
Under review as a conference paper at ICLR 2024

ACTION SHAPLEY: A TRAINING DATA SELECTION
METRIC FOR HIGH PERFORMANCE AND COST EFFI-
CIENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerous real-world reinforcement learning (RL) systems incorporate environ-
ment models to emulate the inherent dynamics of state-action-reward interac-
tions. The efficacy and interpretability of such environment models are notably
contingent upon the quality of the underlying training data. In this context, we
introduce Action Shapley as an agnostic metric for the judicious and unbiased
selection of training data. To facilitate the computation of Action Shapley, we
present an algorithm specifically designed to mitigate the exponential complexity
inherent in traditional Shapley value computations. Through empirical validation
across four data-constrained real-world case studies, our proposed Action Shap-
ley computation algorithm demonstrates a computational efficiency improvement
exceeding 80% in comparison to conventional brute-force exponential time com-
putations. Furthermore, our Action Shapley-based training data selection policy
consistently outperforms ad-hoc training data selection methodologies across all
examined case studies.

1 INTRODUCTION

We introduce Action Shapley, a training data selection metric for reinforcement learning (RL) en-
vironment model training (Sutton & Barto, 2018). It is inspired by the Shapley value (Shapley,
1953b;a) introduced by L.S. Shapley as a payoff function for different players in a stochastic game.
There are several Shapley based approaches in supervised learning for data valuation (Ghorbani &
Zou, 2019) and interpretability Lundberg & Lee (2017a). Compared to supervised learning, rein-
forcement learning brings additional complexity due to its interactive learning and stability problems
such as the deadly triad (Sutton & Barto, 2018). Action Shapley is designed specifically to handle
the problems related to reinforcement learning especially in a data-constrained and partially observ-
able setting. In this paper, we focus on cloud system design problems such as virtual machine (VM)
right-sizing (Derdus et al., 2019), load balancing (Mishra et al., 2020), database tuning (Bangare
et al., 2016), and Kubernetes management (Rzadca et al., 2020). RL has been applied in VM right-
sizing (Yazdanov & Fetzer, 2013), load balancing (Xu et al., 2019), database tuning (Wang et al.,
2021), and Kubernetes management (Khaleq & Ra, 2021). Despite its benefits, the adoption of RL
in cloud system design is stymied by data related issues such as data sparsity (Kamthe & Deisenroth,
2018), noisy environment (Dulac-Arnold et al., 2019), partial observability (Futoma et al., 2020),
and irregular data sampling (Yildiz et al., 2021). The aforementioned issues in data quality there-
fore validate the usefulness of Action Shapley. This paper includes four case studies, as follows,
specifically designed to validate the efficacy of Action Shapley.

• VM Right-Sizing: how to adjust vCPU count and memory size for a VM in order to bring
its p50 CPU usage below a pre-assigned threshold?

• Load Balancing: how to adjust CPU and memory worker counts for a VM in order to bring
its p5 CPU usage below a pre-assigned threshold?

• Database Tuning: how to adjust vCPU count and memory size for a database in order to
bring its p90 CPU usage below a pre-assigned threshold?
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• Kubernetes (K8s) Management: how to maximize write rates on a distributed database
running on a Kubernetes cluster while keeping the p99.9 latency below a pre-assigned
threshold?

The primary focus of these case studies revolves around cloud systems. However, it is imperative to
emphasize a deliberate avoidance of relying on idiosyncratic attributes exclusive to cloud systems
for the validation of Action Shapley’s applicability across diverse contexts. Furthermore, the training
data utilized in case studies, such as virtual machine (VM) right-sizing and database tuning, mani-
fests notable distinctions, as elucidated in the Appendix. This variance in training data enhances our
ability to assert the generalizability of our study, particularly within the realm of data-constrained
and partially observable reinforcement learning (RL) systems. Conversely, the distinct advantage
conferred by Action Shapley diminishes in RL systems characterized by high-fidelity, pre-existing
simulation environments. Exemplary instances of such domains encompass video games such as
Atari, AlphaGo, and StarCraft, as well as purpose-built simulated environments like MuJoCo for
robotics, ToyText for puzzles, Box2D for locomotives, ns3-gym for networking, RecoGym for rec-
ommendation systems, AirSim for autonomous vehicles, among others.

2 METHODOLOGY

2.1 BACKGROUND AND NOTATION

In the realm of Reinforcement Learning (RL), the primary objective of a goal-seeking agent
lies in the maximization of a cumulative reward score through dynamic interactions with its en-
vironment. These interactions are succinctly encapsulated in a temporal sequence denoted as
⟨state, action, reward⟩ trajectories, expressed as ⟨s0, a0, r1, s1, a1, r2, s2, a2, r3...⟩. Under the
assumption of a Markov decision process, the conditional joint probability distribution of re-
ward (rt) and state (st) is contingent solely upon the antecedent state and action, denoted as
p(st, rt|st−1, at−1). In the context of model-based RL systems, the underlying supervised model
strives to capture this distribution. This necessitates a training corpus comprising two pairs:
firstly, (st−1, at−1), followed by (st, rt). In the majority of cases, the reward score can be
derived from the state: st 7→ rt. Consequently, a training data point is aptly represented as:
D = {(snt ; (snt−1, a

n
t−1))}n.

The concept of Action Shapley emerges as a mechanism designed to gauge the differential contribu-
tion of each data point within D to the resultant RL agent. This differential contribution is quantified
through a valuation function, denoted as U . Without loss of generality, U is defined as the cumula-
tive reward garnered by the RL agent, thereby constituting an implicit function of the RL algorithm
executed by the agent. In a general formulation, Action Shapley is expressed as ϕ(D;U). To ensure
equitable and robust valuation, we posit that ϕ adheres to the properties of nullity, symmetry, and
linearity. Under these assumptions, the Action Shapley value pertaining to a specific training data
point {k} is delineated by Equation 1, as per established literature (Ghorbani & Zou, 2019; Shapley,
1953a; Tachikawa et al., 2018; Shapley, 1953b).

