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ABSTRACT

We present a method to compute the derivative of a learning task with respect to
a dataset. A learning task is a function from a training set to the validation error,
which can be represented by a trained deep neural network (DNN). The “dataset
derivative” is a linear operator, computed around the trained model, that informs
how perturbations of the weight of each training sample affect the validation
error, usually computed on a separate validation dataset. Our method, DIVA
(Differentiable Validation) hinges on a closed-form differentiable expression of the
leave-one-out cross-validation error around a pre-trained DNN. Such expression
constitutes the dataset derivative. DIVA could be used for dataset auto-curation,
for example removing samples with faulty annotations, augmenting a dataset with
additional relevant samples, or rebalancing. More generally, DIVA can be used
to optimize the dataset, along with the parameters of the model, as part of the
training process without the need for a separate validation dataset, unlike bi-level
optimization methods customary in AutoML. To illustrate the flexibility of DIVA,
we report experiments on sample auto-curation tasks such as outlier rejection,
dataset extension, and automatic aggregation of multi-modal data.

1 INTRODUCTION

Consider the following seemingly disparate questions. (i) Dataset Extension: Given a relatively small
training set, but access to a large pool of additional data, how to select from the latter samples to
augment the former? (ii) Dataset Curation: Given a potentially large dataset riddled with annotation
errors, how to automatically reject such outlier samples? (iii) Dataset Reweighting: Given a finite
training set, how to reweight the training samples to yield better generalization performance?

These three are examples of Dataset Optimization. In order to solve this problem with differentiable
programming, one can optimize a loss of the model end-to-end, which requires differentiating the

model’s loss with respect to the dataset. Our main contribution is an efficient method to compute
such a dataset derivative. This allows learning an importance weight ↵i for each datum in a training
dataset D, extending the optimization from the weights w of a parametric model such as a deep
neural network (DNN), to also include the weights of the dataset.

As illustrated in the following diagram, standard optimization in machine learning works by finding
the weights w↵ that minimize the training loss Ltrain(w, D↵) =

P
i ↵i`(fw(xi), yi) on a given

(weighted) dataset D↵ (dark box). We solve a more general learning problem (light box) by jointly
optimizing the dataset D↵ in addition to w. To avoid the trivial solution ↵ = 0, it is customary in
AutoML to optimize D↵ by minimizing the validation error computed on a disjoint dataset. This
makes for inefficient use of the data, which has to be split between training and validation sets.
Instead, we leverage a closed-form expression of the leave-one-out cross-validation error to jointly
optimize the model and data weights during training, without the need to create a separate validation
set.

⇤Work conducted at Amazon Web Services.
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Ltrain(w, D�) w� Lval(w�)

Standard optimization finds the best weights to 
minimize the training loss

D�

DIVA finds the best dataset  to train on in order so 
that the weights minimize a validation loss

D�

Ltrain(w, D�) w� Lval(w�)D�

Ltrain(w, D�) w� Lval(w�)D�

The intermediate block in the diagram (which finds the optimal weights w↵ for the the training loss
on D↵) is usually non-differentiable with respect to the dataset, or the derivative is prohibitively
expensive to compute. DIVA leverages recent progress in deep learning linearization Achille et al.
(2020), to derive a closed-form expression for the derivative of the final loss (validation error) with
respect to the dataset weights. In particular, Achille et al. (2020) have shown that, by replacing
cross-entropy with least-squares, replacing ReLu with leaky-ReLu, and performing suitable pre-
conditioning, the linearized model performs on par with full non-linear fine-tuning. We also leverage
a classical result to compute the leave-one-out loss of a linear model in closed-form (Rifkin & Lippert,
2007; Green & Silverman, 1993). This allows us to optimize the LOO loss without requiring a
separate validation set, setting DIVA apart from bi-level optimization customary in AutoML.

To illustrate the many possible uses of the dataset derivative, we run experiments with a simplified
version of DIVA to cleanup a dataset of noisy annotations, to extend a training set with additional data
from an external pool, identify meaningful data augmentation, and to perform multi-modal expansion
using a CLIP model (Radford et al., 2021).

Rather than using the full linearization of the model derived by Achille et al. (2020), we restrict the
gradient to its last layer, cognizant that we are not exploiting the full power of LQF and thereby
obtaining only a lower-bound of performance improvement. Despite that restriction, our results show
consistent improvements from dataset optimization, at the modest computational cost of a forward
pass over the dataset to optimize the importance weights.

