling (Chen
et al., 2023; Nakamoto et al., 2024), where we sample multiple outputs from the policy and select
the action sequence with the highest Q-value. We set H = 16 in GR00T N1.5 and H = 50 in π0 for
all methods to match the original action chunk size used for each model.

Baselines We compare against several baselines across both imitation learning and reinforcement
learning paradigms. For imitation learning, we consider Filtered BC, which fine-tunes the base pol-
icy using both expert demonstrations and successful episodes from the rollout data (Oh et al., 2018).
For reinforcement learning, we evaluate IQL, a value-based method that operates on single actions
without requiring policy outputs. For determining action sequence in IQL, we use the very first ac-
tion in the sequence for value estimation. Lastly, we consider QC, which employs action chunking
for critic training but relies on predicted action sequences from VLA for the critic update.

Results As shown in Table 2, DEAS improves performance across all tasks on the GR00T N1.5
backbone, outperforming all baselines. While filtered BC improves performance with simple ap-
proaches, our approach achieves additional gains by effectively leveraging suboptimal data. While
single-step IQL also demonstrates effectiveness, it shows smaller performance gains across all tasks
compared to our approach, due to its lack of understanding of action sequences. QC shows only
limited improvement over BC-based approaches, highlighting the advantage of our detached value
learning with action sequences. A similar pattern holds for the π0 backbone: DEAS provides clear
improvements over the base model across all tasks, even with a significantly longer action sequence
(50) compared to the GR00T N1.5 backbone. This confirms that our method reliably enhances VLA
policies regardless of backbone choice and the length of the action sequence.
5.2.2 REAL-WORLD EXPERIMENTS

Setup We further investigate the effectiveness of DEAS in real-world tasks using Franka Emika
Research 3 Robot Arm. Inspired by RoboCasa Kitchen, we design pick-and-place tasks from the
countertop to the bottom cabinet, with three different objects: peach, milka, and hichew (see Fig-
ure 4). For each task, we collect 5 demonstrations, fine-tune GR00T N1.5, collect 25 rollouts, and
apply various offline IL/RL methods. We evaluate using 20 rollouts per task from 5 different initial
points and use the same baselines as in the RoboCasa Kitchen experiments. Success rates are cal-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Real-world tasks. We conduct
pick-and-place tasks from the countertop
to the bottom cabinet with peach, milka,
and hichew.

Table 3: Real-world evaluation results. We report the
partial success rate (%, over 20 trials per task) on 3 tasks
from 5 initial points. Bold and underline indicate best
and runner-up results, respectively.

Models peach milka hichew Avg.

Base model
GR00T N1.5 62.0 45.0 85.0 64.0

Imitation learning
+ Filtered BC 76.3 25.0 92.5 64.6

Offline RL
+ IQL 82.5 37.5 78.8 66.3
+ QC 58.8 15.0 45.0 39.6
+ DEAS (Ours) 86.3 53.8 95.0 78.4

culated based on partial success scoring (0-1 scale) that considers subtask completion, with detailed
evaluation methodology provided in Section B.2.2.

Results In Table 3, DEAS achieves the highest success rates across all three pick-and-place tasks
compared to baselines. The method shows consistent improvements, particularly on challenging
objects like milka (a deformable object) where other approaches struggle. Notably, QC shows de-
graded performance compared to the base model, likely due to its instability when using action
sequences with relatively small datasets, while our method shows stable improvement even with
limited data. These results demonstrate that our detached value learning approach can be effectively
applied to real-world robotic tasks and remains stable regardless of the dataset size.

5.3 QUANTITATIVE ANALYSES

Figure 5: Value calibration curve comparing predicted critic
values to Monte-Carlo returns on held-out trajectories in
puzzle-4x4 (left) and cube-quadruple (right).

0.0 0.2 0.4 0.6 0.8 1.0
MC Return (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 Q
 (n

or
m

al
ize

d)

DEAS (Ours)
QC-FQL
y = x

0.0 0.2 0.4 0.6 0.8 1.0
MC Return (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 Q
 (n

or
m

al
ize

d)

DEAS (Ours)
QC-FQL
y = x

Alignment to actual returns To
evaluate whether a critic with action
sequences is properly aligned with
actual returns, we analyze value cali-
bration between the critic values and
the true discounted returns. The main
intuition of this experiment is that a
properly trained critic should main-
tain a monotonic relationship be-
tween predicted Q values and actual
returns on unseen state-action distri-
butions. First, we compute critic pre-
dictions Q̂(st,at) and Monte-Carlo returns Ĝ(st,at) from transitions of 5000 unseen trajectories.
We then partition transitions into bins by Q̂ values and plot the average Ĝ within each bin. The
deviation from the diagonal y = x quantifies overestimation (above) or underestimation (below).
As shown in Figure 5, DEAS exhibits a calibration curve consistently closer to the diagonal than
QC-FQL, indicating reduced overestimation and improved value alignment. These findings support
the claim that DEAS’s detached value learning framework with distributional objectives provides
more reliable value estimation than baselines that incorporate actor-critic interactions in extended,
high-dimensional action spaces.

Robustness to data qualities To validate the robustness of DEAS across dataset qualities, we con-
struct mixed datasets by combining play and noisy datasets provided by OGBench, where noisy
datasets contain more suboptimal transitions, at different ratios. We measure success rates and ana-
lyze calibration curves of DEAS and QC-FQL in Figure 6. DEAS outperforms QC-FQL across all
data regimes, demonstrating robust performance under varying data quality. Additionally, DEAS’s
calibration curve remains consistently closer to the diagonal across all regimes, which further sup-
ports the effectiveness of our method.