ϕk = Cf

∑
d⊆D\{k}

U(d ∪ {k})− U(d)(
n−1
|d|

) (1)

where, Cf is an arbitrary constant. 1 While Equation 1’s numerator gauges the distinct contribution
of training data point k, it’s denominator acts as the weight for |d| (the number of elements in
|d|). By summing over all possible dataset combinations, it provides a robust measure of the total
differential contribution of k, surpassing the traditional Leave-One-Out (LOO) approach in marginal
contribution and deduplication. In cases where the RL agent fails to achieve its goal for a training
dataset, d, we assign U(d) → null. Notably, the naive computation of Action Shapley (Equation 1)
exhibits exponential time complexity (O(2n)) as it spans all subsets of D excluding k.

1Different symbols are explainedin the Notation section in the Appendix.
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2.2 RANDOMIZED DYNAMIC ALGORITHM FOR ACTION SHAPLEY COMPUTATION

To expedite the computational efficiency of Action Shapley and circumvent the default exponential-
time complexity, we introduce a randomized dynamic algorithm denoted as Algorithm 1. This
algorithm demonstrates notably faster convergence on average. The approach capitalizes on the
observation that a successful RL agent’s environmental model necessitates a threshold number of
training data points, denoted as the cut-off cardinality (θ). Accordingly, Algorithm 1 employs a
top-down accumulator pattern. Initialization involves considering the set encompassing all training
data points, followed by a breadth-first traversal of the power set tree of the training data.

As depicted in Algorithm 1, the structure involves a nested While loop syntax. The outer While
loop iterates over training data cardinalities in a descending order, while the inner While loop
iterates over all possible training data subsets for the specified cardinality. Within the inner loop, a
check for RL agent failure is conducted (line 8 in Algorithm 1). In the event of a failure, the failure
memoization accumulator is incremented by one (line 10 in Algorithm 1). The termination condition
is met when the failure memoization accumulator, denoted as mem, reaches a user-defined threshold
parameter, ϵ. Upon termination, the cut-off cardinality (line 12) is set to be the cardinality where the
failure condition (line 8) is first satisfied, incremented by one.

If the failure condition is not met, the marginal contribution of the training data (k) concerning
the subset d is added to the accumulation variable sum. This process of accumulating differential
contributions continues until the termination condition is satisfied (line 17 in Algorithm 1).

Each training action is associated not only with its respective Action Shapley value but also pos-
sesses a unique cut-off cardinality value. The global cut-off cardinality, defined as the maximum
among the cut-off cardinality values corresponding to distinct training data points, serves as an up-
per computational limit for Algorithm 1. The computational complexity of Algorithm 1 is situated
between O(2n), denoting the worst-case scenario, and O(ϵ), reflecting the best-case scenario. The
worst-case arises when the termination condition (line 11) is not met, leading to the exhaustive
traversal of the entire combination tree. Conversely, the best-case occurs when the first ϵ evaluations
fail, promptly reaching the termination condition (line 11). Significantly, the best-case scenario im-
plies the indispensability of the training data point k, indicating that all agents fail to achieve the
goal without the inclusion of data point k in training. In such instances, data point k is termed in-
dispensable. It is noteworthy that a comparable approach involving the cut-off cardinality has been
previously employed successfully in the machine learning literature (Tachikawa et al., 2018).

Combining these two extremes of O(2n) and O(ϵ), the performance of Algorithm 1 can be rep-
resented as a ratio of the exponential of global cut-off cardinality and the exponential of the total
number of training data points subtracted from 1, as shown in Equation 2.

Pcomp = 1− 2θkmax

2n
(2)

Action Shapley, by measuring the distinct contributions of various training data points, serves as a
metric for selecting training data. A set exhibiting a higher average Action Shapley value outper-
forms a set with a lower average value. An ideal training dataset should comprise no more training
data points than the specified global cut-off cardinality. A reduced number of training actions en-
hances computational efficiency. However, a minimum number of training data points is essential
for constructing a successful reinforcement learning (RL) agent. Simply put, an inadequate number
of training data points hinders the construction of an effective environment model, impeding goal
achievement. The global cut-off cardinality represents the optimal balance, ensuring computational
efficiency while meeting the minimum requirements for RL agent development. The proposed pol-
icy is underpinned by a theoretically sound foundation as an explanatory model for Shapley-based
Additive Feature Attribution Methods Lundberg & Lee (2017a). We substantiate this hypothesis on
training data selection and validate the effectiveness of Algorithm 1 with four distinct case studies.

3 DATA COLLECTION AND IMPLEMENTATION

We have implemented four distinct case studies to substantiate the effectiveness of Action Shapley,
as previously delineated. In the investigations concerning VM right-sizing and load balancing, AWS
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Algorithm 1 Algorithm for Action Shapley Computation for a Training Action, k
Input: the total number of training data points: n; the set of all training data points: D; RL
algorithm used: A; and valuation function for a training action subset without k: U(D\{k};A).
Output: Action Shapley value: ϕk; cut-off cardinality: θk for action k.