To summarize, our main contributions are:
1. We introduce a method to compute the dataset derivative in closed form, DIVA.
2. We illustrate the use of DIVA to perform dataset optimization by minimizing directly the

leave-one-out error without the need for an explicit validation dataset.
3. We perform experiments with a simplified model that, despite not using the full power of

the linearization, shows consistent improvements in dataset extension, re-weighting, outlier
rejection and automatic aggregation of multi-modal data.

Our method presents several limitations. The dataset derivative of a learning task is computed around
a point represented by a pre-trained model. It only allows local optimization around this point.
Moreover, we only compute a restriction of the linearization to the dimensions spanned by the last few
layers. In general, this yields suboptimal results compared to full global optimization from scratch, if
one could compute that at scale. Nonetheless, the linearized setting is consistent with the practice of
fine-tuning pre-trained models in light of the results of Achille et al. (2020), see also (Radford et al.,
2021; Rezende et al., 2017; Mormont et al., 2018; Hosny et al., 2018).

2 RELATED WORK

AutoML. State of the art performance in image classification tasks often relies on large amount
of human expertise in selecting models and adjusting the training settings for the task at hand (Li
et al., 2020a). Automatic machine learning (AutoML) (Feurer et al., 2019; He et al., 2021) aims
to automate model selection (Cawley & Talbot, 2010) and the training settings by instead using
meta-algorithms for the different aspects of the learning settings. Such methods follow a bi-level
optimization framework, optimizing the training settings in the outer level, and traditional model
optimization in the inner level (Jenni & Favaro, 2018). AutoML has focused on achieving better
results via automatic model selection (Deshpande et al., 2021; Feurer et al., 2019) including neural
architecture search (NAS) (Zoph & Le, 2016; Elsken et al., 2019; Liu et al., 2019). Other important
AutoML topics include hyper-parameter selection (Li et al., 2017; Akiba et al., 2019) and data
augmentation (Cubuk et al., 2018; Lim et al., 2019; Chen et al., 2020; Behl et al., 2020), which
are closer to our settings of optimizing the dataset weights. Since the main signal for a model’s
performance is the final validation loss, which requires full optimization of the model for each
evaluation, AutoML approaches often incur a steep computational costs. Alternatively, other methods
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follow alternating optimization of the criteria, such as the work of Ren et al. (2018) that approximates
full network optimization with a single SGD step to learn to reweight the training set dynamically.
Differentiable AutoML alleviates outer-optimization costs while optimizing the final validation error
via differentiable programming, by utilizing proxy losses and continuous relaxation that enable
differentiation. Different approaches to differentiable AutoML include differentiable NAS (Liu et al.,
2018; Wu et al., 2019), data augmentation (Liu et al., 2021; Li et al., 2020b), and hyper-parameter
optimization (Andrychowicz et al., 2016). The DIVA dataset derivative follows the differentiable
AutoML framework by enabling direct optimization of the dataset with respect to the final validation
error of the model.

Importance sampling. While our dataset optimization problem may seem superficially similar to
importance sampling, the optimization objective is different. Importance sampling aims to reweight
the training set to make it more similar to the test distribution or to speed up convergence. On
the other hand, DIVA objective is to optimizes a validation loss of the model, even if this requires
making the training distribution significantly different from the testing distribution. Importance
sampling methods have a long history in the MCMC machine learning literature where the sampling
is conditioned on the predicted importance of samples (Metropolis & Ulam, 1949; Liu, 2008). In
deep learning, importance sampling methods have been studied theoretically for linearly-separable
data (Byrd & Lipton, 2019) and recently in more generality (Xu et al., 2021). Furthermore, there
exist many importance sampling heuristics in deep learning training including different forms of hard
sample mining (Shrivastava et al., 2016; Xue et al., 2019; Chang et al., 2017), weighting based on a
focal loss (Lin et al., 2017), re-weighting for imbalance, (Cui et al., 2019; Huang et al., 2019; Dong
et al., 2017) and gradient based scoring (Li et al., 2019). We emphasize that DIVA’s optimization of
the sample weights is not based on a heuristic but is rather a differentiable AutoML method driven by
optimization of a proxy of the test error. Further, DIVA allows optimization of the dataset weights
with respect to an arbitrary loss and also allows for dataset extension computation.

