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Abstract

Existing theoretical guarantees for message passing neural networks (MPNNs) as-
sume deterministic node features, whereas in this work we address the more realistic
setting where inherent noise or finite measurement precision leads to uncertainty in
node features. We assume node features are multivariate Gaussian distributions
and propagate their first and second moments through the MPNN architecture.
We employ Polynomial Chaos Expansion to approximate nonlinearities, and use
the resulting node embedding distributions to analytically produce probabilistic
node-wise robustness certificates against L2-bounded node feature perturbations.
Moreover, we model node features as multivariate random variables and introduce
Feature Convolution Distance, FCDp, a Wasserstein distance-based pseudomet-
ric that matches the discriminative power of node-level MPNNs. We show that
MPNNs are globally Lipschitz continuous functions with respect to FCDp. Our
framework subsumes the deterministic case via Dirac measures and provides a
foundation for reasoning about algorithmic stability in MPNNs with uncertainty in
node features.

1 Introduction

Message-passing Neural Networks are the predominant method for applying machine learning to
graph-structured data due to their strong performance on graph-, edge-, and node-level tasks [Chami
et al., 2022, Hu et al., 2020, Hamilton, 2020]. MPNNs take node feature vectors as input and use
a recursive neighborhood aggregation scheme to produce node embeddings that capture structural
information from the graph [Gilmer et al., 2017, Scarselli et al., 2008].

Most existing MPNN formulations assume that node features are deterministic vectors. In practice,
however, features are often uncertain due to inherent noise, finite measurement precision, and/or
coarse graining, making a framework for uncertainty quantification in MPNNs necessary [Wang
et al., 2024, Zhang et al., 2024]. We assume that node features are multivariate Gaussian distributions
and use moment propagation to track uncertainty throughout the architecture. Gaussian distributions
are fully characterized by their first two moments: the mean vector and the covariance matrix. We
propagate these moments exactly through linear message-passing operations and approximately
through nonlinearities using Polynomial Chaos Expansion (PCE) [Wiener, 1938, Ghanem and
Spanos, 1991, Sullivan, 2015, Soize, 2017], a representation of functions of random variables as an
expansion in orthogonal polynomials of other random variables. Thereby, we obtain node embedding
distributions. Using the node embedding distributions, we establish probabilistic node-wise robustness
certificates for L2-bounded node feature perturbations.

Moreover, we define Feature Convolution Distance, FCDp, in the input space of nodes to analyze the
theoretical performance of node-level MPNNs with stochastic node features. FCDp is a Wasserstein
distance-based pseudometric. That is, it satisfies the non-negativity, symmetry, and triangle inequality
axioms, but not the identity of indiscernibles. Focusing on the Simple Graph Convolution (SGC)
model [Wu et al., 2019]—an MPNN without nonlinearities that balances efficiency, interpretability,
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and performance—we show that FCDp achieves discriminative power equivalent to SGC with
and without output nonlinearity. By establishing Lipschitz continuity for the SGC architecture
with respect to FCDp, we lay the foundation for a rigorous analysis of generalization guarantees
based on the algorithmic robustness property. Notably, our framework remains consistent when
handling deterministic features, thereby unifying stochastic and deterministic scenarios under a single
theoretical framework.

Our contributions are as follows.

• We introduce uncertainty-aware message passing neural networks. These MPNNs handle uncer-
tainty in node features, where the features are multivariate Gaussian distributions.

• We represent node-feature distributions by their first and second moments and propagate these
moments through the MPNN. We approximate nonlinearities using Polynomial Chaos Expansion
(PCE). We obtain probabilistic robustness guarantees at the node level by deriving per-node
certified radii against L2-bounded feature perturbation attacks.

• We introduce Feature Convolution Distance, FCDp, a Wasserstein distance-based pseudometric
for comparing nodes in the MPNN input space. We argue that, to effectively support theoretical
analysis, such a distance must incorporate the structural updates produced by the message-passing
process. We demonstrate how the proposed distance applies when there is no uncertainty about
node features (i.e., when they are deterministic vectors).

• We demonstrate that FCDp provides global Lipschitz continuity between the input space and
the embedding space, and exhibits the same discriminative power as the p-Wasserstein distance
between probability distributions of random variables transformed by Simple Graph Convolution
(SGC) with and without nonlinearity.

2 Background

2.1 Graph Convolutional Networks and Their Variants

The Graph Convolutional Network (GCN) [Kipf and Welling, 2017] is a widely used and effective
MPNN architecture. A GCN with L layers on a graph with n nodes is defined by the following
recursion:

X(l+1) = σ(SX(l)W (l)), (1)

where S = (In + D)−1/2(In + A)(In + D)−1/2 ∈ Rn×n is the structural update matrix
defined in terms of the adjacency matrix A ∈ Rn×n, the diagonal matrix of node degrees
D = diag{d1, · · · , dn} ∈ Rn×n, and the n dimensional identity matrix In. We denote the lth
layer’s weight matrix as W (l) ∈ Rfl×fl+1 . The matrix X(l) ∈ Rn×fl gathers the fl-dimensional
embeddings at layer l or the input features at l = 0. The pointwise nonlinearity σ can be any Lipschitz
continuous function (such as ReLU).

In the absence of nonlinearities, all weight matrices can be combined into a single matrix W ∈
Rf0×fL . The resulting architecture is called the Simplified Graph Convolution (SGC), [Wu et al.,
2019]:

X(L) = Θ(X(0)) = SLX(0)W. (2)

In this work, we also consider a variant of SGC with a single output nonlinearity σ(·). That is,
Θ̂(·) = σ(Θ(·)). This variant is useful when SGC is applied to node classification tasks.