Parameter: arbitrary constant: Cf ; error bound: ϵ.
Variable: training subset cardinality index: i; accumulator for marginal contributions for different
subsets: sum; training subset: d; failure memoization: mem; termination indicator: flag

1: let flag = 0
2: let i = n− 1
3: let sum = 0
4: let θk = 1
5: while iterate all cardinality greater than 1: i > 1 do
6: let mem = 0
7: while iterate all the sets of cardinality i : d ∈ Di\{k} do
8: if (U(d ∪ {k}) is null) ∨ (U(d) is null) then
9: sum = sum

10: mem = mem+ 1
11: if mem == ϵ then
12: θk = i+ 1
13: flag = 1
14: break {get out of the inner loop (line 7)}
15: end if
16: else
17: sum = sum+ Cf

U(d∪{k})−U(d)

(n−1
|d| )

18: end if
19: end while
20: if flag == 1 then
21: break {get out of the outer loop (line 5)}
22: else
23: i = i− 1
24: end if
25: end while
26: ϕk = sum
27: return ϕk, θk

EC2 instances have been deployed, incorporating the Stress tool to facilitate dynamic workload
simulations. In the context of the database tuning case study, we have employed a Nutanix AHV-
based virtualized infrastructure, utilizing the HammerDB tool for dynamic SQL load simulation.
The case study focusing on Kubernetes management entails the utilization of a Nutanix Kubernetes
(K8s) engine cluster, with cassandra-stress employed for workload simulations.

In each case study, the training dataset is comprised of a collection of time series corresponding to
different configurations, referred to as actions. These time series are measured over a 24-hour period
at a 1-minute sampling rate. It is important to note that, across all case studies, the error bound (ϵ)
is consistently fixed at 1. Further elaboration on the specifics of data collection is available in
Appendix.

Action Shapley is agnostic to the specific instantiations of the RL algorithm and the environment
model algorithm. For the environment model, we use a radial basis function (RBF) network (He
et al., 2019), along with principal component analysis (PCA)-based pre-training (Genovese et al.,
2019), for the (stateprev, actionprev) → (statecur, rewardcur) mapping. Without loss of gener-
ality, we choose two different types of RL algorithms: SAC-PID (Yu et al., 2022) and PPO-PID
(Shuprajhaa et al., 2022). The PID loop, as shown in Equation 3, is used as an RL action update
policy based on the error term (= (threshold − aggregated state statistic)), the time step ((δt)), and
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Table 1: Action Shapley for
VM right-sizing case study

AS AS
SAC-PID PPO-PID

a1 -3.96 -3.90
a2 -1.84 -1.81
a3 ind. ind.
a4 ind. ind.
a5 ind. ind.

Table 2: Action Shapley for
load balancing case study

AS AS
SAC-PID PPO-PID

w1 0.57 0.57
w2 1.02 1.10
w3 8.31 8.27
w4 3.61 3.61
w5 5.55 5.51

Table 3: Action Shapley for
database tuning case study

AS AS
SAC-PID PPO-PID

p1 Ind. ind.
p2 1.11 1.12
p3 3.42 3.37
p4 1.75 1.72
p5 0.19 0.21
p6 -0.23 -0.22

learning parameters, [kp, ki, kd]. The RL algorithm is designed to tune the parameters while maxi-
mizing the cumulative reward score.

ai = ai−1 + [kp ki kd] ·
[
e (δt)e e

δt

]
(3)

For the VM right-sizing case study, we have five different data points: ⟨a1 : (2, 2), a2 : (2, 4), a3 :
(2, 8), a4 : (4, 16), a5 : (8, 32)⟩. Each pair represents (vCPU count,Memory Size). The training
dataset consists of five time series of CPU usage, each with 1440 data points. While p50 is used for
the aggregated state statistic, the goal of the RL agent is to bring the p50 CPU usage below 90%.
The starting action for the RL loop is (6, 14). The error bound, ϵ, is set to 1.

For the load balancing case study, we have five different data points: ⟨w1 : (8, 16), w2 : (8, 12), w3 :
(8, 2), w4 : (1, 2), w5 : (1, 16)⟩. Each pair represents (# of CPU workers, # of memory workers).
The training dataset consists of five time series of CPU usage, each with 1440 data points. While
p5 is used for the aggregated state statistic, the goal of the RL agent is to bring the p5 CPU usage
below 70%. The starting action for the RL loop is (5, 10). The error bound, ϵ, is set to 1.

For the database tuning case study, we have six different data points: ⟨p1 : (1, 1), p2 : (4, 4), p3 :
(6, 3), p4 : (8, 4), p5 : (8, 8), p6 : (10, 10)⟩. Each pair represents (vCPU count,Memory Size). The
training dataset consists of six time series of CPU usage, each with 1440 data points. While p90 is
used for the aggregated state statistic, the goal of the RL agent is to bring the p90 CPU usage below
25%. The starting action for the RL loop is (5, 2). The error bound, ϵ, is set to 1.

In the Kubernetes Management case study, we employ 15 different data points ⟨r1 : (1 ×
106, 10), r2 : (1 × 106, 25), r3 : (1 × 106, 50), r4 : (1 × 106, 75), r5 : (1 × 106, 100), r6 :
(2 × 106, 10), r7 : (2 × 106, 25), r8 : (2 × 106, 50), r9 : (2 × 106, 75), r10 : (2 × 106, 100), r11 :
(3 × 106, 10), r12 : (3 × 106, 25), r13 : (3 × 106, 50), r14 : (3 × 106, 75), r15 : (3 × 106, 100)⟩.
Each training configuration is denoted by a pair representing the tuple (write rate, thread count). The
training dataset encompasses 15 time series data sets, each comprising 1440 data points, measuring
response latency. The aggregated state statistic is determined by the p99.9 metric, and the primary
objective of the RL agent is to reduce the p99.9 latency to below 100ms. The RL loop commences
with an initial action of (2.9× 106, 95). The error bound, ϵ, is set to 1.

In each of the aforementioned case studies, the primary objective for the RL agent is to attain a
pre-assigned threshold for a state statistic. To achieve this, we formulate the reward function for the
RL agent as: (threshold − aggregated state statistic(t)) if threshold < aggregated state statistic(t).
This reward function is designed to prompt the agent to efficiently meet the specified threshold.

