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Abstract

This paper studies grammatical error correc-
tion on challenging authentic Finnish learner
texts at CEFR Al level. Three state-of-the-art
large language models are compared, and it is
shown that GPT-4 outperforms GPT-3.5, which
in turn outperforms Claude v1 on this task. Ad-
ditionally, various ensemble models combining
outputs of multiple single models are evaluated.
The best results are obtained by explicitly mod-
eling agreement between single models as a
chain of rules in an asymmetric decision tree.
The best performing ensemble model obtains
an accuracy of 85.7 %, whereas the best single
model, which is a GPT-4 model, reaches an
accuracy of 82.4 % fully correct sentences. In
other words, the ensemble model reduces the
sentence error rate by 18.8 % in comparison to
the best single model.

1 Introduction

Grammatical Error Correction (GEC) is the task
of automatically detecting and correcting errors in
text. The term grammatical is understood broadly.
The errors may be grammatical, such as missing
prepositions and mismatched subject-verb agree-
ment, but also orthographic and semantic, such as
misspellings and word choice errors, respectively
(Bryant et al., 2023). However, GEC is typically
seen as a local substitution task (Ye et al., 2023),
where a few occasional mistakes are corrected in
generally intelligible text.

Our aim is to help second-language (L2) learn-
ers express themselves fluently and idiomatically
in a non-native language that they do not master
very well. We work with challenging learner texts
that contain numerous mistakes when it comes to
inflection, spelling, word choice, word order and
even low intelligibility overall. We have previ-
ously employed neural machine translation with
different data augmentation techniques to solve this
task (self-citations omitted). Recent developments

and the advent of powerful large language models
(LLMs) have provided us with new approaches to
tackling the problem.

The goal of this paper is to study how well
state-of-the-art large language models are capable
of rephrasing beginner-level learner texts into id-
iomatic, correctly formulated texts. Additionally,
we investigate to what extent an ensemble of mul-
tiple models can outperform single models in this
task.

2 Data

As data for our experiments we use a subset of
ICLFI, the International Corpus of Learner Finnish
(Jantunen, 2011; Jantunen et al., 2013). The cor-
pus consists of texts written by students of Finnish
as a foreign language from various language back-
grounds. It has been compiled with the help of
Finnish language teachers around the world. ICLFI
is available online through the Language Bank of
Finland.!

For our study we randomly selected 25 texts that
the corpus creators have labeled with the lowest
language proficiency level: Al in the Common
European Framework of Reference for Languages
(CEFR).? The A1 level was chosen in order to ob-
tain as challenging data as possible. Table 1 shows
one text extracted from this data, with an approx-
imate English translation. The total number of
sentences in all 25 texts is 210.

Some English learner corpora, such as FCE (Yan-
nakoudakis et al., 2011) and NUCLE (Dahlmeier
et al., 2013) contain reference corrections that can
be utilized for evaluation, but that is unfortunately
not the case with the ICLFI corpus.?

"https://www.kielipankki.fi/corpora/iclfi/

Zhttps://www.coe.int/en/web/
common-european-framework-reference-languages

3In fact, ICLFI has been automatically lemmatized and
parsed, and some of the misspelled words have been corrected
in the process, but this representation is not accurate enough
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Mini lulee etttd, Anna on nyt niin erilainen kuin
tavallisesti, koska hédnelld on stressi. Anna ei ole
aikaa puhumaan Jutan kanssa, koska korjata tule
hénen kotiinsa. Annalla ei ole siihen jokin hyvi
syy, koska pesukone on rikki, pesukone on siihen
jokin hyvd syy. Minusta Anna on kateellinen,
koska Juttasta Anssi on hauska mies.

I belives thatt, Anna is now so different than usu-
ally, because she is stressed. Anna is no time talk-
ing with Jutta, because repair come to her house.
Anna has not some good reason for this, because
the laundry machine is broken, the laundry ma-
chine is a good reason for that. I think Anna is
jealous, because according Jutta Anssi is a fun guy.

Table 1: An example text from the ICLFI corpus (CEFR level A1). The Finnish text is on the left with an approximate
English translation on the right. The intended meaning is not entirely clear, because one sentence contradicts itself.

