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ABSTRACT

Layer normalization (LN) is a milestone technique in deep learning and has been
widely used in various network architectures. It performs centering and scaling
over the layer activations of a neural network for each example, stabilizing and ac-
celerating the training of neural network. However, it introduces extra computation
cost during inference and the computation problem has recently been addressed
by its counterpart RMSNorm that only adopts scaling. This paper investigates
how to exploit the theoretical advantages of LN but with the cost of RMSNorm.
This paper formally defines the condition that the centering operation of LN can
be removed and this condition can be obtained by imposing the column centering
constraint on the adjacent linear module before the LN. We propose column cen-
tered weight transformation (CCWT) to ensure an LN without centering operation
(i.e., RMSNorm) have the same output as the original one in a pre-trained model.
Our method can be directly applied to various pre-trained large language models
(LLMs) and large vision language models (VLMs) with LN, enabling an immediate
reduction in computation cost meanwhile maintaining equivalent prediction during
inference. We further propose a reparameterization method, called column based
weight centering (CBWC), to ensure the linear module column centered during
training. We show that RMSNorm combining CBWC can obtain an equivalent
effects to the LN counterpart during training, but with more efficient computation.

1 INTRODUCTION

Normalization techniques are extensively used in deep neural networks (DNNs) for stabilizing and
accelerating the training (Huang et al., 2023). As a seminar work, Batch Normalization (BN) (Ioffe
& Szegedy, 2015) improves DNNs’ training stability and optimization efficiency by standardizing
(centering and scaling) the activations of intermediate DNN layers within a mini-batch of data
during training. It uses the population statistics for normalization during inference and this operation
can be folded into the adjacent linear layers (Jacob et al., 2018), avoiding the introduction of
additional computation cost during inference. In spite of many merits, BN also suffers from the
train-inference inconsistent problem, leading to significantly degenerated performance under the
scenarios of small-batch size training and domain shifted distributions (Huang et al., 2023). Layer
normalization (LN) (Ba et al., 2016) addresses the train-inference inconsistency problem of BN and
standardizes the layer input within the neurons for each sample. It has become the key component of
Transformer (Vaswani et al., 2017) and its variants (Dai et al., 2019; Xiong et al., 2020; Dosovitskiy
et al., 2021), spreading from the Natural Language Processing (NLP) (Radford et al., 2018; Devlin
et al., 2019; Raffel et al., 2020) to Computer Vision (CV) (Dosovitskiy et al., 2021; Carion et al., 2020;
Cheng et al., 2022) communities. LN has got its firm position (Huang et al., 2023) in the evolution
of neural architectures and is currently a basic layer in most of the foundation models (Brown
et al., 2020; Alayrac et al., 2022; Kirillov et al., 2023). However, it has to perform the additional
standardization during inference, which introduces significant computational cost.

To addresses the computational issue of LN, RMSNorm (Zhang & Sennrich, 2019) is proposed to
perform scaling-only operation and is reported to reduce the running time of LN by 7% ∼ 64%
on different models, according to the experiments in (Zhang & Sennrich, 2019). Despite its great
potential in practice for computational efficiency and wide application in various architectures (Zhang
et al., 2024; Team et al., 2024; Mehta et al., 2024), RMSNorm is likely to miss the theoretical
merits of centering operation in improving conditioning, which is widely investigated in previous
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work (LeCun et al., 1990; Schraudolph, 1998; Montavon & Müller, 2012; Huang et al., 2017). This
raises a question that how we can exploit the theoretical advantages of LN but with the computational
cost of RMSNorm.

This paper first formally defines the condition that the centering operation of LN can be removed.
The condition requires that the input to LN is zero centered of neurons for each sample, so that the
removal of centering in LN does not affects the functionality of the network. This condition can be
obtained by imposing the column centering constraint on the adjacent linear modules before the LN.

We show that we can satisfy the condition by performing a simple column centered weight transfor-
mation (CCWT) for a pre-trained model during inference. This method can ensure an LN without
centering operation (i.e., RMSNorm) have the same output as the original one in a pre-trained model.
We provide a general method to check whether the centering operation of LN can be removed in
a network. We show most of LNs in currently widely used architectures can remove the centering
operation, which provides a straightforward benefit in reducing the computation cost during inference.
This solution can be directly applied to various pre-trained large language models (LLMs) and large
vision language models (VLMs) with LN, enabling an immediate reduction in computation cost
without affecting the predictions.

We further propose a reparameterization method, called column based weight centering (CBWC),
to ensure the linear module column centered during training. We show that ’CBWC+RMSNorm’
obtains an equivalent effects to the original LN counterpart during training, but with more efficient
computation. A network with ’CBWC+RMSNorm’ have equivalent training dynamics to the network
with LN, if the LN satisfies the condition that centering operation can be removed. We also conducted
experiments to show the effectiveness of ’CBWC+RMSNorm’ when replacing LN, even though the
LN can not satisfy the condition.

2 NOTATION AND PRELIMINARY

We use x ∈ R, x ∈ Rd and X ∈ Rm×d to denote scalar, vector and matrix respectively, where R
refers to the set of real numbers, and m, d are positive integers. 111d stands for a d-dimension all-one
column vector.

Neural Network. A neural network can be represented as a function f(x; θ), where x is the input
and θ is the set of all learnable parameters. Take an L-layers multilayer perceptron (MLP) as an
example, fθ(x) consists of stacked linear and nonlinear layers as follows:

hl = W lxl−1, (1)

xl = φ(hl), l = 1, . . . , L, (2)

where the input x = x0, the output f(x; θ) = hL = xL and the learnable parameters θ = {W l, l =
1, ..., L}1. For each layer, dl indicates the number of neurons in the l-th layer. We have pre-activation
hl ∈ Rdl and the activation xl ∈ Rdl .

Layer Normalization. Layer normalization is a basic module in modern DNNs. For a certain layer
input x = [x1, x2, . . . , xd]

⊤ ∈ Rd, LN standardizes x among the d neurons by performing centering
and scaling as:2

Centering: x̃j = xj − µ, j = 1, 2, . . . , d, (3)

Scaling: x̂j =
x̃j√
σ2 + ϵ

, j = 1, 2, . . . , d, (4)

where µ = 1
d

d∑
i=1

xj is the mean of x and σ2 = 1
d

d∑
i=1

x̃2j is the second-order moment of x̃. Centering

ensures zero-mean property among neurons of the input, while scaling ensures unit second-order
moment property among input elements. LN is usually placed after the linear layer, i.e., normalizing
the pre-activation in Eqn. 1.

1We omitted bias for simplicity, please refer to Appendix A.2 for more details.
2In practice, LN have an extra learnable affine transformation after standardization, which we omit here for

simplification. Here, ϵ is a parameter which prevents the denominator from becoming 0.
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RMSNorm To reduce the computational usage of layer normalization, Zhang & Sennrich (2019)
introduced RMSNorm, with only scaling. RMSNorm is equivalent to scaling—it regard the input as
x̃, and get x̂ by Eqn.4 directly.

