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Abstract

Factual consistency detection has gotten raised001
attention in the task of abstractive summariza-002
tion. Many existing works rely on synthetic003
training data, which may not accurately re-004
flect or match the inconsistencies produced005
by summarization models. In this paper, we006
first systematically analyze the shortcomings007
of the current methods in synthesizing incon-008
sistent summaries. Current synthesis methods009
may fail to produce inconsistencies of corefer-010
ence errors and discourse errors, per our quan-011
titative and qualitative study. Then, employ-012
ing the parameter-efficient finetuning (PEFT)013
technique, we discover that a competitive fac-014
tual consistency detector can be achieved us-015
ing thousands of real model-generated sum-016
maries with human annotations. Our study017
demonstrates the importance of real machine-018
generated texts with human annotation in NLG019
evaluation as our model outperforms the SOTA020
by 8, 4.5, and 2.36 percentage points on the021
datasets CoGenSumm, Frank, and SummEval,022
respectively.023

1 Introduction024

With the advancements in neural conditioned gen-025

eration, abstractive summarization systems, which026

are dominantly based on neural networks, have027

achieved phenomenal performances. However,028

summaries generated so often contain content that029

is factually inconsistent with the source docu-030

ments (Kryscinski et al., 2020; Maynez et al., 2020)031

and thus undermines the reliability and usability of032

the summaries. Thus detecting factual inconsisten-033

cies is an important task associated with summa-034

rization.035

However, detecting inconsistencies in machine-036

generated summaries is not trivial. Due to the037

high labor cost of examining model-generated038

summaries, no existing datasets contain enough039

samples with human-annotated consistency labels040

for supervised learning in the conventional sense.041

As a workaround, data synthesis have been em- 042

ployed to increase the training data, such as in 043

FactCC (Kryscinski et al., 2020), DocNLI (Yin 044

et al., 2021), and MFMA (Lee et al., 2022b). They 045

generate inconsistent summaries by negative sam- 046

pling with pre-defined rules. Apart from training 047

with synthetic inconsistent summaries, some other 048

approaches (Kryscinski et al., 2020; Laban et al., 049

2022) leverage human-crafted claims in the Nat- 050

ural Language Inference (NLI) (Bowman et al., 051

2015) datasets. They measure factual consistency 052

using the entailment relation between the source 053

document and the summary. A recent work, Sum- 054

maC (Laban et al., 2022), proposed to aggregate 055

sentence-level pairwise entailment scores into a 056

final consistency score. 057

We believe that the clue to improve inconsis- 058

tency detection lies in the inconsistent samples that 059

the state of the art (SOTA) failed to detect. By 060

analyzing such samples in the famous SummaC 061

benchmark, we find that certain types of factual 062

inconsistencies are hard to be synthesized and thus 063

are uncovered in the training of SOTA. Specifically, 064

they are the coreference errors and discourse link 065

errors defined by the Frank dataset (Pagnoni et al., 066

2021). A coreference error happens when a pro- 067

noun in the summary has a wrong referent than that 068

in the document. A discourse error happens when 069

the summary mistakenly mixes multiple statements 070

in the document. These errors can occur in the sum- 071

mary where the source information are in a single 072

sentence or across multiple sentences. 073

The intractability to synthesize the said incon- 074

sistent training samples motivates us to take a dif- 075

ferent route by training an inconsistency with effi- 076

cient use of limited human annotations on machine- 077

generated summaries. Thanks to the Parameter- 078

Efficient Fine-Tuning (PEFT) methods, we manage 079

to finetune only 0.14% of the 0.9B parameters of 080

the DeBERTa-v2-xlarge-mnli model using thou- 081

sands of samples in the validation set of FactCC. 082
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Our model outperform the SOTA by 8%, 4.5%,083