2.2 Polynomial Chaos Expansion (PCE)

The Polynomial Chaos Expansion (PCE) [Wiener, 1938, Ghanem and Spanos, 1991] is a well
established technique for uncertainty quantification in physics and engineering [Sullivan, 2015, Soize,
2017].

Let f : Rf → Rf ′
be a vector-valued function of the random variable ξ ∈ Rf , which is a multivariate

Gaussian random variable with mean µξ and covariance Σξ. PCE represents f(ξ) as an expansion in
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Hermite polynomials {Φk}∞k=0. That is,

f(ξ) =

∞∑
k=0

ck Φk(ξ) ≈
K∑

k=0

ck Φk(ξ), (3)

where ck ∈ Rf ′
are coefficient vectors obtained by Galerkin projection ck = ⟨f ,Φk⟩ with respect to

the Gaussian density pξ.

While extensions beyond the Gaussian case like generalized Polynomial Chaos (gPC) [Askey and
Wilson, 1985, Xiu and Karniadakis, 2002, 2003] and arbitrary Polynomial Chaos (aPC) [Oladyshkin
and Nowak, 2012, Navarro et al., 2014, Paulson et al., 2017] exist, they do not have additional benefits
if correlations are linear and do not scale to the high-dimensional inputs commonly encountered in
machine learning when correlations are nonlinear.

2.3 Wasserstein Distance

The field of optimal transport [Villani et al., 2008] defines the p-Wasserstein distance, Wp, for
p ∈ [1,∞) between two distributions Pξ on Rf and Pξ′ on Rf ′

as follows:

Wp(Pξ,Pξ′) = inf
γ∈Γ(Pξ,Pξ′ )

(∫∫
Rf×Rf′

∥ξ − ξ′∥p dγ(ξ, ξ′)
)1/p

, (4)

where γ is a coupling, i.e., a distribution on Rf×f ′
that has Pξ and Pξ′ as its marginals. In the

deterministic case when Pξ,Pξ′ are Dirac measures, the Wasserstein distance reduces to the Lp-
norm.

3 Uncertainty Quantification by Propagating Moments of Distributions

Our node features are multivariate Gaussian distributions. We provide expressions for the propagation
of the first and second moments of these distributions through a GCN. We consider node embeddings
at each layer l (including input features l = 0) as random variables ξ(l)i ∈ Rfl for each node vi ∈ V .

For ease of notation, we define the vector ξ⃗
(l)

= [ξ
(l)
1 , . . . , ξ(l)n ]T ∈ Rnfl by concatenation. This

setup allows for linear correlation between features at the same node, as well as between features at
different nodes.

The features ξ⃗
(l),s

after the structural update are

ξ⃗
(l),s

= (S ⊗ Ifl−1
)ξ⃗

(l−1)
, (5)

where Ifl−1
is the fl−1-dimensional identity matrix and S was defined in Section 2.1. The random

variable ξ⃗
(l),s

has the following mean µ
ξ⃗
(l),s and covariance Σ

ξ⃗
(l),s :

µ
ξ⃗
(l),s = (S ⊗ Ifl−1

)µ
ξ⃗
(l−1) (6)

Σ
ξ⃗
(l),s = (S ⊗ Ifl−1

)Σ
ξ⃗
(l−1)(S ⊗ Ifl−1

)T (7)

where µ
ξ⃗
(l−1) and Σ

ξ⃗
(l−1) are the mean and covariance of the features ξ⃗

(l−1)
at the previous layer.

The weight update yields the features ξ⃗
(l),w

defined by

ξ⃗
(l),w

= (In ⊗W (l))ξ⃗
(l),s

, (8)

where In is the n-dimensional identity matrix. This random variable has the following mean and
covariance:

µ
ξ⃗
(l),w = (In ⊗W (l))µ

ξ⃗
(l),s (9)

Σ
ξ⃗
(l),w = (In ⊗W (l))Σ

ξ⃗
(l),s(In ⊗W (l))T. (10)
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The features ξ⃗
(l),e

after the nonlinear update are as follows:

ξ⃗
(l),e

= σ

(
ξ⃗
(l),w

)
, (11)

where the nonlinear function σ is applied elementwise. The mean µ
ξ⃗
(l),e and covariance Σ

ξ⃗
(l),e can

be obtained by PCE as follows:
µ
ξ⃗
(l),e = c

(l)
0 (12)

Σ
ξ⃗
(l),e =

K∑
k=1

c
(l)
k c

(l)T
k (13)

c
(l)
k ∈ Rnfl are the PCE coefficients. We refer the reader to Appendix B for their derivation.

Note that after applying the first-layer nonlinearity, the derived mean and covariance are no longer
from a Gaussian distribution. We approximate the distributions at layers l > 1 by performing
Gaussian moment matching and assume that the resulting mean and covariance are from a Gaussian
distribution. This approach is valid because the Gaussian distribution is the maximum entropy
distribution given the first two moments.

4 Probabilistic Robustness Certification

Robustness to feature perturbations is important for graph machine learning architectures. Since we
know the moments of distributions for the random variables representing the node embeddings at
the last layer, we can certify node-wise robustness of MPNNs for node-classification task against L2

feature perturbations.

Let ξzi ∈ RfL denote the random variable of node vi’s logit with mean µξz
i

and covariance Σξz
i
.