Layer normalization is widely used and achieves excellent performance, but a main problem is its
high computational usage. According to the similarity of RMSNorm and LN, we aim to address
the issue of high computational cost associated with LN, by replacing it with RMSNorm. However,
simple replacements can have potential risks, with decline in performance and adverse effect in
training dynamic. In this paper, we first introduce a framework in removing the centering of LN
(Section 3). We then discuss the conditions and results in safely replacing LN with RMSNorm in
inference (Section 4) and training (Section 5).

3 A FRAMEWORK IN REMOVING THE CENTERING OF LN

In this section, we turn to find a way to simplify LN with the computation efficiency of RMSNorm, but
with an equivalent performance.We first introduce redundant centering as the condition of equivalent
performance. We then propose column centered constraints for linear modules to ensure redundant
centering.

3.1 REDUNDANT CENTERING

Apparently, we can change LN into RMSNorm, if RMSNorm is capable of achieving equivalent
results. Intuitively, with a zero-mean input, RMSNorm will have the same output with LN. Under this
situation, we can consider that RMSNorm acts as a scaling operation and, thus, LN has a centering
with no effect. Here, we define redundant centering.
Definition 1. (Redundant Centering in LN.) For any module f(x;θ) and an LN directly connected
to it, where x and θ ∈ Θ refers to the input and parameter respectively. We define the centering
operation in this LN is redundant, if

RMSNorm(f(x;θ)) = LN(f(x;θ)),∀x. (5)

In other words, if we accomplish the effect of a centering operation in a layer normalization in
the module before, we denote that this centering operation is redundant. Therefore, satisfying the
condition of a redundant centering, we can delete centering by using RMSNorm in place of LN, and
reduce the computation usage.

We thus delve into into a methodology to establish a redundant centering operation.

3.2 COLUMN CENTERED CONSTRAINT AND ZERO-MEAN PROPERTY

According to the definition, a redundant centering is independent with the input data. Under this idea,
we propose to impose constraint onto the parameter θ ∈ Θ. By selecting constraints that endow θ
with a particular property, we aim to realize the centering effect before LN.

In practical neural networks, we divide the whole parameter space Θ into different subspaces, which
parameterize different modules. These modules are the basic components of the neural network. We
can classify the modules into linear modules and non-linear ones based on the transformation it
applies on samples. Therefore, we consider to impose the constrains on the parameters of single
modules respectively. Since most parameters lie in the linear modules, we propose column centered
constraint for the linear modules. Here, we take the linear layer as an example.
Definition 2. (Column Centered Constraint on Linear Layers.) A weight matrix W0 ∈ Rdl×dl−1 is
under the column centered constraint, if W0 satisfies

W0 ∈ Γmlp =

{
W :

dl∑
i=1

wi,j = 0, j = 1, 2, . . . , dl−1

}
, (6)

namely, the mean of all the weights wi,j , i = 1, . . . , dl for every input xj is zero.

We thus aim to demonstrate that the imposition of this particular constraint renders the centering
operation redundant. In the following, we will show that the column centered constraint on a linear
layer can obtain zero-mean output, achieving the effect of centering operation in a subsequent LN.

3
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Proposition 1. (Zero-mean Property of Column Centered Constraint.) Given a linear layer, if the
weight matrix is under column centered constraint, as shown in Definition 2, we figure out that its
output is zero-mean.

Proof. Given a certain input x ∈ Rdl−1 and the output of linear layer h ∈ Rdl . In this linear layer,
we have h = Wx. Under the constrain of Eqn.6, we have the mean of output h

µh =
1

dl

dl∑
i=1

hi =
1

dl

dl∑
i=1

dl−1∑
j=1

wi,j xj =
1

dl

dl−1∑
j=1

(
dl∑
i=1

wi,j

)
xj =

1

dl

dl−1∑
j=1

0 · xj = 0, (7)

namely, h is zero-mean.

Therefore, the column centered constraint can ensure zero-mean property of the output, including an
equivalent effect of a prior centering operation. By applying column centered constraint on a linear
layer, we can form a following redundant centering.

3.3 REGULABLE MODULES

For more general analysis, we delve into other linear modules that only include linear transformation,
for example recurrent layer with shared weights in RNN, convolution layer in CNN. We denote that
the core idea of designing a constraint on any linear module is to ensure the input weights are
zero-mean.

With the linearity, the zero-mean of input weight can always ensure the zero-mean of output, regardless
of the input. In this way, we transform zero-mean property from the data to the parameter, which is
always independent of the samples. In terms of the constraints and the proofs of zero-mean property
for recurrent layer and convolution layer, please refer to Appendix A.3 for details.

To be mentioned, despite that self-attention module is non-linear as it has softmax operation, we
can see it as a combination of linear and non-linear modules and make use of its posterior linear
component—matrix multiplication of V , thus construct the constraint.

Therefore, enlightened by the self-attention module, we then define regulable modules.
Definition 3. (Regulable Module.) A regulable module is a linear module or a sub-network ended
with a linear module.

The regulable modules here include linear modules, such as linear layers, recurrent layers and
convolution layers, and particular non-linear modules, such as self-attention modules. We can always
find a column centered constraint for each regulable module.

Group Normalization We also extend the constrains and conclusion to group normalization (Wu
& He, 2018)—a more general extenson of layer normalization. We demonstrated grouped column
centered constraint in Appendix A.4.

Consequencely, a regulable module under column centered constraint can form redundant centering
after it.

4 EQUIVALENT INFERENCE FOR PRE-TRAINED MODELS

In this section, we first propose a simple transformation to ensure the constraint for pre-trained models
during inference, based on the analyses in Section 3. We then define foldable LN and therefore we
introduce a general algorithm to detect how many LNs can be safely replaced without affecting the
outcome of a model.

4.1 COLUMN CENTERED WEIGHT TRANSFORMATION

To achieve column centered constraint in neural network, we propose column centered weight
transformation to ensure that the transformed weight matrix can obtain the zero-mean property of
each column. Taking the linear layer for example, we have the definition as below.

4
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Definition 4. (Column Centered Weight Transformation (CCWT).) Column centered weight transfor-
mation aim to apply transformation onto weight matrix to ensure column centered constraint. We
construct a specific transformation Ψ, change W into W ′, as:

W ′ = Ψ(W ) =

(
I − 1

m
111⊤m111m

)
W (8)

where m is the output neuron number.

Apparently, CCWT always ensures that the transformed matrix W ′ is under column centered
constraint and form redundant centering. It is worth noting that for different regulable modules,
the transformation Ψ may take different forms, but the essence of its construction based on column
centered constrain will not change. We demonstrate corresponding CCWT of column centered
constraints in Appendix A.3.

