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ABSTRACT

Acquiring driving policies that can transfer to unseen environments is essential
for driving in dense traffic flows. Adversarial training is a promising path to im-
prove robustness under disturbances. Most prior works leverage few agents to
induce driving policy’s failures. However, we argue that directly implementing
this training framework into dense traffic flow degrades transferability in unseen
environments. In this paper, we propose a novel robust policy training framework
that is capable of applying adversarial training based on a coordinated traffic flow.
We start by building up a coordinated traffic flow where agents are allowed to com-
municate Social Value Orientations (SVOs). Adversary emerges when the traffic
flow misunderstands the SVO of driving agent. We utilize this property to formu-
late a minimax optimization problem where the driving policy maximizes its own
reward and a spurious adversarial policy minimizes it. Experiments demonstrate
that our adversarial training framework significantly improves zero-shot transfer
performance of the driving policy in dense traffic flows compared to existing al-
gorithms.

1 INTRODUCTION

Policy learning in dense traffic flows is a progressively active area for both academia and industry
community in autonomous driving (Dosovitskiy et al., 2017; Suo et al., 2021). Since training driving
policy in real world is costly, researchers aim to build dense traffic flows in simulation as an alter-
native (Cai et al., 2020; Pal et al., 2020; Wu et al., 2021). Peng et al. (2021) develops a traffic flow
that exhibits altruistic behaviors and training driving policy in such coordinated flow also performs
well. However, the internal dynamics of different traffic flows are varied, making it difficult to train
driving policy in one flow and transfer it into unseen traffic patterns. Hence, it is indispensable to
develop robust driving policies that can transfer among different traffic flows.

An appealing technical route to improve the robustness of driving policy is adversarial attack (Pinto
et al., 2017), which models differences between training and evaluating environments as extra dis-
turbances towards driving policy (Wachi, 2019; Chen et al., 2021; Liu et al., 2021; Huang et al.,
2022). To exert disturbances on driving policy, these works leverage few agents to deliberately in-
duce driving policy’s failures. Although working well in sparse traffic situations, this pipeline cannot
extend to dense traffic flows. On the one hand, increasing the number of attacking agents makes ad-
versarial attacks easier, yet it is harder for the driving policy to resist such strong disturbances,
which severely harms policy learning. On the other hand, attacking agents mainly concentrate on
producing adversarial behaviors towards driving policy, while overlooking the modeling of altruis-
tic behaviors among them. Therefore, the key is to construct a coordinated traffic flow which still
generates adversarial behaviors.

We develop a coordinated traffic flow with communication and propose a misunderstanding-based
adversarial training pipeline based on this flow. Specifically, for building a coordinated traffic flow,
we introduce the concept of Social Value Orientation (SVO) (Liebrand, 1984) in social psychology
which balances egoistic and altruistic behaviors for each agent. SVO can be regarded as the hidden
information of one agent, which typically cannot be accessed by other agents. However, in this
paper, we allow agents in our traffic flow to communicate genuine SVOs with each other. Since
the traffic flow is served as a testbed for training and evaluating driving policies, the coordination
mechanism within the traffic flow is invisible to driving policies.
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Figure 1: Overview of our training framework. Left: We build up a coordinated traffic flow in
which agents communicate SVOs to coordinate with each other. Right: By disturbing the SVO of
driving agent, our traffic flow exhibits adversarial behaviors towards the driving policy.

In other words, when placing a driving policy to interact with the traffic flow, the traffic flow requires
receiving driving policy’s SVO while the driving policy is unaware of traffic flows’ SVOs. This
property offers a neat approach to induce misunderstandings between driving policy and our traffic
flow, making it adversarial towards driving policy. We reserve a spurious adversarial agent to disturb
the SVO delivery from the driving agent to other agents and formulate a minimax optimization
problem where the driving policy maximizes its own reward while the spurious adversarial policy
minimizes it, as shown in Figure 1.

Contributions. We propose a novel adversarial training framework based on a coordinated traffic
flow to obtain driving policies that can transfer across various traffic flows. We develop a coordinated
traffic flow where agents exhibit egoistic, prosocial, and altruistic behaviors based on communicat-
ing SVOs with each other. Based on this traffic flow, we apply adversarial driving policy training
by adversarially misunderstanding the traffic flow, which is disturbed to produce improper coordi-
nated behaviors towards driving policy. We investigate characteristics of several traffic flows in four
challenging scenarios and carry out comprehensive comparative studies to evaluate the robustness of
driving policy. Results show that our traffic flow achieves the highest success rate and the proposed
adversarial training pipeline significantly improves the transferability of driving policy compared to
existing algorithms.

2 RELATED WORK

Dense traffic flows. Prior works explore different methodologies to simulate dense traffic flows
including rule design (Behrisch et al., 2011; Dosovitskiy et al., 2017; Cai et al., 2020; Zhou et al.,
2021), Imitation Learning (IL) (Zhao et al., 2021; Gu et al., 2021; Wang et al., 2022), and Multi-
Agent Reinforcement Learning (MARL) (Pal et al., 2020; Palanisamy, 2020; Wu et al., 2021). IL
naturally leverages numerous human expert data but suffers from severe distribution shift and poor
closed-loop performance even in simple scenarios. Most rule- and MARL-based algorithms aim
to simulate individual behaviors of distinct agents, which overlooks complex interactions among
agents. Similar to our work, Peng et al. (2021) also builds a coordinated traffic flow based on SVO.
However, agents in their traffic flow have no access to other agents’ SVOs, leading to conservative
behaviors.

Adversarial attack. A common way to acquire robust policy is applying Robust Adversarial Re-
inforcement Learning (RARL) (Pinto et al., 2017; Pan et al., 2019; Vinitsky et al., 2020; Oikarinen
et al., 2021). Researchers in autonomous driving also follow this pipeline (Wachi, 2019; Ding et al.,
2020; Chen et al., 2021; Sharif & Marijan, 2021; Huang et al., 2022). Adversarial policies in Ding
et al. (2020); Chen et al. (2021); Sharif & Marijan (2021); Huang et al. (2022) are optimized to
collide with driving agent, while Wachi (2019); Huang et al. (2022) attempt to expel ego agent from
drivable areas. Using attacking agents to interfere with driving policy deliberately, such pipeline
provides large adversarial disturbance for driving policy. However, excessively concerning rarely
happened scenarios harms the robustness of driving policy in unseen environments since it fails
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to capture simpler yet non-trivial interactive patterns. In this work, we apply adversarial training
framework on a coordinated traffic flow with communication to solve this problem.