Theorem 1. An MPNN for a node classification task is robust against feature perturbation ||∆||2 = ϵ
with probability at least 1− δ if:

ϵ < min
y ̸=y⋆

µ̂ξz
iy
−

√
Σ̂ξz

iy

√
1−δy
δy√

2C
, (14)

where C is the Lipschitz constant of the GCN w.r.t. individual L2 node feature perturbation. δy is
the probability of misclassifying node vi to class y and δ =

∑
y δy. The mean and covariance of

the random margin between the logit element associated with true label class y⋆ and logit element
associated with any other class label y ̸= y⋆ are

µ̂ξz
iy

= µξz
i,y⋆

− µξz
i,y

(15)

Σ̂ξz
iy

= Σξz
i ,y

⋆y⋆ +Σξz
i ,yy

− 2Σξz
i ,y

⋆y (16)

We refer the reader to Appendix C for the proof of Theorem 1.

5 Wasserstein-based Pseudometric

We introduce a new distance FCDp between nodes vi, vj ∈ V of the graph G = (V,E) with
associated random variables ξ(0)i , ξ(0)j for the SGC architecture as follows:

FCDp (vi, vj) := Wp(Pξs
i
,Pξs

j
) = inf

γ∈Γ(Pξs
i
,Pξs

j
)

(∫∫
Rf0×Rf0

∥ξsi − ξsj∥p dγ(ξ
s
i , ξ

s
j)

)1/p

(17)

where ξsi = [SLξ(0)]i is the random variable associated with node vi after the structural update step
of SGC.
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Corollary 1. When the input node features follow multivariate Gaussian distributions ξ
(0)
i ∼

N (µi,Σi) for all vi ∈ V , the node-wise random variables after structural update are also Gaussian
distributions ξsi ∼ N (µs

i ,Σ
s
i ). For p = 2, the FCDp has the following analytical form:

FCDp(vi, vj) = W2(Pξs
i
,Pξs

j
) =

√
∥µs

i − µs
j∥22 +Tr

(
Σs

i +Σs
j − 2

(
(Σs

i )
1/2

Σs
j (Σ

s
i )

1/2
)1/2

)
,

(18)
where Tr[·] is the trace of a matrix.

For the other values of p or other probability distributions, numerical methods such as the Sinkhorn
algorithm [Sinkhorn and Knopp, 1967, Cuturi, 2013] can be used. In the deterministic scenario (i.e.,
when the probability measures are Dirac measures), the distance is equal to the following:

FCDp(vi, vj) =
∣∣∣∣∣∣[SLX(0)]i − [SLX(0)]j |

∣∣∣∣∣∣
p
. (19)

5.1 Characteristics of FCDp

Proposition 1. The distance from a node vi to itself is zero: FCDp(vi, vi) = 0.

This follows from the fact that the probability distributions associated with the same random variable
ξi are identical.

Proposition 2. The distance from vi to vj is always the same as the distance from vj to vi:
FCDp(vi, vj) = FCDp(vj , vi).

FCDp is a Wasserstein-based distance. Thus, this property automatically follows from the property
of the Wasserstein distance.

Proposition 3. FCDp(vi, vj) ≤ FCDp(vi, vk) + FCDp(vk, vj).

This property is also a direct consequence of the properties of the Wasserstein distance.

FCDp is a pseudometric because it does not satisfy the identity of indiscernibles. That is, FCDp

does not guarantee that it is always positive between two distinct points. FCDp(vi, vj) may be equal
to zero when vi is different from vj .

5.2 Discriminative Power

If a distance has the same discriminative power as an architecture, data points that have non-zero
distance in the input space will have non-zero distance in the output space. Next, we show that FCDp

has the same discriminative power as SGC.

Theorem 2. FCDp has the same discriminative power as Θ̂:

Wp(Θ̂(vi), Θ̂(vj)) > 0 ⇒ FCDp(vi, vj) > 0 (20)

We refer the reader to Appendix D for the proof of Theorem 2.

Corollary 2. In the case of Dirac measures, the discriminative power of FCDp remains valid and
can be expressed as follows:∣∣∣∣∣∣[σ(SLX(0)W )]i − [σ(SLX(0)W )]j

∣∣∣∣∣∣
p
> 0 ⇒

∣∣∣∣∣∣[SLX(0)]i − [SLX(0)]j

∣∣∣∣∣∣
p
> 0 (21)

6 Lipschitz Continuity

Lipschitz continuity of SGC allows us to reason how distances in the input space translate into
distances in the embedding space. Moreover, it provides the basis for reasoning about the algorithmic
robustness of the SGC; and consequently, reasoning about the generalization abilities of the model [Xu
and Mannor, 2012].
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Theorem 3. SGC Θ̂ is a globally Lipschitz function w.r.t FCDp:

Wp(Θ̂(vi), Θ̂(vj)) ≤ CL · FCDp(vi, vj) (22)

We refer the reader to Appendix E for the proof of Theorem 3. Theoretical guarantees for the default
Θ architecture (i.e., SGC without output nonlinearity) can be found in Appendices D and E.

Corollary 3. In the case of the Dirac measures, the Lipschitz continuity of Θ̂ is valid and can be
expressed as follows:∣∣∣∣[σ(SLXW )]i − [σ(SLXW )]j

∣∣∣∣
p
≤ CL

∣∣∣∣[SLX]i − [SLX]j
∣∣∣∣
p

(23)

Experimental Results. We present results examining the Lipschitz continuity of SGC models
in transductive node-classification tasks. We train 2-layer and 3-layer SGC models with ReLU
nonlinearities on the standard benchmark datasets of Cora, Citeseer, and Pubmed [Yang et al., 2016].
The training phase uses the Adam optimizer [Kingma and Ba, 2015] with a learning rate of 0.001 and
a weight decay parameter of 0.0005, over 200 epochs.

We evaluate Lipschitz continuity by computing pairwise graph distances between nodes drawn from
the test sets of each dataset, along with the corresponding 2-Wasserstein distances between the
respective node embeddings. To model uncertainty in node features, we generate 10 realizations for
each node by adding Gaussian noise ϵ ∼ N (0,Σ). We measure the correlation between distances,
following [Vasileiou et al., 2025].