4.2 REPLACEMENT WITH A EQUIVALENT FUNCTION

Before using the previously described method–forming redundant centering by transformation and
replace LN with RMSNorm–for applications, we have to ensure that it does not apply any other effect.
Here, we discuss the relationship between CCWT and centering operation in LN.

Proposition 2. CCWT has and only has the same effect as centering operation in forward propagate.

Proof. Here, we take a linear layer and a following LN as an example. To prove the proposition, we
compute the input of scaling operation in two different models. We define model A with ordinary
linear layer before normal LN, model B under column centered weight transformation.

In model A, by definition of centering operation and linear layer, we have linear layer with:

hA = WAxA, (9)

and centering operation with:

h̃A =

(
I − 1

m
111m111⊤m

)
hA. (10)

When in model B, according to the definition of column centered weight transformation Ψ, we have
weight matrix used for calculation as:

W ′
B =

(
I − 1

m
111m111⊤m

)
WB , (11)

and linear layer
h̃B = hB = W ′

BxB . (12)

It is easy to identify the two forward process are the same: h̃ =
(
I − 1

m111m111⊤m
)
Wx. Thus we

conclude that the forward process are the same.

Therefore, the CCWT has the exact functionality of centering operation in subsequent LN, obtaining
redundant centering. We can thus apply CCWT onto the module and safely replace the LN with
RMSNorm for inference.

To be noted, the transformation only need to be done once at the very beginning of validation,
since the weight matrix will not update. Accordingly, once applied with our transformation, LN
can be changed into RMSNorm without any other change in the model reducing both memory and
calculation usage. Theoretically,

4.3 FOLDABLE LAYER NORMALIZATION IN INFERENCE

As we summarize the method of forming redundant centering and propose removing LN with
RMSNorm to reduce usage, we define this simplification method as folding layer normalization, the
layer normalization satisfying the requirement as foldable layer normalization.

5
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Definition 5. (Foldable Layer Normalization.) Given a layer normalization and its input f(x;θ) from
a corresponding module. We call this layer normalization foldable, if there is some map ψ : Rm → Θ,
subjected to

RMSNorm(f(x;ψ(θ))) = LN(f(x;θ)). (13)

Specifically, a layer normalization is foldable, if we can use the aforementioned method to map the
weight of all corresponding models into a column centered manifold space. Therefore, to fold any
given LN, we would like to find out which module to be applied with the constraint.

Based on the characteristics of forward propagation, for each LN, we only need to consider the
module before it. Simply, if LN only connects to one regulable module, we can apply column centered
constraint. For more complex situations, such as multiple modules connected to a single LN, we can
separately treat these modules, according to the distributive property of addition as demonstrate in
Appendix A.3.4.

Such that, if all of these modules are regulable modules, the following LN can be folded. Based on
this idea, we define the corresponding module for a LN to form the redundant centering.

Definition 6. (Corresponding Module.) Given a neural network with layer normalizations. For the
layer normalization and all the channels directly linked to it, we define all the adjacent modules as
corresponding modules of this layer normalization.

Here, we assume that all the corresponding modules only connect to LN. For the commonly used
models nowadays, such as transformers, all meet this requirement. Therefore, if all the corresponding
modules of a LN are regulable module and applied with CCWT, the LN will be foldable. We notice
an acceleration with a foldable LN theoretically. We include the calculation in Appendix A.8.1.

Algorithm 1 Detect foldable LayerNorm modules.

1: Input: ModelM with input tensor T in
0

2: Output: Set S of foldable LayerNorm modules

3: T in
0 .centered← False ▷ Set initial tensor state

4: S ← ∅ ▷ Initialize set of foldable LayerNorms

5: for each step t, module Mt ∈M do ▷ Iterate through each module that tensors pass through
6: if T in

t ←
∑n

i=1 Ti then ▷ Residual connection where multiple tensors are combined
7: T in

t .centered←
∧n

i=1 Ti.centered ▷ New state is the logical AND of the addends
8: end if
9: if Mt = LayerNorm ∧ T in

t .centered = True then
10: S ← S ∪ {Mt} ▷ Mark this LayerNorm as foldable
11: end if

12: T out
t ←Mt(T

in
t ) ▷ The output tensor is computed by applying the module

13: if Mt ∈ Regulable Modules then
14: T out

t .centered← True
15: else if Mt = Dropout then
16: T out

t .centered← T in
t .centered ▷ Keep previous centered state

17: else
18: T out

t .centered← False
19: end if
20: end for

21: Return: The list of foldable LayerNorm modules

4.4 ALGORITHM IN DETECTING FOLDABLE LN

When looking across the entire network, we hope to simplify some of, and even all of, the LNs in the
model. Therefore, we propose an algorithm (Algorithm 1) to detect how many LNs are foldable.

6
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To be noted, due to the residual structure and the none-zero-mean output of embedding layer, we
cannot find any foldable LN in pre-norm transformer by this method. For most models that include
pre-norm transformation, they often have a layer normalization after the last transformation block.
Accordingly, if we add an extra centering after the embedding operation, all of the LNs will become
foldable. We prove this in Appendix A.5.

We have tested the above algorithm on GPT-2 (Radford et al., 2019), BERT (Devlin et al.,
2019), ViT (Dosovitskiy et al., 2021), Phi (Gunasekar et al., 2023), T5 (Raffel et al., 2020), and
BLOOM (Scao et al., 2022), and found that all LN modules in these models are foldable. We list
more details in Appendix A.9.

Moreover, in order to verify the effectiveness of this method in practical applications, we apply our
method on GPT-2, BERT and Bloom. The results show that the replacement GPT-2 model is 10.31%
faster in total inference time (from 0.0152s to 0.0136s), and the 3 models all enjoys an acceleration
of 10% to 20% in efficiency in CUDA time. For more details, please refer to Appendix A.8.2.

5 TRAINING FROM SCRATCH

In this section, we focus on training the network with RMSNorm while maintaining the theoretical
advantages of LN in improving the conditioning of optimization Ba et al. (2016). While this advantage
of LN is not reached to a consensus in the community, we do observe that the centering of LN helps to
stabilize the range of the output for a network in our experiments shown in the subsequent experiment.

5.1 OBSERVATION OF CENTERING

Here, we conduct ablation experiments to show how centering helps control the range of the output for
a network. We train MLPs of different depths using both LN and RMSNorm, under the classification
task of CIFAR-10 and MNIST, as detailed in Appendix A.10.1. We monitor the parameters and input
of each layer in each epoch. The results are shown in Figure 1. We find that the norm of input of the
last layer is better controlled in a smaller range by LN during the whole training process. Moreover,
the change of input mean and norm are more intense under RMSNorm without centering operation.
Our experiment suggests that the centering helps to stabilize the range of the output for a network.

0 50 100 150
Epochs

300

400

LN
RMSNorm

(a) Depth = 15
under CIFAR-10.