4 RESULTS

4.1 ACTION SHAPLEY VALUES FOR TRAINING DATA

Table 1 displays the two Action Shapley (AS) values corresponding to two RL algorithms SAC-
PID and PPO-PID, and five distinct training data points, denoted as ⟨a1, a2, a3, a4, a5⟩, within the
VM right-sizing case study. Notably, it was identified that the training data points a3, a4, and
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Table 5: This table summarizes the number of training data points and related parameters for four
different case studies.

VM Load Database K8s
Case Study Right-Sizing Balancing Tuning Management

No of Training Data Points 5 5 6 15
Cut-off Cardinality 4 3 4 5
No of Indispensable Data Points 3 0 1 0
No of Data Points to be Chosen 1 3 3 5
No of Possible Data Points 2 5 5 15

a5 are indispensable. a2 exhibits the highest Action Shapley values, specifically -1.84 and -1.81,
respectively for SAC-PID and PPO-PID. The global cut-off cardinality, denoted as θ, is set at 4,
resulting in Pcomp = 50% as defined by Equation 2. It is noteworthy that both SAC-PID and
PPO-PID demonstrate congruent Action Shapley values and identical cut-off cardinality values.

Table 4: Action Shapley for K8s
management case study.

AS AS
SAC-PID PPO-PID

r1 -0.7 0.68
r2 0.53 0.54
r3 0.61 0.62
r4 -0.13 -0.12
r5 0.12 0.11
r6 -0.7 -0.7
r7 -0.24 -0.25
r8 0.65 0.65
r9 0.42 0.42
r10 0.08 0.07
r11 -1.16 -1.17
r12 -0.25 -0.24
r13 0.77 0.77
r14 -0.31 -0.31
r15 0.019 0.019

Table 2 displays the two Action Shapley (AS) values
corresponding to two RL algorithms SAC-PID and PPO-
PID, and five distinct training data points, denoted as
⟨w1, w2, w3, w4, w5⟩, within the load balancing case study.
w3 exhibits the highest Action Shapley values, specifically
8.31 and 8.27, respectively for SAC-PID and PPO-PID. The
global cut-off cardinality, denoted as θ, is set at 3, resulting in
Pcomp = 50% as defined by Equation 2. It is noteworthy that
both SAC-PID and PPO-PID demonstrate congruent Action
Shapley values and identical cut-off cardinality values.

Table 3 displays the two Action Shapley (AS) values
corresponding to two RL algorithms SAC-PID and PPO-
PID, and six distinct training data points, denoted as
⟨p1, p2, p3, p4, p5, p6⟩, within the database tuning case study.
Notably, it was observed that the training data point p1 is
deemed indispensable, whereas the remaining five training
data points are considered dispensable. p3 exhibits the high-
est Action Shapley values, specifically 3.42 and 3.37, respec-
tively for SAC-PID and PPO-PID. The global cut-off cardi-
nality, denoted as θ, is set at 4, resulting in Pcomp = 75% as
defined by Equation 2. It is noteworthy that both SAC-PID
and PPO-PID demonstrate congruent Action Shapley values
and identical cut-off cardinality values.

Table 4 displays the two Action Shapley
(AS) values corresponding to two RL algo-
rithms SAC-PID and PPO-PID, and 15 distinct training data points, denoted as
⟨r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15⟩, within the K8s case study. Notably,
r13 exhibits the highest Action Shapley values, specifically 0.77 for both SAC-PID and PPO-PID.
The global cut-off cardinality, denoted as θ, is set at 5, resulting in Pcomp = 99.9% as defined
by Equation 2. It is noteworthy that both SAC-PID and PPO-PID demonstrate congruent Action
Shapley values and identical cut-off cardinality values.

4.2 VALIDATION OF ACTION SHAPLEY BASED TRAINING DATA SELECTION POLICY

In the preceding sections of this paper, we introduced a training data selection policy, which can be
succinctly summarized as follows: the optimal training dataset should include the maximum number
of training data points, up to the predefined global cut-off cardinality, with the highest average
Action Shapley value. The selection process is further refined when indispensable data points are
considered. For instance, Table 5 provides a demonstration in the context of the VM right-sizing
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case study. In this scenario, where we need to choose a single data point from 2 dispensable data
points, there are

(
2
1

)
= 2 available options. In both the load balancing and database tuning cases, the

task involves selecting 3 data points out of 5 dispensable data points, resulting in
(
5
3

)
= 10 potential

choices for these specific case studies. Lastly, in the K8s management case study, where the selection
involves 5 data points out of 15 dispensable data points, there are

(
15
5

)
= 3, 003 possible choices.

Figure 1: This plot compares the cumulative reward
scores for the best Action Shapley agent vs the worst
Action Shapley agent for the VM right-sizing case
study.

Our empirical validation process involv-
ing four case studies consists of two steps.
Firstly, we assess whether the best Action
Shapley agent, generated from the training
set with the highest average Action Shap-
ley value and an element count matching the
cut-off cardinality, achieves a higher cumu-
lative reward compared to the worst Action
Shapley agent. The worst Action Shapley
agent is derived from the training set with
the lowest average Action Shapley value
and the same number of elements as the
cut-off cardinality. Subsequently, we in-
vestigate whether the best Action Shapley
agent consistently outperforms the majority
of other agents. To answer this question, we
conduct a series of 25 episodes, each involving multiple random selections. Each random selection
is characterized by a training action set size equivalent to the cut-off cardinality. In light of the
comparable Action Shapley values generated by both SAC-PID and SAC-PPO, we choose to uti-
lize SAC-PID-based Action Shapley values in this section for the sake of convenience and without
sacrificing generality.

Figure 2: Validation of Action Shapley based selec-
tion policy for the load balancing case study. (a) Com-
parisons of cumulative rewards among the best Ac-
tion Shapley agent, the worst Action Shapley agent,
and the best of 4 random training action sets for 25
different episodes. (b) Fractions of agents based on
4 random training datasets with lower cumulative re-
wards than that of the best Action Shapley agent for
25 episodes.