3 Models

Three different commercial LLM systems were
tested in this study: Claude vl by Anthropic*,
as well as GPT-3.5 (turbo) and GPT-4 by Open
AI (OpenAl, 2023).> The LLMs were accessed
through their APIs (application programming inter-
faces), Claude at the end of June and GPT-3.5 and
GPT-4 at the end of July and beginning of August
2023. The models were prompted to reformulate
the learner texts into fluent, impeccable Finnish
language that contains no factual or grammatical
errors. The exact prompts used can be found in
Appendix A. Each prompt contained an entire text
in order for the model to be able to exploit context
across sentence boundaries.

The LLMs are non-deterministic by default.
There is a so-called temperature parameter rang-
ing between 0 and 1 that regulates the randomness
of the output. A low temperature is expected to
produce the most probable and predictable result,
whereas higher temperatures increase creativity.®

We have tested each of the LL.Ms on six differ-
ent temperature values: 0.0, 0.1, ..., 0.5. Every
configuration was run twice, because of the non-
deterministic nature of the task. Even with the
lowest temperature of 0.0, the systems were not
fully deterministic, and some variability remained
in the output. This left us with 36 correction hy-
potheses for each of the 25 texts (3 LLMs times 6
temperature values times 2 runs each).

In the following, we will refer to these 36 setups
as our models or single models. Naturally, models
may agree amongst each other and produce the
same hypotheses, so the total number of unique
hypotheses is typically lower than 36.

to be used as a proper reference.
*https://claudeai.pro/what-is-claude-v1/
Shttps://platform.openai.com/
6h'ctps ://platform.openai.com/docs/guides/gpt/
how-should-i-set-the-temperature-parameter

4 Single Model Results

The 36 correction hypotheses produced by the
LLMs for each of the 25 learner texts were tagged
as correct or incorrect by the authors of the paper.
The tagging was performed on sentence level: ei-
ther a sentence was fully correct or it was incorrect,
considering the context of surrounding sentences.
Table 2 shows one proposed correction of a text ac-
companied by an English translation and illustrates
some challenges related to the annotation.

The accuracies of the 36 single models have
been plotted in Figure 1. The results reveal two
things: Firstly, there are clear differences in the per-
formance levels of the LLMs. Virtually, all GPT-4
models are better than all GPT-3.5 models, which
are in turn better than all Claude models. Secondly,
the temperature parameter works as expected. Con-
servative, predictive results are to be preferred in
this correction task, and thus lower temperatures
work better than higher temperatures. However, the
best results are in general obtained for 7' = 0.1,
not the lowest possible value 7' = 0.0.

5 Ensemble Models

The best single model produces 173 correct sen-
tences out of 210 (82.4 %). However, if look at all
36 models combined, there are only 6 sentences
that all models get wrong. This suggests that by
being very smart at combining sentences from dif-
ferent models, we could ideally reach an accuracy
of 204/210 (97.1 %). In the following, we will
study supervised learning of ensemble models that
combine outputs from the single models.

Our approach makes the simplifying assump-
tion that sentences from different hypotheses can
always be combined. For instance, in a fictive sce-
nario, where Model 1 proposes the partly correct
text “Hi there! How’s you?” and Model 2 proposes
the partly correct text “Helo! How are you?”, it
would be possible to concatenate the correct parts



https://claudeai.pro/what-is-claude-v1/
https://platform.openai.com/
https://platform.openai.com/docs/guides/gpt/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/gpt/how-should-i-set-the-temperature-parameter

Minusta tuntuu, ettd Anna on nyt erilainen kuin
yleensd, koska hén on stressaantunut. Annalla ei
ole aikaa jutella Jutan kanssa, silld hinen kotiaan ol-
laan korjaamassa. T@hén on hyvi syy: pesukone on
rikki. Pesukoneen rikkoutuminen on siis hyvé syy.
Minusta tuntuu, ettd Anna on kateellinen, koska
hinestd Anssi on hauska mies.

I think that Anna is now different than usual, be-
cause she is stressed. Anna doesn’t have time to
talk to Jutta, because her house is being repaired.
There is a good reason for this: the laundry ma-
chine is broken. The broken laundry machine is
indeed a good reason. I think Anna is jealous, be-
cause she thinks Anssi is a fun guy.