0 50 100 150
Epochs

300

400 LN
RMSNorm

(b) Depth = 35
under CIFAR-10.

0 50 100 150
Epochs

300

400

500
LN
RMSNorm

(c) Depth = 65
under MNIST.

0 50 100 150
Epochs

300

400

500 LN
RMSNorm

(d) Depth = 100
under MNIST.

Figure 1: Norm of input of last layer in different depth of MLP.

5.2 COLUMN BASED WEIGHT CENTERING

Based on the previous analyses, the key to remove the centering of LN during training is to ensure
that all the regulable modules of the corresponding modules of LN is under the column centered
constraints during the course of training.

To achieve this idea, we introduce re-parameterization. Re-parameterization is a transformation of a
model’s parameter space Nowlan et al. (1998), aimed to maintain a certain property of the parameters
in the training process. We use re-parameterization to ensure that the weight matrix for calculation
can obtain column centered constraint throughout training. We thus propose column based weight
centering based on the re-parameterization.
Definition 7. (Column Based Weight Centering (CBWC).) Column based weight centering is a
re-parameterization, applying a proxy parameter W to control the transformed matrix V . We
construct a specific transformation Ψ

V = Ψ(W ) =

(
I − 1

m
111⊤m111m

)
W (14)

7
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where m is the output neuron number.

In back propagation, we update gradient of the proxy parameter W from the transformed matrix V
back through the transformation. We have backward transformation ψψψ

∂L
∂W

= ψψψ

(
∂L
∂V

)
=

(
I − 1

m
111⊤m111m

)⊤
∂L
∂V

. (15)

Apparently, CBWC always ensures that the transformed matrix W is under column centered con-
straint. Therefore, we can apply CBWC to obtain redundant centering during training, as a necessary
precondition of folding LN. Here, we prove the centering of a foldable LN can be removed by
introducing CBWC, without affecting the training dynamics.
Proposition 3. (Equivalent Optimization Process.) The optimization processes of a foldable LN and
a RMSNorm combining CBWC are identical.

Proof. It is easy to identify the forward processes of a foldable LN and a RMSNorm combining
CBWC are the same, as we discussed in Proposition 2. Similarly, since both have the same learnable
parameters, outputs and gradients of parameters, the back propagate processes are also the same. For
more details, please refer to Appendix A.7.

Similar to the analyses for inference in Section 4, we can further consider the equivalence of optimiza-
tion process between a network with foldable LN and a RMSNorm combining CBWC. We provide
the analysis for the Transformer in Appendix A.6. Therefore, we introduce ’CBWC+RMSNorm’ as a
alterative training method with origin LN. These two sets of parameters can be converted into each
other, due to their equivalent optimization process, more details are in Section 5.4.

Computational Complexity Analysis One advantage of ’CBWC+RMSNorm’ over LN is the
computational efficiency. In the widely used Transformer model, with a batch size denoted by b and
sequence length denoted by s, the dimension of a word is represented by d, and the weight matrix is
denoted as W ∈ Rd×p. Considering one epoch training with B samples, centering over the samples
(the centering of LN) has a computational cost of approximately O(Bsd) while CBWC incurs a
computational cost of O(Bdp/b). We can find that CBWC is more efficient, if s ∗ b > p. In practical
situation, s ∗ b is much larger than p, especially in the scenario with long context learning.

5.3 EMPIRICAL STUDY

Even though we provide a theoretical equivalence for optimization between a foldable LN and
’CBWC+RMSNorm’ during training, the model architecture is likely to have a bunch of Dropout
layers (Vaswani et al., 2017) between linear modules and layer normalization. The training mode
of Dropout will disrupting the zero-mean property3 This results in that the centering operation and
CBWC is not theoretically equivalent while training.

Here, we conduct experiments to empirically validate the effectiveness of our proposed ’RMSNorm
+CBWC’ in Transformer for text translation, text classification tasks and image classification.

Text Translation In this part, we apply CBWC to the transformer architecture for text translation
task. We investigate both the training and inference performances on Multi30K (Elliott et al., 2016)
dataset. We follow the same experimental protocol as (Vaswani et al., 2017) and apply CBWC and
replace RMSNorm with LN. Here, we use training loss to measure performances of training and
bilingual evaluation understudy (BLEU) (Kishore Papineni & Zhu, 2002) scores in inference.

We compare three models: the baseline transformer model with LN, the variant with RMSNorm as
well as the variant applying both CBWC and RMSNorm. All models are trained for 1000 epochs.
From Figure 2, after the first 100 epochs, the baseline model and our method still maintain a close
alignment, while both notably outperform the model applying only RMSNorm. Notably, our method
exhibits slightly inferior performance in terms of both training loss and BLEU scores compared to
the baseline model. As mentioned earlier, we attribute this phenomenon to the abundant presence of
dropout layers in transformer architecture.

3The inference mode of Dropout can be viewed as a scalar, which doe not affect the zero-mean property.

8
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Figure 2: Results of transformer models for text translation task.

Text Classification For experiments on text classification tasks based on transformer architecture,
we selected the AG News (Zhang et al., 2015) dataset for our experiments. The experiment settings
are the same as in the text translation task. We use loss and accuracy to measure performances of
training and inference.
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(a) Training Loss.
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(b) Train Accuracy

Figure 3: Results of transformer models for text classification task when training with standard
deviation shown in shaded region.

All models are trained for 10 epochs. From Figure 3, the baseline model and the our method
outperform the model applying only RMSNorm when training. Additionally, the model applying
only RMSNorm has an unstable inference performance.

We also compare features among transformer models when applying LN, only RMSNorm and both
CBWC and RMSNorm. We show test loss and test accuracy with standard deviation. The results are
averaged by five random seeds respectively and shown in Table 1 The test loss and test accuracy of
our method are close to the baseline model applying LN, outperforming the model applying only
RMSNorm.

Table 1: Results of transformer models for text classification task when inference.

Model Test Loss Test Acc
LN 0.4721± 0.0100 85.21%± 0.35%
RMSNorm 0.6630± 0.0357 76.57%± 1.77%
CBWC+RMSNorm 0.4728± 0.0066 85.12%± 0.23%

Image Classification We conduct image classification tasks based on SWIN (Liu et al., 2021) on
Imagenet100 (Chun-Hsiao Yeh, 2022). Here we apply CBWC and an addition centering operation
after embedding layer, and replace LN with RMSNorm. We measure the performances with accuracy
for train and test, and evaluate the efficiency by measuring forward pass time, backward propagate
time and validation time. For more details, please refer to Appendix A.10.2.

All models are trained for 40 epochs and averaged by 4 random seeds. Our method have a improve-
ment in time usage while it performance outperforming both RMS and LN in test.