5.4 ABLATION STUDIES

We investigate the effect of hyperparameters and various components of DEAS by running experi-
ments on OGBench puzzle-4x4 task.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

50 70 90 100
play ratio (%)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

DEAS (Ours)
QC-FQL

(a) Success Rate (%)

0.0 0.2 0.4 0.6 0.8 1.0
MC Return (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 Q
 (n

or
m

al
ize

d)

DEAS (Ours)
QC-FQL
y = x

(b) play 50% + noisy 50%

0.0 0.2 0.4 0.6 0.8 1.0
MC Return (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 Q
 (n

or
m

al
ize

d) DEAS (Ours)
QC-FQL
y = x

(c) play 70% + noisy 30%

0.0 0.2 0.4 0.6 0.8 1.0
MC Return (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 Q
 (n

or
m

al
ize

d) DEAS (Ours)
QC-FQL
y = x

(d) play 90% + noisy 10%

Figure 6: Success rate (%) (a) and value calibration curve (b,c,d) across different mixtures of on
cube-quadruple task. DEAS exhibits not only higher task performance but also an improved value
calibration closer to the diagonal across all data regimes.

H Actor SR
1 512 × 4 21 ±3

2 512 × 4 25 ±5

4 512 × 4 75 ±8

8 512 × 4 88 ±4

16 512 × 4 51 ±4

16 1024 × 4 84 ±4

(a) Action sequence

Critic Value SR
256 × 4 256 × 4 69 ±7

512 × 4 256 × 4 88 ±4

1024 × 4 256 × 4 91 ±4

512 × 4 512 × 4 50 ±4

(b) Critic size

IQL HLG SR
✗ ✓ 75 ±5

✓ ✗ 63 ±6

✓ ✓ 88 ±4

(c) Objectives

γ1 γ2 SR
0.8 0.999 87 ±4

0.9 0.999 88 ±4

0.99 0.999 81 ±5

0.999 0.999 80 ±8

(d) γ1 and γ2

Table 4: Ablation studies. We investigate the effect of (a) action sequence length H , (b) critic and
value model size, (c) training objectives, and (d) separate discount factors γ1 and γ2. SR denotes
success rate (%) and default settings are highlighted in gray . Bold indicates values at or above
95% of the best performance.

Effect of action sequence length Table 4a investigates the impact of action sequence length on
performance. When using single-step or two-step action (H = 1, 2), DEAS fails to achieve meaning-
ful performance, confirming the necessity of action sequences for long-horizon tasks. Performance
improves with longer sequences, but when the sequence length becomes longer than 8, it requires
proportionally larger actor networks to handle the increased action dimensions, suggesting a trade-
off between sequence length and computational efficiency. Notably, this sensitivity diminishes with
larger VLA backbones, where the model capacity allows stable training even under substantially
longer action sequences, as shown in Section 5.2.

Effect of network size Table 4b analyzes the sensitivity to network sizes. For the critic network,
we observe that increasing capacity initially improves performance by better approximating the
value function. For the value function, we find that the network needs sufficient capacity to cap-
ture the complexity of action sequence values, but excessive capacity without proper regularization
causes instability in value estimation, leading to performance degradation.

Effect of training objective In Table 4c, we compare different training objectives for value estima-
tion. We found that using only distributional RL (HLG) (Farebrother et al., 2024) or only standard
regression (IQL) shows limited performance. However, combining detached value learning with
distributional estimation significantly improves results, suggesting both components are crucial for
stable training with action sequences.

Effect of dual discount factors Lastly, we examine the effect of dual discount factors on learning
dynamics in Table 4d. Proper tuning of γ1 (the discount factor for action sequences) is essential for
performance, as it controls the temporal horizon for value estimation within sequences. In this paper,
we use γ1 = 0.9 for all experiments.

6 CONCLUSION

We introduced DEAS, a simple but effective offline RL method that exploits action sequences to
learn efficiently on complex tasks. DEAS provides a practical recipe for modeling temporally ex-
tended actions while avoiding value overestimation via detached value learning and distributional
networks, yielding a principled reduction of the effective planning horizon that is critical in long-
horizon settings. Empirically, it consistently outperforms strong baselines on challenging OGBench
tasks and scales to large VLAs across simulation and real-world experiments, demonstrating its
potential to bring offline RL closer to real-world applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide full hyperparameter and implementation details in Section 5 and Section B.

REFERENCES

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning. MIT
Press, 2023.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for gener-
alist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. In Robotics: Science and Systems, 2025.

Steven Bradtke and Michael Duff. Reinforcement learning methods for continuous-time markov
decision problems. In Conference on Neural Information Processing Systems, 1994.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, 2023.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In International Conference on Learning Repre-
sentations, 2023.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025a.

Zengjue Chen, Runliang Niu, He Kong, and Qi Wang. Tgrpo: Fine-tuning vision-language-action
model via trajectory-wise group relative policy optimization. arXiv preprint arXiv:2506.08440,
2025b.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. International
Journal of Robotics Research, 2023.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Ir-
pan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In International
Conference on Machine Learning, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Conference on Neural Information Processing Systems, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
without entropy. In International Conference on Learning Representations, 2023.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A suite of benchmarks for offline reinforcement learning. Conference on Neural Information
Processing Systems, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dongchi Huang, Zhirui Fang, Tianle Zhang, Yihang Li, Lin Zhao, and Chunhe Xia. Co-rft: Effi-
cient fine-tuning of vision-language-action models through chunked offline reinforcement learn-
ing. arXiv preprint arXiv:2508.02219, 2025.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. π0.5: a
vision-language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,
2025.

