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Abstract
Conversational search requires accurate inter-001
pretation of user intent from complex multi-002
turn contexts. This paper presents ChatRe-003
triever, which inherits the strong generaliza-004
tion capability of large language models to ro-005
bustly represent complex conversational ses-006
sions for dense retrieval. To achieve this, we007
propose a simple and effective dual-learning008
approach that adapts LLM for retrieval via con-009
trastive learning while enhancing the complex010
session understanding through masked instruc-011
tion tuning on high-quality conversational in-012
struction tuning data. Extensive experiments on013
five conversational search benchmarks demon-014
strate that ChatRetriever substantially outper-015
forms existing conversational dense retrievers,016
achieving state-of-the-art performance on par017
with LLM-based rewriting approaches. Further-018
more, ChatRetriever exhibits superior robust-019
ness in handling diverse conversational con-020
texts. Our work highlights the potential of021
adapting LLMs for retrieval with complex in-022
puts like conversational search sessions and pro-023
poses an effective approach to advance this re-024
search direction. The code and checkpoints are025
anonymously released at https://anonymous.026
4open.science/r/ChatRetriever-8156.027

1 Introduction028

Conversational search is rapidly gaining promi-029

nence and reshaping how users interact with search030

engines to foster a more natural information-031

seeking experience. At the heart of a conversational032

search system lie two key components: retrieval033

and generation (Gao et al., 2022; Zhu et al., 2023).034

The retrieval process is tasked with sourcing rel-035

evant passages, which the generation component036

then uses to craft the final response. Conversa-037

tional retrieval plays a crucial role in ensuring the038

accuracy and reliability of the system responses by039

providing relevant passages (Liu et al., 2023).040

Compared to traditional ad-hoc web search, con-041

versational retrieval requires an accurate under-042

!!: Can the bottom of the ocean freeze?
#!: Ocean water freezes just like freshwater, …, because of the salt…
!": How does it freeze?
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Figure 1: Illustration of adapting LLM for query rewrit-
ing and conversational dense retrieval.

standing of the user’s real search intent within 043

longer, noisier, and more complex conversational 044

contexts. A “shortcut” approach is to transform 045

the conversational session into a standalone query 046

rewrite, enabling the usage of ad-hoc retrievers for 047

conversational retrieval. However, the addition- 048

ally introduced rewriting process is hard to directly 049

optimize towards better retrieval, and it also in- 050

troduces extra search latency from the rewriting 051

step (Yu et al., 2021). In contrast, the end-to-end 052

conversational dense retrieval appears to be more 053

promising, as it directly encodes the original con- 054

versational search session and passages into dense 055

representations without additional input processing 056

and can enjoy the efficiency benefit from advanced 057

approximate nearest neighbor search algorithms 058

(e.g. Faiss (Johnson et al., 2021)). 059

Nonetheless, the effectiveness of existing con- 060

versational dense retrievers largely trails behind 061

state-of-the-art conversational query rewriting ap- 062

proaches, which leverage large language models 063

(LLMs). Owing to their strong text understand- 064

ing and generation capabilities, LLM-based rewrit- 065

ers (Mao et al., 2023b; Ye et al., 2023) have demon- 066

strated exceptional effectiveness, even outperform- 067

ing human rewrites. Given that LLMs are inher- 068

ently generative models, they can naturally serve as 069

a high-quality conversational rewriter just through 070

prompting (Figure 1). The question that remains is: 071

whether the potent capabilities of LLMs can be har- 072

nessed to substantially enhance the performance 073

of conversational dense retrievers. 074

Several studies have explored tuning LLMs for 075
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dense retrieval but with a primary focus on ad-hoc076