Here, we conduct the experiments on a rather small patch size, which leads to a long sequence. Such
that our method advantage in training stage. To be noted, despite our method has a reduction in

9
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Table 2: Time and performance results of SWIN on Imagenet100.
Model LN CBWC+RMS Acceleration RMS-only Acceleration

Train-FP (1e-6 s) 80991.77 78065.93 3.61% 77209.91 4.67%
Train-BP (1e-6 s) 37055.36 33737.88 8.95% 30429.37 17.88%

Eval (1e-6 s) 310678.69 298863.31 3.80% 296510.13 4.56%
Test ACC1 (%) 90.5429 90.5853 0.05% 90.5636 0.02%
Test ACC5 (%) 95.7495 95.8777 0.13% 95.7889 0.04%

training accuracy, it has a more stable training process, more details are in Appendix A.10.2. To be
noted, our method and RMSNorm differ in validation time usage despite theoretical equivalence. We
attribute this phenomenon to the extra CCWT at the very beginning of each validation process.

5.4 CONTINUE LEARNING

In practical applications, we extensively use pre-trained models for both inference and continue
learning. Due to the same optimization process of LN and ’CBWC+RMSNorm’, theoretically, a
pre-trained model can continue to train with ’CBWC+RMSNorm’ by replacing the LN. Here, We
conduct experiments to verify it. We place the proxy parameter in CBWC with the weight matrix of
the pre-trained model and use RMSNorm in place of LN. Under the same training settings described in
Appendix A.10.3, the weight matrices of the two models, with and without our method, theoretically
undergo the same learning process.

We find out that the proxy parameter WA under our method and the origin weight matrix WB almost
identical — the differences are smaller than 10−5, which can be seen as a calculation error — after
40 epochs of training under the same random seed. We draw the conclusion that model A and model
B have the same optimization process.

0 100 200

0

100

200

(a) WA

0 100 200

(b) WB

0 100 200

0.05

0.00

0.05

(c) WA −WB

Figure 4: Comparison of WA and WB .

6 CONCLUSION

This paper provided the framework by rigorous definition and derivation, under which a DNN
with LN can be equivalently transfer to a network with RMSNorm. We showed how the centering
operation of LN can be removed both in inference and training, by introducing the proposed column
centered weight transformation (CCWT) and column based weight centering (CBWC). The proposed
CCWT can be directly applied to various pre-trained large language models (LLMs) and large vision
language models (VLMs) with LN, enabling an immediate reduction in computation cost but with
an equivalent forward pass during inference. We hope our method can benefit the LLMs and VLMs
community.

Limitation and Future Work In practical application scenarios, there are a large number of LLMs
and VLMs with LN, but the number of large models we have analyzed in this paper is relatively
small. In future work, we will develop general tools to detect foldable LNs in pre-trained models and
replace these LNs with RMSNorm automatically. Morever, in real neural networks, there are some
modules that our method cannot implement, such as dropout layers. This may affect the effectiveness
and utility of our simplification method, which is determined by the construction of the model. In
future work, we expect to have more detailed analysis of every models on how much does this method
improve the effect.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 SKETCH MAP

(a) (b) (c)

LN

Module

Module

LNModule

Module

(d)

Figure 5: Sketch maps of the concepts in this paper. (a) Origin Model. (b) CCWT . (c) CBWC. (d)
Corresponding Modules.

A.2 BIAS IN THE WEIGHT MATRIX

We consider to remove the bias b = [b1, b2, . . . , bm]⊤ ∈ Rm×1 in h = Wx + b. We add
an additional dimension to x, which turns it into x′ = [x1, x2, . . . , xd, 1]

⊤ ∈ R(d+1)×1, and an
additional column in W ′ ∈ Rm×(d+1), where

W ′ =


w1,1 w1,2 · · · w1,d b1
w2,1 w2,2 · · · w2,d b2

...
...

. . .
...

...
wn,1 wm,2 · · · wm,d bm

 . (16)

We can add the bias into the weight in this way.

A.3 THE PROOF OF REDUNDANT CENTERING

In this section, we demonstrate the column centered constraint of the modules, and give the proof
that they ensure the output of module centralized before layer normalization.

A.3.1 RECURRENT NEURAL NETWORK

Despite linearity, the recurrent neural network is different from origin linear layer with its recurrent
connection and shared weight matrix. Due to the fact that our constraints are independent of input
and output, the parameter sharing may be excluded from our consideration. As for the recurrent
connection, the weights for ordinary input and recurrent input can be seen as two linear layer.

For the l-th layer and t-th time step of the network, we define the input as xl−1
t ∈ Rdl−1 , the recurrent

input as hl
t−1 ∈ Rdl and output of hidden layer as clt. We have weight matrix Wv ∈ Rdl−1×dl and

Wh ∈ Rdl×dl , which is shared among all time steps. We define W = [Wv,Wh]. We have the
constraint:

W0 ∈ Γrnn =

{
W :

dl∑
i=1

wv
i,j = 0,

dl∑
i=1

wh
i,k = 0, j = 1, 2, . . . , dl−1, k = 1, 2, . . . , dl

}
. (17)
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In this recurrent neural network, we have output of hidden layer as ct = Wvx
l−1
t +Whh

l
t−1. Under

the constrain of Eqn. 17, we have the mean of output with

µc
t =

1

dl

dl∑
i=1

dl−1∑
j=1

wv
i,jxj +

dl∑
k=1

wh
i,khk


=

1

dl

dl−1∑
j=1

(
dl∑
i=1

wv
i,j

)
xj +

dl∑
k=1

(
dl∑
i=1

wh
i,k

)
hk


=

1

dl

dl−1∑
j=1

0 · xj +
dl∑

k=1

0 · hk

 = 0.

(18)

Thus, for shared weight matrix for both input from last layer and from last time step, applying
constraint on them centralize the output of the hidden layer.

Accordingly, we have the transformation Φrnn,v,Φrnn,h of the CCWT on recurrent neural Network,
as follow:

W v = Φrnn,v(W
v) = (I − 1

mv
111⊤mv

111mv
)W v

Wh = Φrnn,h(W
h) = (I − 1

mh
111⊤mh

111mh
)Wh

(19)

A.3.2 CONVOLUTION LAYER

Under the circumstances of the convolution layer, the convolutional kernel can be regarded as a
combination of a set of shared weights. All of them should fulfill the constraint of linear layer. We
hence use vector to denote the elements among different channel among the kernel.

We denote the input tensor x ∈ Rdl−1×h×w and the output tensor H ∈ Rdl×h′×w′
. We have

convolution kernels W ∈ Rdl×dl−1×Fh×Fw . We have the constraint:

W0 ∈ Γcnn =

{
W :

dl∑
i=1

wi,j = 0, j = 1, 2, . . . , dl−1

}
. (20)

For every channel of output tensor Hi ∈ Rh′×w′
(i = 1, . . . , dl) and corresponding convolution

kernel wi,j ∈ RFh×Fw (i = 1, . . . , dl, j = 1, . . . , dl−1), we have

Hi =

dl−1∑
j=1

xj ∗wi,j . (21)

Due to convolution operation, we have a ∗ (b + c) = a ∗ b + a ∗ c. Thus, under the constrain of
Eqn.20 we have:

µh =
1

dl

dl∑
i=1

Hi =
1

dl

dl∑
i=1

dl−1∑
j=1

xj ∗wi,j =
1

dl

dl−1∑
j=1

xj ∗

(
dl∑
i=1

wi,k

)

=
1

dl

dl−1∑
j=1

xj ∗ 0 = 0.

