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ABSTRACT

Motivated by the need to reliably characterize the robustness of deep neural net-
works, researchers have developed verification algorithms for deep neural net-
works. Given a neural network, the verifiers aim to answer whether certain prop-
erties are guaranteed with respect to all inputs in a space. However, little attention
has been paid to floating point numerical error in neural network verification.
We exploit floating point errors in the inference and verification implementations
to construct adversarial examples for neural networks that a verifier claims to be
robust with respect to certain inputs. We argue that, to produce sound verifica-
tion results, any verification system must accurately (or conservatively) model the
effects of any float point computations in the network inference or verification
system.

1 INTRODUCTION

Deep neural networks (DNNs) are known to be vulnerable to adversarial inputs (Szegedy et al.,
2014), which are images, audio, or texts indistinguishable to human perception that cause a DNN
to give substantially different results. This situation has motivated the development of network
verification algorithms that claim to prove the robustness of a network (Bunel et al., 2020; Tjeng
et al., 2019; Salman et al., 2019), specifically that the network produces identical classifications for
all inputs in a perturbation space around a given input.

Verification algorithms typically reason about the behavior of the network assuming real-valued
arithmetic. In practice, however, the computation of both the verifier and the neural network is
performed on physical computers that use floating point numbers and floating point arithmetic to
approximate the underlying real-valued computations. This use of floating point introduces numeri-
cal error that can potentially invalidate the guarantees that the verifiers claim to provide. Moreover,
the existence of multiple software and hardware systems for DNN inference further complicates the
situation, because different implementations exhibit different numerical error characteristics.

We present concrete instances where numerical error leads to unsound verification of real-valued
networks. Specifically, we train robust networks on the MNIST and CIFAR10 datasets. We work
with the MIPVerify complete verifier (Tjeng et al., 2019) and several inference implementations
included in the PyTorch (Paszke et al., 2019) framework. For each implementation, we construct
image pairs (x0,xadv) where x0 is a brightness modified natural image, such that the implemen-
tation classifies xadv differently from x0, xadv falls in a `∞-bounded perturbation space around
x0, and the verifier incorrectly claims that no such adversarial image xadv exists for x0 within the
perturbation space. Moreover, we show that the incomplete verifier CROWN is also vulnerable to
floating point error. Our method of constructing adversarial images is not limited to our setting, and
it is applicable to other verifiers that do not soundly model floating point arithmetic.

2 BACKGROUND AND RELATED WORK

Training robust networks: Researchers have developed various techniques to train robust net-
works (Madry et al., 2018; Mirman et al., 2018; Tramer & Boneh, 2019; Wong et al., 2020). Madry
et al. formulate the robust training problem as minimizing the worst loss within the input perturba-
tion and propose to train robust networks on the data generated by the Projected Gradient Descent
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(PGD) adversary (Madry et al., 2018). In this work we consider robust networks trained with the
PGD adversary.

Complete verification: The goal of complete verification (a.k.a. exact verification) methods is
to either prove the property being verified or provide a counterexample to disprove it. Complete
verification approaches have formulated the verification problem as a Satisfiability Modulo Theo-
ries (SMT) problem (Scheibler et al., 2015; Huang et al., 2017; Katz et al., 2017; Ehlers, 2017;
Bunel et al., 2020) or as a Mixed Integer Linear Programming (MILP) problem (Lomuscio & Ma-
ganti, 2017; Cheng et al., 2017; Fischetti & Jo, 2018; Dutta et al., 2018; Tjeng et al., 2019). While
SMT solvers are able to model exact floating point arithmetic (Rümmer & Wahl, 2010) or exact
real arithmetic (Corzilius et al., 2012), deployed SMT solvers for verifying neural networks all use
inexact floating point arithmetic to reason about the neural network inference for efficiency reasons.
MILP solvers work directly with floating point, do not attempt to exactly model real arithmetic, and
therefore exhibit numerical error. Since floating point arithmetic is not associative, different neu-
ral network implementations may produce different results for the same neural network, implying
that any sound verifier for this class of networks must reason about the specific floating point error
characteristics of the neural network implementation at hand. To the best of our knowledge, no prior
work formally recognizes the problem of floating point error in neural network complete verification
or exploits floating point error to invalidate verification results.