search (Asai et al., 2023; Su et al., 2023; Ma et al.,077

2023; Wang et al., 2024; Muennighoff et al., 2024).078

While in conversational search, the multi-turn ses-079

sions exhibit greater diversity, complex expres-080

sions, and longer-tail intents compared to single-081

turn ad-hoc queries, posing severe challenges to the082

session representation learning. Additionally, these083

approaches often rely on manually designed and084

fixed instruction templates, which can considerably085

limit their ability to generalize and handle intricate086

conversational scenarios.087

In this work, we propose adapting LLM itself088

to serve as a powerful conversational dense re-089

triever. To achieve this, we select high-quality090

conversational instruction tuning data (Ding et al.,091

2023) as our training data and propose a simple092

dual-learning approach called Contrastive Session-093

Masked Instruction Tuning (CSIT) for the model094

training. Specifically, we adopt the classical con-095

trastive ranking loss function (Izacard et al., 2022)096

to fine-tune LLM from a generative model to a097

retrieval (or representational) model on the multi-098

turn instruction (i.e., session)-response pairs, using099

the special tokens at the end of the input text to100

represent the entire text. Meanwhile, we mix the101

basic contrastive learning with a session-masked102

instruction tuning objective, where we mask all to-103

kens except the special tokens of the session when104

computing the language modeling loss of the re-105

sponse tokens. The incorporation of this generative106

instruction tuning loss forces a strong enhancement107

in the learning of the complex session representa-108

tion since the response tokens have to be generated109

solely based on the special tokens representing the110

session. Furthermore, it also helps retain the strong111

generalization capability of LLM for retrieval.112

Our resulting model, which we call ChatRe-113

triever, can inherit the strong generalization capa-114

bility of LLM to robustly represent complex conver-115

sational sessions for dense retrieval. We conducted116

extensive experiments across five conversational117

search benchmarks, where ChatRetriever substan-118

tially outperforms existing conversational dense119

retrievers. Notably, it achieves absolute NDCG@3120

improvements of 6.8% and 12.2% on CAsT-20121

and CAsT-21, respectively, matching the perfor-122

mance of the leading LLM-based conversational123

query rewriting methods. Beyond standard evalu-124

ations using fixed conversational trajectories, we125

also developed two robustness evaluation methods126

to assess the resilience of conversational retrieval127

approaches by altering the historical context. Cha- 128

tRetriever demonstrates markedly more stable per- 129

formance in our robustness test, showcasing its su- 130

perior robustness in comparison to baselines when 131

faced with varied contexts. 132

Our contributions can be summarized as: 133

(1) We introduce ChatRetriever, the first LLM- 134

adapted conversational dense retriever, which 135

substantially outperforms existing conversational 136

dense retrievers and achieves performance compa- 137

rable to LLM-based rewriting approaches. 138

(2) We propose Contrastive Session-Masked In- 139

struction Tuning for such a retrieval-oriented adap- 140

tion for LLM, which can help achieve better com- 141

plex session representation and generalization. 142

(3) We design two robustness evaluation meth- 143

ods for conversational retrieval by systematically 144

varying the conversation contexts. Results high- 145

light ChatRetriever’s superior generalization ca- 146

pability in handling diverse conversational search 147

scenarios. 148

2 Related Work 149

Conversational search has seen the development 150

of two primary approaches: conversational query 151

rewriting (CQR) and conversational dense retrieval 152

(CDR). The former approach transforms the 153

conversational search problem into a traditional 154

ad-hoc search problem by reformulating the 155

conversational context into a standalone query. 156

Techniques in this area range from selecting 157

useful tokens from the context (Voskarides et al., 158

2020; Lin et al., 2021b) to training generative 159

rewriters based on session-rewrite pairs (Yu et al., 160

2020; Wu et al., 2022; Mao et al., 2023a; Mo 161

et al., 2023a). Inspired by the strong language 162

generation capability of LLMs, some studies (Mao 163

et al., 2023b; Ye et al., 2023; Yoon et al., 2024) 164

propose to leverage LLMs as query rewriters and 165

achieve amazing performance. Conversational 166

dense retrieval (CDR), on the other hand, directly 167

encodes the entire conversational session for 168

end-to-end dense retrieval (Yu et al., 2021). Efforts 169

in this direction have focused on improving session 170

representation through various perspectives such 171

as context denoising (Mao et al., 2022a; Mo et al., 172

2023b; Mao et al., 2023c), data augmentation 173

using other corpus and LLMs (Lin et al., 2021a; 174

Mao et al., 2022b; Dai et al., 2022; Jin et al., 2023; 175

Chen et al., 2024; Mo et al., 2024b), and hard nega- 176

tive mining (Kim and Kim, 2022; Mo et al., 2024a). 177
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178

LLM-based and instruction-aware retrieval. Ex-179

isting research has demonstrated that similar to180

the scaling laws (Kaplan et al., 2020) observed in181

LLMs, increasing the scale of models, data, and182

computing resources can also enhance the perfor-183

mance of retrieval models (Ni et al., 2022). To184

incorporate the ability to follow instructions into185

retrievers, some studies (Su et al., 2023; Asai et al.,186

2023) propose the creation of fixed instruction tem-187

plates for various retrieval tasks, and use these188

instruction-enhanced datasets to train the retriev-189

ers. Moreover, there have been efforts to adapt190

LLMs for retrieval purposes by training on im-191

proved search data (Ma et al., 2023; Wang et al.,192

2024) or developing new search-oriented training193

objectives (Li et al., 2023). However, these ap-194

proaches often rely on manually designed and fixed195

instruction templates, which can limit the general-196

ization capabilities of the retrievers across diverse197

instructions. Additionally, they are typically de-198

signed for single-turn ad-hoc search, lacking the199

capability to comprehend long and complex search200

sessions. In contrast to LLMs, which can smoothly201

understand a wide range of complex user inputs,202

existing LLM-based retrievers still exhibit a large203

gap in their generalization capabilities, particularly204

in the context of conversational search.205

3 Methodology206

We describe our simple and effective dual-learning207

approach, Contrastive Session-Masked Instruction208

Tuning (CSIT), which is designed to adapt LLM209

to a generalized and robust conversational dense210

retriever. An overview is shown in Figure 2.211

212

Contrastive instruction tuning. Recent works213

have demonstrated the effectiveness of simply us-214

ing the contrastive ranking loss to adapt LLM to215

a retriever (Asai et al., 2023; Su et al., 2023; Ma216

et al., 2023; Wang et al., 2024; Muennighoff et al.,217

2024). However, their generalization capability can218

be limited as they overfit the narrow distribution219

of ad-hoc queries and fixed instruction templates220

they were trained on. We fine-tune LLM on diverse221

conversational instruction tuning data for more gen-222

eral conversational retrieval adaption. Specifically,223

given a training sample {(x, y+)} from conversa-224

tional instruction tuning dataset, where x comprises225

all historical turns and the current instruction (we226

call x a session) and y is the response, we fine-tune227

LLM with the contrastive ranking loss: 228

LC = −log
ϕ(x, y+)