Michael J Kearns and Satinder Singh. Bias-variance error bounds for temporal difference updates.
In Conference on Learning Theory, 2000.

Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Conference
on Neural Information Processing Systems, 2016.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Conference on Neural Information Processing
Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Conference on Neural Information Processing Systems, 2020.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. In International Conference on
Learning Representations, 2023a.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
trials. In Robotics: Science and Systems, 2023b.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, and Gerhard Neumann. Top-erl:
Transformer-based off-policy episodic reinforcement learning. arXiv preprint arXiv:2410.09536,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen
Zhang, Tianxing Chen, Ganqu Cui, et al. Simplevla-rl: Scaling vla training via reinforcement
learning. arXiv preprint arXiv:2509.09674, 2025a.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. In Conference on Robot Learning, 2023.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
class and backbone. arXiv preprint arXiv:2412.06685, 2024.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Conference on Neural Information Processing Systems, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. In Conference on Neural Information Processing Systems, 2023.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. In Conference on Robot Learning,
2024.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. In Robotics: Science and Systems, 2024.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample efficient continuous control. In Con-
ference on Neural Information Processing Systems, 2024.

NVIDIA. Gr00t n1.5: An improved open foundation model for generalist humanoid robots. https:
//research.nvidia.com/labs/gear/gr00t-n1_5/, June 2025. Accessed: 2025-09-09.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, 2018.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? In Conference on Neural Information Processing Systems, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In International Conference on Learning Representations, 2025a.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable. In Conference on Neural Information Process-
ing Systems, 2025b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In International Conference on
Machine Learning, 2025c.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

13

https://research.nvidia.com/labs/gear/gr00t-n1_5/
https://research.nvidia.com/labs/gear/gr00t-n1_5/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Conference on
Neural Information Processing Systems, 1988.

Younggyo Seo and Pieter Abbeel. Coarse-to-fine q-network with action sequence for data-efficient
robot learning. In Conference on Neural Information Processing Systems, 2025.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch,
Thomas Lampe, Philemon Brakel, Sarah Maria Elisabeth Bechtle, Steven Kapturowski, Roland
Hafner, Nicolas Heess, and Martin Riedmiller. Offline actor-critic reinforcement learning scales
to large models. In International Conference on Machine Learning, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.

Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähenbühl. Ript-vla: Interactive post-training for
vision-language-action models. arXiv preprint arXiv:2505.17016, 2025.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. In Conference on Neural Information Process-
ing Systems, 2023.

Dong Tian, Ge Li, Hongyi Zhou, Onur Celik, and Gerhard Neumann. Chunking the critic: A
transformer-based soft actor-critic with n-step returns. arXiv preprint arXiv:2503.03660, 2025.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Conference on Neural Information Processing Systems, 1996.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, 2017.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In International Conference on Learning Representa-
tions, 2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. In Conference on Neural Information Processing Systems, 2020.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regulariza-
tion. In International Conference on Learning Representations, 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2020.

Hongyin Zhang, Zifeng Zhuang, Han Zhao, Pengxiang Ding, Hongchao Lu, and Donglin Wang.
Reinbot: Amplifying robot visual-language manipulation with reinforcement learning. arXiv
preprint arXiv:2505.07395, 2025.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
arXiv preprint arXiv:2411.19309, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Robotics: Science and Systems, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE WORK

While DEAS demonstrates significant improvements over existing offline RL methods, several lim-
itations and opportunities for future research remain. First, our current approach uses fixed action
sequence lengths across different tasks, whereas optimal sequence lengths vary significantly depend-
ing on task complexity. One natural direction is to extend DEAS to even longer horizons, potentially
with explicit hierarchical or option-based sequence generation. The other is to investigate adaptive
mechanisms that can dynamically adjust action sequence lengths based on task requirements, po-
tentially by adopting hierarchical policies (Kulkarni et al., 2016; Vezhnevets et al., 2017; Nachum
et al., 2018), which would be an intriguing research direction.

Second, while DEAS shows promising results on individual tasks, scaling to large-scale unified
value functions remains a critical challenge for real-world deployment. DEAS currently trains re-
ward models on 3-4 tasks simultaneously, but practical applications require learning from hundreds
or thousands of diverse tasks. Future research should focus on developing scalable architectures and
training procedures that can handle massive multi-task datasets while maintaining sample efficiency
and avoiding catastrophic forgetting.

Third, our method relies on distributional RL with fixed support ranges (vmin, vmax) and discretiza-
tion parameters, which can significantly impact performance. The sensitivity to these hyperparame-
ters limits the method’s robustness across different domains and reward scales. Future work should
develop more robust frameworks that can automatically adapt to different reward distributions or
provide principled ways to set these parameters.

B IMPLEMENTATION AND TRAINING DETAILS

B.1 OGBENCH EXPERIMENTS

Tasks We evaluate our method on 6 UR5 Robot Arm manipulation environments from OG-
Bench (Park et al., 2025a), each with 5 subtasks. All tasks are state-based, and goal-free setup.
For each task, the observation space consists of the proprioceptive state of the UR5 Robot Arm,
and low-dim state vector informing the target object state and position. The action space consists
of the cartesian position of UR5 robot arm, gripper yaw, and gripper open/close. For substituting
goal-conditioned environment to standard function, we use the simple semi-sparse reward function,
which is defined as the negative number of uncompleted subtasks in the current state, following Park
et al. (2025a). For all tasks, the maximum episode length is set to 1000.