Figures 1 and 2, respectively, show the scatter plots of FCDp on nodes versus the W2 distance on node
embeddings for a 2-layer and a 3-layer SGC model on the Cora, Citeseer, and Pubmed datasets [Yang
et al., 2016] in the transductive node-classification task. While there is no linear dependency, our
experiments do not contradict the Lipschitzness of SGC. The Lipschitz constant can be upper-bounded
by the slope of the line through (0, 0) that lies above all observed data points [Vasileiou et al., 2025].
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Figure 1: Scatter plots between FCDp with p = 2 on nodes and W2 distance on node embeddings
of 2-layer SGC models on Cora (Pearson correlation = 0.43, Lipschitz constant = 0.32), Citeseer
(Pearson correlation = 0.2, Lipschitz constant = 1.39), and Pubmed (Pearson correlation = 0.19,
Lipschitz constant = 0.1) datasets. The Pearson correlation shows that FCDp in the input space is
positively correlated to the W2 distance in the embedding space.

7 Related Work

Uncertainty Quantification in MPNNs. Uncertainty quantification has recently seen a surge
of attention in graph machine learning [Wang et al., 2024] and deep learning [Hüllermeier and
Waegeman, 2021, Gawlikowski et al., 2023] leading to a wide variety of techniques aimed at
quantifying both epistemic and aleatoric uncertainty. The problem of tracing uncertainty through
nonlinear models has a long tradition in science and engineering [Sullivan, 2015, Soize, 2017].
Polynomial chaos expansion (PCE) is one particularly well-developed technique originally introduced
for Gaussian random variables [Wiener, 1938, Ghanem and Spanos, 1991] and later extended to
arbitrary distributions as generalized polynomial chaos (gPC) [Xiu and Karniadakis, 2002, 2003]
and to distributions that are only accessible in terms of their moments as arbitrary polynomial chaos
(aPC) [Oladyshkin and Nowak, 2012, Navarro et al., 2014, Paulson et al., 2017]. Only recently have
these techniques found applications in machine learning [Du, 2025]. To the best of our knowledge, we
are the first to apply PCE for uncertainty quantification in MPNNs. We refer the reader to Appendix B
for details.
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Figure 2: Scatter plots between FCDp with p = 2 on nodes and W2 distance on node embeddings
of 3-layer SGC models on Cora (Pearson correlation = 0.39, Lipschitz constant = 0.33), Citeseer
(Pearson correlation = 0.20, Lipschitz constant = 1.81), and Pubmed (Pearson correlation = 0.18,
Lipschitz constant = 0.13) datasets. Similar to Figure 1, the Pearson correlation shows that FCDp in
the input space is positively correlated to the W2 distance in the embedding space.

Robustness Certification. Cohen et al. [2019] establish that a classifier smoothed with Gaussian
noise yields provable L2 radius guarantees. Certification is conducted via sampling-based estimation.
In a follow-up work, Kumar et al. [2020] propose a method to generate certified radii for the
prediction confidence of a smoothed classifier. Pautov et al. [2022] introduce the CC-Cert framework,
which leverages concentration inequalities to certify the robustness of neural networks under input
perturbations. Zügner and Günnemann [2019] introduce one of the first certification schemes for
GCNs to defend against node-feature modifications under L0-bounded budgets. GNNCert [Yang
et al., 2024] provides deterministic certification for graph classification against both structure and
feature perturbations by guaranteeing label invariance when the numbers of modified edges and node
features are bounded. Our work diverges from existing approaches by modeling uncertainty in node
features directly by propagating the moments of node feature distributions through the architecture
and converts logit-level moment information into probabilistic node-wise robustness certificates. This
complements deterministic graph certificates and sampling-based smoothing guarantees.

Pseudometrics. Rauchwerger et al. [2024] extend iterated degree measures to graphon-signals, and
show compactness of the resulting space, establishing Lipschitz continuity and universal approxi-
mation for MPNNs. In [Levie, 2024], a one-sided Lipschitz inequality is proven, bounding feature
distances by the graphon-signal cut distance, though without universal approximation and with slow
generalization rates. In [Chuang and Jegelka, 2022], the Tree Mover’s Distance (TMD) is proposed
for graphs with features, relating it to generalization under distribution shifts, but lacking universal
approximation. In [Chen et al., 2022, 2023], MPNNs are shown to separate points and be Lipschitz
over WL distances, with universal approximation only on compact subspaces since the full space
is not compact. Vasileiou et al. [2024] leverage graph similarity theory to assess the influence of
graph structure, aggregation, and loss functions on MPNN generalization abilities. Vasileiou et al.
[2025] is the closest to our work, where the authors introduce a unified framework for analyzing the
generalization properties of MPNNs in inductive and transductive node and link prediction tasks
while relaxing nodes i.i.d. assumptions; but they do not consider the case when there is uncertainty in
node features.

8 Conclusion

We introduced a framework for uncertainty propagation in MPNNs, showing exact moment prop-
agation through linear layers and tractable approximations for nonlinearities via PCE. In addition,
we proposed a Wasserstein distance-based pseudometric FCDp that unifies the characteristics of
deterministic and stochastic node features, matches the discriminative power of the SGC with and
without nonlinearity, and allows us to derive Lipschitz continuity.

Future Work. First, we plan to extend our work on uncertainty quantification to node feature
distributions beyond Gaussian. Second, existing theory on generalization bounds does not cover the
case where the MPNN operates on random variables. FCDp will be useful once we extend the theory
on generalization bounds. A natural next step is to extend the covering number-based arguments [Xu
and Mannor, 2012, Vasileiou et al., 2025] to our stochastic feature setting.
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A Notation and Additional Background Information

Table 1 lists the notation used throughout the paper. The rest of the section introduces graphs,
functions of random variables, and coupling of random variables.