Table 2: The correction of the text in Table 1 as proposed by one of the models (GPT-3.5, T' = 0.5, 1st run). Even
though there may be other more likely interpretations, all but the last sentence were annotated as correct. The last
sentence was considered incorrect, because the original text explicitly states that Anna is jealous that not herself, but
Jutta likes Anssi. Regarding the house being repaired when the laundry machine is broken, the original text is not
clear. Apparently something needs to be fixed in the house because of the broken laundry machine, and therefore

that sentence was annotated as correct.
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Figure 1: Accuracies of each of the 36 single models.
Every model is represented by a dot, and the dots are
grouped in "swarms" by LLM type. In every swarm,
we progress from left to right as the temperature (17)
rises, with higher temperatures rendered in darker color.
The best model (GPT-4, T" = 0.1, 1st run) reaches
an accuracy of 0.824, which corresponds to 173 fully
correct sentences out of 210 in the data.

from each hypothesis to produce a coherent, correct
new text: “Hi there! How are you?”’

We formulate the problem as a classification task.
For every original sentence in the input, each of the
36 models has produced a correction hypothesis,
which has been labeled as either correct or incorrect
by the annotator. Typically the number of unique
hypotheses is lower than 36, because several mod-
els produce the same hypotheses. This information
can be exploited to train a classifier that predicts
when a hypothesis is correct based on the subset of
models that have proposed it, as illustrated in Fig-
ure 2. During training, the classifier will hopefully
learn which models are more reliable than others
and discover useful patterns of agreement between
models. When the classifier is used for prediction,
we proceed sentence by sentence and choose the
proposed correction that the classifier assigns the
highest likelihood of being correct.

As there is a very limited amount of data avail-
able, we do not set aside a separate test set. Instead,
we use cross-validation such that every learner text
in turn serves as the test set and the remaining 24
texts are used for training. In this way, we obtain
test results for all 25 texts and can study how our en-
semble models perform in comparison to the single
models.

The classifiers that we study are described in the
following sections. Due to the limited amount of
data, we need to restrict ourselves to fairly simple

" Alternatively, we could work on full texts without divid-
ing them into sentences. However, this would be a very crude
measure, as we only have 25 texts in total. Additionally, the
lengths of the texts vary considerably (between 1 and 15 sen-
tences), and the shorter texts are more likely to be successfully
corrected. As we are interested in more fine-grained analysis,
where units of similar size are compared, we decided to work
on sentence level instead.
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Figure 2: Possible correction hypotheses for a fictive
sentence “How yuo are?” (in English for illustration
purposes). Among other things, we see that models 1,
3, 5 and 6 propose the first correction hypothesis “How
are you?”, which is correct, whereas model 36 proposes
“How you are?”, which is incorrect. From this example
we get five data entries to train a supervised classifica-
tion model. The inputs consist of 36-dimensional binary
vectors, where every dimension corresponds to one of
the models and is zero or one depending on whether that
model produced this particular hypothesis. The outputs
are binary as well, indicating whether the hypothesis is
correct or not.

classifiers with a small numbers of parameters to
tune, in order to avoid overfitting to the training
set.

5.1 Naive Bayes

The first classifier we test is Naive Bayes, using the
implementation of the NLTK library (Bird et al.,
2019). The 36 individual models being “on” or “off”
serve as features as shown in Figure 2. The training
of the classifier amounts to solving a closed-form
expression, which means that the classifier is not
too sensitive to the size of the data set. However,
the underlying independence assumption is a sim-
plification that may lead to the exaggeration of the
effect of correlated features.

5.2 Maximum Entropy

We also test logistic regression using the Maximum
Entropy classifier of NLTK. This classifier does not
assume conditional independence, but since it does
not have a closed-form solution, it may end up
learning a suboptimal set of weights.

5.3 Weighted Sum

As we are not sure whether the Maximum Entropy
classifier converges to an optimal solution on our
limited data set, we decided to try a simplified, de-
terministic approach as well. We estimate a weight
vector w of the same dimensionality as our binary
correction hypothesis vectors z. During prediction,

when correction hypotheses are compared, the one
with the highest score s is selected: s = w - x.

The elements w; of w correspond to the promi-
nence of the ith model in the weighted sum. The
value of wj; is estimated from the training set. Each
time Model 7 proposes a hypothesis that is correct,
w; is increased by 1/n, where n is the number of
models that propose the same hypothesis. That is,
if a model is the only one proposing a correct hy-
pothesis, then it will get the full “point”, but if the
same hypothesis was also proposed by nine other
models, then all these models will get 1/10 of a
“point” each. This mitigates the effect of correlated
features.