For the VM right-sizing case study, our op-
tions for training action sets are limited to
two. Consequently, our validation process
is distilled into a comparative analysis be-
tween the best Action Shapley agent and the
worst Action Shapley agent. Illustrated in
Figure 1, the cumulative reward score for
the superior Action Shapley agent registers
at −21.9, while that for the inferior counter-
part is recorded at −30.4. This discernible
discrepancy in cumulative rewards substan-
tiates the efficacy of the proposed training
action selection policy.

In the context of the load balancing case
study, a judicious selection of three train-
ing actions from a pool of five is impera-
tive. The cumulative rewards, as depicted
in Figure 2(a), elucidate a noteworthy per-
formance disparity between the best and
worst Action Shapley agents, with respec-
tive scores of −8.49 and −23.2. Notably,
the optimal Action Shapley agent exhibits
comparable efficacy to the highest achiever
among randomly chosen sets across 25
episodes. Figure 2(b) further presents the proportion of randomly assembled training action sets
resulting in agents with cumulative rewards surpassing that of the premier Action Shapley agent.
The discernible trend reveals a mere 5 out of 100 randomly derived agents outperforming the op-
timal Action Shapley agent. Consequently, a confident assertion can be made that this case study
effectively validates the viability of our chosen training action selection policy.
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For the tuning case study, we faced the task of selecting four training datasets out of a pool of six. As
depicted in Figure 3(a), the cumulative reward for the best Action Shapley agent, standing at −2.42,
surpasses that of the worst Action Shapley agent, which is −21. Additionally, the figure illustrates
that the performance of the best Action Shapley agent is comparable to the top-performing agent
derived from four randomly selected training action sets across each of the 25 episodes. Figure 3(b)
presents the fraction of randomly chosen training action sets that yield an agent with a cumulative
reward lower than that of the best Action Shapley agent. While 31 out of 100 random selections per-
form better than the best Action Shapley agent, it’s crucial to note that this difference is marginal, as
evidenced by the top subplot comparing the best Action Shapley performance with the top perform-
ers in each of the 25 episodes. Consequently, we assert that this case study serves as a validation of
our training action selection policy.

In our Kubernetes management case study, we had a pool of 3,003 options for selecting the training
action set. Figure 4(a) displays the cumulative reward, indicating that the best Action Shapley
agent achieved a score of −499, surpassing the worst Action Shapley agent, which scored −621.
Furthermore, it demonstrates that the best Action Shapley agent’s performance is on par with the
top-performing agent from 30 randomly selected sets across each of the 25 episodes. Figure 4(b)
presents the proportions of random training action sets resulting in an agent with a cumulative reward
lower than that of the best Action Shapley agent. Notably, in this figure, it’s observed that 125 out
of 625 random selections outperform the best Action Shapley agent in terms of cumulative reward.
However, it is crucial to highlight that despite this, the top performers from these random selections
exhibit performance levels comparable to the best Action Shapley agent. Therefore, we confidently
assert that this case study provides validation for our training action selection policy.

4.3 COMPARISON TO BASELINE RESULTS

Figure 3: Validation of Action Shapley based se-
lection policy for database tuning. (a) Comparisons
of cumulative rewards among the best Action Shap-
ley agent, the worst Action Shapley agent, and the
best of 4 random training action sets for 25 different
episodes. (b) Fractions of agents based on 4 random
training datasets with lower cumulative rewards than
that of the best Action Shapley agent for 25 episodes.

All conducted case studies consistently val-
idate the effectiveness of the proposed Ac-
tion Shapley-based training data selection
policy and computation algorithm. How-
ever, it is imperative to assess the efficacy of
Action Shapley by benchmarking it against
a baseline study that assumes the utilization
of all available training data points for train-
ing the environment model. Specifically, in
the VM right-sizing case study, the baseline
study incorporates 5 training data points in-
stead of the specified cutoff cardinality of 4.
In the load balancing case study, the base-
line study utilizes 5 training data points, de-
viating from the specified cutoff cardinal-
ity of 3. Similarly, in the database tuning
case study, the baseline study integrates 6
training data points rather than the stipu-
lated cutoff cardinality of 4. Lastly, in the
K8s management case study, the baseline
study employs 15 training data points, ex-
ceeding the defined cutoff cardinality of 5.
In summary, the proposed Shapley analyt-
ics consistently lead to substantial reductions in the number of required training data points, ranging
between 20% and 67%. The second evaluative dimension considers the cumulative reward attained
by both the baseline agent and the optimal Action Shapley agent. Notably, in three of the four
case studies (VM right-sizing, load balancing, and K8s management), the optimal Action Shapley
agent demonstrates a significant performance advantage over the baseline agent. Specifically, for
VM right-sizing, the values are -37.7 compared to -21.9; for load balancing, -9.1 compared to -8.49;
and for K8s management, -561.4 compared to -499. In these instances, the optimal Action Shapley
agent consistently outperforms the baseline agent by a substantial margin, ranging from 7% to 42%.
However, in the database tuning case study, a marginal 3.9% superiority in cumulative reward is
observed for the baseline agent.
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5 RELATED WORK

The Shapley value has significantly influenced various fields, including economics (Roth, 1988),
voting (Fatima et al., 2007), resource allocation (Du & Guo, 2016), and bargaining (Bernardi &
Freixas, 2018). Within the realm of machine learning, methodologies inspired by the Shapley value
have found application in data valuation (Ghorbani & Zou, 2019), model interpretability (Sundarara-
jan & Najmi, 2020), and feature importance (Lundberg & Lee, 2017a). The Shapley value-based
model explanation methodology falls under Additive Feature Attribution Methods (Lundberg & Lee,
2017b), which includes other methods such as LIME (Ribeiro et al., 2016), DeepLIFT (Shrikumar
et al., 2016), and Layer-Wise Relevance Propagation (Bach et al., 2015).