Implementation details We implement our method on top of the open-source implementation of
FQL (Park et al., 2025c) 1. Unless otherwise mentioned, we largely follow the training/evaluation
setup and network architecture from Park et al. (2025c) and Park et al. (2025b). For training value
network, we use the smaller size network compared to critic network for all experiments, which
shows the best performance, and we use the doubled size of network for the critic network. For cube
experiments, we use BRO (Nauman et al., 2024) for additional regularization between relatively
small range of returns in value function training. For selecting vmin and vmax for distributional RL,
we use two procedures: 1) data-centric: compute return distribution from the dataset and select 1%
and 99% quantiles with 20% padding, and 2) universal: compute theoretical bounds using reward
range [rmin, rmax], horizon L, action sequence length H , and discount factors γ1, γ2. In this case,
the theoretical bounds are:

vmin = rmin
1− γH2
1− γ2

1− γK1
1− γ1

(9)

vmax = rmax
1− γH2
1− γ2

1− γK1
1− γ1

(10)

where γ1 and γ2 denote discount factors for inner-sequence and across-sequence-level decision,
respectively.

1https://github.com/seohongpark/fql

15

https://github.com/seohongpark/fql

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Training and evaluation For the training dataset, we use the open-sourced 1M/100M play
dataset released by Park et al. (2025a) 2, where the dataset is collected by open-loop, non-Markovian
scripted policies with temporally correlated noise. As 100M dataset consists of 100 separate files
with 1M transitions for each, we use the first 10 files sorted by name for 10M dataset. We train
our method and baselines for 1M (1M data) / 2.5M (10M/100M data) gradient steps. For selecting
BC coefficient α for policy extraction, we first normalize the Q loss as in Fujimoto & Gu (2021)
and sweep the value from {0.1, 0.3, 1, 3, 10} and choose the best one for each task and baseline,
except cube− double, where we follow the hyperparameter used in Li et al. (2025b). For eval-
uation, we report the average success rates across the last three evaluation epochs (800K, 900K,
1M for 1M dataset, 2.3M, 2.4M, 2.5M for 10M/100M dataset) following Park et al. (2025c) and
Park et al. (2025b). For checking additional hyperparameters used in our experiments, please refer
to Section B.3.

Baselines For reporting results from FQL and n-step FQL, we use the implementation from Park
et al. (2025c). For Q-Chunking, we re-implement the code from Li et al. (2025b) 3 in our codebase.
We found that simply increasing discount factor γ leads to significant performance improvement
for Q-Chunking, so we use the discount factor to be same with γ2 for value function training. For
implementing CQN-AS, we use the original implementation released by the authors from Seo &
Abbeel (2025) 4 and integrate OGBench related codes on top of the codebase. Originally, CQN-AS
is designed to apply auxiliary BC loss only on expert demonstrations, but considering the dataset
distribution of OGBench tasks with nearly no success rollouts, we modify the BC loss on the subop-
timal data as well (Fujimoto & Gu, 2021; Park et al., 2025c; 2024), where no significant difference
with the original implementation. As the reward scale for OGBench is highly different according to
the domain, we normalize the reward scale to be in [−1, 0], and use vmin and vmax as −200 and 0,
respectively. For levels and bins, we use 5 (level) and 9 (bins) for all experiments.

Computing hardware For all OGBench experiments, we use a single NVIDIA RTX 3090 GPU
with 24GB VRAM and it takes about 2 hours for training the small model (used for 1M dataset) and
about 8 hours for training the large model (used for 10M/100M dataset).

B.2 VLA EXPERIMENTS

Computing hardware For all VLA experiments, we use NVIDIA A100 80GB GPUs. Fine-tuning
GR00T N1.5 takes about 4 hours for 100 expert demonstrations and successful rollouts. For training
DEAS and baselines, it takes about 10 hours with the same data, as we use a larger batch size.

VLA fine-tuning We implement our method and baselines on top of the open-source implementa-
tion of GR00T N1.5 (NVIDIA, 2025) 5. As our code is based on an earlier version of GR00T N1.5,
we conduct experiments without introducing future tokens to the action expert modules. For fine-
tuning GR00T N1.5, we use a batch size of 32 and train for 30K (RoboCasa Kitchen) / 10K (Real
Robot) steps using AdamW (Loshchilov & Hutter, 2019) optimizer with learning rate 1× 10−4 and
cosine annealing schedule.

B.2.1 ROBOCASA KITCHEN EXPERIMENTS

Task RoboCasa Kitchen (Nasiriany et al., 2024) is a simulation environment with a mobile
manipulator attached to a Franka Panda robot arm in household kitchen environments. Among
24 atomic tasks provided by the environment, we select 4 challenging tasks (CoffeeSetupMug,
PnPMicrowaveToCounter, PnPMicrowaveToMicrowave, PnPMicrowaveToStove) that require
relatively long-horizon and delicate manipulation with small grasping part, which is demonstrated
by the low success rate of the base model. For perception, camera images from 3 different view-
points (left front, right front, wrist), proprioceptive states including position/velocities of joint/base,
and natural language instructions, are provided. For reward function, we use the pre-defined success
detector in the environment, and use the sparse reward function where the reward is 1 if the task is

2https://github.com/seohongpark/ogbench
3https://github.com/ColinQiyangLi/qc
4https://github.com/younggyoseo/CQN-AS
5https://github.com/NVIDIA/Isaac-GR00T

16

https://github.com/seohongpark/ogbench
https://github.com/ColinQiyangLi/qc
https://github.com/younggyoseo/CQN-AS
https://github.com/NVIDIA/Isaac-GR00T

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Real-robot platform.

completed, and 0 otherwise. Following previous works (Kumar et al., 2023b; Mark et al., 2024), we
utilized the practical heuristic of annotating the last n = 15 transitions of every successful trajectory
with a reward of +1.