Incomplete verification: On the spectrum of the tradeoff between completeness and scalability,
incomplete methods (a.k.a. certification methods) aspire to deliver more scalable verification by
adopting over-approximation, while admitting the inability to either prove or disprove the properties
in certain cases. There is a large body of related research (Wong & Kolter, 2017; Weng et al., 2018;
Gehr et al., 2018; Zhang et al., 2018; Raghunathan et al., 2018; Dvijotham et al., 2018; Mirman et al.,
2018; Singh et al., 2019). Salman et al. (2019) has unified most of the relaxation methods under a
common convex relaxation framework. Their results suggest that there is an inherent barrier to tight
verification via layer-wise convex relaxation captured by their framework. We highlight that floating
point error of implementations that use a direct dot product formulation has been accounted for in
some certification frameworks (Singh et al., 2018; 2019) by maintaining upper and lower rounding
bounds for sound floating point arithmetic (Miné, 2004). Such frameworks should be extensible to
model numerical error in more sophisticated implementations like the Winograd convolution (Lavin
& Gray, 2016), but the effectiveness of this extension remains to be studied. Most of the certification
algorithms, however, have not considered floating point error and may be vulnerable to attacks that
exploit this deficiency.

Floating point arithmetic: Floating point is widely adopted as an approximate representation of
real numbers in digital computers. After each calculation, the result is rounded to the nearest repre-
sentable value, which induces roundoff error. In the field of neural networks, the SMT-based verifier
Reluplex (Katz et al., 2017) has been observed to produce false adversarial examples due to floating
point error (Wang et al., 2018). The MILP-based verifier MIPVerify (Tjeng et al., 2019) has been
observed to give NaN results when verifying pruned neural networks (Guidotti et al., 2020). Such
observed floating point unsoundness behavior occurs unexpectedly in running large scale bench-
marks. However, no prior work tries to systematically invalidate neural network verification results
via exploiting floating point error.

The IEEE-754 (IEEE, 2008) standard defines the semantics of operations and correct rounding be-
havior. On an IEEE-754 compliant implementation, computing floating point expressions consisting
of multiple steps that are equivalent in the real domain may result in different final roundoff error
because rounding is performed after each step, which complicates the error analysis. Research on
estimating floating point roundoff error and verifying floating point programs has a long history and
is actively growing (Boldo & Melquiond, 2017), but we are unaware of any attempt to apply these
tools to obtain a sound verifier for any neural network inference implementation. Any such verifier
must reason soundly about floating point errors in both the verifier and the neural network inference
algorithm. The failure to incorporate floating point error in software systems has caused real-world
disasters. For example, in 1992, a Patriot missile missed its target and lead to casualties due to
floating point roundoff error related to time calculation (Skeel, 1992).
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3 PROBLEM DEFINITION

3.1 ADVERSARIAL ROBUSTNESS OF NEURAL NETWORKS

We consider 2D image classification problems. Let y = NN (x; W ) denote the classification
confidence given by a neural network with weight parametersW for an input x, where x ∈ Rm×n×c[0,1]

is an image with m rows and n columns of pixels each containing c color channels represented by
floating point values in the range [0, 1], and y ∈ Rk is a logits vector containing the classification
scores for each of the k classes. The class with the highest score is the classification result of the
neural network.

For a logits vector y and a target class number t, we define the Carlini-Wagner (CW) loss (Carlini &
Wagner, 2017) as the score of the target class subtracted by the maximal score of the other classes:

LCW (y, t) = yt −max
i 6=t

yi (1)

Note that x is classified as an instance of class t if and only if LCW (NN (x; W ) , t) > 0, assuming
no equal scores of two classes.

Adversarial robustness of a neural network is defined for an input x0 and a perturbation bound ε,
such that the classification result is stable within allowed perturbations:

∀x ∈ Advε (x0) : LCW (NN (x; W ) , t0) > 0 (2)
where t0 = argmax NN (x0; W )

In this work we focus on `∞-norm bounded perturbations:

Advε (x0) = {x | ‖x− x0‖∞ ≤ ε ∧ minx ≥ 0 ∧ maxx ≤ 1} (3)

3.2 FINDING ADVERSARIAL EXAMPLES FOR VERIFIED NETWORKS VIA EXPLOITING
NUMERICAL ERROR

Due to the inevitable presence of numerical error in both the network inference system and the
verifier, the exact specification of NN (·; W ) (i.e., a bit-level accurate description of the under-
lying computation) is not clearly defined in (2). We consider the following implementations of
convolutional layers included in the PyTorch framework to serve as our candidate definitions of the
convolutional layers in NN (·; W ), and other layers use the default PyTorch implementation:

• NNC,M (·; W ): A matrix multiplication based implementation on x86/64 CPUs. The con-
volution kernel is copied into a matrix that describes the dot product to be applied on the
flattened input for each output value.

