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Abstract
In the realm of academic research, accessing precise and useful
information is paramount for scholars. However, traditional aca-
demic question answering (AQA) systems based on the dual-tower
model’s often falter when dealing with complex citation networks.
To overcome these challenges, we introduce the "Multi-Track Tex-
tual Graph Retriever," an innovative system that harnesses the
power of a Paper Classifier, Multi-Track Textual Graph Retriever,
and dynamic Retrieval Task Training. Our approach not only inte-
grates text features and citation relationships into a cohesive frame-
work but also employs a dynamic sampling strategy based on hard
negative mining. This strategy dynamically refines the training pro-
cess, leading to significant improvements in the accuracy and effi-
ciency of academic paper retrieval. Finally, we achieved high-quality
retrieval result and demonstrated competitive performance in the
KDD CUP 2024 OAG-Challenge Task 2 competition (3rd place). The
code is available at https://github.com/liyu199809/PineappleHouse.

CCS Concepts
• Information systems→ Information retrieval.

Keywords
Academic graph mining, information retrieval.

1 Introduction
Academic question answering (AQA) is of great practical signifi-
cance as it helps researchers obtain accurate and useful information
in the academic field. The task give professional questions and a
pool of candidate papers and the objective is to retrieve the most
relevant papers to answer these questions. Existing methods are
based on the dual-tower model established by pure text semantics
and recalled through similarity. In the AQA scenario, the existing
methods cannot consider the citation interaction between papers.
This leads to a high concentration of recall results then get poor
retrieval performance.[3] Simply using GNN for recall would lose a
lot of semantic information. Moreover, in the large graph scenario,
due to the existence of the over-squashing problem, the receptive
field of GNN is only 2-3 hops, which also brings the loss of structural
information.

∗Both authors contributed equally to this research.
†Corresponding author

To solve this problem, we design a simple yet efficient solution
called citation-aware academic graph retriever for modeling the
text features and the citation interaction between papers simultane-
ously. The system is implemented through three primary modules:
(1) paper classifier: It uses in-context learning with prompts to
classify documents based on a few annotated examples. (2) multi-
track textual graph retriever: Constructs a text-attributed graph
to model citation relationships using a multi-track message pass-
ing mechanism, preventing oversmoothing and oversquashing in
GNNs. (3) retrieval task training: Employs InfoNCE loss for train-
ing to discern relevant from irrelevant text pairs, with a dynamic
sampling approach based on hard negative mining to refine the
training set continuously. Despite its simplicity, our approach yields
high-quality retrieve result, earning us the third-place position in
KDD CUP 2024 Task 2.

2 Related Works
The embedding-based retriever (EBR) implement retrieval based on
the semantic information of the text. With the rise of the pretrained
language models [4], the accuracy of EBR has been substantially
improved, making it a critical recall path in retrieval-augmented
generation (RAG) [10], reranking, classification and many other
downstream applications. Bidirectional embedding models, such
as BERT [5] have long been the dominant approaches for general-
purpose embedding tasks. However the latest study by Wang et
al. [23] demonstrates that decoder-only LLMs can surpass bidirec-
tional embeddingmodels [1, 15, 22] in retrieval and general-purpose
embedding tasks.

The fusion of graph neural networks (GNNs) and LLMs has
produced promising outcomes across various domains, such as node
categorization [7, 9], graph categorization [17, 26], and utilizing
LLMs for tasks related to knowledge graphs [12, 21], etc. He et
al. [8] first propose a RAG method for textual graphs to enhance
LLM’s understanding of graph structure. Some graph-based RAG
methods utilize the topology of knowledge graphs or paragraph
graphs to enhance the LLM’s understanding of text [3, 14], which
performs well in large-scale text graphs.