Implementation details As an input for the value function, we first use the proprioceptive states
from the robot, including joint position/angle, base position/orientation for the mobile manipulator.
To provide information on target objects to the value function, we utilize the encoded representation
of three different camera views and task instructions from the VLM backbone. For the value/critic
network architecture, we use the same hyperparameters as those used for the 100M dataset experi-
ments. For optimizing value and critic function, we use the expectile parameter τ as 0.7, γ1 = 0.9,
γ2 = 0.99, and universal support type for distributional RL, for all experiments. For selecting action
candidates with the value function, we first sample N = 10 candidates from the policy. For select-
ing final actions, we try either 1) greedy sampling with highest Q-value or 2) inspired by Nakamoto
et al. (2024), sampling the action from a categorical distribution obtained by temperature controlled
softmax over Q-values: at ∼ Softmax(Q(st,a1)

β , . . . , Q(st,aN)
β) with temperature β = 1 and report

the best result for each task.

Training and evaluation For expert demonstrations, we randomly sample 100 expert demonstra-
tions using the publicly available dataset generated by MimicGen (Mandlekar et al., 2023). For
training DEAS and baselines, we use a batch size of 64 and train for 30K steps using Adam opti-
mizer with a learning rate of 3 × 10−4. For collecting rollouts, we use randomized environments
using the object instance set A. For each task, we evaluate the model performance across 50 trials
on five distinct evaluation scenes with 3 different evaluation seeds, totaling 150 rollouts. To test
generalization capabilities, we evaluate the policy only on unseen object instances.

B.2.2 REAL ROBOT EXPERIMENTS

Hardware platform We use Franka Research 3, a 7-DoF robotic arm, for our experiments. For
visual perception, we utilize the dual camera with Intel RealSense D435i: a camera attached to the
column next to the robot base to provide a global view, and a wrist-mounted camera for a close-
range view. Teleoperated demonstrations are collected using an Oculus Quest 2, and we log time-
synchronized RGB images, joint states, and gripper width for data collection. Demonstrations are
recorded at 15 Hz. See Figure 7 for visual examples.

Task We evaluate the model performance on pick-and-place tasks from the countertop to the bot-
tom cabinet, with three different objects: peach, milka, and hichew. Each object has different

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Initialization points used for pick-and-place tasks.

properties: peach is a rigid object with a relatively larger size that is easy to occlude, milka is a
deformable object with a relatively smaller size that is easy to deform, and hichew is a hard object
requiring precise grasping due to its small width. For collecting demonstrations, we use different
initialization points (center, top, bottom, left, right) and collect one demonstration for each position
(see Figure 8 for the initialization points used in our experiments). For accurate value function es-
timation, we manually label the reward function for each task. Specifically, we split the task into 4
stages: 1) moving to the countertop, 2) picking up the object, 3) moving to the target position, and
4) placing the object. For each stage, we label the reward function as 1 if the task is completed, and
0 otherwise, and we set the reward function as the negative number of uncompleted stages following
Park et al. (2025a).

Implementation details Unless otherwise mentioned, we follow the same implementation details
as in the RoboCasa Kitchen experiments. For selecting final actions, we use N = 50 candidates
from the policy and use the same procedure for selecting the final action as in the RoboCasa Kitchen
experiments.

B.3 HYPERPARAMETERS

We list the hyperparameters used in our OGBench experiments in Tables 5 and 6. For the BC coef-
ficient α used for policy extraction, please refer to Table 7.

Table 5: DEAS hyperparameters for OGBench experiments.

Hyperparameter Value
Gradient steps 1M (1M dataset), 2.5M (10M/100M dataset)
Optimizer Adam (Kingma, 2015)
Learning rate 0.0003
Batch size 256 (1M dataset), 1024 (10M/100M dataset)
Actor MLP size [512, 512, 512, 512] (1M dataset)

[1024, 1024, 1024, 1024] (10M/100M dataset)
Critic MLP size [256, 256, 256, 256] (1M dataset)

[512, 512, 512, 512] (10M/100M dataset)
Value MLP size [128, 128, 128, 128] (1M dataset)

[256, 256, 256, 256] (10M/100M dataset)
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Layer normalization True
Target network update rate 0.005
Discount factor γ1 0.9
Discount factor γ2 0.995 (cube), 0.999 (scene, puzzle)
HL-Gaussian - Atoms 101
HL-Gaussian - σ 0.75
HL-Gaussian - Support range type data-centric (cube), universal (scene, puzzle)
Flow steps 10
Critic ensemble size 2
Action sequence length H 4 (cube), 8 (scene, puzzle)
Expectile κ (DEAS) 0.9 (1M dataset), 0.95 (10M/100M dataset)
Double Q aggregation min(Q1, Q2)
Policy extraction hyperparameters Table 7

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Baseline hyperparameters for OGBench experiments.