3 TRAFFIC SIMULATION CONSTRUCTION

3.1 PROBLEM SETTING

Partially Observable Stochastic Game (POSG). Traffic simulation systems are typically
formulated as a POSG (Oliehoek & Amato, 2016). Formally, POSG is a tuple G =
⟨I,S,A, P,R, ρ0,O, n, γ, T ⟩. n is the number of agents. I denotes the set {0, 1, . . . , n − 1}.
S is the state space. A is the joint action space of n agents and A = ×i∈IAi. P : S ×A → ∆(S) 1

is the state transition probability. R = {R0, R1, . . . , Rn−1} denotes the set of agent-specific reward
functions and Ri : S × A → R is bounded for all i ∈ I. Note that each agent i receives distinct
reward from its own reward function ri = Ri(s, a). ρ0 ∈ ∆(S) is the initial state distribution. O
is the joint observation space and O = ×i∈IOi. γ ∈ (0, 1] is the discount factor, and T is the
time horizon. In POSG, each agent i maximizes its own expected cumulative reward via policy
βi : Oi → ∆(Ai). When n becomes large, it is time-and-space consuming to optimize a set of poli-
cies B = {β0, β1, . . . , βn−1}. To solve this problem, we simply adopt parameter sharing strategy
(Terry et al., 2020), i.e., βi = β, with the help of neural network which has powerful representation
ability.

Incorporating Social Value Orientation (SVO). From the perspective of social psychology, agents
should consider surrounding agents’ rewards to achieve coordinated driving. Following Schwarting
et al. (2019); Buckman et al. (2019); Peng et al. (2021), we introduce the concept of SVO to model
coordinated behaviors among agents and build up coordinated traffic simulation. By incorporating
SVO, each agent i maximizes reward with the consideration of other surrounding agents:

R′
i = cos(ci)Ri + sin(ci)RSi

(1)

where RSi
=
∑

j∈ISi
Rj/|ISi

|, ISi
is the set of surrounding agents w.r.t. agent i. ci ∈ [0, π

2 ] is
the SVO of agent i and kept fixed during each episode. Given equation 1, we formulate a SVO-
embedded POSG G′ = ⟨I,S,A, P,R′, C, ρ0,O, n, γ, T ⟩. R′ = {R′

0, R
′
1, . . . , R

′
n−1} denotes the

set of SVO-embedded reward functions. C = {c0, c1, . . . , cn−1} is set of all SVOs.

Problem formulation. As one can see, SVO determines the trade-off between egoistic and altruistic
behaviors. For each agent, it is necessary to recognize SVOs of itself and other agents, which
provides the ability to infer other agents’ reward structures. Therefore, we design policy as β :
Oi×Ci×(×j∈ISi

Cj) → ∆(Ai). And we use a single policy β to optimize the sum of n optimization
objectives in SVO-embedded POSG:

max
β

Est∼Pβ ,at∼β [
∑
i∈I

T∑
t=0

γtR′
i(st, at, ci)], ci ∈ Ci (2)

3.2 KEY COMPONENTS

State space. Agents driving in dense traffic flow need to continually interact with surrounding
agents. Besides, road structures also influence agents’ decisions. Therefore, state space S needs
to cover a collection of static and dynamic elements. The set of static elements Es include lane
centerlines, sidelines, agents’ global paths, i.e., Es = {centerline, sideline, path}. The set of
dynamic elements Ed include current and historical poses and velocities (trajectories) of all agents,
i.e., Ed = {trajectory0, trajectory1, . . . , trajectoryn−1}. We utilize vectorized representation
based on Gao et al. (2020), which is computation- and memory-efficient. In our work, elements
in Es and Ed are sets of points containing corresponding features. Specifically, static element
esi = {v0, v1, . . . , vj , . . . } , i ∈ Es. vj = [pj , li, i, j] where pj = (x, y, θ) is the pose of point j in
element i and li is the lane width of element i. For points in dynamic elements, vj = [pj , ci, i, j]
where pj = (x, y, θ, v) and ci denotes the SVO of agent i.

1∆(X ) denotes the set of probability distribution over set X .
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Observation space. In POSG, each agent could only receive perceptual information locally, we use
L2 norm to define locality, i.e., agent i could only receive points (xe, ye) that ∥(xi, yi)−(xe, ye)∥2 ≤
d, in which (xi, yi) is the current location of agent i.

Design of R. The goal of each agent in dense traffic flow is homogeneous, for instance, all agents
want to successfully finish the task as fast as possible. Besides, since each agent receives Oi, design-
ing Ri upon Oi rather than S benefits policy training. In our work, we use self-motivated reward
Ri : Oi × Ai → R and Ri = R for all i ∈ I. However, designing self-motivated reward function
still remains an open problem. Designing fine-grained dense reward accelerates training procedure
but relies too heavily on human knowledge, while training with coarse sparse reward requires much
more data. To combine both benefits, we design a near-sparse reward function containing a dense re-
ward for incentive driving fast and a sparse reward for penalizing catastrophic failures. Catastrophic
failures include collision with other agents, deviation from drivable area, driving too far from global
path, and crashing into wrong lane. Coordinated behaviors could be produced by incorporating
SVO.

Policy training. We apply Independent Policy Learning (IPL) (Tan, 1993) to solve Equation 2.
Although IPL is prone to generate egoistic suboptimal behaviors (de Witt et al., 2020; Yang et al.,
2020), we could alleviate this problem by incorporating SVO, which forces the algorithm to consider
other agents’ goals.

3.3 POLICY ARCHITECTURE

To better extract static and dynamic features and capture relations among them, we utilize a hier-
archical feature extraction framework. We use DeepSet (Zaheer et al., 2017) to aggregate homoge-
neous information within dynamic and static elements, followed by Multi-Head Attention (MHA)
(Vaswani et al., 2017) to further extract heterogeneous information among different elements.

Homogeneous feature aggregation. Consider the elements set e ⊂ E,E =
{
Es, Ed

}
, and the

function processing on the set needs to retain the adjacency between elements and permutation-
invariant to the order of objects in the element. Based on theorem 2 in (Zaheer et al., 2017), the
propagation function f is defined as:

f(e) = ρ

(∑
v∈e

ϕ(v)

)
(3)

And we obtain the element level features le = f(e), where e is the input elements set, the nodes
v ∈ e transformed into a representation ϕ(v). The sum of representations is processed using the ρ
network defined by Multi-Layer Perception (MLP) network. In our implementation, DeepSet can
extract polyline-level features while not introducing too many parameters.