and 2.36% on the datasets CoGenSumm, Frank,084

and SummEval, respectively. Error rates in nearly085

all types of inconsistencies are improved by our086

approach.087

Our code is available at https://anonymous.088

4open.science/r/FactFT-46FF/. We organize089

the paper as follows:090

• First, we review the current synthetic methods091

on how they generate inconsistent summaries092

and their potential limitations.093

• Then, we present a comprehensive case094

study on the inconsistent summaries missed095

by SOTA, revealing the gap between the096

summarizer-generated inconsistencies and097

synthesized inconsistencies.098

• Finally, we present a document-level factu-099

ality classifier through parameter-efficiently100

finetuning a 0.9B model using only a few thou-101

sand human-annotated samples that outper-102

forms all baselines, including ChatGPT, on103

four datasets.104

2 How Good Are We at Synthesizing105

Inconsistencies?106

The SOTA inconsistency detectors trained with107

synthetic inconsistent summaries still have a huge108

room for improvement. For example, the balanced109

accuracy of MFMA (Lee et al., 2022a) tops at110

84.5% on six major inconsistency datasets. To111

propose an improvement, we argue that it is impor-112

tant to analyze the nature of factually inconsistent113

samples failed to be detected by the SOTA detec-114

tors.115

In this section, we first theoretically analyze the116

gap between the inconsistencies synthesized by117

SOTA for training and the real inconsistencies in118

summaries generated by neural generative models.119

Then we empirically study such a gap using a case120

study on the SummaC benchmark with two SOTA121

approaches.122

2.1 Existing Approaches to Synthesizing123

Inconsistent Summaries124

We begin our study by reviewing how inconsisten-125

cies are introduced into synthetic data before such126

data is used to train SOTA inconsistency detectors127

and their potential limitations.128

In summarization, the input and output texts 129

are called the document and the summary, respec- 130

tively. A reference summary, usually written by 131

humans, is the expected, gold output or target in 132

the ML sense. Many of the SOTA synthesize incon- 133

sistent summaries by manipulating the document 134

sentences or the reference summaries. 135

FactCC (Kryscinski et al., 2020) synthesizes in- 136

consistent summaries by sampling individual sen- 137

tences from the document and applying the follow- 138

ing transformations onto them: entity and number 139

swapping, pronoun swapping, sentence negation, 140

back translation, and token duplication and dele- 141

tion. Potential limitations: Such token-level trans- 142

formations may be too limited to cover the great 143

variety of inconsistencies. In addition, such trans- 144

forms operates on individual sentences, while in- 145

consistencies often involve multiple sentences. 146

MFMA (Lee et al., 2022b) operates by mask- 147

ing both the document and the reference summary. 148

First, a BART (Lewis et al., 2020) model is trained 149

to reconstruct a masked reference summary from 150

the corresponding document with noun phrases 151

and entities randomly masked. Then, during the 152

inference stage, negative summaries are generated 153

from an unseen reference summary masked, with 154

or without the corresponding document masked, 155

using the trained model. The idea is that with the 156

salient information masked, the trained model can 157

only guess, if not make up, to fill in the masked 158

summary to create strong inconsistent summaries. 159

Potential limitations: Only noun phrases and enti- 160

ties are masked out whereas inconsistencies may 161

also occur in other parts of a text, e.g. a whole 162

clause. 163

SummaC (Laban et al., 2022) does not syn- 164

thesize data itself but employs models trained on 165

NLI (Natural Language Inference) datasets, which 166

contain human-written hypotheses that are entail- 167

ing, neutral, or contradictory to individual claims. 168

NLI is similar to inconsistency detection in a sense 169

that inconsistency summaries are not entailed by 170

the document. Potential limitations: The human- 171

crafted hypotheses, which are used to train the 172

said NLI models, may have a discrepancy to the 173

machine-generated summaries. In addition, Sum- 174

maC works at the granularity of individual sen- 175

tences whereas inconsistencies are often cross- 176

sentence. 177
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2.2 The Inconsistencies Undetected by the178