LOO based optimization. Leave-one-out cross validation is well established in statistical learning
(Stone, 1977). In ridge regression, the LOO model predictions for the validation samples have a
closed-form expression that avoids explicit cross validation computation (Green & Silverman, 1993;
Rifkin & Lippert, 2007) enabling efficient and scalable unbiased estimate of the test error. Efficient
LOO has been widely used as a criterion for regularization (Pedregosa et al., 2011; Quan et al.,
2010; Birattari et al., 1999; Thapa et al., 2020), hyper-parameter selection (Hwang & Shim, 2017)
and optimization (Wen et al., 2008). Most similar to our dataset derivative are methods that: (1)
optimize a restricted set of parameters, such as kernel bandwidth, in weighted least squares (Cawley,
2006; Hong et al., 2007) (2) locally weighted regression methods (memorizing regression) (Atkeson
et al., 1997; Moore et al., 1992), or (3) methods that measure the impact of samples based on LOO
predictions (Brodley & Friedl, 1999; Nikolova et al., 2021).

Dataset selection & sample impact measures. Koh & Liang (2017) measure the effect of changes
of a training sample weight on a final validation loss through per-sample weight gradients, albeit
without optimizing the dataset and requiring a separate validation set. Their proposed expression for
the per-sample gradient, however, does not scale easily to our problem of dataset optimization. In
contrast, in proposition 3 we introduce an efficient closed-form expression for the derivative of the
whole datasets. Moreover, in proposition 3, we show how to optimize the weights with respect to a
cross-validation loss which does not require a separate set. In Pruthi et al. (2020), the authors present
a sample-impact measure for interpretability based on a validation set; for dataset extension, Yan
et al. (2020) presents a coarse dataset extension method based on self-supervised learning. Dataset
distillation and core set selection methods aim to decrease the size of the dataset (Wang et al., 2018)
by selecting a representative dataset subset (Hwang et al., 2020; Jeong et al., 2020; Coleman et al.,
2019; Joneidi et al., 2020; Trichet & Bremond, 2018; Killamsetty et al., 2021). While DIVA is
capable of removing outliers, in this work we do not approach dataset selection from the perspective
of making the dataset more computationally tractable by reducing the number of samples.

3 METHOD

In supervised learning, we use a parametrized model fw(x) to predict a target output y given an input
x coming from a joint distribution (x, y) ⇠ T . Usually, we are given a training set D = {(xi, yi)}N

i=1
with samples (x, y) assumed to be independent and identically distributed (i.i.d.) according to T .
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The training set D is then used to assemble the empirical risk for some per-sample loss `,

Ltrain(w; D) =
NX

i=1

`(fw(xi), yi),

which is minimized to find the optimal model parameters wD:
wD = argmin

w
Ltrain(w; D).

The end goal of empirical risk minimization is that weights will also minimize the test loss, computed
using a separate test set. Nonetheless D is often biased and differs from the distribution T . In
addition, from the perspective of optimization, different weighting of the training loss samples can
enable or inhibit good learning outcomes of the task T (Lin et al., 2017).

Dataset Optimization. In particular, it may not be the case that sampling the training set D i.i.d. from
T is the best option to guarantee generalization, nor it is realistic to assume that D is a fair sample.
Including in-distribution samples that are too difficult may negatively impact the optimization, while
including certain out-of-distribution examples may aid the generalization on T . It is not uncommon,
for example, to improve generalization by training on a larger dataset containing out-of-distribution
samples coming from other sources, or generating out-of-distribution samples with data augmentation.
We call Dataset Optimization the problem of finding the optimal subset of samples, real or synthetic,
to include or exclude from a training set D in order to guarantee that the weights wD trained on D
will generalize as much as possible.

Differentiable Dataset Optimization. Unfortunately, a naïve brute-force search over the 2N possible
subsets of D is unfeasible. The starting idea of DIVA is to instead solve a more general continuous
optimization problem that can however be optimized end-to-end. Specifically, we parameterize
the choice of samples in the augmented dataset through a set of non-negative continuous sample
weights ↵i which can be optimized by gradient descent along with the weights of the model. Let
↵ = (↵1, . . . , ↵N ) be the vector of the sample weights and denote the corresponding weighted
dataset by D↵. The training loss on D↵ is then defined as:

LD(w; D↵) =
NX

i=1

↵i `(fw(xi), yi). (1)

Note that if all ↵i’s are either 0 or 1, we are effectively selecting only a subset of D for training.
As we will show, this continuous generalization allows us to optimize the sample selection in a
differentiable way. In principle, we would like to find the sample weights ↵⇤ = argmin↵ LDtest(w↵)
that lead to the best generalization. Since we do not have access to the test data, in practice this
translates to optimizing ↵ with respect to an (unweighted) validation loss Lval:

↵⇤ = argmin↵ Lval(w↵).