In addressing the intricate challenge of training data selection in reinforcement learning (RL), com-
pounded by the deadly triad (Sutton & Barto, 2018) of bootstrapping, functional approximation, and
off-policy learning, researchers have explored diverse perspectives, including hindsight condition-
ing (Harutyunyan et al., 2019), return decomposition (Arjona-Medina et al., 2019), counterfactual
multi-agent policy gradients (Foerster et al., 2018), corruption robustness (Zhang et al., 2022), op-
timal sample selection (Rachelson et al., 2011), active learning (Li et al., 2011), minimax PAC
(Gheshlaghi Azar et al., 2013), ϵ-optimal policy (Sidford et al., 2018), regret minimization (Jin
et al., 2018), and statistical power (Colas et al., 2018).

Figure 4: Validation of Action Shapley based selec-
tion policy for K8s management. (a) Comparisons
of cumulative rewards among the best Action Shap-
ley agent, the worst Action Shapley agent, and the
best of 30 random training action sets for 25 different
episodes. (b) Fractions of agents based on 30 random
training datasets with lower cumulative rewards than
that of the best Action Shapley agent for 25 episodes.

The literature extensively explores the use
of Shapley values for crediting agents in
multi-agent RL (Li et al., 2021). Vari-
ous methods for estimating Shapley value
feature attributions are proposed in (Chen
et al., 2023). Notably, there is a lack of
dedicated studies on applying the Shapley
value to select training data for reinforce-
ment learning environment model train-
ing. Technical challenges in this regard
include computational complexity, sample
complexity, dynamic environmental condi-
tions, data drift, feature interactions, inter-
pretability limitations, and susceptibility to
noise.

Action Shapley offers key advantages over
alternative methods, including sample com-
plexity, bias avoidance, interpretability, ro-
bustness, and resource efficiency (Lund-
berg & Lee, 2017a). Other data valua-
tion techniques, like leave-one-out (LOO)
testing (Cook & Weisberg, 1982), compare
an agent’s performance on the full dataset
against its performance when trained on the dataset with one data point omitted. However, this
method encounters difficulties with duplicated data in datasets.

6 CONCLUSION

This paper introduces Action Shapley as a metric for selecting reinforcement learning training data.
To address the inherent exponential time complexity, a randomized algorithm is proposed for com-
puting Action Shapley. The effectiveness of this randomized algorithm and the associated training
data selection policy is validated using four comprehensive case studies. The motivation behind
this research stems from the critical role that life cycle management of reinforcement learning train-
ing data plays in distinguishing the performance of RL agents. We anticipate that the adoption of
Action Shapley will facilitate real-world applications of reinforcement learning. Future endeavors
will involve conducting additional real-world case studies, encompassing areas such as Kubernetes
horizontal scaling, distributed machine learning training, database replication, and reinforcement
learning-based fine-tuning of large language models (RLHF).
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A APPENDIX

A.1 NOTATION

s Environment state

a Agent action

r Reward received by an agent

D Training data set

A RL algorithm

U Evaluation function for resulting RL agent

ϕk Action Shapley for a training data point k

Cf Arbitrary constant for Action Shapley computation

n Number of data points in a data set D
ϵ Error bound

mem Local variabel for failure memoization

θk Cut-off cardinality

θkmax Global cut-off cardinality

kp Proportional parameter in PID

ki Integral parameter in PID

kd Differential parameter in PID(
n

r

)
n choose r

|d| Number of elements in a set, {d}
e the difference between threshold and aggregated state

statistic

δt the time step size in reinforce learning loop

A.2 DATA COLLECTION FOR THE VM RIGHT-SIZING CASE STUDY

VM right-sizing entails a decision problem that recognizes minimum possible VM size without com-
promising a pre-assigned performance threshold. In this case study, we use CPU utilization as the
state variable. The training action is represented by a pair of (# of CPU cores,memory size (GB)).
The five training actions used are: {a1 : (2, 2), a2 : (2, 4), a3 : (2, 8), a4 : (4, 16), a5 : (8, 32)}.
Figure 5(a) shows training action samples and corresponding aggregated state statistics (i.e., 50-th
percentile as mentioned in Table 6). The environment runs a rectangular workload, simulated using
stress library. The simulated rectangular workload has a time period of 600 s: a high-stress, peak
phase of 500 s is followed by a sleep phase of 100 s. The peak of the workload uses the stress
command: {sudo stress –io 4 –vm 2 –vm-bytes 1024M –timeout 500s}. Essentially, the peak is
running 4 I/O stressors and 2 VM workers spinning on malloc with 1024 MB per worker for 500
s. This workload runs for 24 hr. with a 1 minute sampling interval. Overall, five time series data
for CPU utilization together represent the state space. The goal of the RL agent is to choose the
most cost-efficient configuration to bring down the aggregated state statistic below a pre-assigned
threshold of 90% without violating constraints. Until the goal is satisfied, the RL agent is penalized
in every time step by the deviation of the aggregated state statistic from its set point. As shown in
Table 6, two other parameters are: Initial Action = (6, 14) and ϵ = 1.
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A.3 DATA COLLECTION FOR THE LOAD BALANCING CASE STUDY