• NNC,C (·; W ): The default convolution implementation on x86/64 CPUs.
• NNG,M (·; W ): A matrix multiplication based implementation on NVIDIA GPUs.
• NNG,C (·; W ): A convolution implementation using the IMPLICIT_GEMM algorithm

from the cuDNN library (Chetlur et al., 2014) on NVIDIA GPUs.
• NNG,CWG (·; W ): A convolution implementation using the WINOGRAD_NONFUSED al-

gorithm from the cuDNN library (Chetlur et al., 2014) on NVIDIA GPUs. It is based on
the Winograd fast convolution algorithm (Lavin & Gray, 2016), which has much higher
numerical error compared to others.

For a given implementation NNimpl (·; W ), our method finds pairs of (x0, xadv) represented as
single precision floating point numbers such that

1. x0 and xadv are in the dynamic range of images: minx0 ≥ 0, minxadv ≥ 0, maxx0 ≤
1, and maxxadv ≤ 1.

2. xadv falls in the perturbation space of x0: ‖xadv − x0‖∞ ≤ ε
3. The verifier claims that (2) holds for x0

4. xadv is an adversarial image for the implementation: LCW (NNimpl (xadv; W ) , t0) < 0
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Note that the first two conditions are accurately defined for any implementation compliant with
the IEEE-754 standard, because the computation only involves element-wise subtraction and max-
reduction that incur no accumulated error. The Gurobi (Gurobi Optimization, 2020) solver used
by MIPVerify operates with double precision internally. Therefore, to ensure that our adversarial
examples satisfy the constraints considered by the solver, we also require that the first two conditions
hold for x′adv = float64 (xadv) and x′0 = float64 (x0) that are double precision representations of
xadv and x0.

3.3 MILP FORMULATION FOR COMPLETE VERIFICATION

We adopt the small CNN architecture from Xiao et al. (2019) and the MIPVerify complete verifier
of Tjeng et al. (2019) to demonstrate our attack method. We can also deploy our method against
other complete verifiers as long as the property being verified involves thresholding continuous
variables whose floating point arithmetic is not exactly modeled in the verification process.

The MIPVerify verifier formulates the verification problem as an MILP problem for networks
composed of linear transformations and piecewise-linear functions (Tjeng et al., 2019). An MILP
problem optimizes a linear objective function subject to linear equality and linear inequality con-
straints over a set of variables, where some variables take real values while others are restricted to
be integers. The MILP formulation of the robustness of a neural network involves three parts: intro-
ducing free variable x for the adversarial input subject to the constraint x ∈ Advε (x0), formulating
the computation y = NN (x; W ), and formulating the attack goal LCW (NN (x; W ) , t0) ≤ 0.
The network is robust with respect to x0 if the MILP problem is infeasible, and x serves as an adver-
sarial image otherwise. The MILP problem typically optimizes one of the two objective functions:
(i) min ‖x− x0‖∞ to find an adversarial image closest to x, or (ii) minLCW (NN (x; W ) , t0) to
find an adversarial image that causes the network to produce a different prediction with the highest
confidence. Note that although the above constraints and objective functions are nonlinear, most
modern MILP solvers can handle them by automatically introducing necessary auxiliary decision
variables to convert them into linear forms.

4 EXPLOITING A COMPLETE VERIFIER

4.1 EMPIRICAL CHARACTERIZATION OF IMPLEMENTATION NUMERICAL ERROR

To guide the design of our attack algorithm we present statistics about numerical error of different
implementations.