Symbol Explanation
G = (V,E) graph with nodes set V and edge set E.
n = |V | number of nodes in the graph
m = |E| number of edges in the graph
vi ∈ V node of the graph G
di degree of node vi
In ∈ Rn×n n-dimensional identity matrix
A ∈ Rn×n adjacency matrix of G
D = diag(d1, . . . , dn) diagonal matrix of node degrees
S = (I +D)−1/2(I +A)(I +D)−1/2 structural update matrix
sij = [S]ij entries of S
l ∈ {0, . . . , L} MPNN layer index
fl node feature dimension in layer l
x
(l)
i ∈ R1×f deterministic node features associated with node vi in layer l

X(l) ∈ Rn×f matrix of deterministic node features in layer l
W (l) ∈ Rfl×fl+1 weight matrix of layer l.
σ : R → R nonlinear, Lipschitz continuous function.
Θ : Rf0 → RfL Simplified Graph Convolution network without output nonlinearity
Θ̂ : Rf0 → RfL Simplified Graph Convolution network with output nonlinearity
ξ ∈ Rf f -dimensional random variable.
ξ
(l)
i ∈ Rfl random variable representing random features of node vi ∈ V at layer l

ξ⃗
(l)

∈ Rnfl random vector resulting from concatenation of the features of all nodes
Ξ(l) ∈ Rn×fl random matrix representing random node features at layer l.
Pξ distribution (or law) of the random variable ξ
pξ probability density function of the random variable ξ
B(Rf ) the Borel sets of Rf

Ψ♯P pushforward of the distribution P under the function Ψ
Wp(Pξ,Pξ′) p-Wasserstein distance between the probability distributions Pξ and Pξ′

Γ(Pξ,Pξ′) space of couplings of the random variables ξ and ξ′

γ ∈ Γ(Pξ,Pξ′) coupling between the random variables ξ and ξ′

µξ first moment of the random variable ξ
Σξ second moment of the random variable ξ
FCDp Wasserstein distance-based node level pseudometric
|| · ||p Lp-norm
Lp space of functions with integrable p norm
N (µ,Σ) the (multivariate) normal distribution

with mean µ ∈ Rf and covariance Σ ∈ Rf×f

C Lipschitz constant of a GCN with respect to the L2 norm
CL Lipschitz constant of SGC with respect to the FCDp distance.
L Lower-triangular matrix in Cholesky decomposition
Φk, k ∈ {1, . . . ,K} Orthonormal polynomial basis function
ck PCE coefficients

Table 1: Notation used throughout the paper.

A.1 Graphs

A graph G = (V,E) is defined by a set of nodes V and the edges E ⊂ V × V between them.
We denote the number of nodes n = |V | and the number of edges m = |E|. A graph can be
represented by its adjacency matrix A ∈ Rn×n, where Aij = 1 if node vi is connected to node
vj (i.e, (vi, vj) ∈ E), and Aij = 0 otherwise. A node vi ∈ V often possesses additional properties
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encoded in its feature vector xi ∈ R1×f , where f is called the feature dimension. It is convenient
to gather the feature vectors of all nodes in a feature matrix X ∈ Rn×f . For example, to model a
social media platform as a graph, one represents each user as a node, their characteristics (e.g., age
and topics of interests) as node features, and which users are friends on the platform with edges. The
degree di =

∑n
j=1 Aij of a node is the number of other nodes that it is connected to. We denote the

diagonal matrix of degrees as D = diag(d1, . . . , dn).

A.2 Functions of Random Variables

The pushforward is a way to calculate how uncertainty in the inputs of a function translates into
uncertainty of its outputs. Let ξ be a multivariate random variable taking values in Rf1 , e.g., the input
to a neural network, and Ψ : Rf1 → Rf2 a Borel function, e.g., a neural network. Applying Ψ to ξ
defines another random variable η = Ψ(ξ) taking values in Rf2 and describing in our examples the
output of a neural network. When ξ has distribution Pξ, the distribution Pη of η is

Pη(η ∈ B) = Pη(Ψ(ξ) ∈ B) = Pξ(ξ ∈ Ψ−1(B)) ∀B ∈ B(Rf2), (24)

where B(Rf2) are the Borel sets of Rf2 and Ψ−1(B) ∈ B(Rf1) is the preimage of B ∈ B(Rf2)
under Ψ, a Borel set of Rf1 .

A.3 Couplings of Random Variables

Given two random variables ξ ∈ Rf and ξ′ ∈ Rf ′
with distributions Pξ and Pξ′ respectively, a

coupling is a distribution γ on the product space Rf × Rf ′
that has Pξ and Pξ′ as its marginals, i.e.,

γ(B × Rf ′
) = Pξ(B) and γ(Rf ×B′) = Pξ′(B′), (25)

for all B ∈ B(Rf ) and B′ ∈ B(Rf ′
). We denote the space of all couplings as Γ(Pξ,Pξ′). Sometimes

the word coupling is also used for a random variable that has distribution γ.

As for any other random variable, one can compute the pushforward of a coupling. Here we are
interested in a special case, where ξ, ξ′ ∈ Rf be random variables with distributions Pξ,Pξ′ with a
coupling γ between them, and the same Borel function Ψ : Rf → Rf ′

is applied to each of them
individually, in this case the pushforward of the coupling is

(Ψ×Ψ)♯γ(B ×B′) = γ(Ψ−1(B)×Ψ−1(B′)), (26)

for all Borel sets B,B′ ∈ B(Rf ).