Hyperparameter Value
Critic MLP size [512, 512, 512, 512] (1M dataset)

[1024, 1024, 1024, 1024] (10M/100M dataset)
Discount factor γ (FQL, n-step FQL) 0.99
Discount factor γ (QC-FQL) 0.995 (cube), 0.999 (puzzle)
Horizon reduction factor n 4 (cube), 8 (puzzle)
Policy extraction hyperparameters Table 7

Levels (CQN-AS) 5
Bins (CQN-AS) 9
C51 - vmin,vmax (CQN-AS) -200, 0

Table 7: Policy extraction hyperparameters for OGBench experiments. Note that we apply Q-
Normalization (Fujimoto & Gu, 2021) for actor loss, except cube-double tasks.

Task FQL α n-step FQL α QC-FQL α DEAS α

scene 3 1 3 3
cube-double 300 100 300 300.0
puzzle-3x3 3 1 1 3
cube-triple 3 1 1 1
puzzle-4x4 3 1 1 3
cube-quadruple 3 1 1 1

C EXTENDED RELATED WORK

Reinforcement learning with VLAs Recent efforts have applied RL to VLA training (Zhang
et al., 2024; Chen et al., 2025a; Zhang et al., 2025; Guo et al., 2025; Tan et al., 2025; Chen et al.,
2025b; Li et al., 2025a), but most focus on on-policy online RL, which requires expensive interac-
tions and cannot reuse transitions. A key limitation is that existing methods use single-step value
functions Q(s, a) for value learning, despite modern VLAs being designed to predict action se-
quences (Black et al., 2025; Bjorck et al., 2025; Intelligence et al., 2025). This mismatch between
single-step value learning and multi-step action prediction limits the effectiveness of RL with VLAs.
The most related work is CO-RFT (Huang et al., 2025), which applies chunked offline RL to VLA
training, but differs from our approach in three key aspects: (1) CO-RFT uses actor-critic meth-
ods (Nakamoto et al., 2023) with single-step value functions while DEAS uses detached value
learning with action sequences, (2) CO-RFT relies on human teleoperated expert demonstrations
while we use small expert sets with large suboptimal rollouts, and (3) CO-RFT requires sophisti-
cated transformer architectures while DEAS achieves improvements with simple MLP networks.

D USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs) in preparing this manuscript. LLMs were
employed solely to refine writing quality, including grammar correction, vocabulary suggestions,
and typographical checks. All substantive ideas, analyses, and conclusions in this paper are entirely
the work of the authors.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E PROOFS

In this section, we will show that DEAS leveraging action sequences can recover the optimal value
function under the dataset support constraints following flows of Kostrikov et al. (2022) with the
primitive action a replaced by the sequence action o ∈ AH .

Lemma E.1 (Expectile limit and monotonicity; cf. Lemma 1 of Kostrikov et al. (2022)). Let X be
a real-valued random variable with bounded support and let x⋆ := sup{x ∈ R : Pr(X ≤ x) < 1}
denote the supremum of its support. For τ ∈ (0, 1), let mτ be the τ -expectile of X , i.e.,

mτ = arg min
m∈R

E
[∣∣τ − 1{X < m}

∣∣(X −m)2
]
.

Then:

1. For any 0 < τ1 < τ2 < 1, we have mτ1 ≤ mτ2 .

2. lim
τ→1

mτ = x⋆.

Let µH(o | s) denote the empirical behavior distribution over H-step action sequence at :=

(at, . . . , at+H−1) ∈ AH extracted from the dataset. Given the multi-step return R̃(st,at, γ1) and
discount γ2 across sequence-level decision points, we define the optimal solutions of Equation (4)
and Equation (5) by

Vτ (s) = argmin
v∈R

Eo∼µH(·|s)
[
Lτ

(
Qτ (s,a)− v

)]
, (11)

Qτ (s,a) = R̃(s,a, γ1) + γH2 E
[
Vτ (st+H) | st = s, at = o

]
. (12)

Lemma E.2 (Action-sequence analogue of Lemma 2). Let 0 < τ1 < τ2 < 1. Then, for all s ∈ S,

Vτ1(s) ≤ Vτ2(s).

Proof. The proof of Lemma 2 in Kostrikov et al. (2022) uses (i) Lemma E.1 and (ii) the Bellman
recursion forQτ and Vτ . In our setting, Equation (11) and Equation (12) play the role of the original
value and Bellman definitions, with o ∈ AH in place of a ∈ A. Replacing a by o in the argument
reproduces the same inequalities verbatim, yielding Vτ1(s) ≤ Vτ2(s) for all s.

We now define the dataset-constrained optimal value function Q⋆ with action sequence at as:

Q⋆(s,a) := R̃(s,a, γ1) + γH2 E
[

max
a′∈Supp(µH(·|st+H))

Q⋆(st+H ,a
′)
∣∣∣ st = s, at = o

]
. (13)

Corollary E.2.1 (Action-sequence analogue of Corollary 2.1). For any τ ∈ (0, 1) and any s ∈ S,

Vτ (s) ≤ max
o∈Supp(µH(·|s))

Q⋆(s,a),

where Vτ is defined in Equation (11) and Q⋆ is given by Equation (13).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. For each fixed s, the expectile Vτ (s) is a convex combination of the values Qτ (s,a) for o in
the support of µH(· | s):

Vτ (s) =
∑
i

wiQτ (s,ai), wi ≥ 0,
∑
i

wi = 1, oi ∈ Supp(µH(· | s)).

Therefore
Vτ (s) ≤ max

o∈Supp(µH(·|s))
Qτ (s,a).

Theorem E.3 (Action-sequence analogue of Theorem 3). For all s ∈ S,

lim
τ→1

Vτ (s) = max
o∈Supp(µH(·|s))

Q⋆(s,a),

where Q⋆ is the dataset-constrained optimal sequence-action value function defined in Equa-
tion (13).