SOTA: A case study179

The analysis above indicates a potential gap be-180

tween inconsistencies synthesized using SOTA181

and the actual inconsistencies exhibited by neu-182

ral network-based summarizers. Here we quantita-183

tively and qualitatively verify the gap on real data.184

Using the test sets of the SummaC benchmark, a185

widely used benchmark bearing the same name of186

an aforementioned method, we examine the false187

positive (inconsistent by predicted otherwise) sam-188

ples predicted by two best-performing approaches189

on the SummaC benchmark: MFMA (Lee et al.,190

2022b) and SummaC-Conv (Laban et al., 2022),191

the latter of which is superior than SummaC-ZS,192

the other version of SummaC. FactCC (Kryscinski193

et al., 2020) is not covered here because it is out-194

performed by MFMA and SummaC-Conv on the195

SummaC benchmark.196

The SummaC benchmark comprises six197

summary factual consistency datasets: CoGen-198

Summ (Falke et al., 2019), FactCC (Kryscinski199

et al., 2020), Frank (Pagnoni et al., 2021), Poly-200

tope (Huang et al., 2020), SummEval (Fabbri et al.,201

2021) and XSumFaith (Maynez et al., 2020). These202

six datasets contain a) summaries generated using203

various summarizers and b) human annotation to204

whether each summary is consistent to its corre-205

sponding document. Documents in CoGenSumm,206

FactCC, SummEval, and Polytope come from207

the famous CNN/Dailymail dataset whereas docu-208

ments in XSumFaith come from the XSum dataset.209

Frank has documents from both CNN/Dailymail210

and XSum, denoted as Frank-CNNDM and Frank-211

XSum respectively thereafter.212

Taxonomy of Factual Inconsistencies. We are213

very interested in the performance of SOTA ap-214

proaches on different types of factual inconsisten-215

cies. Among of the six datasets of the SummaC216

benchmark, three of them provide subcategories217

for factual inconsistencies:218

• XSumFaith has 2 subcategories: Extrinsic219

and Intrinsic.220

• Polytope has 5 subcategories: Addition,221

Omission, Inaccuracy Intrinsic, Inaccuracy222

Extrinsic and Positive-Negative Aspect.223

• Frank has 8 subcategories: Predicate Er-224

ror (RelE), Entity Error (EntE), Circumstance225

Error (CircE), Coreference Error (CorefE),226

Discourse Link Error (LinkE), Out of Arti- 227

cle Error (OutE), Grammatical Error (GramE) 228

and Other Error (OtherE). 229

The divided taxonomy used by different datasets 230

creates a difficulty for a unified analysis. In this 231

study, we borrow the taxonomy from Frank’s eight 232

subcategories because Frank has the finest granular- 233

ity. This also limits the discussion in this section to 234

Frank, excluding the rest five datasets. We will use 235

data from all six datasets later in the experiments 236

(Section 4). 237

Quantitative Study. We first examine the error
rate of MFMA and SummaC-Conv on Frank’s test
set for each subcategory of inconsistencies. The
error rate is calculated as:

Error Rate =
FP

N

where FP is the number of false positive samples 238

in a subcategory, and N is the number of samples 239

in the subcategory. 240

The error rates of MFMA and SummaC-Conv 241

are given in Table 4 along with other experimental 242

results to be discussed later. Coreference errors 243

(CorefE) and discourse link errors (LinkE) are the 244

two most difficult subcategories of inconsistencies 245

for SOTA approaches where they perform even 246

worse than random guess which has a 50% accu- 247

racy. MFMA has error rates of 67.9% and 66.7% 248

on CorefE and LinkE, respectively. SummaC-Conv 249

has error rates of 67.9% and 57.1% on CorefE and 250

LinkE, respectively. Both approaches have <32% 251

error rates on other factual inconsistency subcate- 252

gories excluding the Other Error type. 253

Qualitative Study. Next, we qualitatively ex- 254

amine four samples (Table 1) falsely detected as 255

positive (consistent) by both MFMA and SummaC- 256

Conv to show that existing synthesizing methods 257

are really difficult in mimicking inconsistencies 258

produced by modern summarizers. We focus on 259

the two most difficult subcategories, coreference 260

errors and discourse link errors. 261

A coreference error occurs when a pronoun 262

refers to the wrong object. The first two examples 263

in Table 1 presents coreference errors. It would be 264

difficult for simple heuristics like pronoun swap- 265

ping in FactCC or pronoun masking in MFMA to 266

mimic such examples. In fact, for both examples, 267

the pronoun in an inconsistent summary is the same 268

as that in the document. However, the pronouns 269

will be interpreted to a different person due to the 270
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ID Document sentence(s) Inconsistent summary Explanation

1 Mr Katter said the Government believes
Mr Gordon would quit after he was re-
cently accused of domestic violence.

Mr Katter said he would
quit after he was accused
of domestic violence.