ϕ(x, y+) +
∑

y−∈D− ϕ(x, y−)
, (1) 229

where ϕ(x, y) = exp((E(x) · E(y))/τ), E(·) is 230

the shared text encoder of the retriever. D− is a 231

negative response collection for x. τ is a hyperpa- 232

rameter temperature. 233

To encode text with LLM, we append t special 234

tokens ([EMB1], ..., [EMBt]) to the end of 235

the input text and utilize the representation of 236

the last token ([EMBt]) as the comprehensive 237

representation of the entire text. This approach 238

is analogous to the text-level chain-of-thought 239

(CoT) (Wei et al., 2020) for LLMs. We hypothesize 240

that these t consecutive special tokens act as a 241

representational chain-of-thought, expanding and 242

guiding the learning space to achieve a more 243

effective representation. 244

245

Session-masked instruction tuning. To enhance 246

the generalized encoding of complex search ses- 247

sions, we integrate a session-masked instruction 248

tuning objective with the fundamental contrastive 249

learning. Given a training sample (x, y+), we con- 250

catenate the instruction and the response to form 251

one input sequence s: 252

s = [x1, ..., xN , [EMB1], ..., [EMBt], y
+
1 ,

..., y+M , [EMB1], ..., [EMBt]],
(2) 253

where xi and y+i represent the i-th token of the 254

session and the response, respectively. N and M 255

denote the total number of tokens in the session 256

and the response, respectively. We then input this 257

sequence into the LLM to obtain the token rep- 258

resentations. Specifically, the representations for 259

the (N + t) session tokens are obtained through a 260

standard auto-regressive process. However, for the 261

subsequent (M+t) response token representations, 262

we mask the N session token representations and 263

allow only the attention of t special session tokens 264

and their preceding response tokens. We achieve 265

it by applying a customized attention mask matrix 266

illustrated on the right side of Figure 1. Corre- 267

spondingly, the loss function of the session-masked 268

instruction tuning is defined as: 269

LS = − 1

M

M∑
i=1

logp(y+i |y
+
1 , ..., y

+
i−1,x1:t), (3) 270

where x1:t are the representations of the t session 271

special tokens, which have been contextualized by 272

the N session tokens. 273
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[Q1] [R1] [Q2] <EMB_1> <EMB_2> <EMB_3> [R2] <EMB_1> <EMB_2> <EMB_3> Session <EMB_3> Response <EMB_3>

Session-Masked Attention Matrix

Session-Masked
Language Modeling LossContrastive Ranking Loss

Session:
Q1: Can the bottom of the ocean
freeze?

R1: Ocean water freezes just like
freshwater, …, because of …

Q2: How does it freeze? 

Response (R2):
Freezing happens when the
molecules, …, a solid crystal.

Session-Response ConcatenationATraining Sample Session Response

ChatRetriever ChatRetriever ChatRetriever

Figure 2: Overview of CSIT. We fine-tune LLM to be ChatRetriever using dual learning objectives. We use the last
special token (i.e., <EMB_3>) to represent the input text, which can be session or response. In the session-masked
attention matrix, the blue squares denote the session or the response tokens while the green squares denote their
special tokens.

By masking the session text and forcing cor-274

rect generation for the response tokens, we build275

a closer connection between the session represen-276

tation and the response token representations. The277

model has to perform a more nuanced understand-278

ing of the complex session and accurately encode279

them into the t session special tokens.280

We combine the contrastive instruction tuning281

and the session-masked instruction tuning to form282

the final training objective of ChatRetriever:283

L = LC + αLS, (4)284

where α is a hyperparameter to balance the two285

losses.286

287

Discussion. Our dual-learning approach CSIT288

takes inspiration from several notable works in289

LLM-based retrieval and input compression such290

as RepLLaMA (Ma et al., 2023), E5mistral-7b (Wang291

et al., 2024), GRIT (Muennighoff et al., 2024), Gist-292

ing (Mu et al., 2023), and AutoCompressor (Cheva-293

lier et al., 2023). However, CSIT distinguishes294

from them in the following key aspects: (1) Re-295

pLLaMA and E5mistral-7b primarily focus on con-296

trastive learning using (synthetic) ad-hoc search297

data with pre-defined instruction templates, which298

is hard to generalize to complex conversational299

search scenarios. (2) GRIT aims to build a uni-300

fied model for both retrieval and generation, in-301

corporating vanilla instruction tuning and using302

different training data for its contrastive learning303

and instruction tuning. (3) The mechanism of our304

session-masked instruction tuning shares similari-305

ties with Gisting and AutoCompressor, but they are306

for a completely different target: improving long-307

context language modeling, not retrieval. In con-308

trast, CSIT stands out from these works by specifi-309

cally addressing the challenges of adapting LLM310

generalized to complex conversational retrieval.311

4 Experiments 312

4.1 Setup 313

Training data. We fine-tune LLM to be ChatRe- 314

triever on high-quality conversational instruction 315

tuning datasets. We select training samples that 316

are informative, diverse, and exhibit information- 317

seeking intents. Our final training data comprises 318

two sources: (1) The Question About the World 319

subset of UltraChat (Ding et al., 2023) and (2) 320

MSMARCO (Nguyen et al., 2016) passage ranking 321

dataset. Ultrachat is a multi-turn instruction tuning 322

dataset while MSMARCO can be deemed as 323

a single-turn search-oriented instruction tuning 324

dataset by treating the query as the instruction and 325

the positive passage as the response. We find that 326

incorporating MSMARCO is important to improve 327

the basic (ad-hoc) retrieval performance. 328

329

Evaluation data and metrics. We conduct 330

evaluations on five public conversational search 331

benchmarks, including QReCC (Anantha et al., 332

2021), TopiOCQA (Adlakha et al., 2022), 333

CAsT-19 (Dalton et al., 2020), CAsT-20 (Dalton 334

et al., 2021), and CAsT-21 (Dalton et al., 2022). 335

The retrieval corpus sizes of these five datasets 336

are in the tens of millions. Among them, the 337

large-scale QReCC and TopiOCQA have training 338

sets, while the other three CAsT datasets are small 339

datasets that only have test sets. We mainly report 340

NDCG@3 to evaluate the retrieval performance, 341

as conversational search is more concerned with 342

the top results (Dalton et al., 2021). 343

344

Baselines. We compare ChatRetriever against 345

the following three types of retrieval baselines. 346

The first is CQR baselines, including T5QR (Lin 347

et al., 2020), ConvGQR (Mo et al., 2023a), and 348

LLM4CS (Mao et al., 2023b). The original 349
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Model Base Model #Model Parameter QReCC TopiOCQA CAsT-19 CAsT-20 CAsT-21