Heterogeneous feature aggregation. The static element level features lse = [lse0 , l
s
e1 , . . . , l

s
ej , . . .]

and the dynamic element features lde = [lde0 , l
d
e1 , . . . , l

d
ej , . . .] go through a MHA layer which takes

into account their inter-relations to output the final action for the agents. Given arbitrary fea-
ture matrices w, z and their linear projections wQ, wK , wV and zQ, zk, zv , the SelfAttn(w) and
CrossAttn(w, z) are defined as:

SelfAttn(w) =
Softmax

(
wQw

T
K

)
√
dk

wV

CrossAttn(w, z) =
Softmax

(
wQz

T
K

)
√
dk

zV (4)

where
√
dk is the dimension of the key vectors. We leverage the one-layer cross-attention network

to model the interaction between dynamic and static segments. The dynamic elements features lde
and static elements features lse are fused by the SelfAttn and CrossAttn operation:

ldo = SelfAttn(lde) + CrossAttn(lde , l
s
e)

lso = SelfAttn(lse) + CrossAttn(lse, l
d
e) (5)

lo =
{
ldo , l

s
o

}
is the final output of MHA. We then decode the agents’ action from lo:

a = φ (lo) (6)
where φ(·) is the action decoder, and a ∈ A. For simplicity, we use an MLP as the decoder function.
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Algorithm 1: Misunderstanding-based Adversarial Reinforcement Learning
Input: SVO-embedded POMDP M containing traffic flow policy β
Output: Driving policy π, adversarial policy πc

Initialize: Learnable parameters θπ , θπc

for n = 1, 2, . . . , N do
/* Stage 1: Given πc optimize π */
for n1 = 1, 2, . . . , N1 do

Collect a set of transition tuples {(o, a, o′, r)} trajectories by rolling out π and πc on M ;
Optimize parameters θπ of π using any RL algorithms;

/* Stage 2: Given π optimize πc */
for n2 = 1, 2, . . . , N2 do

Collect a set of transition tuples {(o, a, cβ , o′,−r)} trajectories by rolling out π and πc on M ;
Optimize parameters θπc of πc using any RL algorithms;

4 MISUNDERSTANDING-BASED ADVERSARIAL LEARNING

4.1 PROBLEM SETTING

For single-agent driving task, we formulate SVO-embedded Partially Observable Markov Decision
Process (POMDP) as M = ⟨S,A, P,R, C, ρ0,O, γ, T, β⟩. Note that β is the policy that controls
the traffic simulation and affects state transition probability P . Following the tradition, we define
policy π : O → ∆(A) to solve M . cβ ∈ C = [0, π

2 ] is the SVO of driving policy which is taken by
β. The genuine SVO of driving agent cπ is always 0 since existing single-agent algorithms are fully
self-interested. Adversary emerges when cβ and cπ differ:

max
π

min
cβ

Est∼Pβ,cβ
,at∼π[

T∑
t=0

γtR(st, at)] (7)

In section 3.1 and equation 7, the SVOs are invariant during one episode for the reason of stabilizing
training. However, in adversarial training, we aim to destabilize policy training. Therefore, we
introduce a spurious policy πc : O → ∆(C) to produce cβ which is allowed to change across time
steps, changing equation 7 into:

max
π

min
πc

Ecβ,t∼πc,st∼Pβ,cβ,t
,at∼π[

T∑
t=0

γtR(st, at)] (8)

Note that equation 8 relates to three policies including driving policy π, background policy β, and
spurious adversarial policy πc. Since driving policy maximizes its own reward, it is egoistic from
the perspective of social psychology. Background policy controls the whole traffic flow to exhibit
egoistic and altruistic behaviors. The spurious policy is the only one that aims to generate adversarial
behaviors by minimizing driving policy’s reward.

We highlight that agents in our traffic flow try to coordinate with each other, which is a fundamental
difference compared to previous attacking agents. Instead of deliberately inducing failures of π, we
keep β non-adversarial and leverage an extra πc to disturb the SVO of π taken by β.

4.2 ADVERSARIAL POLICY TRAINING

Algorithm 1 outlines our training framework. Given background policy β, we alternatively optimize
both driving policy π and adversarial policy πc. The parameters θπ of π and θπc of πc are randomly
initialized before training. In each of N iterations, we first optimize θπ and keep θπc fixed, followed
by optimizing θπc and keeping θπ fixed.

In Stage 1, we iterate N1 times to optimize driving policy π. By sampling POMDP M , we collect
a set transition tuples {(o, a, o′, r)}, where o, o′ ∈ O, a ∈ A, and r = R(o, a). We then apply
standard RL algorithms to optimize θπ . In Stage 2, we iterate N2 times to optimize adversary
policy πc. Similar to Stage 1, we sample M and get another set of transition tuples and apply
RL algorithms. Differently, we reverse the sign of r since adversary policy aims to decrease the
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Figure 2: Performance of different traffic flows. The radar graphs demonstrate three essential
features of different traffic flows. Safety is calculated by taking the complement of catastrophic
failures.

Intersection Bottleneck

Figure 3: Success rates of CoPO and SocialComm (Ours). The figure reports the percentage of
success rates in intersection and bottleneck. We assign a fixed SVO from 0◦ to 90◦ at
regular intervals. All agents in traffic flows are given the same SVO.

performance of driving policy. Note that the action of adversarial policy is cβ . a is the action of
driving policy which is used to compute r. This alternating procedure is repeated for N iterations.

The main difference between standard and misunderstanding-based adversarial learning is the objec-
tive of β. In standard adversarial learning, β controls background agents to attack the driving agent.
Background agents know exactly which one is the driving agent. While in misunderstanding-based
adversarial learning, background agents aim to coordinate with each other, including the driving
agent. A background agent cannot distinguish which surrounding agent is the driving agent. There-
fore, the spurious agent which produces cβ applies adversary from the perspective of driving agent.
In Algorithm 1 the spurious agent and driving policy take the same observation.

5 RESULTS

In this section, we pursue to answer three seminal questions. (1) Can our proposed traffic simulation
produce more coordinated behaviors? (2) Does the spurious adversarial policy degrade driving
policy’s performance? (3) Does our adversarial training framework improve driving policy’s zero-
shot transfer ability? Before discussing these questions, we first explain some preliminary details.

Settings. We evaluate our proposed method using our internal driving simulator which supports
various maps and scenarios. Similar to Peng et al. (2021), we select several highly interactive sce-
narios including intersection, bottleneck, merge, and roundabout. During training,
we randomly place 8 to 20 vehicles in each scenario at the beginning of each episode. After training,
we randomly place 20 vehicles and evaluate all relevant methods. See more details of our simulator
in Appendix A.4.

Metrics. We consider three kinds of widely-accepted and general metrics. Firstly, success rate of
the whole traffic simulation (Success). Secondly, catastrophic failure rates of the whole traffic sim-
ulation. Catastrophic failures include collision between agents (Collision), deviation from drivable
area (Off Road), driving too far from global path (Off Route), and crashing into wrong lane (Wrong

6



Under review as a conference paper at ICLR 2023

Cut-in Yield

Queue

Rush

Figure 4: Coordinated behaviors in bottleneck. The figure highlights that our traffic flow with
communication produces diverse coordinated behaviors such as queueing at the narrow crossing,
rushing at open areas and yielding to avoid crashes.