Coreference error: “he” in the summary
will be misinterpreted as “Mr Katter” while
it actually should refer to “Mr. Gordon”.

2 Barcelona club president Josep Maria
Bartomeu has insisted that the La Liga
leaders have no plans to replace Luis
Enrique and they’re ‘very happy’ with
him.

Barcelona club president
Josep Maria Bartomeu
says the La Liga leaders
are very happy with him.

Coreference error: “him” in the summary
will be misinterpeated as “Josep Maria Bar-
tomeu” while it actually should refer to
“Luis Enrique”.

3 Goldfish are being caught weighing up to
2kg and koi carp up to 8kg and one metre
in length.

Goldfish are being caught
weighing up to 8kg and
one metre in length.

Discourse error: the summary attaches the
statement for "koi carp" mistakenly to
"Goldfish".

4 Paul Merson had another dig at Andros
Townsend after his appearance for Tot-
tenham against Burnley ...Townsend hit
back at Merson on Twitter after scoring
for England against Italy.

Paul Merson had another
dig at andros townsend af-
ter scoring for England
against Italy.

Discourse error: the summary concate-
nates an event later in the document to a
previous statement.

Table 1: Examples failed to be detected by SOTA factuality classifiers. Related contents are in the same color.

information of the true referent is missing in the271

summary.272

A discourse error occurs when two statements273

are mixed. It can happen when summarizing ei-274

ther a single sentence (example 3, Table 1) or a275

plurality of sentences (example 4, Table 1). In ex-276

ample 3, the inconsistent summary fuses “goldfish”277

with information about “koi carp” which is men-278

tioned in the second half of the source sentence.279

In example 4, the summary mistakenly mixes two280

statements about two persons from two sentences281

of the document. However, introducing discourse282

errors by fusing statements has not been touched by283

current synthesis methods, and we speculate that it284

would be difficult to do in current methods which285

manipulate individual tokens. In addition, existing286

NLI datasets usually contain only single-sentence287

statements and thus are incapable of mimicking288

multi-sentence discourse errors.289

It’s also worthy noting that for all the examples290

in Table 1, the summary is or almost is the con-291

catenation of sub-strings from the document. The292

phenomenon is probably because, from the training293

data, certain summarization models have learned294

to copy phrases from the document and stitch them295

into a summary. Because it is difficult to predict296

the behavior of neural network-based summarizers,297

it is difficult to come up with heuristics to mimic298

factual inconsistencies they may exhibit.299

The intractability of synthesizing inconsis-300

tency summaries. According to the discussion301

above, there is a gap between the inconsistencies302

created by current data synthesis methods and the303

actual inconsistencies exhibited by neural network-304

based summarizers. We could iteratively add data 305

synthesis heuristics, including those using gen- 306

erative LLMs, after examining falsely classified 307

samples. However, due to the potential diversity 308

of factual inconsistency, this “accident-and-patch” 309

strategy requiring recurring manual effort may not 310

be scalable. On top of that, some type of errors, 311

such as discourse errors, are hard to be defined. 312

Therefore, in this paper, we take another avenue by 313

directly finetuning on existing but limited human 314

annotations. 315

3 FactFT: Inconsistency Detection Using 316

Machine-Generated Summaries with 317

Human Annotations 318

Given a source document D = [d0, d1, . . .] and 319

a machine-generated summary S = [s0, s1, . . .], 320

where di or si is a sentence, a factual consistency 321

detector is a binary classifier predicting whether 322

the summary is factually consistent with the doc- 323

ument, i.e., f(D,S) ∈ {0, 1} where 0 and 1 rep- 324

resent inconsistent (negative) and consistent (posi- 325

tive). Realizing the difficulty to cover the diverse 326

errors synthetically (Section 2), we directly train 327

a factual consistency classifier transferring from a 328

NLI model using the currently available but limited 329

machine-generated summaries with human annota- 330

tions. The recent advances in parameter-efficient 331

finetuning (PEFT) has made this approach feasible. 332

3.1 Preprocessing 333

Instead of feeding the whole document D into the 334

classifier f , we select the document sentences that 335

are most relevant to the summary and feed such 336
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Validation Split Test Split
Dataset # of samples % Positive # of Samples % Positive