Conversational Query Rewriting
T5QR T5-base (Raffel et al., 2020) 250M 31.8 22.2 41.7 29.9 33.0

ConvGQR T5-base (Raffel et al., 2020) 250M 41.0 24.3 43.4 33.1 27.3
LLM4CS (REW) ChatGPT-3.5 (OpenAI) Unknown - - 43.1 35.7 40.4
LLM4CS (RAR) ChatGPT-3.5 (OpenAI) Unknown - - 45.3 39.5 44.9

LLM4CS ChatGPT-3.5 (OpenAI) Unknown - - 51.5 45.5 49.2

LLM-based Retrieval
LLM Embedder BGE (Xiao et al., 2023) 110M 50.5 22.4 36.6 15.3 31.2
INSTRCUTOR GTR-XL (Ni et al., 2022) 1.5B 42.3 12.3 26.8 17.3 32.4
RepLLaMA LLaMA-2 (Touvron et al., 2023) 7B 31.8 15.0 31.6 18.3 32.7
E5mistral-7b Mistral (Jiang et al., 2023) 7B 32.9 16.9 31.3 15.4 32.4

GRIT Mistral (Jiang et al., 2023) 7B 33.5 17.3 30.9 19.3 33.6

Conversational Dense Retrieval
Conv-ANCE ANCE (Xiong et al., 2021) 110M 45.6 20.5 34.1 27.5 34.2

ConvDR ANCE (Xiong et al., 2021) 110M 35.7 26.4 43.9 32.4 37.4
DialogInpainter T5-Large (Raffel et al., 2020) 770M - - 47.0 33.2 -

LeCoRE SPLADE (Formal et al., 2022) 110M 48.5 31.4 42.2 29.0 32.3
ChatRetriever Qwen (Bai et al., 2023) 7B 52.5† 40.1† 52.1† 40.0† 49.6†

Table 1: Results of the normal evaluation on five conversational search benchmarks. The base models of CQR
methods are their rewriters and the model parameters are also counted as the rewriter’s parameters. † denotes
significant differences to baselines (p < 0.05). The best results are bold and the second-best results are underlined.

LLM4CS has three prompting methods: REW,350

RAR, and RTR, and it requires multiple rounds351

of generation, which is time-consuming. For352

efficiency consideration, we additionally compare353

with its two single-generation variants based on354

RAR and REW; The second is CDR baselines,355

including ConvDR (Yu et al., 2021), Conv-356

ANCE (Mao et al., 2023c), DialogInpainter (Dai357

et al., 2022), and LeCoRE (Mao et al., 2023c);358

The third is the LLM-based retriever baselines,359

including INSTRUCTOR (Su et al., 2023), LLM360

Embedder (Zhang et al., 2023), RepLLaMA (Ma361

et al., 2023), E5mistral-7b (Wang et al., 2024), and362

GRIT (Muennighoff et al., 2024). More baseline363

details on in Appendix A.364

365

Implementations. We initialize ChatRetriever366

with Qwen-7B-Chat (Bai et al., 2023) and train367

it on eight 40G A100 GPUs using LoRA (Hu et al.,368

2022) with a maximum input sequence length of369

1024. The training process involves 2500 steps with370

a learning rate of 1e-4, a gradient accumulation of371

4 steps, a batch size of 64, and 4 hard negatives372

per sample. For consistency, we adopt the chatml373

input format of Qwen-Chat to form the input of374

ChatRetriever. We add three special tokens (i.e.,375

<|extra_1|>, <|extra_2|>, and <|extra_3|>) at the376

end of the instructions and responses. For base-377

line comparisons, we adhere to the implementation378

settings specified in their original papers. 379

4.2 Normal Evaluation 380

The retrieval performance comparisons on the 381

five datasets are reported in Table 1. Our pro- 382

posed ChatRetriever outperforms all the baseline 383

methods across these datasets. Existing conversa- 384

tional dense retrievers are constrained by limited 385

model capacity and data quality, resulting in sub- 386

optimal performance for conversational retrieval 387

tasks. Prior to ChatRetriever, there was a consid- 388

erable performance gap between existing conver- 389

sational dense retrieval methods and the state-of- 390

the-art LLM-based conversational query rewriter 391

(i.e., LLM4CS). Specifically, the absolute gaps be- 392

tween the best existing CDR model and LLM4CS 393

were 1.6%, 12.2%, and 11.8% on the three CAsT 394

datasets, respectively. However, ChatRetriever can 395

achieve comparable or even superior performance 396

to LLM4CS, highlighting the high potential of end- 397

to-end conversational dense retrieval compared to 398

the two-stage approach of conversational query 399

rewriting methods. If we force LLM4CS to gener- 400

ate a single output (RAR) or only consider query 401

rewriting (REW) for efficiency, the advantages of 402

ChatRetriever become even more pronounced, with 403

over 4% absolute gains. We also observe that ex- 404

isting LLM-based retrievers do not perform well 405

on conversational retrieval tasks. This can be at- 406
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Model
Partial Response Modification Full Context Modification