To investigate end-to-end error behavior, we select an image x and present in Figure 1a a plot of
‖NN (x + δ; W )−NN (x; W )‖∞ against −10−6 ≤ δ ≤ 10−6, where the addition of x + δ is
only applied on the single input element that has the largest gradient magnitude. To minimize the
effect of numerical instability due to nonlinearity in the network and focus on fluctuations caused
by numerical error, the image x is chosen to be the first MNIST test image on which the network
produces a verified robust prediction. We have also checked that the pre-activation values of all the
ReLU units do not switch sign. We observe that the change of the logits vector is highly nonlinear
with respect to the change of the input, and a small perturbation could result in a large fluctuation.
The WINOGRAD_NONFUSED algorithm on NVIDIA GPU is much more unstable and its variation
is two orders of magnitude larger than the others.

We also evaluate all of the implementations on the whole MNIST test set and compare the outputs of
the first layer (i.e., with only one linear transformation applied to the input) against that of NNC,M,
and present the histogram in Figure 1b. It is clear that different implementations usually manifest
different error behavior, and again NNG,CWG induces much higher numerical error than others.

These observations inspire us to construct adversarial images for each implementation independently
by applying small random perturbations on an image close to the robustness decision boundary. We
present the details of our method in Section 4.2.
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(a) Change of logits vector due to small single-element
input perturbations for different implementations. The
dashed lines are y = |δ|. This plot shows that the
change of output is nonlinear with respect to input
changes, and the magnitude of output changes is usu-
ally larger than that of input changes. The changes are
due to floating point error rather than network nonlin-
earity because all the pre-activation values of ReLU
units do not switch sign.
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first layer evaluated on MNIST test images. This plot
shows that different implementations usually exhibit
different floating point error characteristics.

Figure 1: Empirical characterization of numerical error of different implementations
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Figure 2: Illustration of our method. Since the verifier does not model the floating point arith-
metic details of the implementation, their decision boundaries for the classification problem diverge,
which allows us to find adversarial inputs by crossing the boundary via numerical error fluctuations.
Note that the verifier usually does not comply with a well defined specification of NN (·; W ), and
therefore it does not define a decision boundary. The dashed boundary in the diagram is just for
illustrative purposes.

4.2 CONSTRUCTING ADVERSARIAL EXAMPLES

Given a network and weights NN (·; W ), there exist image pairs (x0,x1) such that the network
is verifiably robust with respect to x0, while x1 ∈ Advε (x0) and LCW (NN (x1; W ) , t0) is less
than the numerical fluctuation introduced by tiny input perturbations. We call x0 a quasi-safe image
and x1 the corresponding quasi-adversarial image. We then apply small random perturbations on
the quasi-adversarial image to obtain an adversarial image. The process is illustrated in Figure 2.

We propose the following proposition for a more formal and detailed description:
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Proposition 1. Let E > 0 be an arbitrarily small positive number. If a continuous neural network
NN (·; W ) can produce a verifiably robust classification for class t, and it does not constantly
classify all inputs as class t, then there exists an input x0 such that

0 < min
x∈Advε(x0)

LCW (NN (x; W ) , t) < E

Let x1 = argminx∈Advε(x0) LCW (NN (x; W ) , t) be the minimizer of the above function. We call
x0 a quasi-safe image and x1 a quasi-adversarial image.

Proof. Let f(x) := minx′∈Advε(x) LCW (NN (x′; W ) , t). Since f(·) is composed of continuous
functions, f(·) is continuous. Suppose NN (·; W ) is verifiably robust with respect to x+ that
belongs to class t. Let x− be be any input such that LCW (NN (x−; W ) , t) < 0, which exists
because NN (·; W ) does not constantly classify all inputs as class t. We have f(x+) > 0 and
f(x−) < 0, and therefore x0 exists such that 0 < f(x0) < E due to continuity.

Our method works by choosingE to be a number smaller than the average fluctuation of logits vector
introduced by tiny input perturbations as indicated in Figure 1a, and finding a quasi-safe image by
adjusting the brightness of a natural image. An adversarial image is then likely to be obtained by
applying random perturbations on the corresponding quasi-adversarial image.