Before filtering After filtering

CoGenSumm 1281 1281 49.7 400 78.0
FactCC 931 886 86.6 503 87.7
Frank 671 444 45.0 1575 33.6

-CNNDM 375 360 54.2 875 56.3
-XSum 296 84 6.0 700 5.1

SummEval 850 0 N/A 850 90.6
Polytope 634 201 5.9 634 6.5
XSumFaith 1250 45 6.7 1250 10.4

Table 2: Statistics of the training and test data. Validation split is used for training.

sentences to the classifier, i.e., our model predicts337

using f(D′, S) where D′ ⊆ D. Adapting from338

an approach used by Balachandran et al., 2022,339

for each summary sentence si, only the document340

sentence dj that is most relevant to it and its two341

preceding and two succeeding sentences in the doc-342

ument, namely dj−2, dj−1, dj+1 and dj+2 which343

provide the context, are included into D′. By filter-344

ing out less irrelevant information from the docu-345

ment, the NLI model can benefit from a relatively346

similar input length of the text pair. In addition,347

this saves the limited input length set by the Trans-348

former models.349

3.2 Parameter Efficient Fine-Tuning350

The major concern when fine-tuning with a few351

samples is that the model can be prone to overfit-352

ting. One reason is that the number of trainable353

parameters is relatively large compared with the354

number of samples. This is a major reason that pre-355

vious SOTA uses synthetic data for training. Raised356

recently, parameter Efficient Fine-Tuning (PEFT)357

methods address this issue by freezing most pa-358

rameters of a large language model and only fine-359

tuning a small number of additional parameters.360

Such an approach has been shown to perform bet-361

ter (Pu et al., 2023) than full finetuning in low-data362

and out-of-domain scenarios. We employ one of363

the most famous PEFT methods, LoRA (Hu et al.,364

2021), in this paper. LoRA appends two smaller365

matrices to the original model through low-rank366

decomposition, while the original weight matrix367

is frozen for further adjustment. With LoRA, our368

inconsistent classifier finetuned on only 0.14% pa-369

rameters of an NLI model can achieve SOTA per-370

formance using only few thousands of samples.371

4 Experiments 372

4.1 Training and Testing Data 373

We use the validation sets of the SummaC bench- 374

mark (Laban et al., 2022) as the training data. 375

Among the six datasets in SummaC benchmark, 376

CoGenSumm, FactCC, and Frank come with orig- 377

inal validation split. For the rest three datasets, 378

SummaC splits the validation set by the parity of 379

sample index. 380

Because the six datasets are all sampled 381

from the CNN/DailyMail (See et al., 2017) or 382

XSum (Narayan et al., 2018) dataset, to ensure no 383

data leakage, we filter out the samples in any valida- 384

tion set that share a document with any test set. The 385

statistics of the validation and test sets are shown 386

in Table 2. Note that the Polytope and XSumFaith 387

dataset are extremely negatively skewed. 388

We perform a stratified k-fold validation with 389

non-overlapping groups where samples from the 390

same document always belong to one group to pre- 391

vent data leakage. The best model for each fold 392

is found using the test split in the cross validation. 393

Finally, we report the average performance from 394

the k folds on each of the six test sets of SummaC. 395

4.2 Settings 396

Given the SOTA results achieved by SummaC, 397

we select a similar NLI model for finetuning. 398

The DeBERTa-v2-xlarge-mnli (He et al., 2021) 399

model hosted on HuggingFace is used as the base 400

model. We use HuggingFace’s peft (Mangrulkar 401

et al., 2022) library to apply LoRA. For LoRA set- 402

tings, following the experience of Hu et al., 2021, 403

we add the low rank update matrices only to the 404

query and value module in every self-attention 405

layer with rank rq = rv = 8, and LoRA scaling 406

factor α = 8. The dropout probability of the LoRA 407

layers is 0.1. Under these settings, 1.3M parame- 408

ters which are 0.14% of the total 0.9B parameters 409
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Methods Test Sets in SummaC Benchmark
CoGenSumm FactCC Frank SummEval Polytope XSumFaith Overall