(22)

It thus can be seen that the column centered constraint on the convolution kernels achieves the effect
of the centering of the layer normalization.

Accordingly, we have the transformation Φcnn of the CCWT on convolution layers, as follow:
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W = Φcnn(W ) = (I − 1

h× w
111⊤h×w111h×w)W (23)

To be noted, the tensor W here is a four-dimension tensor. The transformation here is to do centering
on its second dimension.

A.3.3 ATTENTION

To be mentioned, despite that self-attention module is non-linear as it has softmax operation, we
make use of its posterior linear component thus construct the constraint on self-attention module.

Self-attention can extract similar structure with linear layers, but it is more complicated. For a sampled
input x ∈ Rn×d, we apply three different learnable weight matrices Q,K ∈ Rd×dk , V ∈ Rd×dv

and have three input matrices HQ,HK ∈ Rn×dk , HV ∈ Rn×dv with

HQ = x ·Q, HK = x ·K, HV = x · V . (24)

According to scaled dot-product attention, we have:

Attention(HQ,HK ,HV ) = softmax

(
HQH

⊤
K√

dk

)
HV . (25)

The linear layer of self attention change the left multiplication of the weight matrix into right
multiplication. Thus our constraint changes into row centered constraint, with equation

W0 ∈ Γtrans =

{
W :

dv∑
k=1

vj,k = 0, i = 1, 2, . . . , dl−1

}
. (26)

We define B = softmax
(

HQH⊤
K√

dk

)
∈ Rn×n. Since HV = x · V , we have

H
(i,j)
V =

d∑
k=1

xi,k · vk,j (i = 1, . . . , n, j = 1, . . . , dv),

Attention(HQ,HK ,HV ) = B ·HV .

(27)

By Eqn.26 and Eqn.27, we have

µa =

dv∑
b=1

(BHV )(a,b) =

dv∑
b=1

n∑
j=1

ba,j ·HV (j,b) =

dv∑
b=1

n∑
j=1

ba,j

(
d∑

k=1

xj,k · vk,b

)

=

dv∑
b=1

n∑
j=1

d∑
k=1

ba,j · xj,k · vk,b =
n∑

j=1

d∑
k=1

ba,j · xj,k

(
dv∑
b=1

vk,b

)

=

n∑
j=1

d∑
k=1

ba,j · xj,k · 0 = 0.

(28)

Thus, we only need to apply constraint to the weight matrix V , which generated the HV . With this
constraint, the output of whole scaled dot-product attention can be centralized.

Accordingly, we have the transformation Φtrans of the CCWT on self-attention modules, as follow:

W v = Φtrans(W
v) = (I − 1

mv
111⊤mv

111mv
)W v (29)

Moreover, for multi-head attention, applying constraint onto the linear on the last only can ensure
zero-mean output.

Notice that the conclusion only fit post-LN transformer.
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A.3.4 RESIDUAL STRUCTURE

For a residual structure, we define the input x and the output y, as shown below

y = F(x) + G(x), (30)

where we have F as a consistent of two linear layer and one ReLU function and G(x) = x in origin
residual structure.

Due to the complexity of F(·), it is intuitively difficult to construct a constraint on this function to
eliminate the mean of G(x). We treat the two terms separately, and apply constraint based on their
content.

In the origin residual structure, for G(x) = x, if it is already centralized, then we do not need to apply
any constraint. If not, we can see it as Ix, thus apply linear layer constraint on I . To be specific,
change x into (I − 1

m111m111⊤m)x.

A.4 GROUPED COLUMN CENTERED CONSTRAINT FOR GN

We extend the conclusion to Group Normalization (GN). (Wu & He, 2018)

Group Normalization is first defined on channel dimension for convolutional input X ∈ Rd×h×w.
So the Group Normalization here is more similar to grouped Layer Normalization, with the definition
below:
Definition 8. (Group Normalization (GN).) Suppose the number of groups is g, and d = g×c. Let x =
[z⊤

1 , . . . ,z
⊤
g ]⊤, where zi = [zi1, . . . , zic]

⊤, (i = 1, . . . , g). Assume x = [x1, . . . , xd]
⊤, we denote

that zij = x(i−1)×c+j . Let x̂ = GN (x), where GN (·) denotes the Group Normalization operation.
GN can be calculated by µi = (zi1 + · · · + zic)/c, σ2

i = [(zi1 − µi)
2 + · · · + (zic − µi)

2]/c, and
then ẑij = (zij − µi)/σi. Thus, we have x̂ = [ẑ⊤

1 , . . . , ẑ
⊤
g ]⊤, where ẑi = LN (zi), (i = 1, . . . , g).

For every input, we divide the neurons into groups and apply normalization in every group. Thus the
centering step in this normalization is to ensure the output sum of all neurons in each group is zero.
For a sampled input h = [h1, h2, . . . , hm]⊤, for g groups and c channels in every group (g× c = m),
we have

µhj =
1

c

c∑
i=1

hji = 0 (j = 1, . . . , g). (31)

So for MLP, we have column centered constraint for GN:

W0 ∈ ΣGN =

{
W :

c∑
k=1

wj,(k+c×i) = 0, i = 1, 2, . . . , g, j = 1, 2, . . . , d

}
. (32)

Given h = Wx, for the i-th neuron output hi in j-th group of h, we have

hi =

d∑
k=1

wi,j · xj . (33)

Under the constrain of Eqn.32, we have:

µhj =
1

c

c∑
i=1

hji =
1

c

c∑
i=1

d∑
j=1

wi,j · xj =
1

c

d∑
j=1

(
c∑

i=1

wi,j

)
xj =

1

c

d∑
j=1

0 · xj = 0. (34)

Thus, we replace centering step of GN with grouped column centering constraint.

To be mentioned, the core idea of designing a constraint is to ensure every group of input weight is
zero-mean.

For the transformation ΦGN of the CCWT on a normal linear layer under GroupNorm, we have:

W = ΦGN (W ) = (I −A)W. (35)
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A is a matrix that we construct with the equation below:

A = I − 1

c

d−1∑
i=0

111⊤(c,i×c)111(c,i×c), (36)

where 111(c,i×c) refer to a vector whose elements are all zero except that the (i × c)-th element to
(i × c + c)-th element are ones. Specifically, A is a matrix with its diagonal arrayed with c × c
matrices of ones.