We can, of course, compute a validation loss using a separate validation set. However, as we will
see in Section 3.3, we can also use a leave-one-out cross-validation loss directly on the training set,
without any requirement of a separate validation set.

In order to efficiently optimize ↵ by gradient-descent, we need to compute the dataset derivative
r↵Lval(w↵). By the chain rule, this can be done by computing r↵w↵. However, the training
function ↵! w↵ that finds the optimal weights w↵ of the model given the sample weights ↵ may be
non-trivial to differentiate or may not be differentiable at all (for example, it may consist of thousands
of steps of SGD). This would prevent us from minimizing ↵ end-to-end.

In the next section, we show that if, instead of linearizing the w↵ end-to-end in order to compute the
derivative, we linearize the model before the optimization step, the derivative can both be written in
closed-form and computed efficiently, thus giving us a tractable way to optimize ↵.

Figure 1: The DIVA dataset derivative is computed end-to-end from the final validation loss
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3.1 LINEARIZATION

In real-world applications, the parametric model fw(x) is usually a deep neural network. Recent
work (Achille et al., 2020; Mu et al., 2020) have shown that in many cases, a deep neural network can
be transformed to an equivalent linear model that can be trained on a simple quadratic loss and still
reach a performance similar to the original model. Given a model fw(x), let w0 denote an initial set
of weights, For example, w0 could be obtained by pre-training on a large dataset such as ImageNet
(if the task is image classification). Following Achille et al. (2020); Mu et al. (2020), we consider a
linearization f lin

w (x) of the network fw(x) given by the first-order Taylor expansion of fw(x) around
w0:

f lin
w (x) = fw0(x) +rwfw0(x) · (w �w0). (2)

Intuitively, if fine-tuning does not move the weights much from the initial pre-trained weights w0,
then f lin

w (x) will remain a good approximation of the network while becoming linear in w (but still
remaining highly non-linear with respect to the input x). Effectively, this is equivalent to training a
linear classifier using the gradients zi := rwfw0(xi) as features (Mu et al., 2020).

Although f lin
w (x) is a linear model, the optimal weights w↵ may still be a complex function of the

training data, depending on the loss function used. Achille et al. (2020) showed that equivalent
performance can be obtained by replacing the empirical cross-entropy with the regularized least-
squares loss:

LD(w) =
NX

i=1

kf lin
w (x)� yik2 + �kwk2 (3)

where y denotes the one-hot encoding vector of the label yi. In Achille et al. (2020), it is shown
that linearized models are equivalent from the standpoint of performance on most standard tasks and
classification benchmarks, and better in the low-data regime, which is where the problem of “dataset
augmentation” is most relevant. The advantage of using this loss is that the optimal weights w⇤ can
now be written in closed-form as

w⇤ = (Z>Z + �I)�1Z>(Y � fw0(X)), (4)

where Z = [z1, . . . , zN ] is the matrix of the Jacobians zi = rwfw0(xi). While our method can
be applied with no changes to linearization of the full network, for simplicity in our experiments
we restrict to linearizing only the last layer of the network. This is equivalent to using the network
as a fixed feature extractor and training a linear classifier on top the last-layer features, that is,
zi = fL�1

w0
(xi) are the features at the penultimate layer.

3.2 COMPUTATION OF THE DATASET DERIVATIVE

We now show that for linearized models we can compute the derivativer↵w↵ in closed-form. For
the ↵-weighted dataset, the objective in eq. (3) with L2 loss for the linearized model is written as,

w↵ = argmin
w

LD(w; D↵) = argmin
w

NX

i=1

↵kw>zi � yik2 + �kwk2. (5)

where zi = rwfw0(xi) as in the previous section. Note that ↵kw>zi � yik2 = kw>z↵
i � y↵

i k,
where z↵

i :=
p

↵zi and y↵
i :=

p
↵yi. Using this, we can reuse eq. (4) to obtain the following

closed-form solution for w↵:

w↵ = (Z>D↵Z + �I)�1Z>D↵Y, (6)

where we have taken D↵ = diag(↵). In particular, note that w↵ is now a differentiable function of ↵.
The following proposition gives a closed-form expression for the derivative.
Proposition 1 (Model-Dataset Derivative r↵w↵). For the ridge regression problem equation 5 and

w↵ defined as in equation 6, define

C↵ = (Z>D↵Z + �I)�1. (7)