Given a particular implementation NNimpl (·; W ) and a natural image xseed which the network
robustly classifies as class t0 according to the verifier, we construct an adversarial input pair
(x0, xadv) that meets the constraints described in Section 3.2 in three steps:

1. We search for a coefficient α ∈ [0, 1] such that x0 = αxseed serves as the quasi-safe
image. Specifically, we require the verifier to claim that the network is robust for αxseed

but not so for (α − δ)xseed with δ being a small positive value. Although the function is
not guaranteed to be monotone, we can still use a binary search to find α while minimizing
δ because we only need one such value. However, we observe that in many cases the MILP
solver becomes extremely slow for small δ values, so we start with a binary search and
switch to grid search if the solver exceeds a time limit. We set the target of δ to be 1e−7 in
our experiments and divide the best known δ to 16 intervals if grid search is needed.

2. We search for the quasi-adversarial image x1 corresponding to x0. We define a loss func-
tion with a tolerance of τ as L(x, τ ; W , t0) := LCW (NN (x; W ) , t0) − τ , which can
be incorporated in any verifier by modifying the bias of the Softmax layer. We aim to find
τ0 which is the minimal confidence of all images in the perturbation space of x0, and τ1
which is slightly larger than τ0 with x1 being the corresponding adversarial image:

∀x ∈ Advε (x0) : L(x0, τ0; W , t0) > 0
x1 ∈ Advε (x0)
L(x1, τ1; W , t0) < 0
τ1 − τ0 < 1e−7

Note that x1 is produced by the complete verifier as a proof for nonrobustness given the
tolerance τ1. The above values are found via a binary search with initialization τ0 ← 0
and τ1 ← τmax where τmax := LCW (NN (x0; W ) , t0). If the verifier is able to compute
the worst objective τw = minx∈Advε(x0) LCW (NN (x; W ) , t0), the binary search can be
accelerated by initializing τ0 ← τw − δs and τ1 ← τw + δs. We empirically set δs = 3e−6
to incorporate the numerical error in the verifier so that L(x0, τw − δs; W , t0) > 0 and
L(x0, τw + δs; W , t0) < 0. The binary search is aborted if the solver times out.

3. We minimize LCW (NN (x1; W ) , t0) with hill climbing via applying small random per-
turbations on the quasi-adversarial image x1 while projecting back to Advε (x0) to find an
adversarial example. The perturbations are applied on patches of x1, as described in Ap-
pendix A. The random perturbations are on the scale of 2e−7, corresponding to the input
perturbations that cause a change in Figure 1a.

4.3 EXPERIMENTS

We conduct our experiments on a workstation equipped with two GPUs (NVIDIA Titan RTX and
NVIDIA GeForce RTX 2070 SUPER), 128 GiB of RAM and an AMD Ryzen Threadripper 2970WX
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Table 1: Number of successful adversarial attacks for different neural network implementations. The
number of quasi-adversarial images in the first column corresponds to the cases where the solver
does not time out at the initialization step. For each implementation, we try to find adversarial
images by applying random perturbations on each quasi-adversarial image and report the number of
successfully found adversarial images here.

#quasi-adv / #tested NNC,M NNC,C NNG,M NNG,C NNG,CWG

MNIST 18 / 32 2 3 1 3 7
CIFAR10 26 / 32 16 12 7 6 25

verified robust
7

LCW=2.5

NNC, M
2

LCW=-3.6e-07

NNC, C
2

LCW=-3.6e-07

NNG, M
2

LCW=-1.2e-07

NNG, C
2

LCW=-2.4e-07

NNG, CWG
2

LCW=-6.9e-04

airplane
LCW=0.5

horse
LCW=-1.8e-06

horse
LCW=-3.5e-06

horse
LCW=-1.5e-06

horse
LCW=-3.5e-06

horse
LCW=-7.0e-04

horse
LCW=0.5

deer
LCW=-1.2e-06

deer
LCW=-1.5e-06

deer
LCW=-1.2e-07

deer
LCW=-1.2e-07

deer
LCW=-2.4e-04

Figure 3: The quasi-safe images with respect to which all implementations are successfully attacked,
and corresponding adversarial images

24-core processor. We train the small architecture from Xiao et al. (2019) with the PGD adversary
and the RS Loss on MNIST and CIFAR10 datasets. The trained networks achieve 94.63% and
44.73% provable robustness with perturbations of `∞ norm bounded by 0.1 and 2/255 on the two
datasets respectively, similar to the results reported in Xiao et al. (2019). Our code will be made
publicly available after the review process.