B Polynomial Chaos Expansion

Here, we describe how to calculate the first moments of multivariate random variables associated
with nodes after their transformation by a nonlinear function using PCE. We assume that the random
variables at the graph nodes form a joint distribution with dependent marginals, reflecting realistic
dependencies in graph-structured data such as those arising from message-passing operations in
MPNNs.

We address the case where the joint distribution is multivariate Gaussian with dependent marginals –
i.e., ξ ∼ N (µ,Σ) ∈ Rf . First, we eliminate dependencies with the Cholesky decomposition of the
covariance matrix Σ as follows:

Σ = LLT , (27)

where L is lower-triangular matrix. Using this decomposition, one can represent ξ as:

ξ = µ+ Lz (28)
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where z ∼ N (0, I). This allows us to use standard multivariate Hermite polynomials as the
polynomial basis, which are orthogonal w.r.t. the independent Gaussian measure [Schnabel, 2023].

We need to calculate the moments of the nonlinearity σ(·) applied elementwise to the random
variables in ξ which has the following representation:

σ(ξi) = σi(z) = σ(µi + lTi z), (29)

where li is the ith row of the matrix L. In order to use PCE, nonlinearity σ(·) shall satisfy:

σ(ξi) ∈ L2(pz) ⇐⇒
∫
Rf

∣∣σ(µi + lTi z)
∣∣2dpz(z) < ∞. (30)

All common nonlinear functions in MPNNs satisfy these conditions w.r.t Gaussian measure. There-
fore, we are considering the expansion of the random vector:

σ(ξ) = (σ1(z), · · · , σf (z)) (31)

which according to [Sullivan, 2015] can be expanded as:

σ(ξ) =

K∑
k=0

ckΦk(z) (32)

with vector-valued coefficients ck = [c1k, . . . , cfk] for each k, where Φk(z) are basis functions from
a multivariate orthonormal polynomial basis with respect to the probability distribution pz defined
on the input space Dz . In the case of Gaussian random variables, the natural choice for Φk(z) are
multivariate Hermite polynomials. The mean and covariance have the following representation:

µσ(ξ) = c0, Σσ(ξ) =

K∑
k=1

ckc
T
k , (33)

where

[Σσ(ξ)]ij =

K∑
k=1

ci,k cj,k (34)

and

cik =

∫
Rf

σi(z)Φk(z)dpz(z). (35)

The coefficients cik can be obtained with Gaussian quadrature or Smolyak’s sparse quadrature
techniques [Schnabel, 2023].

C Certified Robustness

Theorem 4. MPNN for node classification tasks is robust against L2-norm feature perturbation
||∆|| = ϵ with probability 1− δ if:

ϵ < min
y ̸=y⋆

µ̂ξz
iy
−

√
Σ̂ξz

iy

√
1−δy
δy√

2C
, (36)

where δ =
∑

y δy, δy- probability of misclassification to class y, µ̂ξz
iy

= µξz
i,y⋆

− µξz
i,y

is the mean

and Σ̂ξz
iy

= Σξz
i ,y

⋆y⋆ +Σξz
i ,yy

−2Σξz
i ,y

⋆y the covariance of the random margin between the element
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of the logit associated with true label class y⋆ and logit element associated with any other class
label y ̸= y⋆, C is the Lipschitz constant of the GCN with respect to the L2-norm node feature
perturbation.

Proof. Let us consider that every node vi has a true classification label y⋆i ∈ {1, · · · , fL}. For
∀ y ̸= y⋆, the margin in logits is:

Mz
y = ξziy⋆ − ξziy = (ey⋆ − ey)

Tξzi = mT
yξ

z
i , (37)

where ey ∈ RfL is a standard basis vector, and my = ey⋆ − ey

Let us now consider the case when the perturbation ||∆|| = ϵ was added to the node feature vector
ξ
(0)
i , we define the corresponding logit as ξz

′

i . Let us consider the difference between the logit
margins of the original and perturbed node features:

∣∣∣Mz
y −Mz′

y

∣∣∣ = ∣∣∣mT
y (ξ

z
i − ξz

′

i )
∣∣∣ ≤ ∣∣∣∣mT

y

∣∣∣∣ ∣∣∣∣∣∣ξzi − ξz
′

i

∣∣∣∣∣∣ = √
2
∣∣∣∣∣∣ξzi − ξz

′

i

∣∣∣∣∣∣ ≤
√
2C

∣∣∣∣∣∣ξ(0)i − ξ
′(0)
i

∣∣∣∣∣∣ = √
2C ||∆|| =

√
2Cϵ,

(38)

or

Mz
y −

√
2Cϵ,≤ Mz′

y ≤ Mz
y +

√
2Cϵ, , (39)

where C is the L2 Lipschitz constant of GCN.

Let us now consider the probability of misclassification P(Mz′

y ≤ 0). From the previous expression,
it follows that P[Mz′

y ≤ 0] ≤ P[Mz
y ≤

√
2Cϵ]. By leveraging Cantelli inequality we can derive an

upper bound on the misclassification probability:

P[Mz′

y ≤ 0] ≤ P[Mz
y ≤

√
2Cϵ] ≤

Σ̂ξz
iy

Σ̂ξz
iy
+ (µ̂ξz

iy
−
√
2Cϵ)2

, (40)

where µ̂ξz
iy

= µξz
i,y⋆

− µξz
i,y

, Σ̂ξz
iy

= Σξz
i ,y

⋆y⋆ +Σξz
i ,yy

− 2Σξz
i ,y

⋆y .