A.5 THE PROOF OF PRE-LN TRANSFORMER

As we analysis, LNs in pre-norm transformer cannot be safely replaced by RMSNorm, due to the
none-zero-mean of embedding layer and residual structure.

However, for most models like GPT2, there is a LN after last transformer block. LNs can thus be
replaced if we add a centering in the front of block.

For the output of GPT2 model xt+1, we have

xt+1 = xt + ht+1, (37)

here, ht+1 refers to the output of the branch. The input of branch is xt which is directly input into a
LN.

If we place a centering before the block, replace LN with RMSNorm and add CBWC onto the branch.
We have the output of GPT2 model

x′t+1 = Fc(xt) + Fc(ht+1), (38)

where Fc refers to centering fuction.

We have
Fc(xt+1) = Fc(xt) + Fc(ht+1) = x′t+1. (39)

Additionally, the input of scaling of LN on the branch are both Fc(xt).

Thus, we prove that the method can make all of the LN in GPT2 foldable.

A.6 POST-LN TRANSFORMER BLOCK IN CONTINUE TRAINING OF PRE-TRAINED MODEL

Proof. To proof the proposition, we compute the input of scaling operation in layer normalizations.
Similarly, we only need to focus on the forward process, since the equivalent forward process can
lead to equivalent backward process.

For the origin post-LN transformer (without dropout which is applied in practice), where layer norm
is located after self-attention and positional-wise fully connected feed-forward network.

To be denoted, the samples in transformer are row vectors instead of column vectors as we defined
in Section 2. Moreover, we assume the input x is centralized as x( 1

m111m111⊤m) = 0 as it is often
connected from the output of an LN.

Firstly, for a self-attention, we have the input of LN with the equation:

x̃ = x+ softmax

(
QK⊤
√
dk

)
V . (40)

We denote Q,K,V are generated by WQ,WK ,W V , with equation M = xWM ,M ∈
{Q,K, V }. To simplify expression, we set B = softmax

(
QK⊤
√
dk

)
, thus we have

h = x+BxW V . (41)

In a self-attention module with ordinary linear module before normal LN, by definition we have{
h = x+BxW V

h̃ = h
(
I − 1

m111m111⊤m
)
.

(42)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

When in a self-attention module with CBWC before RMSNorm, by definition we have{
V V = W V

(
I − 1

m111m111⊤m
)

h̃ = x+BxV V .
(43)

It is easy to identify the two forward process are the same:

h̃ = (x+Bx)

(
I − 1

m
111m111⊤m

)
= x+BxW V

(
I − 1

m
111m111⊤m

)
. (44)

Further, for a positional-wise fully connected feed-forward network, we have the input of LN with
the equation:

x̃ = x+ xW . (45)

In a positional-wise fully connected feed-forward network with ordinary linear module before normal
LN, by definition we have {

h = x+ xW

h̃ = h
(
I − 1

m111m111⊤m
)
.

(46)

When in a positional-wise fully connected feed-forward network with CBWC before RMSNorm, by
definition we have {

V = W
(
I − 1

m111m111⊤m
)

h̃ = x+ xV .
(47)

It is easy to identify the two forward process are the same: h̃ = (x + x)
(
I − 1

m111m111⊤m
)
= x +

xW
(
I − 1

m111m111⊤m
)
.

Since the processes also have the same parameters W , the back propagate processes are also the
same, in mathematics.

Thus, we conclude that the optimization process are the same.

Accordingly, we have ’CBWC+RMSNorm’ have the same effect with the origin linear layer and LN in
optimization process, which means the same result, thus same gradient and same parameter updating.

A.7 PROOF OF BACK PROPAGATE

Proof. To prove the proposition, we compute the gradient of scaling operation to input of linear
layer in two different models. We define an MLP with ordinary linear layer before normal layer
normalization as model A, an MLP under CBWC with RMSNorm as model B.

In model A, we have back propagate process as

∂L
∂hA

=

(
I − 1

m
111m111⊤m

)⊤
∂L
∂h̃A

,
∂L
∂xA

= W⊤
A

∂L
∂hA

,
∂L
∂WA

=
∂L
∂hA

x⊤
A. (48)

When in model B, according to the definition of backward transformation ψψψ in CBWC, similarly we
have

∂L
∂xB

= VB
∂L
∂h̃B

,
∂L
∂VB

=
∂L
∂h̃B

x⊤
B ,

∂L
∂WB

=

(
I − 1

m
111m111⊤m

)⊤
∂L
∂VB

. (49)

It is easy to identify the two back propagate process are the same:

∂L
∂x

=

(
I − 1

m
111m111⊤m

)⊤

W⊤ ∂L
∂h̃

,
∂L
∂W

=

(
I − 1

m
111m111⊤m

)⊤
∂L
∂h̃

x⊤. (50)
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A.8 Acceleration in Inference

In this section, we analysis how our method accelerate the model in inference, both in theory and
experiments.

A.8.1 FLOPs and Inference Throughput Analysis

Theoretically, our method which replaces LN with RMSNorm has acceleration in FLOPs, thus in
throughput.

FLOPs Floating point operations only reduces by the replacement of LN in inference. To clarify,
consider a sample, with dimension d. We have the equation of LN and RMSNorm as follows:

LN(x) =
x− µ√
σ2 + ϵ

, where µ =
1

d

d∑
i=1

xi and
1

d

d∑
i=1

(xi − µ)2. (51)

RMS(x) =
x√

σ2
rms + ϵ

where σ2
rms =

1

d

d∑
i=1

x2i . (52)

According to the formula above, we compute the operation in the Table.

Table 3: FLOPs calculation and computation order for ’LN’ and ’RMSNorm’.

Operation\Equations µ σ2
LN σ2

RMS (x− µ)
√
σ2 + ϵ num

den scaling bias

+ (d-1) (d-1) (d-1) \ \ \ \ d
- \ d \ d 1 \ \ \

\or × 1 1 1 \ \ d d \√ \ \ \ \ 1 \ \ \
2 \ d d \ \ \ \ \

Total d 3d 2d d accelerated d d d
LN = 7d 1st 2nd \ (2nd) 3rd 4th 5th 6th

RMS = 4d \ \ 1st \ 2nd 3rd \ 4th

Inference Throughput It should be noted that we did not specifically calculate or test the inference
throughput. We believe that there will an improvement of about 10% which is consistent with the
latency reduction.

This is because throughput not only involve the speed of model, but also the memory occupation.
Our method mainly involve one centering operation and the relative bias in affine transformation in
inference. Therefore, there is no significant reduction in the complexity of the model. We verified this
opinion on GPT-2 and found equivalent memory usage with and without our method. Consequently,
the main decisive factor for throughput is the computational speed. Thus, we can refer to the
calculations and conclusions we made above regarding inference latency.

A.8.2 Inference Acceleration Experiment

We conduct two experiment on acceleration in inference stage. One focuses on the overall time, the
other focuses on the CUDA time.