5.4 N Agreeing Models

To explicitly model correlated features we studied
another type of classifier, an asymmetric decision
tree that branches onto one side only (“if con-
dition 1 then done else if condition 2 then
done else if condition 3 then done ... else
done™).

The last fallback condition (last else clause) cor-
responds to using the best single model on the data.
However, which single model is the best is deter-
mined from the training set, so it is not guaranteed
to also be the most accurate single model on the
test set.

The preceding conditions in the if - else chain
correspond to all combinations of 2.. N models
that are more accurate than the best single model
when they are in agreement on what hypothesis
to propose. These model combinations are sorted,
most accurate first.

For instance, imagine that the best single model
is Model 30, and it suggests a hypothesis that is
correct for 80 % of the sentences in the training set.
It also turns out that in all cases where Models 17
and 31 agree on a hypothesis, that hypothesis is
correct in 89 % of the cases. And if Models 17, 25
and 26 agree on a hypothesis, then that hypothesis
is correct for 95 % of all such occurrences in the
training set. These conditions are sorted, highest
accuracy first, such that the classifier first checks
if the three models 17, 25 and 26 agree, in which
case their proposed hypothesis is chosen. If not,
the pair of models 17 and 31 is examined next and
if they agree, their hypothesis is selected. Only if
none of these conditions are fulfilled, the hypothe-
sis proposed by Model 30 is used.

We have tested N values ranging from 2 to 5,
that is, pairs, triples, quadruples and quintuples of



models. For higher values of N, all lower-order
combinations of models are also included. We
will not report results for quintuples (N = 5), as
their results are identical to those of the quadruples
(N =4).

For the pairs of models (/N = 2), we have addi-
tionally tested a minor variant (/N = 2%), in which
the conditions in the if - else chain are ordered
differently. In the N = 2 classifier, the accuracies
of the model pairs are calculated on the full train-
ing set “statically” and ordered accordingly. In the
training of the N = 2* classifier, the most accu-
rate model pair is put as the first condition, but after
this the accuracies of all other pairs are recalculated
“dynamically” on the remainder of the training set,
from which the data points that triggered the first
condition have been removed. This is repeated at
every step until we reach the final fallback single
model ®

A further tested variant consists in replacing the
fallback single model with the Naive Bayes classi-
fier (Section 5.1). The results that we report are in
fact based on this variant, since it produced slightly
higher accuracies.

6 Ensemble Model Results

The accuracies obtained by the ensemble models
are shown in Figure 3 together with the results
from the individual single models. Much to our de-
light, we observe that some of the ensemble models
(N = 2, 3,4) do outperform the best single model,
whereas the others (/N = 2*, Naive Bayes, Maxi-
mum Entropy and Weighted Sum) do not. However,
the best ensemble model is not radically better than
the best single model. Can we do better?

We have observed that the Claude models per-
form worst in the task and that low temperatures
are to be preferred. In our next experiment we
reduce the set of single models that are included
in the ensemble model. That is, we leave out the
Claude models and temperatures above 0.3. The
results are shown in Figure 4. Now, the advantage
between the best ensemble model (N = 2*) and
best single model grows (0.857 vs. 0.824). In other
words, the sentence error rate is reduced by 18.8 %,
which does make a difference. This difference is
statistically significant at the 90 % confidence level,
which is decent considering the limited size of the
data set.

8We did not test a similar approach on higher values of

N than 2. Therefore, we do not have classifiers called N =
3%, 4", 5%,
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Figure 3: The single models (from Figure 1; in red) plot-
ted together with the ensemble models (in blue-green).
The best performing ensemble model is N = 3 with an
accuracy of 0.838. Also the models N =4 and N = 2
outperform the best single model by a slight margin
(accuracies 0.833 and 0.829 respectively, compared to
the best single model at 0.824).
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Figure 4: Ensemble models (in blue-green) created from
a smaller set of single models (in red), based on GPT-3.5
and GPT-4 only (T' < 0.4). The best ensemble model
N = 2* obtains an accuracy of 0.857. Second best is
the weighted sum at 0.848.