Proof. Lemma E.1 applies directly to the scalar random variable Q⋆(s,a) and implies that the τ -
expectile of this random variable converges to its supremum as τ → 1. Combining this fact with
Lemma E.2 and Corollary E.2.1 yields the claimed limit, exactly as in the proof of Theorem 3 in
Kostrikov et al. (2022).

In summary, we show that the results of Section 4.4 in Kostrikov et al. (2022) hold without modi-
fication when the single action a is replaced by a fixed-length action sequence o ∈ AH . Moreover,
integrating IQL with action sequences and distributional RL is also theoretically sound, as estab-
lished by the same arguments in Bellemare et al. (2017; 2023).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F OGBENCH DATASET STATISTICS

Table 8: Dataset statistics for OGBench tasks.

Task Success Rate (%) Reward Return

Min Max Mean Std Min Max Mean Std

scene-singletask-task1-v0 6.0 (60/1000) -5.0 0.0 -3.173325 1.0295831 -4823.0 -1.0 -1557.8765 986.0316
scene-singletask-task2-v0 4.0 (40/1000) -5.0 0.0 -3.163389 0.9956842 -4302.0 0.0 -1553.6287 971.3409
scene-singletask-task3-v0 6.6 (66/1000) -5.0 0.0 -3.155803 1.0406193 -4765.0 0.0 -1551.8962 985.3525
scene-singletask-task4-v0 10.1 (101/1000) -5.0 0.0 -3.091423 1.050524 -4696.0 0.0 -1494.2867 965.7741
scene-singletask-task5-v0 6.2 (62/1000) -5.0 0.0 -3.191186 1.0178193 -4530.0 0.0 -1548.5066 984.6961

cube-double-singletask-task1-v0 0.7 (7/1000) -2.0 0.0 -1.949015 0.22173753 -2000.0 0.0 -974.9428 567.3881
cube-double-singletask-task2-v0 1.5 (15/1000) -2.0 0.0 -1.947426 0.22576976 -2000.0 0.0 -972.7409 567.2142
cube-double-singletask-task3-v0 1.7 (17/1000) -2.0 0.0 -1.949817 0.22287366 -2000.0 -1.0 -976.7585 567.5913
cube-double-singletask-task4-v0 1.7 (17/1000) -2.0 0.0 -1.949545 0.2221605 -2000.0 0.0 -976.39 567.5661
cube-double-singletask-task5-v0 2.9 (29/1000) -2.0 0.0 -1.973839 0.16801369 -2000.0 0.0 -988.5528 572.3737

puzzle-3x3-singletask-task1-v0 6.5 (65/1000) -9.0 0.0 -4.49132 1.4982606 -5459.0 0.0 -2249.069 1317.5267
puzzle-3x3-singletask-task2-v0 5.2 (52/1000) -9.0 0.0 -4.505488 1.503788 -5562.0 -1.0 -2252.3616 1321.4901
puzzle-3x3-singletask-task3-v0 5.5 (55/1000) -9.0 0.0 -4.498164 1.506579 -5488.0 0.0 -2249.2212 1318.7554
puzzle-3x3-singletask-task4-v0 5.4 (54/1000) -9.0 0.0 -4.48985 1.4987043 -5516.0 0.0 -2244.5073 1317.8716
puzzle-3x3-singletask-task5-v0 4.8 (48/1000) -9.0 0.0 -4.50203 1.4991112 -5630.0 -1.0 -2251.7349 1322.249

cube-triple-singletask-task1-v0 0.01 (1/10000) -3.0 0.0 -2.9232252 0.2722444 -3000.0 -1.0 -1463.3553 850.65326
cube-triple-singletask-task2-v0 0.03 (3/10000) -3.0 0.0 -2.9237301 0.27177206 -3000.0 -1.0 -1463.7289 850.6014
cube-triple-singletask-task3-v0 0.02 (2/10000) -3.0 0.0 -2.9217937 0.275608 -3000.0 -1.0 -1462.3278 850.74963
cube-triple-singletask-task4-v0 0.04 (4/10000) -3.0 0.0 -2.9230156 0.27358177 -3000.0 -1.0 -1463.4613 850.6792
cube-triple-singletask-task5-v0 0.17 (17/10000) -3.0 0.0 -2.9675632 0.1871572 -3000.0 0.0 -1484.8967 859.6889

puzzle-4x4-play-singletask-task1-v0 0.02 (2/10000) -16.0 0.0 -8.000628 1.9951512 -10471.0 -1.0 -4006.1116 2348.2068
puzzle-4x4-play-singletask-task2-v0 0.06 (6/10000) -16.0 0.0 -7.999522 1.9958299 -10532.0 -1.0 -4005.195 2349.1113
puzzle-4x4-play-singletask-task3-v0 0.02 (2/10000) -16.0 0.0 -8.003519 2.0014038 -10360.0 -2.0 -4008.7666 2351.26
puzzle-4x4-play-singletask-task4-v0 0.04 (4/10000) -16.0 0.0 -7.999373 1.995151 -10055.0 -1.0 -4001.8894 2349.9917
puzzle-4x4-play-singletask-task5-v0 0.04 (4/10000) -16.0 0.0 -7.999373 1.995151 -10055.0 -1.0 -4001.8894 2349.9917

cube-quadruple-singletask-task1-v0 0.001 (1/100000) -4.0 0.0 -3.901978 0.30897102 -4000.0 -1.0 -1954.3688 1134.5515
cube-quadruple-singletask-task2-v0 0.002 (2/100000) -4.0 0.0 -3.8990514 0.31413057 -4000.0 -1.0 -1952.7515 1133.8807
cube-quadruple-singletask-task3-v0 0.001 (1/100000) -4.0 0.0 -3.914329 0.28973544 -4000.0 -1.0 -1960.2894 1137.1301
cube-quadruple-singletask-task4-v0 0.0 (0/100000) -4.0 -1.0 -3.9144847 0.28865227 -4000.0 -1.0 -1960.2513 1137.1667
cube-quadruple-singletask-task5-v0 0.012 (12/100000) -4.0 0.0 -3.968212 0.18561256 -4000.0 0.0 -1986.1152 1148.1842