Load balancing deals with a decision problem that recognizes how to distribute traffic/loads to dif-
ferent servers. For this, it is important to estimate the dynamic capacity of a VM. In this case
study, we use CPU utilization as the state variable. The action space is represented by a pair of
(# of CPU workers, # of memory workers). The five training actions used are: {w1 : (8, 16), w2 :
(8, 12), w3 : (8, 2), w4 : (1, 2), w5 : (1, 16)}. Figure 5(b) shows training action samples and corre-
sponding aggregated state statistics (i.e., 5-th percentile as mentioned in Table 6). The environment
for this case study is an AWS t3a.medium EC2 VMs with 2 vCPUs, 4GB RAM. Each training work-
load has a time period of 600 seconds: a high-stress, peak phase of 500 seconds is followed by an
inactive sleep phase of 100 seconds. Here are five different training workloads during high-stress
phases: {stress –cpu 8 –io 4 –vm 16 –vm-bytes 1024M –timeout 500s}, {stress –cpu 8 –io 4 –vm
12 –vm-bytes 1024M –timeout 500s},{stress –cpu 8 –io 4 –vm 2 –vm-bytes 1024M –timeout 500s},
{stress –cpu 1 –io 4 –vm 2 –vm-bytes 1024M –timeout 500s}, and {stress –cpu 1 –io 4 –vm 16
–vm-bytes 1024M –timeout 500s}. The only differences among these workloads are the number of
cpu workers and the number of memory workers.Each of these workloads is run for 3 hours with
5-minute sampling interval. Overall, the state space consists of five time series for CPU utilization
metrics. The goal of the RL agent is to choose the highest possible workload intensity by packing
more CPU and memory workers without violating a pre-assigned performance goal of keeping the
5-th percentile of CPU utilization below 70%. Until the goal is satisfied, the RL agent is penalized
in every time step by the deviation of the aggregated state statistic from its set point. As shown in
Table 6, two other parameters are: Initial Action = (5, 10) and ϵ = 1.

A.4 DATA COLLECTION FOR THE DATABASE TUNING CASE STUDY

Two critical SQL database tuning parameters are the number of server CPU cores and server mem-
ory size (GB). The tuning of these parameters requires painstaking trial and error which can be
replaced with RL for precision and efficiency. In this case study, we use CPU utilization as the state
variable. The action space is represented by a pair of (# of CPU cores,memory size (GB)).The six
training actions used are: {p1 : (1, 1), p2 : (4, 4), p3 : (6, 3), p4 : (8, 4), p5 : (8, 8), p6 : (10, 10)}.
Figure 5(c) shows training action samples and corresponding aggregated state statistics (i.e., 90-th
percentile as mentioned in Table 6). The goal of the RL agent is to bring the aggregated state statis-
tics below 25%. Against each training action, a SQL workload is simulated using HammerDB. The
corresponding server utilization data is collected for a duration of 172 minutes at a sampling interval
of 30 seconds. The workload is triggered by a HammerDB-hosted Tcl code which simulates two
SQL warehouse building processes by two SQL virtual workers. Overall, we have six time series
data against each database server configurations as the state space. Until the goal is satisfied, the
RL agent is penalized in every time step by the deviation of the aggregated state statistic from its set
point. As shown in Table 6, two other parameters are: Initial Action = (5, 2) and ϵ = 1.

A.5 DATA COLLECTION FOR THE KUBERNETES MANAGEMENT CASE STUDY

Kubernetes management often deals with a decision problem that recognizes the optimal workload
parameters for a given Kubernetes cluster to maintain certain service level agreement criteria. For
the given case study, we use Cassandra database workload with the thread count and lines written
as the parameters. The goal of the RL agent is to maintain the p99.9 latency below a pre-assigned
threshold of 100 milliseconds. The initial action points are 2.9 × 106 for written line count and
95 for thread count. For training, we use 15 different pairs spanned by three written line counts:
{1×106, 2×106, 3×106} and five thread counts of {10, 25, 50, 75, 100}. Figure 5(d) shows training
action samples and corresponding aggregated state statistics (i.e., 99.9-th percentile as mentioned in
Table 6). We set ϵ = 1.

A.6 VALIDATION OF TRAINING ACTION SELECTION POLICY

We have proposed an optimal training action selection policy: the best possible training action set
includes as many training actions as the global cut-off cardinality with the highest possible Action
Shapley values. On the other hand, the worst possible training action set includes as many training
actions as the global cut-off cardinality with the lowest possible Action Shapley values. We validate
this policy for four different case studies.
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Table 6: Salient details of three different case studies

Case Study VM Right-Sizing Load Balancing Database Tuning K8s Management

State p50 CPU usage p5 CPU usage p90 CPU usage p99.9 latency
Threshold ≤ 90% ≤ 70% ≤ 25% ≤ 100ms
Initial Action (6, 14) (5, 10) (5, 2) (2.9× 106, 95)
ϵ 1 1 1 1

A.6.1 VALIDATION OF TRAINING ACTION SELECTION POLICY FOR THE VM RIGHT-SIZING
CASE STUDY

Based on the Action Shapley computation, we determine that the cut-off cardinality is equal to
4 with 5 total number of training actions. It indicates Pcomp = 50%. With a3, a4, a5 being the
indispensable actions, ⟨a2, a3, a4, a5⟩ has the highest possible mean Action Shapley value. On the
other hand, ⟨a1, a3, a4, a5⟩ has the lowest possible mean Action Shapley value. As we hypothesize,
the former action set produced an RL agent with higher cumulative award of −21.9 vs −37.75.
The former has a lower convergence time too: 13 vs 16. In comparison to the baseline RL agent
(cumulative reward of −30.4 and convergence time of 21), both best and worst agents performs
better.

A.6.2 VALIDATION OF TRAINING ACTION SELECTION POLICY FOR THE LOAD BALANCING
CASE STUDY

Based on the Action Shapley computation, we determine the cut-off cardinality is equal to 3 with
5 totral number of training actions, indicating that Pcomp = 75%. ⟨w3, w4, w5⟩ has the highest
possible mean Action Shapley value. On the other hand, ⟨w1, w2, w4⟩ has the lowest possible mean
Action Shapley value. As we hypothesize, the former action set produced an RL agent with a higher
cumulative award of −8.49 vs −23.2. The former has a lower convergence time too: 10 vs 29. In
comparison to the baseline RL agent (cumulative reward of −9.1 and convergence time of 12), only
the best agent performs better.