Lane). Third, driving efficiency is represented by average speed of the whole traffic simulation (Effi-
ciency). As for single-agent training, these metrics are calculated from the perspective of ego agent.
More disccusions can be found in Appendix A.5.

Traffic flows. We denote our traffic flow as SocialComm and implement four representative traffic
flows to carry out comparative studies on different traffic flows and training pipelines. (1) Intelligent
Driver Model (IDM) (Treiber & Kesting, 2013) is a rule-based controller which uses one single
differential equation to model longitudinal movements for all agents. Each agent strictly follows
its global path. (2) FLOW (Wu et al., 2021) is a MARL-based method where each agent aims
to maximize its own reward. (3) CoPO (Peng et al., 2021) is a MARL-based method that also
incorporates SVO. CoPO has two stages. First, similar to our traffic flow, CoPO applies IPL and SVO
to train a background policy. Then, CoPO additionally trains a meta-controller to select all agents’
SVOs so that the success rate of the whole population is maximized. Note that agents in CoPO have
no access to other agents’ SVOs. (4) FailMaker (Wachi, 2019) is a method to generate attacking
behaviors. Attacking agents are rewarded if they successfully induce driving agent’ catastrophic
failures while avoiding personal failures except for collision.

Training pipelines. We use vanilla RL (VRL), existing robust adversarial RL (RARL), and our
proposed misunderstanding-based adversarial learning (M-RARL) to train driving policies. VRL
can be applied in IDM, FLOW, CoPO, and SocialComm. RARL and M-RARL can only be applied
in FailMaker and SocialComm (with the spurious adversarial agent) respectively.

5.1 PERFORMANCE OF TRAFFIC FLOWS

We demonstrate the performance of different traffic flows. Figure 2 and Figure 3 show quantitative
results of different traffic flows. As one can see, our proposed SocialComm achieves the highest
success rates and average speeds across all scenarios. Compared with CoPO, agents in SocialComm
can recognize other agents’ SVOs and produce coordinated behaviors, therefore achieving collab-
oration and high efficiency of the whole system. FailMaker achieves the lowest success rate and
highest collision rate (lowest safety) due to its adversarial nature. Note that in merge, our traffic
flow outperforms other methods by a large margin. The reason is that the initial poses of all agents
in merge are much closer than these in other scenarios, which makes it harder for the agents to
coordinate. Qualitative results are shown in Figure 4. See Appendix A.2 for more results.

5.2 MISUNDERSTANDING-BASED ADVERSARY WITH SOCIALCOMM

Our robust policy learning framework applies adversarial training on a coordinated traffic flow. In
this part, we demonstrate that misunderstanding-based adversary successfully degrades driving pol-
icy’s performance and has the ability to impede the driving agent.

Performance. We first train driving policy using vanilla RL in four non-adversarial traffic flows (in-
cluding IDM, FLOW, CoPO, and SocialComm) and deploy these well-trained driving policies into
SocialComm with the spurious adversarial agent. Results are shown in Table 1. Data in parentheses
is the change of performances under the spurious adversarial policy. Success rates and efficiencies
of all driving policies decrease. This reveals that our spurious adversarial policy could impede the
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Table 1: Effect of misunderstanding-based adversary with our coordinated traffic flow So-
cialComm. The table reports the percentage of different metrics in intersection and
bottleneck. Results in parentheses indicate the performance change under adversary. Results
marked in red indicate the performance degradation under adversary while results in blue indicate
the performance increase. A “†” indicates our proposed traffic flow.

Methods
Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 77.0 (-2.5) 10.0 (+4.5) 11.0 (-3.5) 1.0 (+1.5) 0.0 (+0.0) 47.1 (-1.2)
VRL/FLOW 84.0 (-1.5) 13.5 (+1.5) 1.0 (+1.0) 0.5 (-0.5) 0.5 (-0.5) 50.1 (-0.5)
VRL/CoPO 81.5 (-3.0) 14.5 (+4.0) 1.0 (+0.5) 2.0 (-1.0) 0.0 (+0.0) 48.8 (-1.3)

VRL/SocialComm† 87.0 (-2.0) 7.0 (+2.0) 1.5 (+1.5) 1.5 (-1.0) 0.5 (+0.0) 51.9 (-1.1)

Methods
Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 52.5 (-2.0) 26.0 (+1.0) 21.0 (+1.0) 0.5 (+0.0) 0.0 (+0.0) 58.3 (-1.3)
VRL/FLOW 75.5 (-2.0) 19.5 (+4.5) 4.5 (-2.5) 0.5 (+0.0) 0.0 (+0.0) 74.6 (-0.8)
VRL/CoPO 71.5 (-2.0) 13.5 (-2.5) 15.5 (+3.5) 1.0 (+0.0) 0.0 (+0.0) 70.9 (-1.0)

VRL/SocialComm† 91.0 (-6.0) 4.0 (+3.0) 5.0 (+3.0) 0.0 (+0.0) 0.0 (+0.0) 81.3 (-3.0)

t = 0 s, cβ = 0.49

Without Adversary

Adversary via Misunderstanding

Cut-inSlow down

t = 2.5 s, cβ = 0.92 t = 5 s, cβ = 0.88

Figure 5: Adversarial behaviors towards driving agent generated by coordinated traffic flow.
Driving policy controls the red vehicle. Vehicles with blue and purple boxes are two background
agents that exhibit adversarial behaviors towards driving policy while maintaining coordination.

driving policy. Note that catastrophic failures of driving policy still increase under adversary in our
traffic flow. The reason is that although highly coordinated, our traffic flow cannot eliminate catas-
trophic failures of the whole traffic system. And it is not unallowable for the traffic flow to incur
driving policy’s catastrophic failures due to the optimization objective in Equation 8.

Adversarial behaviors on coordinated traffic flow. Figure 5 demonstrates some qualitative results
on how our traffic flow impedes driving policy to finish its own task. Driving policy controls the
red car. At t = 0s, the driving policy aims to pass through the bottleneck efficiently and keeps
high speed. When driving policy approaches the bottleneck, where interaction frequently happens,
the agent with blue box slows down (t = 2.5s) to regulate the speed of driving policy and pass
through the bottleneck. After that, the agent with purple box cut in the agent ahead of driving
agent (t = 5.0s). These agents impede the driving policy and degrade its efficiency and explicit
coordinated behaviors among each other.