Although our method only needs O(− log ε) invocations of the verifier where ε is the gap in the
binary search, the verifier is too slow to run a large benchmark in a reasonable time. Therefore, for
each dataset we only test our method on 32 images randomly sampled from the verifiably robustly
classified test images. The time limit of MILP solving is 360 seconds. Out of these 32 images,
we have successfully found quasi-adversarial images (x1 from Section 4.2 Step 2, where failed
cases are solver timeouts) for 18 images on MNIST and 26 images on CIFAR10. We apply random
perturbations to these quasi-adversarial images to obtain adversarial images within the perturbation
range of the quasi-safe image (x0 = αxseed from Section 4.2 Step 1). All the implementations
that we have considered are successfully attacked. We present the detailed numbers in Table 1.
We also present in Figure 3 the quasi-safe images on which our attack method succeeds for all
implementations and the corresponding adversarial images.

5 EXPLOITING AN INCOMPLETE VERIFIER

The relaxation adopted in certification methods renders them incomplete but also makes their ver-
ification claims more robust to floating point error compared to complete verifiers. In particular,
we evaluate the CROWN framework (Zhang et al., 2018) on our randomly selected test images and
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corresponding quasi-safe images from Section 4.3. CROWN is able to verify the robustness of the
network on 29 out of the 32 original test images, but it is unable to prove the robustness for any of
the quasi-safe images. Note that MIPVerify claims that the network is robust with respect to all
the original test images and corresponding quasi-safe images.

Given the above situation, we demonstrate that incomplete verifiers are still prone to floating point
error. We build a neural network that takes a 13 × 13 single-channel input image, followed by a
5 × 5 convolutional layer with a single output channel, two fully connected layers with 16 output
neurons each, a fully connected layer with one output neuron denoted as u = max(Wuhu + bu, 0),
and a final linear layer that computes y = [u, 1e− 7] as the logits vector. All the hidden layers have
ReLU activation. The input x0 is taken from a Gaussian distribution. The hidden layers have random
Gaussian coefficients, and the biases are chosen so that (i) the ReLU neurons before u are always
activated for inputs in the perturbation space of x0, (ii) u = 0 always holds for these inputs, and
(iii) bu is maximized with all other parameters fixed. CROWN is able to prove that all ReLU neurons
before u are always activated but u is never activated, and therefore it claims that the network is
robust with respect to perturbations around x0. However, by initializing the quasi-adversarial input
x1 ← x0 + ε sign(Wequiv) where Wequiv is the product of all the coefficient matrices of the
layers up to u, we successfully find adversarial inputs for all the five implementations considered in
this work by randomly perturbing x1 in a way similar to Step 3 of Section 4.2.

6 DISCUSSION

We agree with the security expert Window Snyder, “One single vulnerability is all an attacker needs”.
Unfortunately, most previous work on neural network verification abstains from discussing possible
vulnerabilities in their methods. We have demonstrated that neural network verifiers, although meant
to provide security guarantees, are systematically exploitable. The underlying tradeoff between
soundness and scalability in the verification of floating point programs is fundamental but has not
received enough attention in the neural network verification literature.

One appealing remedy is to introduce floating point error relaxations into complete verifiers, such
as by verifying for a larger ε or setting a threshold for accepted confidence score. However, a tight
and sound relaxation is extremely challenging to find. We are unaware of prior attempt to formally
prove error bounds for practical and accelerated neural network implementations or verifiers.

Some incomplete verifiers have incorporated floating point error by maintaining upper and lower
rounding bounds of internal computations (Singh et al., 2018; 2019), which is also potentially appli-
cable to complete verifiers. However, this approach relies on the specific implementation details of
the inference algorithm — optimizations such as Winograd (Lavin & Gray, 2016) or FFT (Abtahi
et al., 2018) would either invalidate the robustness guarantees or require changes to the analysis
algorithm.

Another approach is to quantize the computation to align the inference implementation with the
verifier. For example, if we require all activations to be multiples of s0 and all weights to be mul-
tiples of s1, where s0s1 > 2E and E is a very loose bound of possible implementation error, then
the output can be rounded to multiples of s0s1 to completely eliminate numerical error. Binarized
neural networks (Hubara et al., 2016) are a family of extremely quantized networks, and their ver-
ification (Narodytska et al., 2018; Shih et al., 2019) is sound and complete. However, the problem
of robust training and verification of quantized neural networks (Jia & Rinard, 2020) is relatively
under-examined compared to that of real-valued neural networks (Madry et al., 2018; Mirman et al.,
2018; Tjeng et al., 2019; Xiao et al., 2019).