6.1 What Rules Are Learned?

The N = 2* model with the accuracy of 0.857
is the best result we have obtained in our trials
involving different combinations of LLMs and tem-
perature values. Therefore it is interesting to see
what kind of rules are learned. By rules we under-
stand the conditions put in the if - else chain,
which here correspond to pairs of agreeing single
models.

We will, however, need to study 25 separate rule
sequences, since we run 25 tests, each time with
a different test set and a slightly different training
set. Luckily, the differences between the runs are
very small. Consistently, the top half of the rules
combine a GPT-3.5 and a GPT-4 model, whereas
the rest of the rules combine single models of the
same type (GPT-3.5 with GPT-3.5 and GPT-4 with
GPT-4). This suggests that the most reliable, accu-
rate signal is obtained when different LLM types
are combined. In other words, two different LLMs
(GPT-3.5 and GPT-4) complement each other bet-
ter than repeated runs with the same LLM, at the
same or different temperatures.

6.2 GPT-3.5 + Claude?

Encouraged by the results from combining GPT-
3.5 with GPT-4, can we benefit from combining
GPT-3.5 with Claude as well? If, for some reason,
we do not have access to the best available LLM
(GPT-4), can we compensate by using an ensemble
of weaker LLMs (GPT-3.5 and Claude)?
Unfortunately, this does not seem possible. The
highest accuracy we have observed for an ensemble
of GPT-3.5 and Claude models is 0.762. It is no
better than an ensemble of GPT-3.5 models alone,
which reaches the same accuracy. This accuracy
is indeed better than that of any single Claude or
GPT-3.5 model (best Claude: 0.667, best GPT-3.5:
0.752). Compared to the single GPT-4 models,
however, it outperforms only one out of twelve and
is far below the best single GPT-4 model at 0.824.

6.3 Other Lessons Learned

The Naive Bayes and Maximum Entropy classi-
fiers did not outperform the single models in our
experiments. Possibly, the training sets were insuf-
ficient, or these classifiers simply failed to capture
the correlations between features accurately. The
Naive Bayes classifier did, however, prove useful
as the fallback model in our /N-agreeing-models
decision-tree approach.

We further tested “standard”, symmetric deci-
sion trees, using information gain as a splitting
criterion for features. Their learning ability was
poor on this task.

We also tested pruning of overlapping patterns
in our NV-agreeing-models implementation, but this
had no effect on the results. Overlapping patterns
emerge, for instance, if a quadruple of single mod-
els contains a triple of single models as its sub-
set and this triple is as accurate as the quadruple.
Then the quadruple is superfluous. Alternatively,
if the triple never occurs in other contexts than the
quadruple, then the triple can be considered super-
fluous.

The size of the training set appears to affect
which models perform the best. With the full data
set available (Figure 3), higher values of NV are at
the top, and the Weighted Sum model is the worst
(of the reported ones). When part of the data points
are dropped (Figure 4), the accuracy does not in-
crease with higher values of N. N = 2* is now at
the top and the Weighted Sum is second best.

7 Related Work

Bryant et al. (2023) have compiled an overview
of the state of art in grammatical error correction.
This survey covers data sets (predominantly in En-
glish) as well as approaches commonly used to
solve the task, most importantly: classifiers, sta-
tistical machine translation, neural machine trans-
lation, edit-based approaches and language mod-
els. Unfortunately, the article was written before
the breakthrough of GPT-3.5 and GPT-4, and ob-
servations regarding LL.Ms are therefore limited.
The survey mentions small-scale experiments (Wu
et al., 2023; Coyne et al., 2023), which generally
conclude that LLLMs have a tendency to overcorrect
for fluency, which causes them to underperform on
datasets that were developed for minimal correc-
tions (Fang et al., 2023). This raises the question
whether the standard test sets for (English) GEC
are good benchmarks or whether more challenging
sets should be devised for the evaluation of more
advanced error correction.

7.1 GPT Model Performance

Coyne et al. (2023) study English GEC using GPT-
3.5 and GPT-4 on the BEA-2019 shared task data
set (Bryant et al., 2019) and JFLEG (Napoles et al.,
2017). The authors work on sentences in isolation
without context. Their study focuses on prompt



engineering and includes both automatic and hu-
man evaluation. In line with our results they con-
clude that the tested models demonstrate strong
performance and that a low temperature is consis-
tently associated with better performance in this
task. GPT-4 performs slightly better than GPT-3.5.
On the JFLEG set, GPT-4 produces the highest
score yet reported.