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G FULL EXPERIMENTAL RESULTS

We include the full experimental results in OGBench experiments in Table 9.

Table 9: Full offline RL Results in 30 OGBench tasks. ∗ indicates the default task in each environ-
ment. We report the success rate (%) and 95% stratified bootstrap confidence interval over 4 runs.

Task #Data FQL N-step FQL QC-FQL CQN-AS DEAS
scene-play-singletask-task1-v0 100 ±0 100 ±0 99 ±0 2 ±1 99 ±1

scene-play-singletask-task2-v0 50 ±7 4 ±3 99 ±1 1 ±1 97 ±1

scene-play-singletask-task3-v0 1M 95 ±2 78 ±5 64 ±8 0 ±0 75 ±6

scene-play-singletask-task4-v0∗ 3 ±2 0 ±0 68 ±1 0 ±0 65 ±5

scene-play-singletask-task5-v0 0 ±0 0 ±0 35 ±7 0 ±0 45 ±6

cube-double-play-singletask-task1-v0 46 ±4 17 ±3 68 ±4 7 ±1 76 ±3

cube-double-play-singletask-task2-v0∗ 10 ±2 1 ±0 47 ±8 1 ±1 51 ±8

cube-double-play-singletask-task3-v0 1M 9 ±2 1 ±1 40±6 0 ±1 47 ±4

cube-double-play-singletask-task4-v0 1 ±1 0 ±0 8±1 1 ±1 8 ±1

cube-double-play-singletask-task5-v0 2 ±1 3 ±1 44±3 0 ±0 57 ±3

puzzle-3x3-play-singletask-task1-v0 100 ±0 89 ±3 97 ±1 1 ±2 100 ±0

puzzle-3x3-play-singletask-task2-v0 19 ±4 40 ±10 81 ±12 0 ±0 94 ±5

puzzle-3x3-play-singletask-task3-v0 1M 15 ±2 14 ±3 50 ±11 0 ±0 91 ±3

puzzle-3x3-play-singletask-task4-v0∗ 35 ±4 23 ±3 31 ±4 0 ±0 91 ±3

puzzle-3x3-play-singletask-task5-v0 47 ±4 13 ±3 50 ±11 0 ±0 96 ±2

cube-triple-play-singletask-task1-v0 31 ±14 17 ±5 100 ±0 0 ±0 98 ±1

cube-triple-play-singletask-task2-v0∗ 9 ±3 91 ±4 92 ±2 0 ±0 95 ±2

cube-triple-play-singletask-task3-v0 10M 12 ±5 0 ±0 92 ±2 0 ±0 88 ±3

cube-triple-play-singletask-task4-v0 0 ±1 0 ±0 59 ±7 0 ±0 45 ±7

cube-triple-play-singletask-task5-v0 2 ±1 0 ±0 74 ±4 0 ±0 87 ±5

puzzle-4x4-play-singletask-task1-v0 54 ±4 28 ±5 66 ±17 0 ±0 92 ±8

puzzle-4x4-play-singletask-task2-v0 24 ±3 2 ±1 80 ±16 0 ±0 42 ±7

puzzle-4x4-play-singletask-task3-v0 10M 36 ±4 42 ±7 69 ±22 0 ±0 99 ±1

puzzle-4x4-play-singletask-task4-v0∗ 22 ±2 28 ±3 70 ±17 0 ±0 88 ±4

puzzle-4x4-play-singletask-task5-v0 22 ±4 3±2 61±19 0 ±0 89 ±6

cube-quadruple-play-singletask-task1-v0 79 ±6 70 ±9 79 ±7 0 ±0 92 ±5

cube-quadruple-play-singletask-task2-v0∗ 0 ±0 97 ±2 63 ±7 0 ±0 100 ±0

cube-quadruple-play-singletask-task3-v0 100M 6±3 1 ±1 33 ±7 0 ±0 62 ±9

cube-quadruple-play-singletask-task4-v0 0 ±0 13 ±5 38 ±7 0 ±0 31 ±7

cube-quadruple-play-singletask-task5-v0 0 ±0 0 ±0 12 ±6 0 ±0 35 ±10

23

	Introduction
	Related Work
	Preliminaries
	Method
	TD Learning over Action Sequences
	DEAS: DEtached value learning with Action Sequence

	Experiments
	OGBench Experiments
	VLA Experiments
	RoboCasa Kitchen Experiments
	Real-world Experiments

	Quantitative Analyses
	Ablation Studies

	Conclusion
	Limitations and Future Work
	Implementation and Training Details
	OGBench Experiments
	VLA Experiments
	RoboCasa Kitchen Experiments
	Real Robot Experiments

	Hyperparameters

	Extended Related Work
	Use of Large Language Models
	Proofs
	OGBench dataset statistics
	Full Experimental Results