5.3 ZERO-SHOT TRANSFER PERFORMANCE OF DRIVING POLICIES

To evaluate the robustness in unseen environments, we deploy all driving policies in all traffic flows.
In Figure 6, elements in primary diagonals are obtained by evaluating in their training environments
(the traffic flow used in training and evaluating is the same) and typically achieve highest success
rates. Therefore, off-diagonal elements reveal zero-shot transfer performances and colors in the
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†

Intersection Bottleneck

Figure 6: Zero-shot transfer performance in intersection and bottleneck. The heatmap
reports the percentage of success rate for different methods in different traffic flows. Deeper color
represents higher success rate. Primary diagonals indicates that training and evaluating environments
are the same. A “†” indicates our proposed misunderstanding-based adversarial training.

lowest row are column-wise deepest, indicating that driving policy trained with our proposed M-
RARL acquires highest transferability.

RARL/FailMaker shows the worst zero-shot transfer performance (which is removed from Figure 6
for clarity and can be found in Appendix A.3) since background agents in FailMaker deliberately
induce catastrophic failures of driving policy. This means that RARL/FailMaker has no way to see
non-adversarial traffic behaviors. Therefore, although robustness under adversarial attack is im-
proved, RARL/FailMaker is fragile to unseen traffic patterns. Based on this observation, VRL/IDM,
VRL/FLOW, VRL/CoPO, and VRL/SocialComm demonstrate superior zero-shot transfer perfor-
mances in non-adversarial traffic flows compared to RARL/FailMaker.

Comparing VRL/SocialComm and M-RARL/SocialComm, one can see that injecting adversaries
properly in dense traffic flow significantly improves robustness in unseen non-adversarial environ-
ments. Note that all methods except RARL/FailMaker act poorly in FailMaker since it is extremely
easy for background agents in FailMaker to attack driving policies, no matter how driving agents act
shrewdly. See Appendix A.3 for more results.

6 CONCLUSION

In this paper, we propose a novel adversarial training framework based on a coordinated traffic
flow with communication. Driving policies trained with this framework exhibit robust behaviors
across various traffic flows. We report characteristics of several traffic flows in scenarios including
intersection, bottleneck, merge, and roundabout. We carry out numerous compar-
ative studies to evaluate the transferability of driving policy. Results show that our traffic flow
achieves the highest success rate and adversarial learning on our traffic flow significantly improves
driving policy’s zero-shot transfer performance compared to existing algorithms.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Intelligent Driver Model (IDM). IDM is given by Equation 9 and Equation 10. The model de-
scribes the acceleration v̇back of the back agent, as a function of the agent’s velocity vback, the
reference velocity v0, the difference between the agent velocity and the velocity of the agent in front
∆v = vback − vfront, and the following distance φ = sfront +Llength,front − sback. Here, sfront
is the position of the front agent, sback denotes the position of the back agent, and Llength,front

denotes the length of the front agent. The physical interpretation of the parameters are the minimum
following time, T , the minimum following gap, s0, the maximum acceleration, a, the minimum
following gap, s0, the maximum acceleration, a, and the comfortable braking deceleration, b.

v̇back = a

[
1−

(
vback
v0

)δ

−
(
ϕ (vback,∆v)

φ

)2
]

(9)

ϕ (vback,∆v) = s0 + vbackT +
vback∆v

2
√
ab

(10)

Policy learning parameters. For Independent Policy Learning (IPL) and single-agent reinforce-
ment learning algorithms, we utilize Soft-Actor-Critic (SAC) (Haarnoja et al., 2018) and Adam
optimizer (Kingma & Ba, 2015). Detailed parameters are shown in Table 3.

A.2 RESULTS ON OUR COORDINATED TRAFFIC FLOW

More results are shown in Table 4, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12,
Figure 13, and Figure 14.

A.3 RESULTS ON ZERO-SHOT TRANSFER

More results are shown in Table 5, Table 6 Table 7, Table 8.

A.4 DETAILS OF OUR SIMULATOR

Our internal driving simulator is 2D and aims to investigate single- and multi-agent driving behav-
iors, especially in dense traffic flows. Inspired by the trajectory prediction community (Liang et al.,
2020; Zhao et al., 2021; Gu et al., 2021), our simulator utilizes sparse (vectorized) representation
to capture the structural information of high-definition maps and agents. Compared to rasterized
encoding which rasterizes the HD map elements together with agents into an image, vectorized rep-
resentation is computation- and memory-efficient (Gao et al., 2020). The critical components of
our simulator are built on top of this vectorized representation. For designing an RL-oriented sim-
ulator, there are three critical components including scenario initialization, step forward, and done
condition.

scenario initialization. We choose one scenario from intersection, bottleneck, merge,
and roundabout and load the pre-built vectorized map for this scenario. After that, we assign
global path, initial pose, and SVO for each agent in the scenario. A vectorized map contains two
parts including the centerline and sideline. Each part is a 3D tensor which contains different ele-
ments. Each element contains a sequence of points. Each point v is a vector [p, l] where p = (x, y, θ)
is the pose and l represents the lane width (for sideline, l is always 0). The average distance of adja-
cent points is 2.0m. Given this map, we build a graph G on top of centerline where each element is
a node of G and an edge exists only when two elements are connected end to end. For each scenario,
we manually pick up two bunch of points as initial and terminational poses respectively. For each
agent, we randomly select an initial and terminal pose (pinitial and pterminal) and use A* algorithm
to search a list of points from pinitial to pterminal on G. This list of points is the global path of
the agent, in which the first point is the initial pose. Finally, we assign a SVO c ∈ [0, π

2 ] to this
agent. For all agents in the scenario, the above procedure is repeated. We further clarify what the
term “agent” means in our paper. Agents can be divided into two categories: foreground agents
and background agents. Background agents are NPCs that have unchanged policies like IDM and
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learned NNs. Background agents are part of the environment. For a single-agent environment, there
is only one single foreground agent (driving agent). For a multi-agent environment, there exist mul-
tiple foreground agents. “Foreground agent” is exactly the meaning of “agent” in RL community.
Currently, when there are n vehicles in our simulator, the number of foreground and background
agents is (1, n− 1) for single-agent settings and (n, 0) for multi-agent settings.

step forward. We use bicycle model as the vehicle dynamic model, where the inputs of the model
are acceleration a and steer δ and the state is (x, y, θ, v). To guarantee that the agent will not
exceed its maximum speed vmax = 6m/s substantially, we introduce a PID controller (Kp = 1.0,
Ki = 0.01, Kd = 0.05) to regulate a given the reference speed vr and current speed v. Therefore,
the action is (vr, δ) where vr ∈ [0, vmax] and δ ∈ [−45◦, 45◦]. As explained in Section 3.2, the
state and observation space contains a collection of static and dynamic elements and is vectorized,
the dimension of state and observation space is inherently not fixed. The length of static elements is
not fixed and has no upper bound. The upper bound of dynamic elements’ length is 10.

done condition. In our simulator, one agent is done if it reaches its destination, encounters catas-
trophic failures, or survives until timeout. Once an agent is done, it will be removed from the
scenario. When all foreground agents are done, this episode ends. Catastrophic failures include col-
lision with other agents, deviation from drivable area, driving too far from global path, and crashing
into wrong lane. The maximum steps for one episode are tmax and when an agent survives tmax

steps in the environment, we call it “timeout”. In this paper, tmax = 100. An agent is marked
as success only when it passes the interaction zone (as shown in Figure 15). Note that we name
each scenario with its interaction zone. For instance, the interaction zone in bottleneck is the
bottleneck.