Fang et al. (2023) perform correction of not only
sentences in isolation, but also of documents, as
we do. They also extend their study to German
and Chinese data sets. They use ChatGPT as their
LLM, which corresponds most closely to the GPT-
3.5 (turbo) version that we have used. They find
that the sentences corrected by ChatGPT exhibit a
high level of fluency and naturalness, but the sys-
tem “performs poorly on most error types, such
as agreement, coreference, tense errors across sen-
tences, and cross-sentence boundary errors.” We
believe that GPT-4 would have done a better job at
fixing this type of errors.

Penteado and Perez (2023) compare GPT-3.5
and GPT-4 against the spelling and grammar error
correction features in Google Docs and Microsoft
Word for Brazilian Portuguese. In line with the
other studies, they observe that LLMs prioritize
fluency and coherence over grammatical accuracy,
leading to unnecessary changes to the text, increas-
ing false positives. Therefore, higher precision is
obtained by rule-based methods that have a nar-
rower focus on grammatical accuracy and make
changes only when necessary. However, GPT-3.5
and GPT-4 clearly outperform Microsoft Word and
Google Docs on the more challenging texts that
had been typed fast or contain slang, abbreviations,
and neologisms.

7.2 Claude

We have not found work on GEC, where the Claude
LLM would have been assessed. Lin and Chen
(2023) evaluate open-domain conversations with
large language models. They assess performance
on four so-called “dimensions”: appropriateness,
content, grammar, and relevance. They test Claude
(v1.3) and ChatGPT, which are optimized for chat
applications, as well as GPT-3.5, which is not.
When comparing the Claude and ChatGPT mod-
els, both models demonstrate competitive perfor-
mance across different evaluation dimensions, with
Claude slightly outperforming ChatGPT in certain
configurations.

Several blog posts compare LL.Ms. The applica-

tions of interest vary and the rigorousness of the
analyses can be questioned. Garst (2023) com-
pares the latest version of Claude (v2) to GPT-4
and thinks that Claude 2 shines in key areas, but
GPT-4 still leads in general performance: “For nat-
ural language processing broadly, GPT-4 remains
state-of-the-art. Its sheer model scale and training
on a massive internet corpus make it hard to match
for conversing, writing, and answering open-ended
questions.” This is in line with our own observa-
tions, although we have used an earlier version of
Claude that is allegedly not as strong as Claude 2.

7.3 Ensemble Models

Ensemble models have proven effective in GEC
tasks. Unlike our approach, where we select one
sentence from a number of proposed sentences,
many systems compare individual proposed cor-
rections (edits) to an annotated reference, such as
changing the inflection of a word (for instance,
played to playing). Given the reference, it is pos-
sible to estimate the precision for specific error
types of different single models, and the final hy-
pothesis can combine edits from the different sin-
gle models. This naturally requires the existence
of annotated training data, which we do not have.
Li et al. (2019) investigate classification models
with bi-directional recurrent neural networks (Bi-
RNN) and neural machine translation (NMT) mod-
els. Some rules are also involved. Their GEC
systems ranked the first in the Unrestricted Track
of the BEA-2019 GEC Shared Task (Bryant et al.,
2019), and the third in both the Restricted Track
and the Low Resource Track. Grundkiewicz and
Junczys-Dowmunt (2018) test a variety of ensem-
ble techniques, which combine statistical and neu-
ral machine translation as well as a spell-checking
component.

In more recent work, Tang et al. (2023) study
ensembles of pre-trained language models for Chi-
nese (BART, BERT, GPT-2 etc). Sentence- and
edit-level ensembles as well as voting techniques
are tested, but the ensemble models do not outper-
form the best single models.

We have found only little work on ensemble
models built on GPT-3.5 or GPT-4 and none of it
addresses the GEC task. Jiang et al. (2023) propose
an ensemble learning model for ranking and fus-
ing the outputs from multiple LLMs in instruction-
following tasks. However, they use ChatGPT as
a reference for ranking other models, not as one
of the models in the ensemble. Yuan et al. (2023)



utilize GPT-3 (Brown et al., 2020) to generate ques-
tions to given answers in given contexts. Different
approaches to choosing the best generated question
are tested. Fu et al. (2023) work on visual ques-
tion answering, where pretrained language mod-
els first generate a set of possible answers, and a
lightweight answer selection model is then trained
to identify the correct answer from the set. Further
works of interest that involve combinations of dif-
ferent LLMs include hierarchical ensembles of TS
models for summarization (Manakul et al., 2023),
ensemble learning of mainly BERT-based LLMs
for sentiment analysis of low-resource African lan-
guages (Garcfa-Diaz et al., 2023), and multiple-
prompt agreement confidence scores in question-
answering tasks (Portillo Wightman et al., 2023).