NER Overlap (Laban et al., 2021) 53.0 55.0 60.9 56.8 52.0 63.3 56.8
MNLI-doc (Zhuang et al., 2021) 57.6 61.3 63.6 66.6 61.0 57.5 61.3
FactCC-CLS (Kryscinski et al., 2020) 63.1 75.9 59.4 60.1 61.0 57.6 62.9
DAE (Goyal and Durrett, 2020) 63.4 75.9 61.7 70.3 62.8 50.8 64.2
FEQA (Wang et al., 2020) 61.0 53.6 69.9 53.8 57.8 56.0 58.7
QuestEval (Scialom et al., 2021) 62.6 66.6 82.1 72.5 70.3 62.1 69.4
SummaC-ZS (Laban et al., 2022) 70.4 83.8 79.0 78.7 62.0 58.4 72.1
SummaC-Conv (Laban et al., 2022) 64.7 89.5 81.6 81.7 62.7 66.4 74.4
MFMA (Lee et al., 2022b) 64.6 84.5 81.3 75.5 58.0 53.6 69.6
ChatGPT-ZS (Luo et al., 2023) 63.3 74.7 80.9 76.5 56.9 64.7 69.5
ChatGPT-ZS-COT (Luo et al., 2023) 74.3 79.5 82.6 83.3 61.4 63.1 74.0

FactFT (k-fold mean ± standard deviation) 82.3±1.5 91.0±1.5 87.1±1.8 85.7±0.5 51.0±1.8 57.7±2.1 75.8

Table 3: Balanced Accuracy (%) on the SummaC benchmark. Best on each dataset in bold.

of DeBERTa-v2-xlarge-mnli are trainable. The410

training process has a learning rate of 5e-5, using411

the paged 8-bit AdamW optimizer with a linear412

scheduler. Fold number k = 5, the number of train-413

ing epochs is set to 10, and the model is validated414

for every 400 steps for identifying the best perform-415

ing model. The training process can be done on416

a single consumer-level NVIDIA RTX 3090 GPU417

with tf32 precision and a batch size of 5.418

4.3 Baselines419

We post the baseline metrics evaluated by Sum-420

maC in the first eight rows of Table 3. We also421

rerun MFMA on the SummaC benchmark because422

it is currently the best performing metric using rule-423

generated negative samples known to us. ChatGPT424

(gpt-3.5-turbo-0301) as a fact inconsistency evalua-425

tor is also treated as a baseline and its performances426

are included in Table 3.427

4.4 Results and Discussion428

We compare our approach with several baselines in429

several metrics.430

4.4.1 Balanced Accuracy431

Balanced Accuracy is used to measure the perfor-
mance on the benchmark due to the varying class
imbalance of the 6 test sets. The Balanced Accu-
racy is calculated as follows:

BAcc =
1

2
(

TP

TP + FN
+

TN

TN + FP
)

where TP is the true positive, FP is the false posi-432

tive, TN is the true negative and FN is the false433

negative.434

The full Balanced Accuracy results can be seen435

in Table 3. The overall performance is calculated as436

the macro average of all test sets. Our approach has 437

the best overall performance and is best-performing 438

on four out of the six datasets. In particular, it 439

outperforms ChatGPT with chain of thought (COT) 440

prompts by 8.00, 4.50, 2.36 percentage points on 441

the CoGenSumm, Frank, and SummEval datasets, 442

correspondingly. Our model exhibits relatively low 443

performance on the extremely negatively skewed 444

XSumFaith and Polytope datasets. We attribute this 445

to the extreme imbalance in the two datasets. 446

4.4.2 FPR and FNR 447

Figure 1 shows a more detail analysis on the
False Positive Rates (FPRs) and False Negative
Rates (FNRs) of our approach and MFMA and
SummaC-Conv, two best-performing baselines on
the SummaC benchmark. Measuring the the ra-
tio of inconsistent summaries missed, the FPR is
calculated as:

FPR =
FP

FP + TN
.

Measuring the ratio of false alarms, the FNR is
calculated as:

FNR =
FN

FN + TP
.