Then the Jacobian of w↵ with respect to ↵ is given by

r↵w↵ = ZC↵ �
�
(I� ZC↵Z

>D↵)Y
�
, (8)
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Figure 2: Examples of the reweighting done by DIVA. (Left) Samples from the FGVC Aircraft
classification dataset that are up-weighted by DIVA and (Right) samples that are down-weighted
because they increase the test error. Down-weighted samples tend to have planes in non-canonical
poses, multiple planes, or not enough information to classify the plane correctly.

Where we write A �B 2 Rn⇥m⇥k for the batch-wise outer product of A 2 Rn⇥m and B 2 Rn⇥k

along the common dimension k, i.e., (A �B)ijk = aijbik

The Jacobianr↵w↵ would be rather large to compute explicitly. Fortunately, the end-to-end gradient
Lval(w↵) if the final validation loss can still be computed efficiently, as we now show. Given a
validation dataset Dval, the validation loss is:

Lval(w↵) =
P

(xi,yi)2Dval
`(fw↵(xi), yi). (9)

The following gives the expression to optimize ↵ end-to-end with respect to the validation loss.
Proposition 2 (Validation Loss Dataset Derivative). Define L as the loss function derivative with

respect to the network outputs as,

L =


@`

@f
(f(x1), y1), · · ·

@`

@f
(f(xN ), yN )

�

Then the dataset derivative importance weights with respect to final validation is given by

r↵Lval(w↵) = ZC↵Z
> ⇥

�
L>Y>(I�D↵ZC↵Z

>)
�
. (10)

3.3 LEAVE-ONE-OUT OPTIMIZATION

{↵} It is common in AutoML to optimize the hyper-parameters with respect to a separate validation
set. However, using a separate validation may not be practical in limited data settings, which are a
main focus of dataset optimization. To remedy this, we now show that we can instead optimize ↵ by
minimizing a leave-one-out cross-validation loss that only requires a training set:

LLOO(↵) =
PN

i=1 `(fw�i
↵

(xi), yi), (11)

where w�i
↵ are the optimal weights obtained by training with the loss eq. (5) on the entire dataset

D except for the i-th sample (xi, yi). This may seem counter-intuitive, since we are optimizing the
weights of the training samples using a validation loss defined on the training set itself. It is useful to
recall that w�i

↵ minimizes the ↵-weighted L2 loss on the training set (minus the i-th example):

w�i
↵ = arg min

w
L�i
D (w, D↵) = arg min

w

X

j 6=i

↵jkfw(xj)� yjk2 + �kwk2. (12)

Meanwhile, ↵ minimizes the unweighted validation loss in eq. (11). This prevents the existence of
degenerate solutions for ↵.

Computing LLOO naively would require training n classifiers, but fortunately, in the case of a linear
classifier with the L2 loss, a more efficient closed-form solution exists (Green & Silverman, 1993;
Rifkin & Lippert, 2007). Generalizing those results to the case of a weighted loss, we are able to
derive the following expression.
Proposition 3. Define

R↵ = Z>
p

D↵(Z>D↵Z + �I)�1
p
D↵Z
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Then ↵-weighted LOOV predictions defined in eq. (12) admit a closed-form solution:

fw�i
↵

(zi) =

"
R↵
p
D↵Y � diag(R↵)

p
D↵Y

diag(
p
D↵ �

p
D↵R↵)

�

i

, (13)

where diag(A) = [a11, . . . , ann] denotes the vector containing the diagonal of A, and the division

between vectors is element-wise.

Note that the prediction fw�i
↵

(zi) on the i-th sample when training on all the other samples is a
differentiable function of ↵. Composing eq. (13) in eq. (11), we compute the derivative r↵LLOO(↵),
which allows us to optimize the cross-validation loss with respect to the sample weights, without
the need of a separate validation set. We give the closed-form expression for r↵LLOO(↵) in the
Appendix.