3 Method
Our task is to train a retriever that can precisely retrieve the most
relevant papers for any professional academic question. Note that

1
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Figure 1: The framework of our method

the retriever is trained by question-paper pairs {(𝑞𝑖 , 𝑝𝑖 )}𝑛𝑖=1. Com-
pared with the basic retrieval task, there are a large number of
citation relationships that need to be accurately modeled in the aca-
demic question answering task, and academic-related questions are
more difficult than task-oriented QA, so a more accurate similarity
modeling is required.

To meet these requirements, we design three modules as Fig.1.

3.1 Paper Classifier
Traditional pre-training and fine-tuning approaches[4] require a
large amount of annotated data to work well, but in-context learn-
ing can generate accurate responses with only a few annotated
examples[13]. This is particularly useful when dealing with large
datasets that have very few annotations. So, We fellow the prompt-
based in-context learning paradigm to build a document classifier.

Given an input sequence 𝒙𝑖𝑛𝑝𝑢𝑡 = {𝑥0, 𝑥1, · · · , 𝑥𝐿}, language
model needs to generate a predefined text response 𝒚 ∈ Y(e.g.,
computer science etc.) under the prompt 𝒙𝑝𝑟𝑜𝑚𝑝𝑡 .

𝒙𝑝𝑟𝑜𝑚𝑝𝑡 consists of the following three components:
(1) Task description 𝒙𝑑𝑒𝑠𝑐 . Taking text classification task in

this paper as an example, the task description is as follows:
You are a professional text classifier. Please classify the given
text into the category of Computer Science, · · · ,etc.

(2) Demonstration D𝑑𝑒𝑚𝑜 consists of a series of annotated
data. The purpose is to provide helpful examples and output
format to the language model. 𝒙𝑑𝑒𝑚𝑜 used in this paper are
presented as follows:
{(𝒙0

𝑑𝑒𝑚𝑜
,𝒚0
𝑑𝑒𝑚𝑜

), (𝒙1
𝑑𝑒𝑚𝑜

,𝒚1
𝑑𝑒𝑚𝑜

), · · · , (𝒙𝑘
𝑑𝑒𝑚𝑜

,𝒚𝑘
𝑑𝑒𝑚𝑜

)}
where 𝒙𝑖

𝑑𝑒𝑚𝑜
means 𝑗-th example query and 𝒚𝑖

𝑑𝑒𝑚𝑜
corre-

sponds to the respective example label.
(3) Test input 𝒙𝑡𝑒𝑠𝑡 is the text sequence that we need to clas-

sify.

Therefore, the 𝒙𝑝𝑟𝑜𝑚𝑝𝑡 is as follows:

𝒙𝑝𝑟𝑜𝑚𝑝𝑡 = {𝒙𝑑𝑒𝑠𝑐 , \𝑛,D𝑑𝑒𝑚𝑜 , \𝑛, 𝒙𝑡𝑒𝑠𝑡 }

D𝑑𝑒𝑚𝑜 is sampled from the 100 artificially labeled datasetD𝑡𝑟𝑎𝑖𝑛 .
When labeling the data, we should be pay attention to the balance
of categories, and the classification standard of paper categories is
consistent with [19].

Furthermore, the sampling strategy of D𝑑𝑒𝑚𝑜 has a significant
impact on the final classification performance. Maintaining se-
mantic similarity between D𝑑𝑒𝑚𝑜 and 𝒙𝑡𝑒𝑠𝑡 is one of the effective
strategies[11]. Therefore, we use a good pre-trained model (such
as bge-large-en-v1.5) to select the three most relevant labeled data
from D𝑡𝑟𝑎𝑖𝑛 .

Although in-context learning has solved the problem of limited
label, its token cost and time cost are very high on extremely large
datasets. To solve this problem, we establish a journal-paper map-
ping by [20]. The specific category of a paper is inferred through
the journal in which the paper is included. This method has reduced
the number of inferences by five times.

3.2 Multi-Track Textual Graph Retriever
We utilize the additional dataset[20] provided by the official to
obtain the citation relationships between papers. Based on this, we
construct a text-attributed graph G = (V,A, 𝒔𝑣). Specifically, If
a paper 𝑖 cites others documents 𝑗 then adjacency matrix A𝑖, 𝑗 =
1. Otherwise, A𝑖, 𝑗 = 0. Each node 𝑛 ∈ V is associated with a
sequential text feature(sentences) 𝒔𝑛 .