7.4 Finnish GEC

Finnish spell checking based on finite-state tech-
nology (Pirinen, 2014) as well as grammar check-
ing based on constraint grammar (Karlsson, 1990)
have a long history, but systematic research on
Finnish grammatical error correction is very scarce
because of the lack of annotated data sets. The
ICLFI (Jantunen et al., 2013) and TopLing (Uni-
versity of Jyviskyld, 2016) corpora consist of au-
thentic, anonymized learner texts, but there are no
correction hypotheses available for model training
or testing. There used to be an additional resource,
the so-called YKI corpus based on Finnish national
certificates of language proficiency exams, but it is
unfortunately no longer available because of copy-
right issues.

An annotated sample of the (since then with-
drawn) YKI corpus was used as test data in pre-
vious Finnish GEC studies (self-citation omitted).
The full-sentence accuracy obtained for the best
setup was 27.2 %, which falls far behind the figures
reported in the current work. Even if conditions
are relaxed slightly by allowing a few “minor er-
rors”, the accuracy reaches only 44.5 %. Direct
comparisons cannot be made because of the differ-
ent corpora used in the studies. However, the types
of texts and levels of the learners are very similar
in both setups, and we can therefore say with a
high level of certitude that the current GPT models
are far better than our earlier models at producing
corrections that are grammatical, fluent and natural
in context.

8 Discussion and Conclusion

In general, we are happy with the accuracies ob-
tained in our experiments, especially by the best
GPT-4 and ensemble models. The theoretical upper
bound on accuracy by an oracle model would be
97.1 %, and our best ensemble reached 85.7 %.

In line with related work, we were able to con-
firm that lower temperatures are to be preferred in
text correction tasks. However, API access to the
LLMs tested in this work has only been publicly
available for a few months, and it is difficult to find
relevant related publications. Some of the cited
work needs to undergo peer review and is so far
only available on arxiv.org.

The conduction of the experiments was made
more difficult by the lack of gold-standard refer-
ence corrections of the texts. Our own annota-
tion scheme was simple, as it sufficed to determine
whether a sentence was fully correct or not. How-
ever, despite the rather small data set (210 sen-
tences), each time a model was run on the data, the
resulting correction hypotheses had to be annotated
manually, and there were 36 such runs in total.

A set of verified gold-standard corrections would
allow for automatic evaluation and speed up the
testing of further models and configurations. As
there are typically multiple correct answers, a multi-
reference gold-standard would be ideal. A possible
continuation of our work could be to produce such
gold-standard sets nearly automatically. Highly
accurate correction hypotheses would be generated
by the best single and ensemble models. Humans
would verify the correctness and post-edit, when
necessary. There are other possible approaches
as well, involving multiple rounds of prompting,
where the LLMs are requested to refine their earlier
outputs.

9 Limitations

The size of the data set in this study is small (25
learner texts consisting of 210 sentences in to-
tal). This means that very fine-grained conclusions
cannot be made, since some observed differences
are not statistically significant. Nevertheless, the
higher-level distinctions are statistical significant,
such as the difference in performance between the
different types of LLMs. We have also chosen to
visualize all individual test results in plots, which
helps to give a better sense of proportions.

A larger data set would have been preferred, but
this would also have required a heavier annotation



effort (see Section 8). In addition, we would have
liked to run more tests with identical configura-
tions (same LLM at same temperature). Since the
LLMs are non-deterministic, results change from
one run to another. We ran each unique configura-
tion twice. To our understanding, the runs should
be independent of each other, but we are unable
to exclude the possibility of an ordering effect as
far as the Claude models are concerned (see Ap-
pendix B). Additional runs could bring clarity into
this potential issue.

Some prompt engineering was performed quali-
tatively, but no systematic quantitative evaluation
of the effect of changing the prompts was per-
formed (see Appendix A).