CAsT-19 CAsT-20 CAsT-21 CAsT-19 CAsT-20 CAsT-21

NDCG@3↑ Diff.↓ NDCG@3↑ Diff.↓ NDCG@3↑ Diff.↓ Mean↑ SD↓ Mean↑ SD↓ Mean↑ SD↓

LLM4CS 50.4 1.1 43.8 1.7 49.4 0.2 49.7 1.5 44.0 1.1 48.4 1.4
ConvDR 44.3 0.4 31.0 1.4 34.8 2.6 39.3 3.4 30.2 2.6 35.8 2.9
LeCoRE 44.5 2.3 25.4 3.6 29.9 2.4 42.0 1.9 28.3 2.2 31.0 2.3

ChatRetriever 52.2 0.1 39.5 0.5 48.9 0.7 51.5 1.6 45.8 1.7 48.8 1.8

Table 2: Results of the robust evaluation. Diff. represents the absolute difference compared to the results in Table 1
and SD represents the standard deviation, where a smaller value means more stable.

tributed to the fact that they are fine-tuned solely on407

templated instructions, which fails to fully leverage408

the generalization capabilities of LLMs to handle409

complex and diverse conversational scenarios.410

4.3 Robustness Evaluation411

Existing evaluations for conversational retrieval are412

mainly conducted on fixed conversation trajecto-413

ries. In this section, we evaluate the robustness of414

conversational retrievers in different contexts. Our415

principle is modifying the context but fixing the416

current query (i.e., search intents) for each turn so417

that the original relevance labels can be re-used.418

Specifically, we propose the following two types419

of context modification:420

(1) Partial response modification: We do not use421

the provided responses in the evaluation dataset.422

Instead, for each turn, we input the current query,423

the context, and the top-3 passages retrieved by the424

conversational retriever, and prompt LLM to gen-425

erate the response. The simulated online nature of426

generating responses turn-by-turn better matches427

how conversational retrieval systems are used in428

practice. However, a problem with this online eval-429

uation manner is that the query of the next turn in430

the original dataset may become unreasonable after431

modifying its last response (Li et al., 2022). We432

propose a simple heuristic method to tackle this433

problem with LLM. Specifically, we prompt LLM434

to judge whether the current query is reasonable435

given the context. If not, we replace the current436

query with its human rewrite to make it stand on its437

own without needing external context. Otherwise,438

we can use the original query. The prompts can be439

found in Appendix B.440

(2) Full context modification: For each turn, we441

supply the original query and its human-modified442

version to the LLM, prompting it to generate new443

contexts (See Appendix C). We finally got five444

different contexts for each turn.445

We evaluate conversational retrievers based on446

different contexts generated by these two modifi- 447

cation methods using ChatGPT 3.5. For the par- 448

tial response modification setting, we report the re- 449

trieval performances and their absolute differences 450

(Diff.) compared to the original counterpart results 451

reported in Table 1. For the full context modifica- 452

tion setting, we report the Mean performance of 453

different runs and their standard deviation (SD). 454

The robust evaluation results are shown in Table 2. 455

For the partial response modification setting, it 456

shows that the performance changes of ChatRe- 457

triever are the smallest. By referring to Table 1, we 458

also observe a general degradation in retrieval per- 459

formance compared to the original context. This 460

degradation may stem from the retrieved passages 461

being inaccurate, consequently leading to inaccu- 462

rate responses, and then affecting the retrieval per- 463

formance of the subsequent turns. 464

For the full context modification setting, the ro- 465

bustness of ChatRetriever is further highlighted by 466

its small average standard deviation of 1.7, which 467

is lower compared to the 3.0 and 2.1 standard de- 468

viations observed for ConvDR and LeCoRE, re- 469

spectively. These results demonstrate the strong 470

robustness of ChatRetriever to different conversa- 471

tional search contexts. In contrast, the LLM4CS, 472

which utilizes ChatGPT for query rewriting, shows 473

an even lower standard deviation of 1.3, demon- 474

strating the superior robustness of ChatGPT for 475

conversational query rewriting. 476

4.4 Ablation Studies 477

We build four ablations to study the effects of our 478

proposed training approach: (1) w/o R-CoT: remov- 479

ing the representational CoT; (2) w/o SIT: remov- 480

ing the session-masked instruction tuning; (3) with 481

Vanilla IT: replacing the session-masked instruc- 482

tion tuning with vanilla instruction tuning. 483

Table 4 shows the ablation results. We find that 484

either removing the representational CoT or remov- 485

ing or replacing session-masked instruction tun- 486
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Base LLM Model Parameter Base/Chat Training CAsT-19 CAsT-20 CAsT-21

Qwen 1.8B Chat Full 38.8 33.7 45.2
Qwen 1.8B Chat LoRA 35.1 31.9 42.4
Qwen 7B Base LoRA 46.9 37.7 46.5
Qwen 7B Chat LoRA 50.5 40.0 49.6

LLaMA-2 7B Chat LoRA 47.3 38.4 49.1
Mistrial 7B Chat LoRA 49.5 39.2 49.6

Table 3: Performance comparisons of ChatRetrievers under different settings with different backbone LLMs.