Motivated by [16], we employmulti-trackmessage passingmech-
anism to model the citation relationships between papers. Messages
passing within tracks greatly avoids the issues of oversmoothing
and oversquashing, enabling GNNs to embed richer structural infor-
mation from G. Note that message tracks T are defined as a set of

2
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isomorphic graphs mirroring the topology of G. Each track 𝑇 ∈ T
is uniquely used for passing messages corresponding to a specific
node category generate by Section 3.1. Next, we will provide a
detailed step-by-step explanation of the retriever.

Step1:Loading.All nodes initial featuresX, which are generated
by text sequence encoder 𝑓𝑡𝑒𝑥𝑡 (·), are loaded onto the correspond-
ing tracks T as initial messagesM (0) . The sending guidance matrix
F𝑠 ∈ {0, 1} | T |× |V | determines which specific track each node will
be sent to.

M (0)
𝑇,𝑣,: = X𝑣 if F𝑠𝑇 ,𝑣 = 1

M (0)
𝑇,𝑣,: =

−→0 if F𝑠𝑇 ,𝑣 = 0,
(1)

Ideally, each paper node should be sent to only one track. However,
due to the lack of labeling information and the potential loss in
papers-journal mapping process names in Section 3.1, we will send
each node to the threemost probable tracks to improve track loading
recall.

Step2:Multi-Track Message Passing(MTMP). The initial mes-
sages are updated by propagating and aggregating in respective
tracks over 𝐿 iterations.

M (ℓ )
𝑇,:,: = (D̃−1/2ÃD̃−1/2)M (ℓ−1)

𝑇,:,: + 𝛼ℓM (0)
𝑇,:,:, (2)

where messagesM (ℓ−1)
𝑇,:,: in neighborhood are aggregated according

to the normalized adjacency matrix D̃−1/2ÃD̃−1/2. And D̃ is the
add self loop degree matrix.

Step3:Acquiring.After 𝐿 times of message passing in the tracks,
we need to obtain the final representation Z of the paper nodes from
the final messagesM𝐿 . In this process, we requires establishing the
acquiring guidance matrix F𝑎 ∈ R | T |× |V | to guide the computation
of Z. Specifically, F𝑎 is given by

F𝑎:,𝑣 = softmax(XW𝑄 (M (𝐿)
:,𝑣,:W𝐾 )T), (3)

Z𝑣,: = (
∑︁

𝑇 ∈T F𝑎𝑇,𝑣 · M
(𝐿)
𝑇,𝑣,:)W𝑉 , (4)

whereW: are learnable parameters. Z is used for modeling in down-
stream retrieval tasks.

Step4:Retrieval Task Training. This step aims to distinguish
the relevant text pairs from other irrelevant or negative pairs. Given
a collection of text pairs {(𝑞𝑖 , 𝑝𝑖 )}𝑛𝑖=1, we assign a list of in-batch
negative papers {𝑝−

𝑖 𝑗
}𝑚
𝑗=1 for 𝑖-th query. Then InfoNCE loss is as

follows:

min𝐿 = − 1
𝑛

∑︁
𝑖

log
𝑒𝑠 (𝑞𝑖 ,𝑝

+
𝑖 )

𝑒𝑠 (𝑞𝑖 ,𝑝
+
𝑖
)+∑𝑗 𝑒

𝑠 (𝑞𝑖 ,𝑝−𝑖 𝑗 )
, (5)

where 𝑠 (𝑞, 𝑝) is a scoring function between user query 𝑞 and paper
𝑝 . It’s given by

𝑠 (𝑞, 𝑝) = cos(𝑓𝑡𝑒𝑥𝑡 (𝑞),Z𝑝 )/𝜏 . (6)

In our experiments,𝜏 is set to 0.01. Additionally, we utilize GradCache[6]
to further increase the batch size for improved performance.