7 CONCLUSION

Floating point error should not be overlooked in the verification of real-valued neural networks, as
we have presented techniques that construct adversarial examples for neural networks claimed to
be robust by a verifier. We hope our results will help to guide future neural network verification
research by providing another perspective for the tradeoff between soundness, completeness, and
scalability.
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nonlinear real arithmetic toolbox. In International Conference on Theory and Applications of
Satisfiability Testing, pp. 442–448. Springer, 2012.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analy-
sis for deep feedforward neural networks. In NASA Formal Methods Symposium, pp. 121–138.
Springer, 2018.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan
O’Donoghue, Jonathan Uesato, and Pushmeet Kohli. Training verified learners with learned ver-
ifiers. arXiv preprint arXiv:1805.10265, 2018.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Interna-
tional Symposium on Automated Technology for Verification and Analysis, pp. 269–286. Springer,
2017.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Con-
straints, 23(3):296–309, 2018.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE, 2018.

Dario Guidotti, Francesco Leofante, Luca Pulina, and Armando Tacchella. Verification of neural
networks: Enhancing scalability through pruning. arXiv preprint arXiv:2003.07636, 2020.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http://www.
gurobi.com.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural
networks. In International Conference on Computer Aided Verification, pp. 3–29. Springer, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 29, pp. 4107–4115. Curran Associates, Inc.,
2016.

IEEE. IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–70, 2008.

Kai Jia and Martin Rinard. Efficient exact verification of binarized neural networks. arXiv preprint
arXiv:2005.03597, 2020.

9

http://www.gurobi.com
http://www.gurobi.com


Under review as a conference paper at ICLR 2021

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, pp. 97–117. Springer, 2017.

Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013–4021, 2016.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward relu
neural networks. arXiv preprint arXiv:1706.07351, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.
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A RANDOM PERTURBATION ALGORITHM

We present the details of our random perturbation algorithm below. Note that the Winograd convo-
lution computes a whole output patch in one iteration, and therefore we handle it separately in the
algorithm.

Input: quasi-safe image x0

Input: target class number t
Input: quasi-adversarial image x1

Input: input perturbation bound ε
Input: a neural network inference implementation NNimpl (·; W )
Input: number of iterations N (default value 1000)
Input: perturbation scale u (default value 2e−7)
Output: an adversarial image xadv or FAILED

for Index i of x0 do . Find the weakest bounds xl and xu for allowed perturbations
xl[i]← max(nextafter(x0[i]− ε, 0), 0)
xu[i]← min(nextafter(x0[i] + ε, 1), 1)
while x0[i]− xl[i] > ε or float64 (x0[i])− float64 (xl[i]) > ε do

xl[i]← nextafter(xl[i], 1)
end while
while xu[i]− x0[i] > ε or float64 (xu[i])− float64 (x0[i]) > ε do

xu[i]← nextafter(xu[i], 0)
end while

end for

if NNimpl (·; W ) is NNG,CWG (·; W ) then
(offset, stride)← (4, 9) . The Winograd algorithm in cuDNN produces 9 × 9 out-

put tiles for 13 × 13 input tiles and 5 × 5 kernels. The
offset and stride here ensure that perturbed tiles contribute
independently to the output.

else
(offset, stride)← (0, 4) . Work on small tiles to avoid random errors get cancelled

end if

for i← 1 to N do
for (h,w)← (0, 0) to (height(x1), width(x1)) step (stride, stride) do

δ ← uniform(−u, u, (stride− offset, stride− offset))
x′1 ← x1[:]
x′1[h+ offset : h+ stride, w + offset : w + stride] + = δ
x′1 ← max(min(x′1, xu), xl)
if LCW (NNimpl (x′1; W ) , t) < LCW (NNimpl (x1; W ) , t) then

x1 ← x′1
end if

end for
end for
if LCW (NNimpl (x1; W ) , t) < 0 then

return xadv ← x1

else
return FAILED

end if
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