Setting the upper bound on the probability of misclassification to be δy , and solving for ϵ, we get:

ϵ =
µ̂ξz

iy
−

√
Σ̂ξz

iy

√
1−δy
δy√

2C
(41)

Each class has its own ϵ, so in order to be robust against misclassification to any label, we say that
MPNN is robust for node classification task with probability at least 1− δ if:

ϵ < min
y ̸=y⋆

µ̂ξz
iy
−

√
Σ̂ξz

iy

√
1−δy
δy√

2C
, (42)

where δ =
∑

y δy .

D Discriminative Power

Theorem 5. FCDp has the same discriminative power as Θ̂(·):

Wp(Θ̂(vi), Θ̂(vj)) > 0 ⇒ FCDp(vi, vj) > 0 (43)
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Proof. Let Ψ : Rf0 → RfL be the application of weights and element-wise nonlinearity to the node
feature matrix Xs = SLX(0) after L-layer structural update of SGC, Ψ(Xs) = σ(XsW ). In order
to prove the discriminative power we need to show that

Wp(Ψ♯Pξs
i
Ψ♯Pξs

j
) > 0 ⇒ Wp(Pξs

i
,Pξs

j
) > 0, (44)

where ξsi = [SLΞ]i and ξsj = [SLΞ]j are the node features after structural update in the L layer SGC
architecture and defined in terms of the matrix valued random variable Ξ ∈ Rn×f0 of input node
features. Eq. (44)⇒ If

Wp(Ψ♯Pξs
i
Ψ♯Pξs

j
) > 0, (45)

then

Ψ♯Pξs
i
̸= Ψ♯Pξs

j
. (46)

Therefore, ∃B ∈ B(RfL), such that

Ψ♯Pξs
i
(B) ̸= Ψ♯Pξs

j
(B) (47)

or by definition

Pξs
i
(Ψ−1(B)) ̸= Pξs

j
(Ψ−1(B)). (48)

From the definition of pushforward measure, ∃B′ ∈ B(Rf0), such that

Pξs
i
(B′) ̸= Pξs

j
(B′). (49)

Therefore,

Pξs
i
̸= Pξs

j
(50)

and

Wp(Pξs
i
,Pξs

j
) = FCDp(vi, vj) > 0. (51)

Theorem 6. FCDp has the following discriminative power w.r.t. Θ̂ when the matrix of weights W
and σ are invertible.

FCDp(vi, vj) = 0 ⇔ Wp(Θ̂(vi), Θ̂(vj)) = 0 (52)

FCDp(vi, vj) > 0 ⇔ Wp(Θ̂(vi), Θ̂(vj)) > 0 (53)

Proof. Let Ψ : Rf0 → RfL be the application of weights and element-wise nonlinearity to the
node feature matrix Ξs after structural update, defined as Ψ(Xs) = σ(XsW ). If W and σ are
invertible then Ψ is a bijective continuous function with continuous inverse Ψ−1(·), therefore Ψ(·) is
homeomorphism. Note that this also means that f0 = fL = f . In order to prove the discriminative
power we need to show that
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Wp(Pξs
i
,Pξs

j
) = 0 ⇔ Wp(Ψ♯Pξs

i
,Ψ♯Pξs

j
) = 0 (54)

Wp(Pξs
i
,Pξs

j
) > 0 ⇔ Wp(Ψ♯Pξs

i
Ψ♯Pξs

j
) > 0 (55)

Eq. (54) ⇒: If

Wp(Pξs
i
,Pξs

j
) = 0, (56)

then from the properties of Wasserstein distance which is a true metric

Pξs
i
= Pξs

j
, (57)

which means that ∀B ∈ B(Rf )

Pξs
i
(B) = Pξs

j
(B). (58)

By definition of pullback measure, and because Ψ is a homeomorphism, this is equivalent to

Pξs
i
(Ψ−1(B)) = Pξs

j
(Ψ−1(B)), ∀B ∈ B(Rf ), (59)

which by definition means that

Ψ♯Pξs
i
(B) = Ψ♯Pξs

j
(B), ∀B ∈ B(Rf ), (60)

and therefore

Ψ♯Pξs
i
= Ψ♯Pξs

j
. (61)

From the properties of Wasserstein distance we have that

Wp(Ψ♯Pξs
i
Ψ♯Pξs

j
) = FCDp(vi, vj) = 0. (62)

Eq. (54) ⇐: If

Wp(Ψ♯Pξs
i
,Ψ♯Pξs

j
) = 0, (63)

then from the properties of Wasserstein distance, which is a true metric the following holds

Ψ♯Pξs
i
= Ψ♯Pξs

j
(64)

or equivalently

Ψ♯Pξs
i
(B) = Ψ♯Pξs

j
(B), ∀B ∈ B(RfL), (65)

which by definition means that

Pξs
i
(Ψ−1(B)) = Pξs

j
(Ψ−1(B)), ∀B ∈ B(RfL). (66)

By definition of pushforward measure and because Ψ is a homeomorphism, this means

Pξs
i
(B′) = Pξs

j
(B′), ∀B′ ∈ B(Rf0) (67)
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or

Pξs
i
= Pξs

j
(68)

and thus

Wp(Pξs
i
Pξs

j
) = FCDp(vi, vj) = 0. (69)

Eq. (55)⇒: If

Wp(Pξs
i
,Pξs

j
) > 0 (70)

then

Pξs
i
̸= Pξs

j
. (71)

Therefore, ∃B′ ∈ B(Rf0), such that

Pξs
i
(B′) ̸= Pξs

j
(B′). (72)

By the definition of pullback measure, ∃B ∈ B(RfL) such that

Ψ♯Pξs
i
(Ψ−1(B)) ̸= Ψ♯Pξs

j
(Ψ−1(B)), (73)

thus

Ψ♯Pξs
i
̸= Ψ♯Pξs

j
(74)

and

Wp(Ψ♯Pξs
i
Ψ♯Pξs

j
) = FCDp(vi, vj) > 0. (75)