Ablation CAsT-19 CAsT-20 CAsT-21

w/o SIT 49.5 36.8 45.8
w/o R-CoT 49.9 38.5 47.5

with Vanilla IT 51.1 39.3 48.4
CSIT 52.1 40.0 49.6

Table 4: Results of ablation studies.

ing can lead to performance degradation. By con-487

trast, the session-masked instruction tuning, which488

achieves 6.6% relative performance gains across489

the three CAsT datasets on average, is shown to490

be more effective than representational CoT, which491

achieves 3.4% relative performance gains on aver-492

age. The results suggest that our two techniques493

have positive effects in helping adapt LLMs for494

conversational retrieval. We also studied the influ-495

ence of the number of special CoT tokens, which496

can be found in Appendix D.497

4.5 Influence of LLMs498

Table 3 shows the comparisons between different499

settings about the backbone LLM of ChatRetriever.500

(1) Base vs. Chat. Our results indicate that the501

Chat model outperforms the Base model, which502

aligns with our expectations. We hypothesize that503

the ability to follow instructions well is indicative504

of strong generalization capabilities, which are cru-505

cial for complex conversational search tasks. There-506

fore, the Chat model, having been fine-tuned for507

conversational instructions, provides a more appro-508

priate foundation for this task.509

(2) Different LLMs. We find that different510

LLMs have similar performance under our train-511

ing recipe. The relatively worst variation based on512

LLaMA-2 still largely outperforms existing con-513

versational dense retrieval baselines on the more514

complex CAsT-20 and CAsT-21 datasets, and also515

outperforms smaller ChatRetrievers.516

(3) LoRA vs. full parameter tuning. Due to517

constraints in computing resources, our investiga-518

tion into training modes (i.e., LoRA vs. full param-519

eter tuning) was limited to the 1.8B scale model. 520

Our findings indicate that employing LoRA train- 521

ing yields inferior performance compared to full 522

parameter tuning. However, this may be attributed 523

to the LoRA parameter capacity being insufficient 524

for the 1.8B model. 525

4.6 Influence of Training Data 526

Fine-tuning on different data sources. Table 6 527

presents the performance of ChatRetriever when 528

trained solely on UltraChat, solely on MSMARCO, 529

and on a combination of QReCC+MSMARCO 530

(i.e., replacing UltraChat with the QReCC’s 531

training set). The model performance is evaluated 532

using both session inputs and human rewrite inputs 533

(i.e., converted to ad-hoc search). We find that 534

training exclusively on UltraChat leads to a decline 535

in performance for both input types, with a more 536

pronounced degradation observed for the rewrite 537

input. Conversely, training solely on MSMARCO 538

yields comparable results for the rewrite input but 539

considerably worse performance for the session 540

input. These results suggest that MSMARCO 541

effectively enhances the ad-hoc retrieval capabil- 542

ities of LLMs, possibly due to its well-curated 543

hard negatives. However, ad-hoc search data from 544

MSMARCO alone is insufficient for transferring 545

the generalization capability of LLMs to the 546

more complex context of conversational search. 547

The traditional conversational QA data (i.e., 548

QReCC) is also not highly effective for LLMs in 549

learning a diverse range of complex conversational 550

patterns. To optimize LLM to be a universal 551

conversational retriever, we recommend combining 552

general conversational instruction tuning data (e.g., 553

UltraChat) with ad-hoc search-oriented instruction 554

tuning data (e.g., MSMARCO). 555

556

Continuelly fine-tuning baselines on the same 557

training data of ChatRetriever. In Table 1, 558

we follow the original training settings of the 559

7



Methods
QReCC TopiOCQA CAsT-19 CAsT-20 CAsT-21

Original New Original New Original New Original New Original New

GRIT 33.5 48.3 17.3 36.0 30.9 47.1 19.3 35.7 33.6 45.3
Conv-ANCE 45.6 44.8 20.5 21.6 34.1 35.0 27.5 30.5 34.2 36.0

ConvDR 35.7 36.0 26.4 24.9 43.9 43.2 32.4 30.9 37.4 35.5
LeCoRE 48.5 46.1 31.4 31.0 42.2 42.9 29.0 30.1 32.3 33.4

ChatRetriever 52.5 40.1 52.1 40.0 49.6

Table 5: Results of continually fine-tuning baselines on the training data of ChatRetriever. “Original” and “New”
denote the performance before and after fine-tuning, respectively.
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Figure 3: Performance of ChatRetriever at different training steps.

Data Source
CAsT-20 CAsT-21

Session Rewrite Session Rewrite

Only U 39.5 43.7 46.5 50.0
Only M 18.3 49.8 34.1 58.9
Q+M 31.5 46.9 42.4 47.9
U+M 40.0 49.9 49.6 59.2

Table 6: Comparisons of using different data sources
combinations for training. U, M, and Q represent Ultra-
Chat, MSMARCO, and QReCC, respectively.