A new version of Claude, Claude 2.0, was pub-
lished after we had generated correction hypotheses
using Claude v1. We did not redo the experiments
using Claude 2.0.

In this work, sentence accuracy is used as the
evaluation metric. Analyzing the precision and
recall of the corrections of individual errors or error
types is beyond the scope of this study. In other
words, our aim is not to assess how well different
types of grammar errors or misspelled words are
corrected. The aim is to look at the end result and
investigate to what extent challenging learner texts
can be reformulated into natural, correct, idiomatic
language.

10 Ethical Considerations

The data set used in this study is a subset of the
International Corpus of Learning Finnish (ICLFI).
The corpus has been curated from authentic texts
written by students of the Finnish language at inter-
national universities. The identities of the authors
have nonetheless been protected. Names of people
and places have been anonymized and we have not
had access to the original names.

Large language models are trained on very large
amounts of text data and may therefore learn harm-
ful biases and prejudices that are reflected in some
portions of the training data. We have not, however,
observed any such tendencies in the texts generated
by the LLMs in our experiments.
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Appendices
A Prompts

The following zero-shot prompt, written in Finnish,
was utilized to ask GPT-3.5 and GPT-4 to produce
corrected texts:

Hei! Korjaisitko seuraavan tekstin
siten, etta siita tulee sujuvaa,
erinomaista suomen kielta eika sisalla
asiavirheitd eik3 kielioppivirheitad. Al3

kirjoita ylimaaraista tekstia. Pelkka
korjattu teksti riittaa. Tekstin
alku:\n <LEARNER TEXT GOES HERE>\n Teksti
paattyy.

In English the prompt reads: Hi, could you
please correct the following text in such a way that
it becomes fluent, impeccable Finnish language
and does not contain factual errors or grammar
errors. Do not write superfluous text. Just the cor-
rected text is enough. Start of the text:\n <LEARNER
TEXT GOES HERE> \n Text ends.

The same prompt was basically used for the
Claude LLM as well, with the exception that
Claude encourages the use of the keywords “Hu-

man:” and “Assistant:” to mark the roles in the
dialog:
\n\nHuman: Hei! Korjaisitko seuraavan

tekstin siten, etta siita tulee sujuvaa,
erinomaista suomen kielta eika sisalla
asiavirheit3 eik3 kielioppivirheitid. Al3
kirjoita ylimaaraista tekstia. Pelkka
korjattu teksti riittaa.\n <LEARNER TEXT
GOES HERE>\n\nAssistant:

Some exploratory prompt engineering went into
the design of the final prompt, but we did not eval-
uate the results quantitatively on a test set. Specifi-
cally, we observed that the LLMs tended to embed
their answers in polite phrases to create the im-
pression of a natural dialog. Therefore the prompt
was modified to explicitly state that only the actual
correction hypothesis was desired in the output.

B Random Fluctuation

We obtained 36 versions of corrected texts for ev-
ery learner text. Three LLMs were used with six
temperature values each, and every such configu-
ration was run twice. That is, every prompt was
submitted twice to the same LLM with the same
temperature.

As the LLMs are non-deterministic by nature,
we expect results to be slightly different on every
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Figure 5: Accuracies obtained for all the single mod-
els. The data points are exactly the same as in Figure 1,
but they have been grouped into “swarms” differently.
Rather than using temperature as the categorizing fea-
ture, we now study whether the result was produced by
running the configuration for the first or the second time.
Thus, for every LLM, there are six dots in light color
from running the prompts with six different tempera-
tures for the first time, and six dots in dark color, from
running the same setup again. If there is no systematic
ordering effect, the averages from both runs should be
approximately the same.

run. However, there should not be a systematic
difference, such that better (or worse) results are
consistently obtained the first (or second) time the
same configuration is used. The accuracies pro-
duced by all single models are plotted in Figure 5,
organized by runs (first or second).

Statistical significance tests reject the hypothesis
that the GPT models are effected by the order of
the runs. Interestingly enough, this may not be true
for Claude, where higher accuracies were obtained
in the first run than in the second (p value of sign
test: 0.0625). Further runs would be required to un-
derstand if this outcome is systematic or occurred
by chance after all. Fortunately, this type of unex-
pected behavior was only observed for the model
that was consistently the weakest one and had the
least potential for solving the task.
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