A.5 METRICS

Note that most metrics we use are widely used in prior works. Success is used in Dosovitskiy et al.
(2017); Chen et al. (2020); Wu et al. (2021); Peng et al. (2021); Rhinehart et al. (2019); Chen et al.
(2019b); Cai et al. (2019). Collision is used in Chen et al. (2020); Suo et al. (2021); Chen et al.
(2019b); Cai et al. (2019). Off Road is used in Rhinehart et al. (2019); Chen et al. (2019b). Off
Route is our design, but Chen et al. (2019a); Toromanoff et al. (2020) uses it as a reward term.
Wrong Lane is used in Rhinehart et al. (2019). Efficiency is used in Wu et al. (2021); Chen et al.
(2019b); Moghadam et al. (2020); Cai et al. (2019).

A.6 ADDITIONAL RESULTS

The comparison of training efficiency between CoPO and SocialComm (Ours) is shown in Figure 16.

The impact of varying the number of agents in each scenario is shown in Figure 17.

Table 2: Parameters of IDM.

Parameter Value

Desired speed v0 6 m/s
Time gap T 1.0 s
Minimum gap s0 2 m
Acceleration exponent δ 4
Acceleration a 5.0 m/s2

Comfortable deceleration b 5.0 m/s2
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Table 3: Hyperparameters of SAC.

Parameter Value

optimizer Adam
actor learning rate 1 · 10−4

critic learning rate 5 · 10−4

tune learning rate 1 · 10−4

discount (γ) 0.9
batch size 128
replay buffer size 106

nonlinearity ReLU
target smoothing coefficient (τ ) 0.005
target update interval 200

Table 4: Quantitative performance of traffic flows. The table reports the percentage of different
metrics in intersection, bottleneck, merge, and roundabout. A “†” indicates our
proposed traffic flow.

Traffic Flows
Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

IDM 70.4 ± 0.0 29.6 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 42.1 ± 0.0
FLOW 79.6 ± 0.5 15.9 ± 0.6 2.0 ± 0.2 1.2 ± 0.1 0.0 ± 0.0 47.4 ± 0.2
CoPO 79.6 ± 0.3 17.6 ± 0.4 1.3 ± 0.1 1.4 ± 0.1 0.1 ± 0.1 46.8 ± 0.1

FailMaker 45.3 ± 0.3 52.5 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 28.7 ± 0.1
SocialComm† 86.9 ± 0.5 9.0 ± 0.4 2.8 ± 0.1 1.2 ± 0.1 0.2 ± 0.1 51.0 ± 0.2

Traffic Flows
Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

IDM 67.0 ± 0.0 33.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 49.1 ± 0.0
FLOW 76.2 ± 0.5 9.8 ± 0.4 14.3 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 75.1 ± 0.3
CoPO 80.3 ± 0.6 9.3 ± 0.7 11.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 74.5 ± 0.3

FailMaker 21.3 ± 0.2 78.6 ± 0.1 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 29.0 ± 0.2
SocialComm† 83.4 ± 0.4 9.4 ± 0.3 7.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 76.4 ± 0.1

Traffic Flows
Merge

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

IDM 60.0 ± 0.0 40.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 46.9 ± 0.0
FLOW 66.2 ± 0.4 25.4 ± 0.5 8.5 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 55.1 ± 0.2
CoPO 69.3 ± 0.5 26.9 ± 0.6 3.8 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 54.9 ± 0.2

FailMaker 16.0 ± 0.2 80.9 ± 0.2 3.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 16.2 ± 0.1
SocialComm† 83.1 ± 0.5 16.2 ± 0.5 0.6 ± 0.1 0.2 ± 0.1 0.0 ± 0.0 60.0 ± 0.2

Traffic Flows
Roundabout

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

IDM 73.6 ± 0.0 26.4 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 38.1 ± 0.0
FLOW 72.7 ± 0.6 22.4 ± 0.4 4.8 ± 0.2 0.0 ± 0.0 0.1 ± 0.1 39.2 ± 0.1
CoPO 81.2 ± 0.6 14.3 ± 0.5 4.0 ± 0.2 0.0 ± 0.0 0.5 ± 0.1 39.0 ± 0.1

FailMaker 21.3 ± 0.3 77.6 ± 0.3 0.5 ± 0.0 0.0 ± 0.0 0.6 ± 0.1 15.7 ± 0.1
SocialComm† 84.6 ± 0.5 11.5 ± 0.3 3.6 ± 0.3 0.1 ± 0.0 0.5 ± 0.1 42.2 ± 0.1
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Figure 7: The performance of CoPO and SocialComm (Ours) in intersection.
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Figure 8: The performance of CoPO and SocialComm (Ours) in bottleneck.
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Figure 9: The performance of CoPO and SocialComm (Ours) in merge.
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Figure 10: The performance of CoPO and SocialComm (Ours) in roundabout.
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Agent 3: Yield

Agent 4: Bypass

Agent 1: Cut-in

Agent 2: Bypass

Agent 5: Queue

Agent 6: Rush

Figure 11: Coordinated behaviors in intersection.

Cut-in Yield

Queue
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Figure 12: Coordinated behaviors in bottleneck.

Agent 3: Queue
Agent 1:Yield

Agent 2:Cut-in

Agent 4:Rush

Figure 13: Coordinated behaviors in merge.
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Agent 3:Yield

Agent 2:Creep

Agent 4:Bypass

Agent 1:Rush

Figure 14: Coordinated behaviors in roundabout.

Bottleneck

Intersection Roundabout

Merge

Figure 15: The initial poses (makred as black arrows) and interaction zone (marked as gray
rectangles) of each scenario.

Intersection Bottleneck Merge Roundabout

Figure 16: Training success rates of CoPO and SocialComm (Ours).
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Table 5: Zero-shot transfer performance in intersection. Each subtable stores results of
different driving policies in the same traffic flow. A “†” indicates our proposed method.