3.4 DATASET OPTIMIZATION WITH DIVA

We can now apply the closed-form expressions for r↵Lval(↵) and r↵LLOO(↵) for differentiable
dataset optimization. We describe the optimization using Lval, but the same applies to LLOO.

DIVA Reweight. The basic task consists in reweighting the samples of an existing dataset in order
to improve generalization. This can curate a dataset by reducing the influence of outliers or wrong
labels, or by reducing possible imbalances. To optimize the dataset weights, we use gradient descent
in the form:

↵ ↵� ⌘r↵Lval. (14)
It is important to notice that Lval is an unbiased estimator of the test loss only at the first step, hence
optimizing using eq. (14) for multiple steps can lead to over-fitting (see Appendix). Therefore, we
apply only 1-3 gradient optimization steps with a relatively large learning rate ⌘ ' 0.1. This early
stopping both regularizes the solution and decreases the wall-clock time required by the method. We
initialize ↵ so that ↵i = 1 for all samples.

DIVA Extend. The dataset gradient also allows us to extend an existing dataset. Given a core dataset
D = {(xi, yi)}N

i=1 and an external (potentially noisy) data pool E = {(x̂i, ŷi)}N+M
i=N+1, we want to

find the best samples from E to add to D. For this we merge D and E in a single dataset and initialize
↵ such that ↵i = 1 for samples of D and ↵i = 0 for samples of E (so that initially the weighted
dataset matches D). We then compute r↵Lval(↵) to find the top k samples of E that have the largest
negative value of r↵Lval(↵)i, i.e., the samples that would give the largest reduction in validation
error if added to the training set and add them to D. This is repeated until the remaining samples in E
all have positive value for the derivative (adding them would not further improve the performance).

Detrimental sample detection. The i-th component of r↵Lval specifies the influence of the i-th
sample on the validation loss. In particular, (r↵Lval)i > 0 implies that the sample increases the
validation loss, hence it is detrimental (e.g., it is mislabeled or overly represented in the dataset). We
can select the set of detrimental examples by thresholdingr↵Lval:

Detrimental(✏) =
�
i : (r↵Lval)i � ✏

 
. (15)

4 RESULTS

For our models we use standard residual architectures (ResNet) models pre-trained on ImageNet
(Deng et al., 2009) and Places365 (Zhou et al., 2017). For our experiments on dataset optimization we
consider datasets that are smaller than the large scale datasets used for pre-training as we believe they
reflect more realistic conditions for dataset optimization. For our experiments we use the CUB-200
(Welinder et al., 2010), FGVC-Aircraft, (Maji et al., 2013), Stanford Cars (Krause et al., 2013),
Caltech-256 (Griffin et al., 2007), Oxford Flowers 102 (Nilsback & Zisserman, 2008), MIT-67 Indoor
(Quattoni & Torralba, 2009), Street View House Number (Netzer et al., 2011), and the Oxford Pets
(Parkhi et al., 2012) visual recognition and classification datasets. In all experiments, we use the
network as a fixed feature extractor, and train a linear classifier on top of the network features using
the weighted L2 loss eq. (5) and optimize the ↵ weights using DIVA.

Dataset AutoCuration. We use DIVA Reweight to optimize the importance weights of samples
from several fine-grain classification datasets. While the datasets have already been manually curated
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Dataset Original DIVA Reweight Chang et al. (2017)† Ren et al. (2018)⇤ Gain

Aircrafts 57.58 54.64 70.48 81.82 (80.62) +2.94
Cub-200 39.30 36.93 57.85 72.55 (75.35) +2.36

MIT Indoor-67 32.54 31.27 37.84 64.48 (58.06) +1.27
Oxford Flowers 20.23 19.16 22.82 48.80 (55.46) +1.07

Stanford Cars 58.91 56.31 75.87 83.09 (84.50) +2.56
Caltech-256 23.98 21.29 37.52 58.44 (52.77) +2.69

Table 1: Test error of DIVA Reweight to curate several fine-grain classification datasets. We use a
ResNet-34 pretrained on ImageNet as feature extractor and train a linear classifier on top of the last
layer. Note that DIVA Reweight can improve performance even on curated and noiseless datasets
whereas other reweighting methods based on hard-coded rules may be detrimental in this case.