baselines. Here, we further fine-tune baselines560

on the training data of ChatRetriever. Results are561

shown in Table 5 and we find: (1) GRIT, a unified562

retrieval and generation model based on LLM,563

showed substantial performance improvement564

after fine-tuning on conversational instruction565

tuning data. Its performance approached that of566

ChatRetriever without session-masked instruction567

tuning, although it still lagged behind the final Cha-568

tRetriever. (2) The performance of Conv-ANCE,569

ConvDR, and LeCoRE did not show noticeable570

improvements and even experienced declines in571

QReCC and TopiOCQA. This may be because that572

the newly introduced training data disrupted their573

original in-domain training-test settings, as they574

were initially trained on the in-domain training sets575

of QReCC and TopiOCQA. This also highlights576

the robust generalization of ChatRetriever, which,577

when trained only on general conversational578

instruction tuning data, can effectively adapt to579

various conversational search test sets.580

581

Data volume. Figure 3 shows the performance of 582

ChatRetriever across various training steps. It is ob- 583

served that the performance attains a relatively high 584

level at 500 steps and subsequently experiences 585

marginal improvements as the number of training 586

steps increases. The performance stabilizes upon 587

reaching 2500 steps. Furthermore, the trends for 588

inputs with sessions and human rewrites are similar. 589

These findings suggest that, under our framework, 590

adapting LLMs to function effectively as conversa- 591

tional retrievers may require only a small amount 592

of high-quality data. 593

5 Conclusion 594

In this paper, we introduce ChatRetriever, a large 595

conversational retrieval model adapted from LLM. 596

We propose a novel contrastive session-masked in- 597

struction tuning approach for this adaptation and 598

fine-tune LLM on high-quality conversational in- 599

struction tuning data. Experimental results on five 600

conversational retrieval datasets demonstrate the 601

superior performance and robustness of ChatRe- 602

triever. Looking ahead, we aim to further explore 603

and expand the generalization capabilities of Cha- 604

tRetriever in a broader range of complex IR sce- 605

narios beyond conversational search, such as legal 606

case retrieval, product search, and other instruction- 607

followed search tasks. We envision ChatRetriever 608

to be as versatile as LLMs, capable of accepting 609

and understanding any conversational inputs and 610

retrieving useful information for those inputs. 611
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Limitations612

Efficiency. As indicated in Table 1, ChatRe-613

triever is a 7B model which is much larger than614

existing CDR models. Our preliminary findings615

(Section 4.5) suggest that the large model size is616

a crucial factor for ChatRetriever’s exceptional617

performance. However, this also raises efficiency618

concerns. With an embedding dimension of 4096,619

ChatRetriever incurs higher time and storage costs620

for indexing and retrieval than existing CDR mod-621

els. Nevertheless, on the one hand, ChatRetriever’s622

enhanced retrieval accuracy potentially reduces623

the need for extensive passage re-ranking, which624

could, in real-world applications, offset the initial625

higher costs by ultimately reducing the total time626

spent on ranking. On the other hand, we view627

ChatRetriever as a promising research direction628

in leveraging the potent capabilities of LLMs for629

more complex and potentially universal retrieval630

tasks. We are exploring the possibility of distilling631

ChatRetriever into a more efficient, smaller model.632

633

Hard Negatives. Unlike typical search datasets634

that provide a large retrieval corpus, the conver-635

sational instruction tuning dataset we used (i.e.,636

UltraChat) consists of only multi-turn instructions637

(i.e., sessions) and responses. In this work, we638

simply chose the CAsT-21 corpus for the hard639

negative mining of UltraChat (see Appendix A.3).640

However, as existing studies have shown, hard641

negatives are crucial for improving retrieval642

performance (Zhan et al., 2021; Zhou et al.,643

2022). Therefore, a better strategy for mining644

hard negatives tailored to instruction tuning data645

is desirable. We plan to explore using LLMs to646

generate hard negatives for instructions similar to647

(Wang et al., 2024).648

649

Generalizability. ChatRetriever substantially out-650

performs existing CDR models in understanding651

and retrieving information for complex multi-turn652

inputs and achieves comparable performance to653

state-of-the-art LLM-based rewriting, showcasing654

its strong generalization capability. However, it has655

not yet achieved the same level of generalization as656

LLMs, particularly in following complex retrieval657

instructions, addressing very detailed information658

needs, or performing in-context learning across659

various specific domains. It is worth noting that ex-660

isting instruction-aware retrievers (Su et al., 2023;661

Zhang et al., 2023; Muennighoff et al., 2024) also662

have limitations in perceiving complex (multi-turn) 663

instructions that largely fall short of the generality 664

of LLMs, as highlighted in this work (Table 1) 665

and also in recent studies (Oh et al., 2024; Weller 666

et al., 2024). As stated in our conclusion, we are 667

committed to further advancing ChatRetriever’s 668

generalization capabilities to match those of LLMs. 669

670
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Appendix1022

A More Details of Experimental Setup1023

A.1 Evaluation Datasets1024

The basic statistics of these five evaluation datasets1025

are shown in Table 7. All the datasets except Top-1026

iOCQA provide the human rewrite for each turn.1027

The relevance annotations in the CAsT datasets are1028

made by experts, making them more detailed.1029

Statistics QReCC TopiOCQA CAsT-19 CAsT-20 CAsT-21

#Conversation 2,775 205 50 25 26
#Turns 16,451 2,514 479 208 239

#Passages 54M 25M 38M 40M

Table 7: Basic statistics of the five evaluation datasets.

A.2 Baselines1030

We provide a more detailed introduction to the base-1031

lines:1032

T5QR (Lin et al., 2020): a T5-based query1033

rewriting method trained with human rewrites as1034

the supervised signals.1035

ConvGQR (Mo et al., 2023a): A unified frame-1036

work for query reformulation that integrates rule-1037

based query rewriting with a generative model to1038

expand queries.1039

LLM4CS (Mao et al., 2023b): A state-of-the-art1040

LLM-based prompting method for conversational1041

query rewriting. LLM4CS has two three prompting1042

methods: REW, RAR, and RTR. REW only gen-1043

erates a rewrite and RAR additionally generates1044

a hypothetical response. While RAR generates a1045

rewrite and response in a two-step manner. For1046

LLM4CS (REW) and LLM4CS (RAR), we only1047

generate once for efficiency consideration and thus1048

do not need aggregation.1049

Conv-ANCE (Mao et al., 2023c), which uses1050

the classical ranking loss to train the session em-1051

beddings based on ANCE (Xiong et al., 2021).1052

ConvDR (Yu et al., 2021), which uses knowl-1053

edge distillation to learn the session embeddings1054

from rewrites.1055

DialogInpainter (Dai et al., 2022), which is fine-1056

tuned from the T5-large model using information1057

seeking dialogues generated from large web cor-1058

pora.1059

LeCoRE (Mao et al., 2023c), which extends1060

SPLADE (Formal et al., 2022) to be a conversa-1061

tional lexical retriever using multi-level denoising1062

methods.1063

Generate a response to the current query given the context
and retrieved passages. If the passages are relevant and 
useful, referring to their information when forming your 
response. Otherwise, you may disregard them. 