Eq. (55)⇐: If

Wp(Ψ♯Pξs
i
Ψ♯Pξs

j
) > 0, (76)

then

Ψ♯Pξs
i
̸= Ψ♯Pξs

j
. (77)

Therefore, ∃B ∈ B(RfL), such that

Ψ♯Pξs
i
(B) ̸= Ψ♯Pξs

j
(B) (78)

or by definition

Pξs
i
(Ψ−1(B)) ̸= Pξs

j
(Ψ−1(B)) (79)

From the definition of pushforward measure, ∃B′ ∈ B(Rf0), such that

Pξs
i
(B′) ̸= Pξs

j
(B′). (80)
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Therefore, it holds that

Pξs
i
̸= Pξs

j
(81)

and

Wp(Pξs
i
,Pξs

j
) = FCDp(vi, vj) > 0. (82)

Corollary 4. The discriminative power of FCDp is the same as for Θ̂(·) in the default SGC architec-
ture Θ(·).

E Lipschitz Continuity of SGC with Nonlinear Activation

Theorem 7. Θ̂(·) is a globally Lipschitz function w.r.t. FCDp:

Wp(Θ̂(vi), Θ̂(vj)) ≤ CL · FCDp(vi, vj) (83)

Proof. We need to show that

Wp(Ψ♯Pξs
i
,Ψ♯Pξs

j
) ≤ CLWp(Pξs

i
,Pξs

j
). (84)

Let Ψ(Xs) = σ(XsW ) be the application of weights and nonlinearity after the structural update.
The function Ψ : Rf → Rf is Lipschitz continuous in Lp-norm if σ is Lipschitz continuous (in Lp

-norm) and we denote its Lipschitz constant as CL,

||Ψ(x)−Ψ(y)||2 ≤ CL ||x− y||2 . (85)

Let ξsi , ξ
s
j ∈ Rf be the random variables of node features after structural updates at nodes vi and vj

respectively. Let Γ(Pξs
i
,Pξs

j
) the space of couplings between them, and let Γ(Ψ♯Pξs

i
,Ψ♯Pξs

j
) be the

space of couplings after pushforward through Ψ. The elements γ′ of Γ(Ψ♯Pξs
i
,Ψ♯Pξs

j
) are of the form

γ′ = (Ψ×Ψ)♯γ .

For all A ∈ B(Rf ) we have:

γ′(A× Rf ) = (Ψ×Ψ)♯γ(A× Rf ) = γ((Ψ×Ψ)−1(A× Rf )) =

= γ(Ψ−1(A)× Rf ) = Pξs
i
(Ψ−1(A)) = Ψ♯Pξs

i
(A).

(86)

And mutatis mutandis for the other variable,

γ′(Rf ×B) = Ψ♯Pξs
j
(B). (87)

The p-Wasserstein distance between the two pushforward probability measures is given by:

Wp(Ψ♯Pξs
i
,Ψ♯Pξs

j
) =

 inf
γ′∈Γ(Ψ♯Pξs

i
,Ψ♯Pξs

j
)

∫∫
Rf×Rf

∥u− v∥p dγ′(u, v)

1/p

. (88)

Using Eq. (85), it is clear that∫∫
Rf×Rf

∥u− v∥p dγ′(u, v) =

∫∫
Rf×Rf

∥Ψ(x)−Ψ(y)∥p dγ(x, y) ≤

≤ Cp
L

∫∫
Rf×Rf

∥x− y∥p dγ(x, y).
(89)
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Since this holds for any coupling γ ∈ Γ(Pξs
i
,Pξs

j
), it holds for the infimum over such couplings

W p
p (Ψ♯Pξs

i
,Ψ♯Pξs

j
) = inf

γ′∈Γ(Ψ♯Pξs
i
,Ψ♯Pξs

j
)

∫∫
Rf×Rf

∥u− v∥p dγ′(u, v) ≤

≤ Cp
L inf

γ∈Γ(Pξs
i
,Pξs

j
)

∫∫
Rf×Rf

∥x− y∥p dγ(x, y) = Cp
LW

p
p (Pξs

i
,Pξs

j
).

(90)

Taking the p-th root on both sides yields the final bound

Wp(Ψ♯Pξs
i
,Ψ♯Pξs

j
) ≤ CLWp(Pξs

i
,Pξs

j
) = CLFCDp(vi, vj). (91)

Corollary 5. The Lipschitz continuity remains valid in the default SGC architecture Θ(·).
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tions, including uncertainty quantification in message passing neural networks, robustness
guarantees against L2-norm feature perturbations, and the introduction of a novel pseudo-
metric to study generalization guarantees, while rigorously defining all assumptions and
limitations of the proposed methodology.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The paper acknowledges several limitations: reliance on Gaussian input
assumptions and the focus on the SGC architecture in the introduction of the novel pseudo-
metric.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: The paper provides all assumptions in the theorems formulations. Complete
and correct proofs of the theorems are provided in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The paper fully discloses the information needed to reproduce the main
experimental results, including dataset details, model architectures, training setups, and
evaluation methodologies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No] .

Justification: The paper does not provide open access to the code for experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The paper specifies the training and test details, the choice of hyperparameters,
type of optimizer and number of epochs used in training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: There is no way to measure the statistical significance of the experiments in
the paper.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No] .

Justification: The computational resources needed to run experiments are minimal, therefore,
are not mentioned in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
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Justification: The paper does not have any potential societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper does not introduce any data or models that have a high risk of
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: The owners of datasets used for training the models are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The methodology does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The methodology does not include any studies with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The methodology does not include any studies with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No] .
Justification: The core methodology does not involve LLMs as important component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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