3.3 Fine-tuning with Hard Negatives
During fine-tuning, we use contrastive learning to distinguish
between positive and negative examples, with a key challenge
being the selection of negative examples[18]. Common methods
like 3.2 are often inefficient and ineffective, as in-batch negatives

Figure 2: The framework of fine-tuning with hard negatives.
𝑃−
𝑁

stands for hard negatives sampled in the N-th epoch.
usually have low similarity to the query, leading to less effective
training[24].

We note that traditional hard negative mining is typically applied
to an untrained model with a static dataset, ignoring the model’s
evolution during training. To address this, we propose a dynamic
sampling approach based on hard negative mining. This approach
continuously mines negative examples during training, dynamically
updating the training set, ensuring the model updates gradients in
the correct direction for as long as possible.

Practically, periodic hard negative mining involves mining chal-
lenging examples at intervals of several epochs (described as M). In
the N-th epoch, the process is detailed in Fig.2.

Step 1: Database Building. Using the model trained up to the
(N-1)-th epoch, we encode all papers 𝑃𝑎𝑙𝑙 and store them in a vector
database.

Step 2: Querying and Sampling. For each query𝑄 , we encode
it with the model trained up to the (N-1)-th epoch, then perform
a vector similarity search against the vector database from Step 1.
From the top range (e.g., top 75 to 200), we filter out the positive
examples 𝑃+, and the remaining vectors are further filtered to a
specified number as hard examples 𝑃−

𝑁
.

Step 3: Retrieval Task Training.We train the model using the
newly generated dataset as defined in Section 3.2, producing the
model at the N-th epoch.

Additionally, research shows that using reciprocal rank fusion
(RRF)[2] to ensemble multiple models can enhance performance.
Therefore, we train multiple different models and apply RRF in the
final version of our method.

4 Experiments
4.1 Datasets
We use OAG-QA[25] dataset, which collected question-paper pairs
from academic question-answering platforms, such as StackEx-
change and Zhihu. The dataset consists of a query dataset and a
candidate papers list. The query dataset comprises three keywords:
question, body and pids, whose values correspond to the brief de-
scription of the question, the detailed content of the question, and
the list of paper identifier (pid) for the relevant papers, respectively.
In the candidate papers list, the papers are paired with their content,
including titles and abstracts, through a dictionary that maps the
paper identifier (pid).

3
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Query Lable How can I ensure convergence of DDQN, if the true Q-values for different actions in the same state are very close?

P 1st Pos Implicit Quantile Networks for Distributional Reinforcement Learning.
P 2nd Neg Full Gradient DQN Reinforcement Learning: A Provably Convergent Scheme
P 3rd Neg Deep Reinforcement Learning with Double Q-learning
P 4th Neg Quantum Computing, Postselection, and Probabilistic Polynomial-Time
P 5th Pos A Distributional Perspective on Reinforcement Learning.

Table 1: Case study

4.2 Case Study
Since the ground truth for the relevant test dataset has not yet
been released, we will not conduct an in-depth analysis. Instead we
provide some results of the queries in the valid dataset retrieved by
our methods.

For the provided query, we retrieved two positive examples
within the top five results, ranking first and fifth. Although the
passage ranked second is not a positive example, it is highly relevant
to the query. The dataset does not necessarily provide the definitive
answers but rather a subset of the many possible answers. The
results indicates that our method effectively learns the actual data
distribution.

5 Conclusion
Our citation-aware academic graph retriever significantly en-
hances academic question answering by integrating text features
and citation relationships. This system, which employs amulti-track
message passing mechanism and dynamic retrieval task training,
achieves high retrieval accuracy and efficiency. Our approach was
validated through its competitive performance in the KDD CUP
2024 Task 2 competition, securing the 3rd place. The simplicity
and effectiveness of our method make it a promising solution for
academic graph mining and information retrieval tasks.
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