A.6.3 VALIDATION OF TRAINING ACTION SELECTION POLICY FOR THE DATABASE
TUNING CASE STUDY

Based on the Action Shapley computation, we determine the cut-off cardinality is equal to 4 from 6
total actions. This indicates Pcomp = 75%. With p1 being the indispensable actions, ⟨p1, p2, p3, p4⟩
has the highest possible mean Action Shapley value. On the other hand, ⟨p1, p2, p5, p6⟩ has the
lowest possible mean Action Shapley value. As we hypothesize, the former action set produced an
RL agent with a higher cumulative award of −2.42 vs −21. The former has a lower convergence time
too: 7 vs 16. In comparison to the baseline RL agent (cumulative reward of −2.33 and convergence
time of 6), both the best and worst agent agents performs poorly. In fact, the baseline agent performs
marginally better than the best agent chosen by the Action Shapley policy.

A.6.4 VALIDATION OF TRAINING ACTION SELECTION POLICY FOR THE KUBERNETES
MANAGEMENT CASE STUDY

Based on the Action Shapley computation, we determine that the cut-off cardinality is equal to
5 from 15 total actions. This indicates that Pcomp = 99.9%. ⟨r2, r3, r8, r9, r13⟩ has the highest
possible mean Action Shapley value. On the other hand, ⟨r1, r6, r11, r12, r14⟩ has the lowest possible
mean Action Shapley value. As we hypothesized, the former action set produced an RL agent with
a higher cumulative award of −499 vs −621. The former has a higher convergence time too: 89 vs
51. It is counter-intuitive that the former set has a higher converge time despite with a higher mean
Action Shapley value. It could be due to complex system dynamics. In comparison to the baseline
RL agent (cumulative reward of −561.4 and convergence time of 52), only the best agent performs
better.
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Figure 5: Different training actions and corresponding aggregated state statistics for three different
case studies: (a) VM right-sizing case study. (b) Load balancing case study. (c) Database tuning
case study. (d) Kubernetes management case study.

A.7 CUT-OFF CARDINALITY

As we compute Action Shapley values for different training actions, we also compute the corre-
sponding cut-off cardinality values. For each case study, we compute the corresponding global car-
dinality values as shown in Table 7. It shows for all case studies, the cut-off cardinality is lower than
the number of training actions. It means the Action Shapley is more efficiency than the brute-force
computation.
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Figure 6: Action, state, and reward trajectories for the best and the worst RL agents for the VM
right-sizing case study. (a) The best RL agent is produced by training actions with the highest
possible Action Shapley values: ⟨a2, a3, a4, a5⟩ . The resulting cumulative reward is -21.9 and
the convergence time is 13. (b) The worst RL agent is produced by training actions with lowest
possible Action Shapley values: ⟨a1, a3, a4, a5⟩ . The resulting cumulative reward is -30.4 and the
convergence time is 16.
.

Figure 7: Action, state, and reward trajectories for the best and the worst RL agents for the load
balancing case study. (a) The best RL agent is produced by training actions with the highest possible
Action Shapley values: ⟨w3, w4, w5⟩ . The resulting cumulative reward is -8.49 and the convergence
time is 10. (b) The worst RL is produced by training actions with the lowest possible Action Shapley
values: ⟨w1, w2, w4⟩ . The resulting cumulative reward is -23.2 and the convergence time is 29.
.

B TRAINING DATA

B.1 VM RIGHT-SIZING

B.2 LOAD BALANCING

B.3 DATABASE TUNING

C BASELINE RESULTS

The baseline study assumes the environment model for the RL agent is trained by all training actions.
Table 8 shows cumulative rewards and convergence times for four case studies under the baseline
condition. It shows cumulative rewards of -37.75, -9.1, -2.33, -561.4 and convergence times of 21,
12, 6, 52, for four different case studies, respectively.
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Figure 8: Action, state, and reward trajectories for the best and the worst RL agents for the database
tuning case study. (a) The best RL agent is produced by training actions with the highest possible
Action Shapley values: ⟨p1, p2, p3, p4⟩ . The resulting cumulative reward is -2.42 and the conver-
gence time is 7. (b) The worst RL agent is produced by training actions with the lowest possible
Action Shapley values: ⟨p1, p2, p5, p6⟩ . The resulting cumulative reward is -21 and the convergence
time is 16.
.

Figure 9: Action, state, and reward trajectories for the best and the worst RL agents for the Kuber-
netes management case study. (a) The best RL agent is produced by training actions with the highest
possible Action Shapley values: ⟨r2, r3, r8, r9, r13⟩. The resulting cumulative reward is -499 and
the convergence time is 89. (b) The worst RL is produced by training actions with the lowest possi-
ble Action Shapley values: ⟨r1, r6, r11, r12, r14⟩ . The resulting cumulative reward is -621 and the
convergence time is 51.
.

Table 7: Global cut-off cardinality values and computation efficiency metrics for different case
studies

Case Study Global Cut-off No. of Training Actions Pcomp

VM Right-Sizing 4 5 50%
Load Balacing 3 5 75%
Database Tuning 4 6 75%
kubernetes Management 5 15 99.9%
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Figure 10: Training Data for VM Right-Sizing
.

Figure 11: Training Data for Load Balancing
.
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Figure 12: Training Data for Database Tuning
.

Table 8: Results from the Baseline Study

Case Study Cumulative Reward Convergence Time

VM Right-Sizing -37.75 21
Load Balacing -9.1 12
Database Tuning -2.33 6
kubernetes Management -561.4 52
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