To be mentioned, the LN and RMSNorm we used in this experiment is implemented by our team. This
means that neither LN nor RMSNorm exhibited acceleration in our tests. The reason for this is that
PyTorch’s implementation of LN already includes sophisticated acceleration algorithms. RMSNorm
still requires optimization, although it has already been implemented.
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We have notice the result is quite unstable. We suggest it is according to our limit on devices, the start
time span of the comparison groups is relatively large, which leading to changes in computational
resources, such that the result is not stable.

Total Inference Time Usage We conducted inference-time experiments on the realistic model GPT-2,
as mentioned in Section 4.4. Our method has a acceleration of 10.31% in inference.

We conduct 5 runs, each averaging 300 independent inference processes. We measuring the time from
the first Token input to the last token output. Here we listed the quantitative time computation in the
table below:

Table 4: Statistical results for ’LN’ and ’CCWT+RMS’ on GPT-2 in inference.

Statistic Original (1e-6 s) Our method (1e-6 s) Acceleration Average

Average 15272.76 13749.12 9.98% 9.75%
Trimmed Mean 15205.37 13637.70 10.31% 11.25%

To be more specified, we list the specific time data below.

Table 5: Average time usage of 300 independent inference process for ’LN’ and ’CCWT+RMS’ on
GPT-2.

Method 1 2 3 4 5 Average

LN 16381.94 14365.73 14866.47 14782.23 15967.41 15272.76
CCWT+RMS 13817.87 13484.44 12951.35 14881.17 13610.78 13749.12

Acceleration 15.65% 6.13% 12.88% -0.67% 14.76% 9.75%

CUDA Time Usage We also conduct validation experiments on GPT-2, BERT and Bloom. Utilizing
‘torch.profile‘, we trace the total CUDA time usage on a single A100 GPU. We conducted 10 runs with
1000 evaluations each for GPT-2, Bert and Bloom. We list the average CUDA time and statistical
results (mean, variance and coefficient of variation) among 10 runs:

Table 6: Statistical results of CUDA time usage on 3 models between ’LN’ and ’CBWC+RMSNorm’.

Model Our method (s) Original (s) Acceleration Mean Variance CV

BERT 5.024 6.101 17.65% 17.01% 8.45% 0.038497
GPT-2 3.95 4.907 19.50% 18.48% 10.65% 0.576306
Bloom 0.384 0.438 12.42% 12.42% 0.48% 0.496713

The effect of our method is quite evident, leading to a 10% to 20% in acceleration. To be noted,
according to our limit on devices, the start time span of the comparison groups is relatively large,
which leading to changes in computational resources, such that the result is not stable.

Although, we also measure the CPU time in the experiment, the acceleration is not significant,
especially in Bloom. We think this is due to its overall evaluation time is short, which increases
the proportion of time consumption caused by script calls. This is not what our method focuses on.
However, the overall time of both CUDA and CPU enjoys an acceleration.

A.9 Foldable LN

Here, we list 11 common models and the number of LN and foldable LN. We also calculate the
foldable LN after adding a centering operation after embedding layer (same as the method we
applied on Pre-Norm Transformer).
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Table 7: Number of LN, foldable LN and foldable LN with centered Embedding in 11 common models.

Model Total Foldable Percentage Foldable (Centered Embedding) Percentage

GPT-2 25 0 0 25 100.00%
BERT 25 24 96.00% 25 100.00%

ViT 25 0 0 25 100.00%
Phi 25 0 0 25 100.00%

Phi3 0 0 / 0 /
Qwen2 0 0 / 0 /

T5 32 0 0 32 100.00%
OPT 25 0 0 1 4.00%

BLOOM 6 5 83.33% 6 100.00%
Mamba2 0 0 / 0 /
LLaMA 0 0 / 0 /

Here we can see few models do not have LN. For example, LLaMA originally uses RMSNorm.
Moreover, as Pre-Norm transformer structures are widely used, many models requires a additonal
centering operation after embedding layer.

A.10 EMPIRICAL EXPERIMENTS

All of our experiments are conducted on one 3090Ti.

A.10.1 ABLATION EXPERIMENT OF CENTERING OPERATION

The depth of MLP varies from 6, 15, 35 on CIFAR-10, with width of 256 and 512 (the result in
Section 5.1). We introduce residual structure to help converge for deeper MLP with depth of 65 and
100 on MNIST, with width of 512. We train the model with learning rate 0.01 and batch size 256. We
train all the model for 175 epochs. The results of the experiments are in the following tables.
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Table 8: Accuracy results for MLP in classification task on CIFAR-10.

Depth Width Norm Best Test Acc Last Test Acc Last Train Acc
6 256 LN 42.85% 41.05% 100.00%
6 256 RMSNorm 42.07% 39.97% 100.00%
6 512 LN 44.10% 43.38% 100.00%
6 512 RMSNorm 42.08% 41.71% 100.00%
15 256 LN 42.47% 41.80% 99.99%
15 256 RMSNorm 41.47% 40.35% 100.00%
15 512 LN 44.62% 44.52% 100.00%
15 512 RMSNorm 43.92% 43.76% 100.00%
35 256 LN 43.00% 41.00% 99.80%
35 256 RMSNorm 42.20% 39.59% 99.87%
35 512 LN 45.05% 43.96% 99.98%
35 512 RMSNorm 42.87% 42.12% 99.99%

Table 9: Accuracy results for MLP with residual structure in classification task on MNIST.

depth norm best test acc last test acc last train acc
65 LN 98.10% 98.03% 99.58%
65 RMSNorm 98.04% 97.97% 99.50%
100 LN 98.07% 98.02% 99.61%
100 RMSNorm 98.03% 97.96% 99.54%

A.10.2 Empirical Experiment on SWIN

For the Imagenet100, we select 100 classes from Imagenet1k (Deng et al., 2009) according to the
given classes in (Tian et al., 2019).

We chose SWIN-T for this experiment and train on a single 3090. The time result in Table 2 is
averaged for 40 epochs. For each epoch, we record the average time among all the batches.

Here we list the train accuracy for each seed under the three method and their mean, variance and
coefficient of variation. Our method is more stable than the other two.

Table 10: Train accuracy for different random seed for SWIN on Imagenet100.

Seed\Method LN CBWC+RMS RMS
128 95.07157898 94.37104797 95.03309631
42 95.18504333 94.56147003 95.08243561
2 95.1505127 94.69861603 95.12683105
1 94.55850983 94.26053619 94.43616486

Mean 94.99141121 94.47291756 94.91963196
Variance 0.253296842 0.169015233 0.281092108

CV 0.002666524 0.001789034 0.00296137

A.10.3 VERIFICATION EXPERIMENT FOR CONTINUE LEARNING

We conduct classification task on CIFAR-10. The model has a depth of 6 and a width of 256. We
train the model for 40 epochs with learning rate 0.01 and batch size 256 under one seed.
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