Our approach FactFT has the lowest FPR on all 448

datasets except for FactCC (where it is the sec- 449

ond best), indicating that finetuning on human- 450

annotated data indeed expands the model’s ability 451

to detect more inconsistency errors. In the mean- 452

time, our approach has the second lowest FNR on 453

four out of the six datasets, behind MFMA. 454

The relatively high FNR of our approach on the 455

XSumFaith dataset is potentially due to a substan- 456

tially lower proportion of training data from XSum 457

than CNN/DailyMail. The low positive rate in the 458
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CorefE LinkE GramE EntE CircE RelE OutE OtherE

SummaC-Conv 67.9 57.1 31.6 23.4 15.5 18.1 2.4 75.0
MFMA 67.9 66.7 30.6 20.6 20.0 21.9 9.6 87.5
FactFT 51.9 47.6 23.5 7.8 10.9 6.7 2.7 62.5

Table 4: Per-category error rate (%) of three approaches on Frank’s test set.

(a) False Positive Rate

(b) False Negative Rate

Figure 1: False Positive Rates and False Negative Rates
on six datasets. The lower the better.

XSum data made the classifier further leaning to-459

wards negative prediction. For the high FNR on460

the Polytope dataset, the different annotation pro-461

tocol used by the dataset may lead to a different462

data distribution than other CNN/DailyMail based463

datasets. As a result, our model fails to recognize464

the few consistent samples in Polytope.465

4.4.3 Categorical Error Rate466

In Table 4, we further examine the error rate of467

our approach on each inconsistency subcategory468

labeled in the Frank test set. Compared to MFMA469

and SummaC-Conv, FactFT has achieved lower470

error rate on almost every factual error type ex- 471

cept out-of-article errors (OutE). This supports the 472

importance of machine-generated summaries with 473

human annotations that they contain more incon- 474

sistency patterns than data synthesized by SOTA 475

on nearly any category of inconsistencies. On the 476

two major inconsistency types that are difficult to 477

detect, CorefE and LinkE, FactFT lowers the error 478

rate by 16.0 and 9.5 percentage points respectively 479

with respect to the best of MFMA and SummaC- 480

Conv. 481

4.4.4 Cross-Dataset Results 482

Test Set FactFT FactFT-Cross ∆

CoGenSumm 82.3 77.4 -4.9
FactCC 91.0 89.1 -1.9
Frank 87.1 86.8 -0.3
SummEval 85.7 85.6 -0.1
Polytope 51.0 57.9 6.9
XSumFaith 57.7 63.1 5.4

Overall 75.8 76.6 0.8

Table 5: Balanced accuracy(%) for FactFT and FactFT-
Cross.

In the previous experiments, the validation sets 483

of all datasets in the SummaC benchmark are used 484

as the training data. Here we study the cross-dataset 485

robustness of our approach in a leave-one-group- 486

out cross validation: in each fold, training a model 487

using validation sets of five datasets in the SummaC 488

benchmark and testing the model on the test set of 489

the remaining dataset. We denote results obtained 490

so as FactFT-Cross. 491

In Table 5, we compared the balanced accu- 492

racy between the original FactFT and FactFT-Cross. 493

FactFT-Cross has a minor performance drop on Co- 494

GenSumm, but it still outperforms all baselines. 495

The performance drop on FactCC, Frank, and Sum- 496

mEval is very marginal. Interestingly, FactFT- 497

Cross gains performance on Polytope and XSum- 498

Faith, probably because of in-domain validation. 499

For XSumFaith, k-fold cross validation can dilute 500

the samples from BBC/XSum due to CNN/DM is 501

the major source for most of the datasets, while 502

leave-one-group-out retains all samples for vali- 503
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dation. For Polytope, the in-domain validation is504