Evaluate in
IDM

Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 79.5 6.0 2.0 0.0 0.0 47.1
VRL/FLOW 67.0 30.5 0.5 0.5 0.5 39.5
VRL/CoPO 69.0 27.0 0.5 0.0 0.0 43.0

RARL/FailMaker 22.5 20.5 19.5 11.0 0.0 25.2
VRL/SocialComm 69.0 28.5 3.5 2.0 0.0 40.8

M-RARL/SocialComm† 71.5 21.5 6.0 1.0 0.0 42.1

Evaluate in
FLOW

Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 65.5 18.5 13.0 1.5 0.5 42.8
VRL/FLOW 87.5 6.5 1.5 0.0 0.0 51.5
VRL/CoPO 76.0 12.0 2.0 3.0 0.0 46.5

RARL/FailMaker 26.0 13.5 13.0 16.0 0.5 25.7
VRL/SocialComm 79.0 11.0 2.0 4.5 0.0 47.9

M-RARL/SocialComm† 83.5 8.0 2.0 3.0 0.5 49.7

Evaluate in
CoPO

Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 69.5 20.0 8.0 1.0 0.5 45.0
VRL/FLOW 75.5 20.0 1.5 0.0 0.0 46.1
VRL/CoPO 81.5 16.0 1.0 0.0 0.0 48.7

RARL/FailMaker 25.5 11.5 15.5 14.5 0.5 26.0
VRL/SocialComm 74.5 19.0 1.0 2.0 0.0 45.8

M-RARL/SocialComm† 79.5 16.5 0.0 1.0 0.0 47.7

Evaluate in
FailMaker

Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 55.0 22.5 22.0 0.0 0.5 37.3
VRL/FLOW 52.0 37.0 12.0 0.0 0.0 36.0
VRL/CoPO 51.0 43.5 4.0 1.0 0.5 34.7

RARL/FailMaker 26.5 11.5 17.5 14.5 0.0 25.9
VRL/SocialComm 51.5 33.0 16.5 1.5 0.0 36.5

M-RARL/SocialComm† 51.0 40.5 8.0 0.0 0.0 35.9

Evaluate in
SocialComm

Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 77.0 10.0 11.0 1.0 0.0 47.1
VRL/FLOW 84.0 13.5 1.0 0.5 0.5 50.1
VRL/CoPO 81.5 14.5 1.0 2.0 0.0 48.8

RARL/FailMaker 21.5 12.5 21.0 15.0 0.5 24.9
VRL/SocialComm 87.0 7.0 1.5 1.5 0.5 51.9

M-RARL/SocialComm† 85.5 11.0 1.0 0.5 0.0 50.9

Evaluate in
SocialComm (with Adv)

Intersection

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 74.5 14.5 7.5 2.5 0.0 45.9
VRL/FLOW 82.5 15.0 2.0 0.0 0.0 49.6
VRL/CoPO 78.5 18.5 1.5 1.0 0.0 47.5

RARL/FailMaker 24.0 12.5 15.5 18.0 0.5 25.3
VRL/SocialComm 85.0 9.0 3.0 1.0 0.5 50.8

M-RARL/SocialComm† 86.0 10.5 0.5 1.5 0.0 51.4

22



Under review as a conference paper at ICLR 2023

Table 6: Zero-shot transfer performance in bottleneck. Each subtable stores results of differ-
ent driving policies in the same traffic flow. A “†” indicates our proposed method.

Evaluate in
IDM

Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 91.5 6.0 2.5 0.0 0.0 72.8
VRL/FLOW 53.0 25.5 19.5 2.5 0.0 51.7
VRL/CoPO 64.5 24.0 10.5 2.5 0.0 59.6

RARL/FailMaker 50.0 10.0 37.5 3.0 0.0 33.9
VRL/SocialComm 67.0 20.5 12.5 0.0 0.0 55.8

M-RARL/SocialComm† 74.5 21.0 5.5 0.0 0.0 57.6

Evaluate in
FLOW

Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 51.0 24.0 26.5 0.5 0.0 54.8
VRL/FLOW 79.0 18.5 2.0 0.5 0.0 76.1
VRL/CoPO 60.5 27.5 12.5 0.0 0.0 65.5

RARL/FailMaker 42.0 18.5 39.5 0.0 0.0 25.6
VRL/SocialComm 72.5 24.0 4.5 0.0 0.0 68.7

M-RARL/SocialComm† 73.0 25.5 2.0 0.0 0.0 68.4

Evaluate in
CoPO

Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 48.5 16.5 33.0 2.0 0.0 57.2
VRL/FLOW 61.0 6.5 33.0 0.0 0.0 64.6
VRL/CoPO 89.0 9.0 1.5 0.5 0.0 81.8

RARL/FailMaker 51.0 11.0 34.5 3.5 0.0 35.1
VRL/SocialComm 65.0 30.5 5.5 0.0 0.0 67.2

M-RARL/SocialComm† 74.0 25.5 0.5 0.0 0.0 71.0

Evaluate in
FailMaker

Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 20.5 59.0 26.0 0.0 0.0 34.5
VRL/FLOW 4.5 94.0 3.0 0.0 0.0 24.2
VRL/CoPO 6.5 88.5 6.5 0.0 0.0 27.5

RARL/FailMaker 38.0 23.0 38.5 0.5 0.0 26.1
VRL/SocialComm 2.5 87.5 13.5 0.0 0.0 24.3

M-RARL/SocialComm† 4.5 94.0 2.0 0.0 0.0 24.1

Evaluate in
SocialComm

Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 52.5 26.0 21.0 0.5 0.0 58.3
VRL/FLOW 75.5 19.5 4.5 0.5 0.0 74.6
VRL/CoPO 71.5 13.5 15.5 1.0 0.0 70.9

RARL/FailMaker 36.0 23.5 42.0 0.5 0.0 26.6
VRL/SocialComm 91.0 4.0 5.0 0.0 0.0 81.3

M-RARL/SocialComm† 89.5 8.5 2.0 0.0 0.0 79.6

Evaluate in
SocialComm (with Adv)

Bottleneck

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 50.5 27.0 22.0 0.5 0.0 57.0
VRL/FLOW 73.5 24.0 2.0 0.5 0.0 73.8
VRL/CoPO 69.5 11.0 19.0 1.0 0.0 69.9

RARL/FailMaker 36.5 19.0 43.5 1.0 0.0 27.7
VRL/SocialComm 85.0 7.0 8.0 0.0 0.0 78.3

M-RARL/SocialComm† 88.5 11.5 0.0 0.0 0.0 79.8
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Table 7: Zero-shot transfer performance in merge. Each subtable stores results of different
driving policies in the same traffic flow. A “†” indicates our proposed method.