# Context:
{Context}

# Current Query: 
{query}

# Retrieved Passages: 
{context}

Figure 4: The prompt to generate the response in the
experiment of partial response modification.

INSTRUCTOR (Su et al., 2023), a general re- 1064

triever tailored to various tasks and domains by 1065

trained with various task-specific instructions. 1066

LLM Embedder (Zhang et al., 2023): a uni- 1067

fied retrieval model that can support diverse re- 1068

trieval augmentation needs of LLMs. It is fine- 1069

tuned on various tasks and datasets such as MS- 1070

MARCO, NQ, ToolLLM, QReCC, FLAN, Books3, 1071

and Multi-Session Chat. 1072

RepLLaMA (Ma et al., 2023), a large ad-hoc 1073

retriever fine-tuned from LLaMA-7B on the MS- 1074

MARCO dataset. 1075

E5mistral-7b (Wang et al., 2024), a large ad-hoc re- 1076

triever fine-tuned from Mistral-7B on the synthetic 1077

dataset generated by ChatGPT and MSMARCO. 1078

GRIT (Muennighoff et al., 2024), a unified 1079

model for retrieval and generation. It is fine-tuned 1080

based on Mistral-7B. The retrieval part is fine- 1081

tuned on the E5 (Wang et al., 2024) dataset with 1082

task-specific instructions while the generation part 1083

is fine-tuned on the Tulu 2 (Ivison et al., 2023) 1084

dataset. 1085

A.3 Hard Negatives 1086

For UltraChat, we first use in-context learning with 1087

Qwen-7B-Chat, similar to the approach in (Mao 1088

et al., 2023b), to generate a query rewrite for each 1089

turn. We then obtain hard negatives by randomly 1090

sampling from the top-15 to top-30 retrieval results 1091

using the LLM Embedder on the CAsT-21 corpus 1092

with rewrites. The hard negatives for MSMARCO 1093

are consistent with those used in (Ma et al., 2023). 1094

B Prompts in Partial Response 1095

Modification 1096

The prompts to generate the response and judge 1097

whether the current query is reasonable are shown 1098
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Given the context of a conversation, evaluate whether 
the subsequent query is reasonable. A query is 
considered unreasonable if we cannot figure out its real
search intent based on the context. For example:

# Context:
Query: Who achieved 40,000 points in the NBA?
Response: Michael Jordan.

# Next Query:
Which team drafted James?

This query is unreasonable because it is unclear who 
"James" is, as he was not mentioned in the context. The 
confusion arises because the response to the previous 
query is incorrect; the correct answer should be 
"LeBron James.”

Now, it's your turn to assess the reasonableness of the 
query in the following context:
# Context:
{context}

# Next Query
{query}

Figure 5: The prompt to judge whether the current query
is reasonable in the experiment of partial response mod-
ification.

in Figure 4 and Figure 5, respectively.1099

Given a conversational query, its context-independent
rewrite, and its response, generate two turns of
conversational context for it.

This turn:
# Query: How much does it cost for someone to fix it?
# Rewrite: How much does it cost for someone to repair 
a garage door opener?
# Response: Garage door opener repair can cost 
between $100 and $300 depending on the extent of the 
problem. Return to Top. The type of garage door you 
select -- and any extra pieces or labor required -- will 
influence how much you pay to have it professionally…

# Synthetic Conversation Context:
Query1: How much does a new garage door opener cost?
Response1: The cost of a new garage door opener can 
range from $150 to $500, depending on the brand, 
features, and installation requirements.

Query2: What are some common problems with garage 
door openers?
Response2: Some common problems with garage door 
openers include issues with the remote control, the motor, 
the sensors, or the door itself. 

Figure 7: An example prompt to generate synthetic con-
versation text in the experiment of full context modifica-
tion. Italicized contents are filled into the placeholders
of the prompt. The green content is the model output.

C Prompts in Full Context Modification 1100

The prompt to generate synthetic conversation text 1101

in the experiment of full context modification is 1102

shown in Figure 7. The green content is the output 1103

of ChatGPT3.5 for the above prompt. 1104

D Influence of the Number of Special 1105

CoT Tokens 1106

In Figure 6, we present the performance of ChatRe- 1107

triever when varying the number of special tokens 1108

used for text representation. Our findings suggest 1109

that the inclusion of additional special tokens gener- 1110

ally enhances retrieval performance. This improve- 1111

ment may be attributed to the fact that a sequence 1112

of consecutive special tokens can serve as a form 1113

of representational-level CoT, effectively expand- 1114

ing the learning space. However, we observe that 1115

performance plateaus when the number of special 1116

tokens exceeds three. Consequently, we finally 1117

append three special tokens in our implementation. 1118

E Settings of Continuelly Fine-tuning 1119

Baselines 1120

Since the training data of ChatRetriever only con- 1121

tains session-response pairs but does not contain 1122

human rewrites, we use in-context learning with 1123

Qwen-7B-Chat, similar to the approach in (Mao 1124

et al., 2023b), to generate query rewrite for each 1125

turn and use them for the training of ConvDR and 1126

LeCoRE. GRIT and Conv-ANCE are fine-tuned 1127

with their original contrastive ranking loss. 1128
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Figure 6: Performance comparisons when using different numbers of special CoT tokens.
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