by experts to exclude out-of-distribution or mislabeled examples, we still observe that in all cases
DIVA can further improve the test error of the model (Table 1). To understand how DIVA achieves
this, in Figure 2 we show the most up-weighted (left) and down-weighted (right) examples on the
FGVC Aircraft classification task Maji et al. (2013). We observe that DIVA tends to give more weight
to clear, canonical examples, while it detects as detrimental (and hence down-weights) examples
that contain multiple planes (making the label uncertain), or that do not clearly show the plane, or
show non-canonical poses. We compare DIVA Reweight with two other re-weighting approaches:
Ren et al. (2018), that applies re-weighting using information extracted from a separate validation
gradient step, and Chang et al. (2017), which reweighs based on the uncertainty of each prediction
(threshold-closeness weighting scheme). For Ren et al. (2018), we set aside 20% of the training
samples as validation for the reweight step, but use all samples for the final training (in parentheses).
We notice that both baselines under-perform with respect to DIVA on noiseless datasets.

Dataset extension. We test the capabilities of DIVA Extend to extend a dataset with additional
samples of the distribution. In Figure 4 and Table 2 (in the Appendix), we observe that DIVA is
able to select the most useful examples and reaches an optimal performance generalization error
using significantly less samples than the baseline uniform selection. Moreover, we notice that DIVA
identifies a smaller subset of samples that provides better test accuracy than adding all the pool
samples to the training set.

Detrimental sample detection. To test the ability of DIVA to detect training samples that are
detrimental for generalization, we introduce wrong labels in the dataset. In Section 3.4 we suggest
detecting detrimental examples by finding where is r↵LLOO(↵)i positive. To verify this, in Figure 3
we plot the histogram of the derivatives for correct and mislabeled examples. We observe that most
mislabeled examples have positive derivative. In particular, we can directly classify an example as
mislabeled if the derivative is positive. In Figure 3 we report the F1 score and AUC obtained in a
mislabeled sample detection task using the DIVA gradients.

Dataset DIVA Extend Rand. Extend Improvement

Aircrafts 58.00 60.01 +2.01
Cub-200 39.42 42.29 +2.87

MIT Indoor-67 32.54 33.73 +1.19
Oxford Flowers 20.56 23.29 +2.73

Stanford Cars 60.37 62.45 +2.09
Caltech-256 21.97 24.55 +2.59

Table 3: Results of using DIVA Extend to select relevant dataset to extend several fine-grain classification
datasets. We use a ResNet-34 pretrained on ImageNet as feature extractor and train a linear classifier on top of
the last layer and measure extending the dataset with 50% of the pool samples uniformly or via DIVA Extend.

examples, while it detects as harmful (and hence down-weights) examples that contain multiple268

planes (making the label uncertain), or that do not clearly show the plane, or show non-canonical269

poses.270

Harmful sample detection. To test the ability of DIVA to detect training samples that are harmful271

for generalization, we artificially introduce wrong labels in the dataset. In Section 3.4 claimed that272

harmful examples can be detected by looking at the samples for which the derivative r↵LLOO(↵)i is273

positive. To verify this, in Figure 3 we plot the histogram of the derivatives for correct and mislabeled274

examples. We observe that indeed most mislabeled examples have positive derivative. In particular,275

we can classify an example as mislabeled if the derivative is positive. In Section 4 we report the F1276

score and AUC obtained in a mislabeled sample detection task using the DIVA gradients.277

Dataset extension. We test the capabilities of DIVA Extend to extend a dataset by adding samples278

from an external source. We consider two settings: one in which the external source is noiseless279

and one in which artificial label noise is introduced, so that randomly adding the external samples280

may be harmful. In the first case, while selecting random examples to add is a viable strategy to281

improve generalization, we observe that DIVA is able to select the most useful example and reaches282

an optimal performance generalization error using significantly less samples than random selection.283

In the second case, DIVA is able to avoid noisy samples, and significantly outperforms random284

selection, which may in fact decrease the accuracy of the model.285

Figure 3: Distribution of LOO DIVA gradients for
correctly labelled and mislabelled samples in Cub-200
dataset (20% mislabelled).

Dataset F1-score (� = 0) AUC

Cub200 0.87 0.98
Aircrafts 0.68 0.90
MIT Indoor-67 0.86 0.98
Stanford Cars 0.75 0.93
Caltech-256 0.92 0.99
Oxford Flowers 0.83 0.97

Table 2: DIVA for outlier rejection. We use DIVA
on a ResNet-34 network linearization and detect mis-
labelled samples (outliers) in a dataset present with 20%
label noise. Selection is based on ��(Lval(w�))i > �.