Evaluate in
IDM

Merge

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 92.0 6.0 2.0 0.0 0.0 62.3
VRL/FLOW 41.5 55.5 7.5 0.5 0.0 29.1
VRL/CoPO 54.5 19.0 22.5 9.0 0.0 38.0

RARL/FailMaker 66.5 5.0 14.5 14.0 0.0 45.9
VRL/SocialComm 67.5 18.5 14.5 0.0 0.0 43.6

M-RARL/SocialComm† 85.0 15.0 0.0 0.0 0.0 53.2

Evaluate in
FLOW

Merge

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 35.0 38.0 27.5 0.0 0.0 40.5
VRL/FLOW 69.5 25.0 5.5 0.0 0.0 56.0
VRL/CoPO 52.0 35.0 12.0 1.0 0.0 48.2

RARL/FailMaker 17.0 40.5 33.5 9.5 0.0 24.2
VRL/SocialComm 62.5 33.5 4.0 0.0 0.0 54.5

M-RARL/SocialComm† 67.5 21.5 11.0 0.0 0.0 56.0

Evaluate in
CoPO

Merge

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 36.5 44.5 19.0 0.0 0.0 40.0
VRL/FLOW 50.0 44.0 5.5 0.5 0.0 46.6
VRL/CoPO 70.5 24.5 5.0 0.0 0.0 55.4

RARL/FailMaker 17.0 39.0 34.0 10.0 0.0 23.5
VRL/SocialComm 57.0 37.5 5.5 0.0 0.0 49.9

M-RARL/SocialComm† 59.5 40.0 0.5 0.0 0.0 52.0

Evaluate in
FailMaker

Merge

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 9.0 74.5 18.0 0.0 0.0 15.1
VRL/FLOW 9.0 81.0 11.5 0.0 0.0 17.5
VRL/CoPO 10.0 83.5 10.0 0.0 0.0 19.2

RARL/FailMaker 19.5 37.5 39.5 6.5 0.0 21.6
VRL/SocialComm 8.5 88.0 4.0 0.0 0.0 16.8

M-RARL/SocialComm† 12.0 78.5 11.0 0.0 0.0 18.5

Evaluate in
SocialComm

Merge

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 65.0 16.0 19.0 0.0 0.0 51.3
VRL/FLOW 71.5 21.0 7.5 0.0 0.0 55.0
VRL/CoPO 70.0 24.5 5.5 0.5 0.0 55.1

RARL/FailMaker 18.5 29.0 47.5 6.5 0.0 27.6
VRL/SocialComm 84.5 14.0 1.5 0.0 0.0 60.7

M-RARL/SocialComm† 83.5 12.5 3.5 0.5 0.0 61.2

Evaluate in
SocialComm (with Adv)

Merge

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 64.5 18.0 17.5 0.0 0.0 51.1
VRL/FLOW 69.5 22.5 8.0 0.0 0.0 54.1
VRL/CoPO 66.0 23.5 10.5 0.5 0.0 53.4

RARL/FailMaker 18.5 25.0 50.5 7.0 0.0 27.2
VRL/SocialComm 83.5 15.0 1.5 0.0 0.0 61.0

M-RARL/SocialComm† 85.0 13.5 1.5 0.0 0.0 61.3
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Table 8: Zero-shot transfer performance in roundabout. Each subtable stores results of differ-
ent driving policies in the same traffic flow. A “†” indicates our proposed method.

Evaluate in
IDM

Roundabout

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 83.0 9.0 5.5 0.0 2.5 38.7
VRL/FLOW 44.5 51.5 4.0 1.0 0.0 23.8
VRL/CoPO 59.0 33.0 9.5 0.0 0.0 31.5

RARL/FailMaker 32.5 16.0 55.5 6.0 0.5 19.7
VRL/SocialComm 40.5 30.5 31.0 0.5 1.0 21.1

M-RARL/SocialComm† 63.0 18.5 17.0 0.0 1.5 32.3

Evaluate in
FLOW

Roundabout

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 54.0 27.0 18.5 0.0 0.5 32.7
VRL/FLOW 84.0 11.5 4.5 0.0 0.0 42.7
VRL/CoPO 61.5 29.5 9.0 0.0 0.0 38.4

RARL/FailMaker 30.5 24.0 46.0 5.0 0.5 17.7
VRL/SocialComm 66.5 25.5 9.5 0.0 0.0 38.6

M-RARL/SocialComm† 70.5 26.5 2.5 0.0 0.5 40.1

Evaluate in
CoPO

Roundabout

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 55.5 18.5 23.0 0.5 2.5 32.4
VRL/FLOW 62.0 12.0 24.0 0.0 2.0 35.7
VRL/CoPO 86.5 12.0 1.5 0.0 0.0 41.8

RARL/FailMaker 32.0 25.0 46.5 4.5 0.5 17.2
VRL/SocialComm 70.0 26.5 3.5 0.0 0.5 38.8

M-RARL/SocialComm† 76.5 17.5 5.5 0.0 0.5 39.9

Evaluate in
FailMaker

Roundabout

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 19.5 64.0 20.5 0.0 0.5 20.2
VRL/FLOW 29.5 57.5 14.0 0.0 0.0 25.0
VRL/CoPO 21.0 70.5 10.0 0.0 0.5 22.7

RARL/FailMaker 29.5 17.0 51.5 5.0 0.0 14.5
VRL/SocialComm 17.0 63.0 24.5 0.0 0.0 19.9

M-RARL/SocialComm† 18.5 57.5 25.5 0.0 0.0 20.5

Evaluate in
SocialComm

Roundabout

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 75.5 9.5 13.0 0.0 2.0 38.0
VRL/FLOW 74.0 12.0 14.0 0.0 0.0 39.7
VRL/CoPO 82.0 13.5 1.5 1.5 2.5 42.4

RARL/FailMaker 30.0 16.5 54.5 5.0 0.0 17.7
VRL/SocialComm 87.5 9.0 3.5 0.0 0.0 43.2

M-RARL/SocialComm† 86.0 12.0 2.0 0.0 0.0 42.8

Evaluate in
SocialComm (with Adv)

Roundabout

Success (↑) Collision (↓) Off Road (↓) Off Route (↓) Wrong Lane (↓) Efficiency (↑)

VRL/IDM 72.5 13.0 13.0 0.0 1.5 37.8
VRL/FLOW 81.0 4.0 14.5 0.5 0.0 41.2
VRL/CoPO 80.5 17.5 1.5 1.0 0.0 42.2

RARL/FailMaker 31.0 15.5 56.0 4.5 0.5 18.2
VRL/SocialComm 84.5 11.5 5.0 0.0 0.0 42.3

M-RARL/SocialComm† 87.0 10.5 2.0 0.0 0.5 42.9
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Figure 17: Success rates with different number of agents.
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