beneficial because Polytope used a different anno-505

tation protocol. The performance improvement on506

Polytope and XSumFaith also results in an slight507

overall performance improvement.508

5 Related Work509

Categories of Factual Inconsistencies. According510

to Maynez et al. (Maynez et al., 2020), factual511

inconsistencies made by summarization systems512

can be categorized into two types: intrinsic errors513

and extrinsic errors. Intrinsic errors refer to content514

that is hallucinated using the material from the515

source document, while extrinsic errors occur when516

the summarizer model generates content that is517

irrelevant to the source material. It has also been518

discovered (Maynez et al., 2020; Kryscinski et al.,519

2020) that abstractive summarizers often use forged520

entities.521

Relevant Evidence Discovery. The widely used522

summarization metric ROUGE (Lin, 2004) has523

been reported (Fabbri et al., 2021) to have low524

correlation with consistency annotations but high525

correlation in terms of relevance. As a result, some526

post-editing methods (Lee et al., 2022a; Balachan-527

dran et al., 2022) have adopted ROUGE to extract528

the most relevant sentences in the document re-529

lated to a summary, aiming to correct inconsis-530

tent summaries. In our work, we adopt this idea531

of relevance checking to bridge the gap between532

the unmatched input granularity (sentence-level to533

document-level) of the NLI model and save input534

length.535

Measuring the Factuality. Significant efforts536

have been made recently to automatically evalu-537

ate the factual consistency of abstractive summa-538

rization. Based on the category proposed in (Koh539

et al., 2022), current methods can be divided into540

two groups: QA-based and entailment classifica-541

tion methods. QA-based methods evaluate fac-542

tual consistency using QA frameworks. These ap-543

proaches (Wang et al., 2020; Scialom et al., 2021;544

Durmus et al., 2020) first generate questions based545

on given summaries and answer questions condi-546

tioning on source documents and summaries. A547

summary is considered consistent if the answers548

based on source text and summaries match. These549

methods are reference-free and more correlated to550

human judgments, but they suffer from complex551

computations and error propagation. Entailment552

classification approaches (Kryscinski et al., 2020;553

Yin et al., 2021; Lee et al., 2022b) mainly construct 554

synthetic datasets by corrupting sentences from the 555

source document to create negative samples and 556

then train classifiers by contrastive learning. Sum- 557

maC (Laban et al., 2022) breaks the summary into 558

small pieces and perform the evaluation on sen- 559

tence or phrase level using NLI models. In this 560

work, we focus on the drawbacks of the entailment 561

based methods and propose to improve such meth- 562

ods. 563

6 Conclusion 564

To identify directions to improve the detection ac- 565

curacy of summary factual consistency, we begin 566

this study by examining the inconsistency synthesis 567

methods used in SOTA summarization consistency 568

detectors, both theoretically and empirically. We 569

find that coreference errors and discourse errors 570

are the two most difficult types of factual errors for 571

consistency detectors trained with synthetic data 572

because existing methods to synthesize inconsis- 573

tencies may fail to produce them. 574

Realizing the diversity of inconsistencies and the 575

challenges to mimic them by manually designing 576

synthesis heuristics, we propose to use limited but 577

actual machine-generated summaries with human 578

annotation to parameter-efficiently finetune an NLI 579

model of 0.9B parameters. The finetuned classifier 580

outperforms SOTA on four datasets. This finding 581

highlights the importance of using real machine- 582

generated texts for building an metric for an NLG 583

task. We hope our effort can encourage the com- 584

munity to build more and better summarization 585

consistency datasets with unified taxonomy. 586

Limitations 587

In Section 3.1, our model uses ROUGE to discover 588

the most relevant sentences in the document with 589

a given summary. When the abstraction level be- 590

comes very high, or the summary is very short, the 591

ROUGE metric may fail to retrieve the related evi- 592

dences. One can use the whole document as input, 593

but the long document may hit the token length 594

limit set by the transformer model. Instead, we 595

can use some sentence similarity model to do the 596

retrieval with a relatively slower processing speed. 597

With limited human annotation, we have suc- 598

cessfully mitigated the false positive rate of the 599

classifier. However, there are still some hard ex- 600

amples. Our model can direct benefit from more 601

human annotations. Meanwhile, inconsistency an- 602
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notation is laborious and has a high requirement for603

annotators. We hope to explore more on improving604

the annotation protocol and reducing the cost for605

such NLG evaluation tasks.606

Another limitation worth mentioning is the do-607

main transferability. Our model has shown bet-608

ter performance on CNN/DailyMail-based dataset609

than the XSum-based dataset. The large proportion610

of the CNN/DailyMail samples in the training data611

made the classifier weak on classifying XSum test612

sets. We seek better parameter efficient methods to613

enable better cross domain testing performance.614
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