286

Data augmentation. In Section 3.4 we suggested DIVA can be used to find the best probability with287

which to apply a data augmentation procedure in order to improve the generalization performance.288

To test this, we select common data augmentation procedures, horizontal flip and vertical flip, and289

we tune their probability on the Street View House Number [46], Oxford Flowers [48] and the290

Oxford Pets [49] classification tasks. We observe that DIVA assigns different probabilities to each291

transformation depending on the task (Figure 5): on the number classification task DIVA penalizes292

both vertical and horizontal flips, which may confuse different classes (such 2 and 5, 6 and 9). On293

an animal classification task (Oxford Pets) DIVA does not penalize horizontal flips, but penalizes294

vertical flips since they are out of distributions. Finally, on Flowers classification DIVA gives equal295

probability to all transformations (most flower pictures are frontal so all rotations and flips are valid).296

8

Figure 3: (Left) Distribution of LOO DIVA gradients for correctly labelled and mislabelled samples
in CUB-200 dataset (20% of the samples are mislabeled by replacing their label uniformly at random).
(Right) DIVA for outlier rejection. We use DIVA on a ResNet-34 network linearization and detect
mislabelled samples (outliers) in a dataset present with 20% label noise. Selection is based on
r↵(Lval(w↵))i > ✏.
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Figure 4: DIVA Extend. We show the test error achieved by the model as we extend a dataset with
samples selected from a dataset pool using either DIVA Extend (red line) or uniform sampling (blue
line). The pool set matches the same distribution as the training set. In all cases DIVA Extend
outperforms uniform sampling and identifies subsets of the pool set with better performance than the
whole pool. We also note that using only a subset selected by DIVA as opposed to using the whole
pool, actually improves the test accuracy.

Multi-modal learning. Recent multi-modal models such as CLIP (Radford et al., 2021) can embed
both text and images in the same vector spaces. This allows to boost the performance on few-shot
image classification tasks by also adding to the training set textual descriptions of the classes, such
as the label name. However, training on label names may also hurt the performance, for example if
the label name is not known by the CLIP model. To test this, we create a few-shot task by selecting
20 images per class from the Caltech-256 and use DIVA Extend to select an increasing number of
labels to add to the training set. In Figure 5 (right) of the Appendix, we show that DIVA can select
the beneficial label embeddings to add in order to improve the few-shot test performance. However,
when forced to add all labels, including detrimental ones, the test error increases.

Data augmentation. To further test the versatility of DIVA, we qualitatively evaluate DIVA Reweight
on the task of tuning the probabilities with which we apply a given data augmentation procedure.
Let t1, . . . , tK be a set of data augmentation transformations. Let Dtk be the result of applying the
data augmentation tk to D. We can create an augmented dataset Daug = D [Dt0 [ . . . [DtK , by
merging all transformed datasets. We then apply DIVA Reweight on Daug to optimize the weight ↵
of the samples. Based on the updated importance weights we estimate the optimal probability with
which to apply the transformation tk as pk = (

P
i2Dtk ↵i)/(

P
i ↵i). In particular we select common

data augmentation procedures, horizontal flip and vertical flip, and we tune their probability on the
Street View House Number, Oxford Flowers and the Oxford Pets classification tasks. We observe
that DIVA assigns different probabilities to each transformation depending on the task (Figure 5 in
Appendix): on the number classification task DIVA penalizes both vertical and horizontal flips, which
may confuse different classes (such 2 and 5, 6 and 9). On an animal classification task (Oxford Pets)
DIVA does not penalize horizontal flips, but penalizes vertical flips since they are out of distributions.
Finally, on Flowers classification DIVA gives equal probability to all transformations (most flower
pictures are frontal so all rotations and flips are valid).

5 DISCUSSION

In this work we present a gradient-based method to optimize a dataset. In particular we focus on
sample reweighting, extending datasets, and removing outliers from noisy datasets. We note that by
developing the notion of a dataset derivative we are capable of improving dataset quality in multiple
disparate problems in machine learning. The dataset derivative we present is given in closed-form
and enables general reweighting operations on datasets based on desired differentiable validation
losses. In cases where a set-aside validation loss is not available we show the use of the leave-one-out
framework enables computing and optimizing a dataset “for free” and derive the first closed-form
dataset derivative based on the LOO framework.
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